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Abstract

The focus of this thesis is the analysis of the stability and robustness of

continuous-time, finite state-space nonlinear filters, in order to provide

new and practically relevant quantitative error bounds for a general class

of approximate filters. This analysis is carried out through the use of the

Hilbert projective metric.

We begin by providing a self-contained introduction to the Hilbert metric

and its fundamental properties, with a particular focus on the space of

probability measures. We then derive and study various dual formulations,

and exploit these to obtain a contraction result for linear operators on

convex cones with respect to a new distance, the hyperbolic tangent of

the Hilbert metric. This general observation directs us naturally towards

a range of new results on stability and robustness in nonlinear filtering.

Specifically, we turn to the problem of estimating the state of a continuous-

time Markov chain from noisy observations. As regards stability, our key

contribution is a proof that the corresponding optimal filter, called the

Wonham filter, is contracting pathwise in the aforementioned distance

given by the hyperbolic tangent of the Hilbert metric. Moreover, we

give explicit deterministic and pathwise rates of convergence. By utilising

these results, we are able to take an alternative approach to the study of

the robustness of the Wonham filter, thereby improving on known error

estimates and deriving rigorous, computable error bounds of theoretical

and practical relevance as concerns the analysis and implementation of

approximate filters.

Finally, we consider the problem of reducing the dimensionality of the

Wonham filter via geometric projections, with a view towards defining an

optimal projection filter. Building on the intuition provided by our error

bounds, we find a natural submanifold for the Wonham filter such that

the error of the projection filter is minimized.
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Chapter 1

Introduction

1.1 Nonlinear stochastic filtering

Estimating a random hidden process from incomplete, noisy observations is a common

problem arising in engineering, signal processing, finance, and many other disciplines.

The general setting consists of a signal (or state) process X evolving in time (typically

taken to be Markovian), which cannot be measured directly, but rather needs to be

estimated using the information given by an observation process Y , whose dynamics

depend on the signal X. Computing and analyzing the optimal solution to this

problem is the main objective of the theory of stochastic filtering.

Stochastic filtering is a classical topic in stochastic analysis, and optimal filters

have been derived in various contexts, e.g. in continuous or discrete time, with finite or

infinite state-space, and under different structural assumptions. The setting of linear

underlying dynamics, giving rise to the famous Kalman–Bucy filter [53, 54], was the

first to be considered in continuous time, and is by now well understood. Nonlinear

filtering, on the other hand, still presents challenges, from both the theoretical and

practical perspective. We refer to Bain and Crisan [10] or Liptser and Shiryaev [66]

for a comprehensive exposition of the classsical theory of nonlinear stochastic filtering.

The optimal nonlinear filter is the solution to a nonlinear stochastic (depending

on the context, partial) differential equation called the Kushner–Stratonovich equa-

tion, attributed to both Kushner [60] and Stratonovich [80] following a mix-up due

partly to the use of Itô’s calculus in the first case, while the corresponding notion of

Stratonovich integration was used in the second case (see Crisan [32] for a historical

account of stochastic filtering). In the majority of practical applications, however,

the nonlinear filter cannot be computed directly: for example, the model for X and

Y , which the filtering equations explicitly depend on, might have misspecified param-
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eters, or be completely unknown. Moreover, even when the true model is available,

solving the filtering equations numerically can be intractable due to the high (in many

cases, infinite) dimensional and non-local nature of the problem. Therefore, more of-

ten than not, approximate filters, rather than the optimal filter, are employed. This

begs the questions of whether or not these approximations are reliable, and how we

can quantify their error with respect to the optimal filter. These questions are central

in the study of the robustness of the nonlinear filter, which is one of the key topics to

be explored in this thesis.

More specifically, this thesis was born out of the desire to obtain a better un-

derstanding of the error arising from a specific class of approximate filters called

projection filters, as introduced in Brigo, Hanzon and Le Gland [19]. The projection

filter is one among several approximations of the Kushner–Stratonovich equation that

attempts to provide a low-dimensional solution to the nonlinear filtering problem. In

the next section, we shall briefly discuss approximate filters in general and the pro-

jection filter in particular.

1.2 Approximate filters

The filter is a measure-valued stochastic process which provides, at each time t, the

conditional law of the signal X given the information accumulated from observing Y

up to time t. Depending on the dimension of the state-space of X, the filter might

be very high dimensional. If, for example, X is valued in Rd, for d ≥ 1, which is

the case for many standard applications, then the nonlinear filter is a probability

measure on Rd, which is generally an infinite-dimensional object. In this sense, the

Kushner–Stratonovich equation suffers from the so-called “curse of dimensionality”.

To avoid infinite-dimensionality, engineers (and mathematicians) have come up

with approximate filters, which are both finite-dimensional and easy to compute.

The most well-known of these approximations is the Extended Kalman Filter (EKF),

based on linearization around the current state estimate, and it is still the most widely

used in practice. Famously, the early development of the Extended Kalman Filter

is due to research carried out at the NASA Ames Research Center for applications

to aerospace engineering in the 1960’s (see McGee, Schmidt and Smith [68]). Varia-

tion of the EKF are given for example by the augmented (or extended) EKF, which

retains higher order terms in the Taylor expansion around the current estimate, the

Unscented Kalman Filter (UKF) (see Julier and Uhlmann [51]), the Assumed Den-

sity Filter (ADF) (see Maybeck [67, Ch. 12]) and the Ensemble Kalman Filter EnKF
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(introduced by Evensen [41]), particularly useful for very high-dimensional systems

(such as in geophysical models and weather prediction).

The EnKF is related to another class of filtering approximations called particle

filters. Particle filters approximate the filter by evolving randomly in time a large

number of particles, whose empirical measure follows closely the distribution of the

filter. They are also known as sequential Monte Carlo methods, since they employ

sequential sampling and resampling of the particles to adaptively concentrate them

in regions of high posterior probability. Particle filter methods are in general very

flexible, and can be easily used to approximate any filtering density—however, to be

effective in high dimensions with a reasonable rate of convergence of the error, they

need to be finely tuned to suit each specific problem, and this can sometimes be a

difficult task. For an introduction to particle filters, we refer to Doucet, de Freita and

Gordon [36].

1.2.1 Dimensionality reduction via geometric projections

As already mentioned, in this thesis we are especially interested in the so-called

projection filter, which is another example of a finite-dimensional approximate filter.

Applying methods from differential geometry, this was first introduced by Hanzon [43]

in 1987, and a comprehensive treatment was then given by Brigo, Hanzon and Le

Gland [19] in the 90s. Very recently, the analysis of the projection filter has been

taken further by Brigo and collaborators, see in particular Brigo and Armstrong [4]

and Brigo, Armstrong and Rossi Ferrucci [6]. We will not give too many details here,

since we review this filter extensively in Chapter 5.

Conceptually, the projection filter can be seen as closely related to the EKF,

the UKF and the ADF briefly mentioned above. All of these approaches proceed

by approximating the true filtering dynamics, to give an approximate filter living

in a finite-dimensional subset of the space of probability measures. The differences

between the approaches principally relate to how general this finite-dimensional space

is allowed to be, and how the approximation is chosen. In projection filtering, a

particularly elegant formulation based on the geometry of the space of probability

measures is utilized.

The main idea is to view the Kushner–Stratonovich SPDE as describing a vec-

tor field on the space of probability densities. If the optimal filtering distribution

is ‘close’ (in some suitable sense) to a statistical family M parametrized by a finite

(and possibly low) dimensional parameter, then it should be possible to compute

an approximate filter ‘close’ to the optimal filter by solving a suitable SDE for the
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parameter determining M . To obtain the dynamics of this approximate filter which

belongs to M , we can project the dynamics of the Kushner–Stratonovich SPDE onto

the tangent space of M , and obtain a new differential equation, which now describes

a vector field on M : it is the solution of this equation that is called the projection

filter. Since M is chosen to be finite dimensional, the projection filter is also finite

dimensional. Numerical experiments presented in Brigo, Hanzon and Le Gland [18]

show remarkably good results when an appropriate statistical family is selected, even

when dealing with filtering distributions that are known to not have a finite dimen-

sional representation (such as in the case of the cubic sensor problem, see Hazewinkel,

Marcus and Sussmann [44]).

Nevertheless, just as in the case of the EKF, the UKF and the ADF, and in fact

in the case of most other approximate filters, no general convergence result for the

projection filter is known, nor do we have precise estimates of the error between the

projection filter and the solution to the Kushner–Stratonovich SPDE. (We exclude

particle filters from this statement, as convergence results for particle filters do exist,

and the challenges in implementing them consist mostly in finding ways around the

very high number of particles that are needed—in theory—for a precise approximation

of the filtering process; see for example [10, Section 8.6]). It is the lack of such results

that motivates our analysis in this thesis.

1.2.2 A heuristic discussion of approximate filtering

To be concrete, let us consider the question of how one can go about computing error

estimates for approximate filters in general, and the projection filter in particular.

Focusing on the projection filter, we provide a sketch of this in Figure 1.1 below.

This sketch and the appertaining discussion will serve well to illustrate the intuitive

reasoning behind our approach to stability and robustness, both in general and for

the projection filter in particular. Moreover, it also serves to motivate the specific

development of the different chapters in this thesis.

In Figure 1.1 below, we have sketched some realized paths, discretized in time,

for the optimal filter, denoted by πt, and a projection filter, denoted by π̃t, when the

state-space of the signal X is taken to consist of exactly 3 states. Consequently, πt

(and therefore also its approximation π̃t) are 3-dimensional probability vectors. The

space of 3-dimensional probability vectors is the 2-dimensional probability simplex

S2 ⊂ R3. In Figure 1.1 we have drawn S2 as a flat triangle for illustration purposes.

Denote by φ : Sn 7→ Sn the (discretized and idealized) flow of the Kushner–

Stratonovich equation on Sn over 1 time step. In other words, we have πtn+1 = φ(πtn),
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Figure 1.1: A sketch of the discretized dynamics of the optimal filter πt ∈ S2 and the
projection filter π̃t ∈ γ

and the 1-step flow φ(πtn) − πtn is represented by the green vectors in Figure 1.1.

Similarly, denote by φ̃ the flow of the projection filter π̃t over 1 time step. The 1-step

flow φ̃(π̃tn)− π̃tn is represented by the red vectors. The projection filter π̃ over time

stays on a 1-dimensional subspace of S2, which we call γ and which is represented by

the yellow line in Figure 1.1.

Now, let D be a distance function on S2, and consider the error D(πtn+1 , π̃tn+1)

between the optimal filter πt and the projection filter π̃t at the given time step. The

triangle inequality yields

D(πtn+1 , π̃tn+1) = D(φ(πtn), φ̃(π̃tn)) ≤ D(φ(πtn), φ(π̃tn)) +D(φ(π̃tn), φ̃(π̃tn)). (1.1)

Denote by Etn the second error term Etn = D(φ(π̃tn), φ̃(π̃tn)) on the right-hand side

of (1.1). These are the local errors of the approximation, given in this case by the

‘projection errors’ of the flow φ onto the line γ. In Figure 1.1 we illustrate these

projection errors in blue. At this point, if we have chosen γ and our projection

operator wisely, then we have some hope that the projection errors Etn are small,

so that the second term on the right of (1.1) is controlled (in other words, we have

chosen an approximation with small local error).

The question that remains is the following: what can we say about the first term

on the right-hand side of (1.1). Given the existing literature, the answer to this ques-

tion is, sadly, ‘not much’. The error D(φ(πtn), φ(π̃tn)) can only be quantified if we
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turn to the analysis of the stability of the filtering dynamics. The study of the stabil-

ity of the nonlinear filter is concerned with understanding the behaviour in time of the

error of the optimal filter πt when the initial conditions of the Kushner–Stratonovich

SPDE are misspecified. Turning back to our sketched argument above, φ(πtn) and

φ(π̃tn) represent respectively the 1-step dynamics of the Kushner–Stratonovich equa-

tion started at πtn and at π̃tn . Thus, understanding the stability of the nonlinear

filter will tell us if D(φ(πtn), φ(π̃tn)) expands, contracts, or stays stationary: that is,

whether D(φ(πtn), φ(π̃tn)) is greater than, smaller than, or equal to D(πtn , π̃tn). From

there, a simple recursive application of the triangle inequality shows that unless the

stability error contracts, we have no hope of controlling the error between πt and π̃t

in the medium to long time horizon.

These simple arguments motivate why, in our pursuit to understand the error of

the projection filter, we must first turn our attention to the problem of understanding

the stability of the nonlinear filter.

1.3 Stability and robustness of the Wonham filter

In this thesis, we focus on finite state-space nonlinear filtering in continuous time. The

optimal filter in this case is the solution to an SDE, first derived by Wonham [87],

and it is often referred to as the Wonham filter. We describe this filtering setting

in detail in Chapter 3. The reason why we focus on the finite-dimensional setting

is mostly practical: as we will see, analyzing the stability of the nonlinear filtering

equations is already very challenging in this simpler setting—without adding to it the

full generality of the infinite dimensional Kushner-Stratonovich SPDE.

Stability and robustness of the Wonham filter are ultimately two sides of the

same coin. Stability, as we have already mentioned, is concerned with the error due

to misspecification of the initial conditions of the filtering equations. Robustness, on

the other hand, is the analysis of the error when the misspecification extends to the

model parameters. Our goal of quantifying the errors of approximate filters goes one

step further: we want to allow for misspecification of the model itself.

As we have tried to convey in the heuristics in the previous section, everything

relies on obtaining a ‘good stability estimate’. If the error between the true filter and

the ‘wrongly initialized’ filter decays to zero as time passes, then the filter ‘forgets’

the initial error and is called asymptotically stable. If the nonlinear filter is stable,

using an approximate filter is essentially the same as using the optimal filter, but

introducing an approximation error at each time step. If all the approximation errors
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are bounded, stability ensures that they are also ‘forgotten’ as time goes on, thus

ensuring that the total error stays bounded, and we then recover robustness-type

estimates.

In discrete-time, finite state-space nonlinear filtering, an argument of this kind is

indeed how robustness estimates have been derived (see Budhiraja and Kushner [21],

Le Gland and Mevel [62] and Le Gland and Oudjane [63]). The main difference with

the continuous-time setting is that the stability estimates available in the literature for

the Wonham filter are not strong enough to directly apply this kind of methodology.

Indeed, to pull off this argument in continuous time, one would need exponential

(or similar) contraction of the stability error. The first goal of this thesis will be

to establish such a contraction result for the Wonham filter. The second objective

is to use our stability estimates to provide meaningful, computable error bounds for

general approximate filters.

We shall review extensively the literature for the stability of the Wonham filter in

Chapter 3. For now, we limit ourselves to describing briefly two of the main contri-

butions in this field, due to Atar and Zeitouni [8] and more recently Chigansky and

Van Handel [26]. The works by Chigansky and Van Handel [26] and Van Handel [83]

made significant progress on the robustness of the Wonham filter, as measured by the

L1-error between the true Wonham filter and the Wonham filter with misspecified

model parameters. Following an approach that relies on computing bounds for suit-

able derivatives of the filter, they prove that the error stays finite over an infinite time

horizon, and vanishes as the misspecified parameters are sent to the true ones. The

method in [26] could potentially be used to compute error bounds for more general

approximate filters, and not only those given by misspecification in the underlying

model. However, the estimates in [26] are not tight enough to provide useful quanti-

tative bounds (see [26, Remark 2.8] and [83, Remark 3.3.8]) so these results remain

primarily of qualitative interest.

The earlier results of Atar and Zeitouni [8], also for the Wonham filter, concern

asymptotic rates of decay for the stability error of the filter. These asymptotic results

are derived using suitable time discretizations and properties of the Hilbert projective

metric together with Birkhoff’s ergodic theorem in order to pass to the limit. Ar-

guably, the fundamental contribution of Atar and Zeitouni was the idea of exploiting

the Hilbert projective metric as a tractable notion of distance on the space of proba-

bility measures. This idea is also at the heart of our approach in this thesis. However,

the methodological similarities end there. In particular, as we just discussed, Atar and
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Zeitouni go through time discretizations, while we derive our results in a differential

way based on a helpful coordinate transformation linked to information geometry.

Before finishing this introduction with an outline of the thesis and its main contri-

butions, we first take a little moment to discuss the history of the Hilbert projective

metric and some prominent examples of its use.

1.4 The Hilbert projective metric

In [14], Garrett Birkhoff1 proved that positive linear operators on a positive convex

cone contract in the Hilbert projective (pseudo-)metric (introduced by Hilbert in [45]).

Starting from this result, he easily derives a proof of the famous Perron theorem2, by

essentially reducing it to a special case of the Banach fixed point theorem. Similarly,

he also immediately proves several of its generalizations: first, the extension of the

Perron theorem to non-negative matrices due to Frobenius, then the extensions to

infinite dimensional function spaces and positive integral and compact operators,

originally due to Jentzsch [50] and Krein and Rutman [58].

In the same year as Birkhoff, Samelson [77] also published a proof of the Perron–

Frobenius theorem using projective geometry, and similarly a few years later Hopf [46]

presented a contraction result for positive linear integral operators and an alternative

proof of Jentzsch’s theorem (apparently without being aware of Birkhoff’s previous

results). The combination of the Hilbert projective metric with the contraction map-

ping theorem has inspired a vast amount of further work on the Perron–Frobenius

theorem and its various extensions, see Lemmens and Nussbaum [65] and references

therein for a detailed overview of the topic. We highlight the early works of Thomp-

son [82], Bushell [22], and Kohlberg and Pratt [57], as well as the recent works by

Rugh [76] and Dubois [37] on operators on complex cones which have strongly influ-

enced our presentation in Chapter 2.

While the impact on Perron–Frobenius theory is certainly the most significant con-

sequence of Birkhoff’s work, we became interested in the Hilbert metric and Birkhoff’s

contraction result due to a different (although related) application: the study of the

ergodicity of non-negative linear operators. Work in this direction was presented by

Birkhoff himself in [15, Chapter XVI, Sec.7-8], Seneta and Sheridan [78, 79] and Le

Gland and Mevel [61]. Evidently, the ergodic theory of Markov processes with linear

1The son of George D. Birkhoff, who is better known in probabilistic circles for his proof of the
ergodic theorem.

2For a statement of the theorem, see [88, Theorem 5.25]; for the original work by Perron, see [72].
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transition kernels can be reduced to a particular case of this broader topic. Neverthe-

less, the Hilbert metric is not strictly necessary for developing the standard ergodic

theory of Markov processes. For example, in [78, Chapter 3] Seneta uses the Hilbert

metric to study the ergodicity of inhomogenous products of non-negative matrices;

on the other hand, in the following chapter [78, Chapter 4], which treats specifically

the ergodicity of discrete Markov chains, the Hilbert metric is not used, since the

analysis simplifies by virtue of the generators being stochastic matrices.

Perhaps as a consequence of this, one of the main avenues of application for the

Hilbert projective metric in probability theory appears to be relatively unknown. This

might in part explain why, despite being rather powerful tools, neither the Hilbert

metric nor Birkhoff’s contraction results seem to have found widespread use in the

probability community3. There are of course a few notable exceptions: Birkhoff’s

contraction theorem was employed, for example, in an elegant proof of the linear

convergence of the Sinkhorn algorithm by Franklin and Lorenz [42]. Moreover, of

particular relevance to the present thesis, it has proved fundamental in the qualitative

and quantitative analysis of the stability of hidden Markov processes, where the use

of the Hilbert metric was introduced by Atar and Zeitouni [8, 9] as discussed in

the previous section. Following their work, it has become a rather well-established

approach to the problem, see e.g. [12, 62, 63]. More recently, the Hilbert metric

has found computational applications in entropic interpolation [23] and nonlinear

embeddings [70].

1.5 Outline and main contributions

The contents of this thesis consists of three main components, which form the bulk of

my work during my DPhil studies in Oxford. Chapter 2 closely follows the treatment

of the Hilbert projective metric from the preprint [30]; Chapters 3 and 4, taken

together, present the results of the preprint [29] on the stabililty and robustness of

the Wonham filter; Chapter 5 contains my research on the projection filter in finite

state-space which has not yet been uploaded to the arXiv. All of this has been done

with collaboration from my DPhil supervisor, Sam Cohen.

• In Chapter 2, we begin our study with a comprehensive treatment of the Hilbert

projective (pseudo-)metric and its contractivity properties. The overarching

goal is to provide a clear, self-contained guide to this powerful tool and its merits

3To illustrate this point, no mention is made of this approach in any of the books by Ethier and
Kurtz [40], Meyn and Tweedie [69], Brémaud [17], Kallenberg [52], or Jacod and Shiryaev [49].
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in probability theory. Whereas most available treatments are chiefly analytic in

nature, here we instead have in mind applied probabilists and statisticians who

find themselves curious, as we were, about the merits and limitations of working

with the Hilbert projective metric in a probabilistic context. In particular, our

main focus is on studying the space of probability measures when equipped with

the Hilbert projective metric. This may be viewed as a subspace of the positive

cone in the space of signed measures, which of course comes with a natural

Banach space structure, as would be the point of view in analytic treatments.

In order to illustrate the general principles at work, we therefore place our

results within the context of locally convex topological vector spaces.

While we believe the results of Chapter 2 could be of independent interest,

their role in the present thesis is first and foremost to set the stage for how

we will approach the analysis of stability and robustness for the Wonham filter

in the chapters that follow. The central result is the fact that linear operators

on convex cones contract in a new distance given by the hyperbolic tangent of

the Hilbert metric, which in particular implies Birkhoff’s classical contraction

result. This will relate closely to our stability analysis for the Wonham filter

in the subsequent Chapter 3. Moreover, in the space of probability measures,

we analyse dual formulations of the metric and, in the special case of discrete

probability measures, we explore the resulting geometry of the probability sim-

plex. The latter relates to our treatment of the projection filter in Chapter 5.

Finally, we address comparisons of the Hilbert metric with the total variation

norm, p-Wasserstein distance, as well as any f -divergence, and we derive a novel

sharp bound for the total variation between two probability measures in terms

of their Hilbert distance.

• In Chapter 3, we introduce the filtering setting that has been at the center of

our work, namely the continuous-time nonlinear filter on finite state-space. In

particular, we show that the corresponding optimal filter, called the Wonham

filter, is strictly contracting pathwise with respect to the distance given by hy-

perbolic tangent of the Hilbert projective metric as discussed above. Moreover,

we give explicit deterministic and pathwise rates of convergence. These results

will allows us to give alternative proofs of the robustness of the Wonham filter

in the subsequent Chapter 4, improving on known error estimates and yielding

rigorous, computable error bounds for approximate filters.
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The main contribution of Chapter 3 is an exponential contraction estimate for

the stability error of the Wonham filter, in Hilbert distance (see Theorem 3.2.1).

In fact, our statement is stronger, as we can prove contractivity of the hyperbolic

tangent of the Hilbert distance, which directly implies the former. Both of these

are, to the best of our knowledge, new results, which improve significantly on

the quantitative estimates for the error available in the literature. We also

present an alternative way to study the stability error of the continuous-time

filter in Hilbert distance, which does not rely on Atar and Zeitouni’s arguments.

Instead, inspired by Amari [3], we will introduce a change of coordinates from

the probability simplex to Rn, and study the evolution of the Wonham filter in

the new coordinate system. As we will see, our arguments will present some

similarities with the proof of [12, Theorem 4.3], despite a different approach.

• In Chapter 4 we shall exploit the contraction results established in Chapter 3 in

order to investigate the error when approximate filters, rather than the optimal

filter, are employed. The first main contribution of Chapter 4 is a robustness-

type estimate for the Wonham filter (see Theorem 4.1.1). Compared to [26],

we state our error bounds for a general approximate filter, and in terms of

the Hilbert distance. Since the Hilbert distance is stronger than the L1-norm,

which is used in [26], the error bounds we provide are tighter (although still not

optimal, as we will discuss in Section 3.3.4 and Section 4.4). We also believe

our proof methodology to be interesting in its own right, being far simpler than

the arguments in [26]: it relies only on standard stochastic analysis tools, while

in [26] the authors need Malliavin calculus to deal with anticipative stochastic

integrals.

Finally, both our work in Chapter 2 and our findings in Theorem 3.2.1 sug-

gest that the hyperbolic tangent of the Hilbert distance (instead of simply the

Hilbert distance) might have advantages as a metric for studying the error of

approximate filters. In the particular case when the approximate filter is chosen

so that the stochastic term of the Wonham SDE is matched exactly, this yields

tighter, pathwise bounds for the error, which we prove in Theorem 4.1.2.

• In Chapter 5 we focus on the projection filter. We adapt the three types of SDE

projections defined in [6] to our setting, and compare the errors of the resulting

projection filters in the expected Hilbert metric, applying Theorem 4.1.1. We

then take a leaf out of our analysis in Chapters 3 and 4, and move our analysis

once more from the probability simplex to Rn, employing the same coordinate

11



transformation. Considering projection filters in the transformed space, we find

a primary submanifold for the projection filter such that the stochastic error

terms of Theorem 4.1.1 vanish, and so tighter error bounds along the lines of

Theorem 4.1.2 apply.
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Chapter 2

The Hilbert projective metric on
probability measures

The main goal of this chapter is to provide a clear, self-contained guide to the Hilbert

projective (pseudo-)metric and its merits and limitations in a probabilistic context.

Consequently, our main focus is the study of the space of probability measures when

equipped with the Hilbert projective metric. Nevertheless, it is natural to start from

general convex cones in locally convex topological vector spaces. Of course, the space

of probability measures is itself a subspace of the positive cone in the vector space of

signed measures.

2.1 Outline

We shall start by defining the Hilbert projective (pseudo-)metric on a proper convex

cone in a locally convex topological vector space. From there, our main contribution in

Section 2.2 is the introduction of a new (pseudo-)metric, the hyperbolic tangent of the

Hilbert metric (which we call the T -distance), under which we prove linear operators

also contract (see Definition 2.2.5 and Theorem 2.2.6). The advantage of using the

T -distance compared to the Hilbert projective metric is that T stays bounded, while

the Hilbert metric (easily) diverges to infinity. As far as we are aware, the formulation

of this contraction result in Theorem 2.2.6 has not been given before (but we note

that our proof is inspired by Dubois’ proof of [37, Thm. 2.3], so we do not wish to

claim full credit for the result).

When introducing the Hilbert projective metric, we especially insist on its defi-

nition through duality, which we first came across in [76]. This ‘dual’ definition, in

particular through a predual space, is natural in the context of probability measures,
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where distances are often defined by considering measures as integrators dual to par-

ticular classes of functions. In Section 2.3 we provide a careful analysis of the Hilbert

metric and the topology it induces on the space of probability measures using duality,

and we show that convergence of measures in the Hilbert metric (or in the T -distance)

is stronger than convergence in total variation (as was already shown in [8, Lemma 1]),

convergence in p-Wasserstein distance and convergence in any f -divergence.

In Section 2.4 we study the geometry of the probability simplex under the Hilbert

metric. Using our dual approach, we give an easy derivation of the explicit formula

for the contraction rate of a linear operator (Proposition 2.4.1), which can also be

extended to infinite settings (Proposition 2.4.2). As the probability simplex is finite

dimensional, it has a natural manifold structure, however the Hilbert metric does

not induce a hyperbolic (in the sense of Gromov) geometry on the simplex (since its

boundary is not differentiable, see [13]), nor a Riemannian structure. The Hilbert

geometry is far more curious: we find an explicit characterizations of Hilbert balls as

‘hexagonal’ convex polytopes, extending to the n-dimensional case work by Phadke

[73] and de la Harpe [34]. Finally, in Section 2.5 we use these geometric observations to

prove a sharp bound for the total variation distance between two probability measures

in terms of their T -distance (see Theorem 2.5.1 and Cor. 2.5.2.1).

2.2 The Hilbert projective metric: definitions

and contractivity

Let us start with the definition of the Hilbert projective distance, in the sense of

Birkhoff [14, 15], on a cone in a (real) locally convex topological vector space (LCS).

Note that Birkhoff works more specifically with cones in real Banach spaces (lattices).

However, as we will see shortly, the definition of the metric does not require the space

to be Banach, so for the sake of generality we work with an LCS.

Let X be an LCS. Let C ⊂ X be a proper closed convex cone, meaning that C is

closed and satisfies

C + C ⊆ C, R+C = C, C ∩ −C = {0}.

Following [76, Sec. 4] (or extrapolating directly from [14] or [15, Chapter XVI]), we

give Birkhoff’s definition of the Hilbert projective distance.

Definition 2.2.1 (Hilbert projective pseudo-metric). For x, y ∈ C \ {0}, where C is

a proper closed convex cone in a real LCS, let β(x, y) ∈ (0,∞] be given by

β(x, y) = inf{r > 0 : rx− y ∈ C} = sup{r > 0 : rx− y /∈ C}.

14



Then the Hilbert projective distance is defined by

H(x, y) = log
(
β(x, y)β(y, x)

)
∈ [0,∞], ∀x, y ∈ C \ {0}. (2.1)

It is worth spending a few moments to properly understand these definitions.

Since C is closed, and −y /∈ C for all y ∈ C \ {0}, we have β(x, y) > 0. It is then

straightforward to see that β(x, y)β(y, x) ≥ 1, by noting that

1

β(x, y)
= inf{1/r > 0 : rx− y /∈ C} = inf{r > 0 : x− ry /∈ C}

= inf{r > 0 : ry − x /∈ −C} ≤ inf{r > 0 : ry − x ∈ C} = β(y, x), (2.2)

and β(x, y) = 1
β(y,x)

if and only if y = cx for some c ∈ R+ (in this case, x and y are

said to be collinear). Hence (2.1) is well-defined with H(x, y) = 0 if and only if x and

y are collinear. Symmetry of H is clear from the definition, and one can verify that

the triangle inequality is also satisfied (see Remark 2.2): then, H is a pseudo-metric

for C (see also [15, Chapter XVI]).

Example 2.2.2. The finite non-negative measures on [0, 1] form a proper convex

(non-negative) cone in the space of the signed measures on [0, 1]. Since the signed

measures on [0, 1] equipped with the total variation distance form a Banach space

(and therefore an LCS), the definition above applies. The Hilbert pseudo-metric can

then be restricted to the probability measures on [0, 1], to give a true metric. We will

explore in detail the Hilbert distance on the space of measures in Section 2.3.

Remark 2.1. The only role of the specific choice of LCS topology on X, in defining

the H-metric, is to have the notion of C being closed in X. Two different topologies

on X for which C is closed in X will both give rise to the same Hilbert projective

metric. In this sense, the Hilbert metric on C is independent of the topology on the

ambient space X.

By closure of C in X, if β(x, y) <∞, we must have that β(x, y)x−y ∈ ∂C, where

∂C is the boundary of C. If x ∈ ∂C and y ∈ C̊, where C̊ denotes the interior of C,

then β(x, y) = ∞. However, if both x, y ∈ ∂C, then β(x, y) might be finite. Using

Birkhoff’s choice of terminology [15, Chapter XVI], x, y ∈ C are comparable if β(x, y)

and β(y, x) are both finite. We observe that two boundary elements x, y ∈ ∂C might

still be comparable.

Especially when X is infinite dimensional, it can be useful to understand the

Hilbert projective distance through duality (see [37,76], where this is exploited in the
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analysis of complex cones). Let X∗ be the (topological) dual of X, and let ⟨·, ·⟩ be

the natural bilinear form X∗ ×X → R. One can define the dual cone C∗ as

C∗ =
{
f ∈ X∗ : f |C ≥ 0

}
. (2.3)

Proposition 2.2.3. An equivalent definition of the Hilbert pseudo-metric is given by

H(x, y) = sup
f,g∈C∗

⟨f,x⟩,⟨g,y⟩≠0

{
log

⟨f, y⟩⟨g, x⟩
⟨f, x⟩⟨g, y⟩

}
. (2.4)

Proof. Let C̃ :=
{
x ∈ X : ⟨f, x⟩ ≥ 0, ∀f ∈ C∗}. One can confirm that C̃ is a

proper closed convex cone. We clearly have that C ⊆ C̃. Now consider x /∈ C.

Since C is convex and closed, by the Geometric Hahn–Banach theorem (see e.g. [31,

Thm. IV.3.9 & Cor. IV.3.10]) there exists a continuous linear functional g ∈ X∗ and

an α ∈ R such that ⟨g, x⟩ < α and ⟨g, y⟩ ≥ α for all y ∈ C. Since the image of the

cone C under the functional g can only be one of R+, R−, R or {0}, we must have

α = 0. Hence g ∈ C∗ but ⟨g, x⟩ < 0, which implies that x /∈ C̃. Therefore C̃ ⊆ C

also, and so C = C̃.

Take x, y ∈ C and let r ∈ R+ with rx − y /∈ C. Since C = C̃, there exists some

f ∈ C∗ such that ⟨f, rx− y⟩ < 0. Consequently,

β(x, y) = sup{r > 0 : rx− y /∈ C} = sup{r > 0 : ⟨f, rx− y⟩ < 0 for some f ∈ C∗}

= sup{r > 0 : r⟨f, x⟩ < ⟨f, y⟩ for some f ∈ C∗}

= sup

{
⟨f, y⟩
⟨f, x⟩

: f ∈ C∗, ⟨f, x⟩ ≠ 0

}
, (2.5)

and similarly for β(y, x). Then (2.4) is indeed equivalent to (2.1).

Remark 2.2. Given log ⟨f,y⟩⟨g,x⟩
⟨f,x⟩⟨g,y⟩ = log ⟨f,z⟩⟨h,x⟩

⟨f,x⟩⟨h,z⟩ + log ⟨h,z⟩⟨g,x⟩
⟨h,x⟩⟨g,z⟩ , for any f, g, h ∈ C∗, it is

easy to verify the triangle inequality for H using the representation (2.4).

Remark 2.3. Once more, since the topology on X does not change the Hilbert metric

on C, when working with (2.4) one can choose the topology, and therefore the dual

space, cleverly: a coarser topology, with a smaller corresponding dual space, will

almost always be preferable.

2.2.1 Contraction properties

Positive linear operators on a positive closed convex cone contract in the Hilbert

projective distance: this result is again due to Birkhoff [14]. More generally, for

proper closed convex cones C ⊂ X, Birkhoff’s contraction theorem can be stated as

follows:
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Theorem 2.2.4 (Birkhoff). Let X be a LCS, take L : X → X to be a linear

transformation, and suppose that L(C \ {0}) ⊆ C \ {0}. If the diameter ∆(L) =

supx,y∈C\{0}H(Lx, Ly) is finite, then we have

H(Lx, Ly) ≤ τ(L)H(x, y), ∀x, y ∈ C \ {0}, (2.6)

and τ(L) = tanh
(

∆(L)
4

)
is called the Birkhoff contraction coefficient.

The theorem holds equivalently if one drops finiteness of ∆(L) as a condition and

extends the definition of the contraction coefficient to τ(L) = 1 when ∆(L) = ∞. In

other words, any bounded linear operator L is non-expansive in C under the Hilbert

distance, but it is strictly contracting if and only if the diameter ∆(L) of C under L

in the Hilbert metric is finite, i.e. τ(L) < 1.

We will now show that a stronger result than Theorem 2.2.4 is possible.

Definition 2.2.5 (T -distance). For x, y ∈ C \{0}, where C is a proper closed convex

cone in a real LCS, we define the hyperbolic tangent of the Hilbert pseudo-metric as

T (x, y) := tanh
(H(x, y)

4

)
, (2.7)

where tanh(∞) := 1. For simplicity we refer to (2.7) as the T -distance.

Note that the T -distance is a pseudo-metric for C: one can easily check that the

triangle inequality and symmetry properties are inherited from the Hilbert distance.

However, the metric T makes the cone C into a bounded space, while H gives an

infinite distance between any points in C̊ and ∂C. Borrowing ideas from the proof

of [37, Thm. 2.3], we obtain the following theorem.

Theorem 2.2.6. Let X be a LCS, and L : X → X a linear transformation. Suppose

that L(C \ {0}) ⊆ C \ {0}. Then we have

T (Lx, Ly) ≤ τ(L)T (x, y), ∀x, y ∈ C \ {0}, (2.8)

where τ(L) = supx,y∈C\{0} T (Lx, Ly) is the diameter of C under L in the T -distance,

and is equal to the Birkhoff contraction coefficient.

Proof. For all x, y ∈ C \ {0}, define the set

EC(x, y) := {r > 0 : rx− y /∈ C}.

Using the same notation as in (2.1), we have H(x, y) = log(β(x, y)β(y, x)), where

β(x, y) := supEC(x, y) ∈ (0,∞], β(y, x) := supEC(y, x) ∈ (0,∞].
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Fix x, y ∈ C \ {0}. If Lx and Ly are collinear, then T (Lx, Ly) = 0 and the claim

holds trivially. Similarly, if H(x, y) = ∞, then T (x, y) = 1; as T (Lx, Ly) is certainly

less than its supremum over x and y, the claim holds. It remains to consider the case

H(x, y) <∞ and Lx and Ly not collinear (so H(Lx, Ly) ̸= 0).

For r > 0, consider rx − y ∈ C. By linearity of L, we also have rLx − Ly ∈ C,

and in particular EC(Lx, Ly) ⊂ EC(x, y). This implies that

β(x, y) ≥ β(Lx, Ly) >
1

β(Ly, Lx)
≥ 1

β(y, x)
,

where the strict inequality in the middle is due to (2.2) and the assumption that

H(Lx, Ly) ̸= 0. We now approximate β(x, y) and β(y, x) from above (since H(x, y) <

∞, also β(x, y), β(y, x) < ∞), and β(Lx, Ly) and β(Ly, Lx) from below, i.e. take

M,m > 0 and M ′,m′ > 0 such that

M > β(x, y), m > β(y, x),
1

β(Ly, Lx)
<
{ 1

m′ ,M
′
}
< β(Lx, Ly).

By definition of EC(Lx, Ly) and EC(Ly, Lx), we have M ′Lx − Ly /∈ C, and

m′Ly − Lx /∈ C. Similarly, Mx− y ∈ C and my − x ∈ C. For r > 0, note that

rL(Mx− y)−L(my− x) = (rM +1)Lx− (r+m)Ly ∈ C ⇐⇒ rM + 1

r +m
Lx−Ly ∈ C.

Letting h1(r) = (rM + 1)/(r +m), this implies in particular that

EC(L(Mx− y), L(my − x)) =
{
r > 0 : h1(r)Lx− Ly /∈ C

}
=
{
h−1
1 (w) > 0 : wLx− Ly /∈ C

}
= h−1

1

({ 1

m
< w < M : wLx− Ly /∈ C

})
⊂ h−1

1

(
EC(Lx, Ly)

)
,

where h−1
1 (r) = (rm − 1)/(M − r). Since M ′ ∈

(
1

β(Ly,Lx)
, β(Lx, Ly)

)
⊂ ( 1

m
,M) by

assumption, andM ′Lx−Ly /∈ C, we have that h−1
1 (M ′) ∈ EC(L(Mx−y), L(my−x)).

Analogously, for r > 0,

rL(my − x)− L(Mx− y) ∈ C ⇐⇒ rm+ 1

r +M
Ly − Lx ∈ C.

Letting h2(r) = (rm+ 1)/(r+M) and h−1
2 (r) = (rM − 1)/(m− r), this implies that

EC(L(my − x), L(Mx− y)) = h−1
2

({ 1

M
< w < m : wLy − Lx /∈ C

})
⊂ h−1

2

(
EC(Ly, Lx)

)
.
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Since 1
m′ ∈ ( 1

m
,M) by assumption, which implies that m′ ∈ ( 1

M
,m), and m′Ly−Lx /∈

C, we have that h−1
2 (m′) ∈ EC(L(my − x), L(Mx− y)).

We know Mx − y,my − x ∈ C by definition of β(x, y) and β(y, x), and ∆(L) =

supx,y∈C\{0}H(Lx, Ly). Therefore,

h−1
1 (M ′)h−1

2 (m′) ≤ β
(
L(Mx− y), L(my − x)

)
β
(
L(my − x), L(Mx− y)

)
≤ sup

x̃,ỹ∈C\{0}
β(Lx̃, Lỹ)β(Lỹ, Lx̃) = e∆(L),

which yields the inequality

(M ′m− 1)

(M −M ′)

(m′M − 1)

(m−m′)
≤ e∆(L).

Now let D = log(Mm) and d = log(M ′m′). Note that since M ′ ∈ ( 1
m
,M) and

m′ ∈ ( 1
M
,m), d ≤ D. Substituting m′ = ed

M ′ in the above yields

f(M ′) :=
(M ′m− 1)

(M −M ′)

(edM −M ′)

(mM ′ − ed)
≤ e∆(L). (2.9)

Noting that M ′ = ed

m′ ∈ ( e
d

m
, edM), intersecting this set with ( 1

m
,M) yields M ′ ∈

( e
d

m
,M). Differentiating the left-hand side of (2.9), we find that the minimum of

f(M ′) within these constraints for M ′ is attained at M ′∗ = ed/2
√

M
m
. Substituting

into the expression above, we get

f(M ′∗) =

(
ed/2

√
Mm− 1

)
(
1− ed/2 1√

Mm

)
(
ed − ed/2 1√

Mm

)
(
ed/2

√
Mm− ed

) =
sinh2

(
D+d
4

)
sinh2

(
D−d
4

) .
Taking square-roots yields

sinh
(

D+d
4

)
sinh

(
D−d
4

) ≤
√
f(M ′) ≤ e∆(L)/2.

Using the identity sinh(a ± b) = sinh(a) cosh(b) ± sinh(b) cosh(a) and the fact that
x−1
x+1

is increasing for x > 0, we obtain the final expression

tanh
(d
4

)
≤ tanh

(∆(L)

4

)
tanh

(D
4

)
.

Taking limits as M,m → β(x, y), β(y, x) and M ′,m′ → β(Lx, Ly), β(Ly, Lx), we are

done.
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Remark 2.4. Birkhoff’s Theorem 2.2.4 is immediate from concavity and monotonicity

of tanh(x) for x ≥ 0. The advantage of using T instead of H is negligible when the

distances are small, since T (x, y) is equivalent to H(x, y) asymptotically as H(x, y)

approaches 0. However, we can find points x, y ∈ C such that H(x, y) = ∞, such

as when comparing an element x ∈ C̊ with an element y ∈ ∂C. In these cases, the

T -distance is preferable, since T (x, y) stays finite and the inequality (2.8) remains

meaningful.

Example 2.2.7. As we mentioned in the introduction, an immediate application of

Birkhoff’s theorem is in the ergodic theory of Markov processes, since transition op-

erators are positive linear operators that map probability distributions to probability

distributions, and so the assumptions of Theorem 2.2.4 are satisfied. We discuss ex-

plicit forms of Birkhoff’s contraction coefficient for stochastic matrices and a class of

transition kernels in Section 2.4.

2.3 H-metric on the space of probability

measures

From general LCS we now move to the space of probability measures, and consider the

Hilbert projective distance in this context specifically. In [15, Chapter XVI] Birkhoff

works with positive cones in a Banach lattice. Since the probability measures are a

subset of the positive measures, which form the positive cone in the space of signed

measures, the definition of the Hilbert distance on probability measures can be easily

deduced from Birkhoff’s work (see e.g. [8, Eq. 9] and [63, Def. 3.3]). In this section we

choose to derive the Hilbert distance in the framework of duality instead, drawing a

parallel with the works on convex cones [37,76]. The purpose of this exercise is to gain

an understanding of the Hilbert metric in terms of functions acting on probability

measures, and to investigate how a change in the test-functions affects the distance

itself.

Notation. For any σ-algebra F and space F , let L0(F , F ) denote the space of F -

measurable functions, valued in F , and let B(F , F ) be the subspace of bounded

F -measurable functions. For any two spaces E,F , let Cb(E,F ) denote the space of

bounded continuous functions E → F . If E and F are metric spaces, let CbL(E,F ) be

the space of bounded F -valued Lipschitz functions. By ∥f∥∞ we denote the L∞-norm

of f and by ∥f∥Lip its Lipschitz coefficient.

20



Let (E,F) be a measurable space, and consider the space M(E) of finite signed

measures on (E,F). A natural approach is to make M(E) into a Banach space by

equipping it with the total variation norm ∥·∥TV. The total variation norm is defined,

as usual, by

∥µ∥TV := |µ|(E) = µ+(E) + µ−(E), for µ ∈ M(E), (2.10)

where µ = µ+ − µ− is the Hahn–Jordan decomposition of µ. It can be expressed

equivalently in terms of µ acting on elements of B(F ,R) as

∥µ∥TV := sup
{∫

E

f dµ : f ∈ B(F ,R), ∥f∥∞ ≤ 1
}
. (2.11)

Now, the subset of positive measuresM+(E) is a proper closed convex cone inM(E).

The probability measures on (E,F), denoted by P(E), are a subset of M+(E). In

(2.4), following ideas from [37,76], we provided an equivalent definition of the Hilbert

metric using duality. This is not a convenient approach when viewing M(E) as the

Banach space
(
M(E), ∥ ·∥TV

)
: for one thing, when dealing with signed measures, one

usually prefers to work with a predual space instead of the dual.

Taking the predual point of view, we could consider M(E) as a subset of X =

Cb(E,R)∗, which is a real Banach space under the operator norm. When E is a Polish

space with the Borel σ-algebra B(E), this amounts to a linear isometric embedding

that is weak∗-dense. Equipping X with the weak∗-topology, rather than the operator

norm, we get that X is a LCS and X∗ = Cb(E,R), so one expects a predual char-

acterisation of the cone of positive measures in terms of Cb(E,R). This, however,

does not immediately follow from the procedure that led to (2.4). Instead, we give

here a direct argument for the desired characterization (2.12), where one can think of

Cb(E,R+) as the ‘predual cone’, in analogy with (2.3). In fact, we can further restrict

the space to bounded Lipschitz functions.

Proposition 2.3.1. Let E be a Polish space with Borel σ-algebra B(E) and let

CbL(E,R+) be the space of bounded Lipschitz functions E → R+. Then we can

characterize the space of positive measures M+(E) as

M+(E) =
{
µ ∈ M(E) : ⟨µ, f⟩ ≥ 0, ∀f ∈ CbL(E,R+)

}
. (2.12)

If E is only metrizable, then replace CbL(E,R+) with Cb(E,R+).

Proof. Let M denote the right-hand side of (2.12). We want to show that M+(E) =

M . By non-negativity of the elements of M+(E) and CbL(E,R+) (resp. Cb(E,R+)),
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it is obvious that M+(E) ⊆ M . For the opposite inclusion, suppose µ /∈ M+(E).

By the Hahn–Jordan decomposition, there exist disjoint sets P,N ⊂ E such that

P ∪ N = E, and (Borel) measures µ+ and µ− such that µ+ is supported on P and

µ− is supported on N . Since µ /∈ M+, we have µ−(N) > 0. Recall that µ, µ+

and µ− are regular, as they are Borel measures on a metric space E (see e.g [16,

Thm. 7.1.7]). Take 0 < ε < µ−(N)/4. By regularity of µ−, we can find a closed

set A−
ε ⊂ N such that µ−(N \ A−

ε ) < ε. Likewise, there exists a closed set A+
ε ⊂ P

such that µ+(P \ A+
ε ) < ε. Note that A+

ε ∩ A−
ε = ∅, since they are respectively the

subsets of disjoint sets P and N . For E Polish, we can take the sets A−
ε , A

+
ε to be

compact (again, [16, Thm. 7.1.7]), so the Lipschitz version of Urysohn’s Lemma [27,

Prop. 2.1.1] (resp. Urysohn’s Lemma [27, Thm. 1.2.10]) guarantees that there exists

f ∈ CbL(E,R+) (resp. Cb(E,R+)) taking values in [0, 1] with

f(x) =

{
0 for x ∈ A+

ε ,
1 for x ∈ A−

ε .

Integrating f against µ we have∫
E

f dµ =

∫
E

f dµ+ −
∫
E

f dµ− ≤ µ+(P \ A+
ε )− µ−(A−

ε )

≤ 2ε− µ−(N) ≤ −µ
−(N)

2
< 0.

Consequently, we have f ∈ CbL(E,R+) (resp. Cb(E,R+)), but ⟨µ, f⟩ < 0, so µ /∈ M .

Therefore M ⊆ M+(E), and the two sets are equal.

When E is a Polish space, the above proposition is all we need to define the

Hilbert projective (pseudo-)metric on M+(E) in terms of bounded positive Lipschitz

functions in CbL(E,R+), analogously to (2.4). On the other hand, if we do not want to

assume E to be Polish, or even metric, we need to enlarge the set of test-functions for

the construction of the Hilbert metric to still make sense. Similar to Proposition 2.3.1,

we find the following (trivial) characterization ofM+(E) in terms of bounded positive

measurable functions.

Proposition 2.3.2. Let (E,F) be a measurable space and let B(F ,R+) be the space

of F-measurable bounded functions taking values in R+. Then we have

M+(E) =
{
µ ∈ M(E) : ⟨f, µ⟩ ≥ 0, ∀f ∈ B(F ,R+)

}
. (2.13)

Proof. Let M ′ be the right-hand side of (2.13). By non-negativity of the functions

in B(F ,R+), µ ∈ M+(E) implies µ ∈ M ′. Conversely, assume µ /∈ M+(E). Using
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the Hahn–Jordan decomposition, take N ∈ F such that µ(N) = −µ−(N) < 0. Let

f := 1N ∈ B(F ,R+). Then ⟨f, µ⟩ < 0, but ⟨f, ν⟩ ≥ 0 for all ν ∈ M+(E). Hence

µ /∈M ′, and we are done.

Proposition 2.3.3. Let (E,F) be a measurable space. Write S = CbL(E,R+) if E is

Polish (with F the corresponding Borel σ-algebra), S = Cb(E,R+) if E is metrizable,

or S = B(F ,R+) otherwise. Then the Hilbert projective pseudo-metric can be written

as follows: for µ, ν ∈ M+(E) \ {0},

H(µ, ν) = sup
f,g∈S

⟨f,µ⟩,⟨g,ν⟩≠0

{
log

⟨f, ν⟩⟨g, µ⟩
⟨f, µ⟩⟨g, ν⟩

}
. (2.14)

Proof. Consider any µ, ν ∈ M+(E), and take r ∈ R+ such that rµ − ν /∈ M+(E).

Using Proposition 2.3.1 and Proposition 2.3.2, there is an f ∈ S such that ⟨f, rµ−ν⟩ <
0. Then a calculation analogous to (2.5) gives equivalence between (2.14) and the

original definition of the Hilbert metric (2.1).

Now, a natural question to ask is under which conditions H(µ, ν) is finite. For

µ, ν ∈ M+(E), let

β(µ, ν) = sup
f∈B(F ,R+)
⟨f,µ⟩≠0

{
⟨f, ν⟩
⟨f, µ⟩

}
. (2.15)

Clearly, H(µ, ν) <∞ if and only if β(µ, ν), β(ν, µ) <∞. We see immediately that if

there exists an unbounded measurable function h ∈ L0(F ,R+) such that ⟨h, µ⟩ <∞
but ⟨h, ν⟩ = ∞, then we can take a sequence of bounded functions hn ∈ B(F ,R+)

such that hn → h, and the right-hand side of (2.15) is infinite. Consequently, if, for

example, ν has a strictly smaller number of finite moments than µ, then β(µ, ν) = ∞,

and conversely if ν has (strictly) more finite moments, then β(ν, µ) = ∞. Thus, to

have H(µ, ν) <∞, we need a condition on µ, ν that is quite a lot stronger than simple

equivalence of measures (which we denote as usual by ∼). This condition, which we

call comparability again, in accordance with Birkhoff, and denote by
cmp∼, has already

been stated in [63, Def. 3.1] and [8]. Here we derive it directly from the ‘predual’

formulation (2.14).

Let µ ∼ ν, with Radon-Nikodym derivatives dµ
dν

and dν
dµ
. For all φ ∈ B(F ,R+) we

have ⟨φ, ν⟩ = ⟨φ dν
dµ
, µ⟩ ≤ ∥ dν

dµ
∥L∞(µ)⟨φ, µ⟩, so

Mφ := sup
φ∈B(F ,R+)
⟨φ,µ⟩≠0

{
⟨φ, ν⟩
⟨φ, µ⟩

}
≤
∥∥∥∥ dν

dµ

∥∥∥∥
L∞(µ)

.
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On the other hand, 〈
φ
dν

dµ
, µ
〉
= ⟨φ, ν⟩ ≤ ⟨φ, µ⟩Mφ,

so dν
dµ

≤ Mφ µ-a.e., and in particular
∥∥ dν

dµ

∥∥
L∞(µ)

≤ Mφ. Therefore, β(µ, ν) =∥∥ dν
dµ

∥∥
L∞(µ)

, and hence we can state our comparability condition as follows:

Definition 2.3.4. Let (E,F) be a measurable space. Two positive measures µ, ν ∈
M+(E) are comparable if µ ∼ ν and their Radon-Nikodym derivatives dµ

dν
and dν

dµ
are

essentially bounded, i.e. dµ
dν

∈ L∞(ν) and dν
dµ

∈ L∞(µ). Equivalently, µ and ν are

comparable if there exists scalars q, r > 0 such that

qµ(A) ≤ ν(A) ≤ rµ(A), ∀A ∈ F . (2.16)

Then the Hilbert projective pseudo-metric for µ, ν ∈ M+(E) can be defined as

H(µ, ν) = log

(∥∥∥∥ dµdν
∥∥∥∥
∞

∥∥∥∥ dν

dµ

∥∥∥∥
∞

)
= sup

A,B∈F
ν(A)>0, µ(B)>0

{
log

ν(B)µ(A)

µ(B)ν(A)

}
, if µ

cmp∼ ν,

(2.17)

and H(µ, ν) = ∞ otherwise, and these definitions are equivalent to (2.14). The

right-most formulation of (2.17) is the definition chosen, for example, by Le Gland

and Oudjane in [63, Def. 3.3] and Atar and Zeitouni in [8]. Note that if µ, ν ∈
P(E), then

∥∥ dµ
dν

∥∥
∞,
∥∥ dν

dµ

∥∥
∞ ≥ 1 since µ and ν must integrate to 1, and hence also∥∥ dµ

dν

∥∥
∞,
∥∥ dν

dµ

∥∥
∞ ≤ eH(µ,ν) by (2.17). Then, for µ, ν ∈ P(E), µ ∼ ν, and an arbitrary

f ∈ B(F ,R) such that ∥f∥∞ ≤ 1, we have

|⟨f, µ− ν⟩| ≤
∫{

dµ
dν

≥1
} |f |( dµ

dν
− 1
)
dν +

∫{
dµ
dν

<1
} |f |(1− dµ

dν

)
dν

≤
(∥∥∥ dµ

dν

∥∥∥
∞
− 1
)
ν
({

dµ
dν

≥ 1
})

+
(
1−

∥∥∥ dν

dµ

∥∥∥−1

∞

)
ν
({

dµ
dν
< 1
})

≤ eH(µ,ν) − 1.

Together with the fact that the total variation distance between two probability mea-

sures is at most 2, this yields the following bound, first shown by Atar and Zeitouni [8,

Lemma 1]:

∥µ− ν∥TV ≤ 2

log 3
H(µ, ν). (2.18)

This bound is clearly not sharp, since the right-hand side can easily be much larger

than 2. We will improve it in Corollary 2.5.2.1. For now, we use Atar and Zeitouni’s

result to prove the following Lemma.
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Lemma 2.3.5. Let (E,F) be a measurable space. Then (P(E),H) is a complete

metric space.

Proof. Note that two probability measures µ, ν ∈ P(E) which are collinear must be

necessarily equal, so H is a metric on P(E). Let (µn) ∈ P(E) be a Cauchy sequence

for the Hilbert metric H. Then (µn) is also Cauchy in total variation norm by (2.18),

so µn → µ ∈ P(E) in ∥ · ∥TV since P(E) is complete as it is a closed subset of M(E).

Since ⟨f, µn⟩ → ⟨f, µ⟩ for f ∈ B(E,R) if µn → µ in total variation norm, (2.14)

gives that H is lower semi-continuous with respect to ∥ · ∥TV, as a supremum over

continuous functions. Hence H(µn, µ) ≤ lim infk→∞H(µn, µk), where the right-hand

side goes to 0 as n→ ∞ by the Cauchy assumption.

Corollary 2.3.5.1. Let (E,F) be a measurable space. Then (P(E), T ) is a complete

metric space.

We have seen in Section 2.2 that many of the interesting properties of the Hilbert

metric also hold for its transformation T . The following gives a key reason why the

classic Hilbert pseudo-metric is also of interest: H turns the space of probability

measures comparable to a reference measure ρ into a normed vector space (with a

modified algebra).

Proposition 2.3.6. Let (E,F) be a measurable space and fix a reference measure

ρ ∈ M+(E). We let essential infima and suprema be defined with respect to the

nullsets of ρ, and consider

(i) the space of measures comparable to ρ, namely Mρ := {µ ∈ M+(E) :
dµ
dρ
, dρ
dµ

∈
L∞(ρ)}, and Pρ := Mρ ∩ P(E);

(ii) the equivalence relation ∼coll on Mρ given by collinearity, that is µ ∼coll ν ⇔
µ = cν for some c > 0; note that Pρ is isomorphic to Mρ

/
∼coll (as it is a

selection of a unique element from each equivalence class);

(iii) the equivalence relation ∼const on L
∞(ρ) given by f ∼const g ⇔ f = g + c ρ-a.e.

for some c ∈ R; and the associated quotient space Θρ := L∞(ρ)/ ∼const.

Then the map

∥ · ∥Θ : L∞(ρ) → R; f 7→ ess sup
x∈E

f(x)− ess inf
x∈E

f(x),

defines a seminorm on L∞(ρ), and a norm on Θρ. Moreover, the map

θ : Mρ → L∞(ρ); µ 7→ log( dµ/ dρ)
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is an isomorphism of the pseudo-metric spaces (Mρ,H) and (L∞(ρ), ∥·∥Θ), satisfying

H(µ, ν) = ∥θ(µ)− θ(ν)∥Θ, for all µ, ν ∈ Mρ,

and it is an isomorphism of the metric spaces (Pρ,H) and (Θρ, ∥ · ∥Θ). In particular,

(Pρ,H) is a normed vector space, when endowed with the algebra of (renormalized)

addition and scalar multiplication of log-densities.

Proof. It is easy to see that ∥ · ∥Θ is absolutely homogeneous. From (2.17), we know

that

H(µ, ν) = log

(∥∥∥∥ dµdν
∥∥∥∥
∞

)
+ log

(∥∥∥∥ dν

dµ

∥∥∥∥
∞

)
= ess sup

{
log
( dµ

dν

)}
− ess inf

{
log
( dµ

dν

)}
= ess sup

{
θ(µ)− θ(ν)

}
− ess inf

{
θ(µ)− θ(ν)

)}
= ∥θ(µ)− θ(ν)∥Θ.

From this it follows that ∥ · ∥Θ is sublinear (as H satisfies the triangle inequality),

and is therefore a seminorm. It is easy to check that ∥θ∥Θ = 0 iff θ ∼const 0, so ∥ · ∥Θ
is a norm on the vector space Θρ = L∞(ρ)/ ∼const.

For f ∈ Θρ, the inverse of θ : Mρ → L∞(ρ) is given by

θ−1(f)(A) =

∫
A

exp(f(x)) dρ, ∀A ∈ F ,

so θ is clearly a bijection, and hence an isomorphism of (Mρ,H) and (L∞(ρ), ∥ · ∥Θ).
Similarly, taking account of the equivalence relation, the inverse of θ : Pρ → Θρ is

given, for f ∈ Θρ, by

θ−1(f + c)(A) =

∫
A
exp(f(x)) dρ∫

E
exp(f(x)) dρ

, ∀A ∈ F ,

which clearly does not depend on the choice of c ∈ R (and hence is well defined on

Θρ = L∞(ρ)/ ∼const). It follows that θ is an isomorphism of (Pρ,H) and (Θρ, ∥ · ∥Θ).
Finally, as (Θρ, ∥ · ∥Θ) is a normed vector space, we simply observe that addition

and scalar multiplication in Θρ correspond to (renormalized) addition and scalar

multiplication of log-densities.

Remark 2.5. We will see in Section 2.4 that, when E is finite, we can avoid the

equivalence relation above by selecting the unique representative θ0(µ) which satisfies

θ0(µ)(x0) = 0 for a fixed x0 ∈ E (see Remark 2.10). This does not work as cleanly in

infinite state spaces, as the value at a single point is typically not well defined when

functions are only specified ρ-a.e.
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Remark 2.6. Proposition 2.3.6 also helps us to understand the topology of (P(E),H).

For every ρ ∈ P(E), we have the corresponding vector space Pρ (and any ρ′ ∈ Pρ will

yield Pρ′ = Pρ). As they are normed vector spaces (with an appropriate algebra),

these sets are both closed and open, and give a disconnected partition of P(E). In

other words, (P(E),H) has the topology of a disjoint union of normed vector spaces

(which may have different dimensions).

We conclude this (rather lengthy) section about the Hilbert metric on probability

measures with a few important observations, which motivate why we started looking

carefully at the ‘predual’ formulation of the Hilbert metric in the first place.

Remark 2.7. Take µ, ν ∈ M+(E), with E Polish. Consider distances of the form

D(µ, ν) = sup
{∣∣∣ ∫

E

f d(µ− ν)
∣∣∣ : f ∈ X

}
, X ⊆ CbL(E,R+).

Different conditions on ∥f∥∞ and ∥f∥Lip yield different metrics: the total variation

norm (2.11) if one imposes ∥f∥∞ ≤ 1, the bounded-Lipschitz distance by taking

∥f∥∞+ ∥f∥Lip ≤ 1, or the 1-Wasserstein distance W1 (when µ and ν are additionally

taken to have finite first moment) by imposing ∥f∥Lip ≤ 1. This differentiation based

on the choice of test-functions is completely lost when we work with the Hilbert metric.

If we restricted our space to P1(E) (the probability measures on E with finite first

moment), for example, we could of course characterize our ‘predual’ cone of test-

functions using (unbounded) positive Lipschitz functions Lip(E,R+), analogously to

the Kantorovich–Rubinstein dual formulation of W1. However, this would not yield

a different metric from (2.14). Since any Lipschitz function can be approximated

from below by bounded Lipschitz functions, if µ
cmp∼ ν and µ, ν ∈ P1(E), taking the

supremum over Lip(E,R+) or CbL(E,R+) does not change the Hilbert distance.

In the wake of the above remark, we deduce that the Hilbert metric is stronger

than the p-Wasserstein distance Wp. Let (E, d) be a metric space and {µn} ∈ Pp(E) a

sequence of probability measures with finite pth-moment such that µn → µ in Hilbert

metric. By (2.18), convergence in Hilbert metric implies convergence in total variation

norm, which in turn implies µn → µ weakly. Moreover, µ ∈ Pp(E), by definition of

the Hilbert metric and comparability of measures (2.16). Fix an arbitrary x0 ∈ E.

Then an argument similar to the one that lead to (2.18) yields that, for all q ≤ p,∣∣∣∣ ∫
E

d(x0, x)
q d(µn − µ)

∣∣∣∣ ≤ Kq

(
eH(µn,µ) − 1

)
, (2.19)
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where Kq < ∞ is the qth-moment of µ ∈ Pp(E). So convergence of moments is

preserved under convergence in the Hilbert metric, and thus convergence in the Hilbert

metric implies convergence in Wp.

The Kantorovich–Rubinstein dual formulation in particular yields the following

bound for the W1 distance with respect to H. For µ, ν ∈ P1(E), and an arbitrary

x0 ∈ E, we have

W1(µ, ν) ≤
(
eH(µ,ν) − 1

) ∫
E

d(x0, x) dµ, (2.20)

or analogously in terms of the first moment of ν.

Finally, our work so far, the definition of the Hilbert metric and of comparability

of measures (2.16), all clearly emphasise that convergence in the Hilbert metric is a

very strong form of convergence. The Hilbert projective metric not only dominates

TV and Wp, but also the Kullback–Leibler divergence (or relative entropy):

DKL(µ∥ν) :=
∫
E

log
dµ

dν
dµ ≤ log

∥∥∥ dµ
dν

∥∥∥
∞

≤ H(µ, ν). (2.21)

In fact, one can show that the Hilbert metric dominates all f -divergences.

Definition 2.3.7 (f -divergence). Let f : R+ → (−∞,∞] be a convex function with

f(1) = 0, and f(x) < ∞ for all x > 0. Let µ, ν ∈ P(E), with µ ≪ ν. Then the

f -divergence of µ from ν, denoted by Df (µ∥ν), is given by

Df (µ∥ν) =
∫
E

f
( dµ

dν

)
dν. (2.22)

Remark 2.8. Total variation distance, Kullback–Leibler divergence, Jensen–Shannon

divergence, squared Hellinger distance, α-divergence and χ2-divergence are all exam-

ples of f -divergences.

Proposition 2.3.8. Let (E,F) be a measurable space, and let {µn} ∈ P(E) be a

sequence of probability measures converging to µ ∈ P(E) in H. Then, for any f -

divergence Df , Df (µn∥µ) → 0 and Df (µ∥µn) → 0 as n→ ∞ also.

Proof. Let f be a convex function of the form specified in Definition 2.3.7, and let

Df (µ∥ν) be the associated f -divergence of µ from ν, where µ, ν ∈ P(E) and µ ≪ ν.

Note that Df is unchanged if we add a linear term to f , i.e. let f̄(u) = f(u)+c(u−1),

then Df̄ (µ∥ν) = Df (µ∥ν). Moreover, by taking c ∈ −∂f(1) (where by ∂ we denote

the subgradient of f), we have 0 ∈ ∂f̄(1), so without loss of generality we can restrict

our attention to convex functions f such that f(1) = 0 ∈ ∂f(1).
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Consider a sequence {µn} ∈ P(E) such that limn→∞ H(µn, µ) = 0. Then there

exists N > 0 such that for all n ≥ N , µn ∼ ν. Since f must be decreasing for x < 1

and increasing for x > 1 by virtue of being convex, we have, for all n ≥ N ,

Df (µn∥µ) =
∫{

dµn
dµ

≤1
} f( dµn

dµ

)
dµ+

∫{
dµn
dµ

>1
} f( dµn

dµ

)
dµ

≤ f
(
ess inf
x∈E

dµn

dµ

)
µ
({

dµn

dµ
≤ 1
})

+ f
(
ess sup

x∈E

dµn

dµ

)
µ
({

dµn

dµ
> 1
})

≤ max

{
f
(∥∥∥ dµ

dµn

∥∥∥−1

∞

)
, f
(∥∥∥ dµn

dµ

∥∥∥
∞

)}
≤ max

{
f
(
e−H(µn,µ)

)
, f
(
eH(µn,µ)

)}
,

where we have used that
∥∥ dµ

dµn

∥∥
∞,
∥∥ dµn

dµ

∥∥
∞ ≥ 1, and

∥∥ dµ
dµn

∥∥−1

∞ ≥ e−H(µn,µ) and∥∥ dµn

dµ

∥∥
∞ ≤ eH(µn,µ). Since f(1) = 0 by assumption, the right-hand side of the above

goes to 0 as H(µn, µ) → 0, so Df (µn∥µ) converges. The argument for Df (µ∥µn) is

analogous by symmetry, and we are done.

2.4 Hilbert projective geometry on the

probability simplex

In this section we consider the Hilbert metric on the probability measures with finite

state-space E ∼= {0, · · · , n}, which form the probability simplex. In this case, the form

of the Hilbert metric simplifies, and there exists an explicit expression for Birkhoff’s

contraction coefficient (see Section 4 of [78, Chapter 3]). We briefly remark on this,

and present a short derivation of Birkhoff’s coefficient using duality. Then we move

on to studying the geometry of the probability simplex under the Hilbert projective

metric: using a coordinate transformation inspired by information geometry [2, 3],

we describe the Hilbert balls as convex polytopes in the probability simplex, in an

extension of the work in [73] to the n-dimensional case.

Let E ∼= {0, · · · , n}. The probability measures P(E) are represented by the set

P(E) ∼= Sn =

{
x ∈ Rn+1 :

n∑
i=0

xi = 1

}
⊂ Rn+1,

and Sn is called the n-dimensional probability simplex. It is given by the intersection

of the convex cone of non-negative vectors Rn+1
+ with the plane

∑
i xi = 1.

Consider the Hilbert distance on the non-negative orthant C = Rn
+. Recall the

duality expression for H given in (2.4) and the equality (2.5). The dual cone C∗ is
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again Rn
+. Take x, y ∈ Rn

+ \ {0} such that β(x, y) < ∞. Note that β(x, y) < ∞ if

and only if there exists a scalar b > 0 such that yi ≤ bxi for all i = 1, . . . , n, which in

particular implies that xi > 0 whenever yi > 0. Hence we have

β(x, y) = sup
w∈Rn

+\{0}
w⊺x>0

w⊺y

w⊺x
= sup

r∈[0,1]n+1\{0}

∑
j:xj>0

rj
yj

xj
= max

j:xj>0

yj

xj
= max

j: e⊺jx>0

e⊺jy

e⊺jx
, (2.23)

where the second equality follows by setting rj = wjxj/w⊺x, 0 ≤ rj ≤ 1 for all

j = 1, . . . , n and at least one rj > 0, and {ej}nj=1 are the basis vectors of Rn
+. So

supw w
⊺y/w⊺x is attained when w is a basis vector. By symmetry, we have that

β(y, x) < ∞ if there exists b′ > 0 such that xi ≤ b′yi for all i = 1, . . . n. Then

two elements x, y ∈ Rn
+ are comparable (denoted again by

cmp∼) if there exist constants

a, b > 0 such that ax ≤ y ≤ bx, where the inequalities hold component-wise (this is

the definition of comparability given in [15, Chapter XVI]). Then the definition (2.1)

of the Hilbert projective distance for x, y ∈ Rn
+ simplifies to

H(x, y) =

 log

(
maxi:yi>0

xi

yi

min
j:yj>0

xj

yj

)
, x

cmp∼ y,

∞, x
cmp≁ y.

(2.24)

Remark 2.9. In this finite-state context, the comparability condition
cmp∼ reduces to

equivalence of measures ∼ on Sn. Recall that (Sn,H) is a complete metric space by

Lemma 2.3.5.

Using (2.23) we can now easily derive an explicit expression for Birkhoff’s contrac-

tion coefficient of a linear operator Rn
+ \ {0} → Rn

+ \ {0}. Define a matrix A = (Aij)

to be allowable if A is non-negative (i.e. Aij ≥ 0 for all i, j) and if every row and

every column of A has at least one strictly positive element (this definition is given

by Seneta in [78, Def. 3.1]). Clearly any linear operator Rn
+ \ {0} → Rn

+ \ {0} can be

represented as an allowable n×n matrix. We prove the following result, which was al-

ready stated by Birkhoff without proof in Corollary 2 of [15, Chapter XVI, Section 3]

and obtained by Seneta in Section 4 of [78, Chapter 3], although the derivation there

is significantly more involved.

Proposition 2.4.1. Let A = (Aij) be an allowable n×n matrix. Birkhoff’s contrac-

tion coefficient τ(A) can be written as

τ(A) =
1−

√
ϕ(A)

1 +
√
ϕ(A)

, with ϕ(A) = min
i,j,k,l

AikAjl

AjkAil

, (2.25)

(with the convention that 0/0 = 1).
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Proof. Consider the diameter of Rn
+ under the matrix A, i.e.

∆(A) = sup
x,y∈Rn

+\{0}
H(Ax,Ay).

Assume that ∆(A) < ∞, so β(Ax,Ay), β(Ay,Ax) < ∞ for all x, y ∈ Rn
+ \ {0}. Note

that ∆(A) < ∞ if and only if A is strictly positive (i.e. Aij > 0 for all i, j), so in

particular Ax has strictly positive entries for all x ∈ Rn
+, which implies that w⊺Ax > 0

for all x,w ∈ Rn
+. Using (2.23) in the second and fourth equalities below, we get

e∆(A) = sup
x,y∈Rn

+\{0}
sup

w,z∈Rn
+\{0}

{
w⊺Ay

w⊺Ax

z⊺Ax

z⊺Ay

}
= sup

x,y∈Rn
+\{0}

max
i,j

{
e⊺iAy

e⊺iAx

e⊺jAx

e⊺jAy

}
= max

i,j
sup

x,y∈Rn
+\{0}

{
y⊺A⊺ei
y⊺A⊺ej

x⊺A⊺ej
x⊺A⊺ei

}
= max

i,j
max
k,l

{
e⊺kA

⊺ei
e⊺kA

⊺ej

e⊺lA
⊺ej

e⊺lA
⊺ei

}
= max

i,j,k,l

AikAjl

AjkAil

,

so finally Birkhoff’s contraction coefficient is given by

τ(A) = tanh

(
∆(A)

4

)
=
e

∆(A)
2 − 1

e
∆(A)

2 + 1
=

1−
√
ϕ(A)

1 +
√
ϕ(A)

, with ϕ(A) = min
i,j,k,l

AikAjl

AjkAil

.

(2.26)

We can check that if A is not strictly positive, so ∆(A) = ∞, the formula above still

holds with the convention that tanh(∞) := 1.

In fact, we obtain a similar representation of Birkhoff’s contraction coefficient

for a class of transition kernels on more general spaces. Let E be a Polish space

with Borel σ-algebra B(E), and consider a positive kernel K on B(E) × E. Then

there exists an associated positive linear operator (again denoted by K) such that

K : M+(E) → M+(E) and

Kµ( da) =

∫
E

K( da, x) dµ(x). (2.27)

In the statement below, we restict our attention to kernels that have a density with re-

spect to a reference measure ρ ∈ M+(E). In other words, letK( da, x) = κ(a, x) dρ(a)

for some positive function κ : Supp(ρ)× E → R+. Then (2.27) reduces to

Kµ(A) =

∫
a∈A

∫
x∈E

κ(a, x) dµ(x) dρ(a), ∀A ∈ B(E), (2.28)

(where we have swapped the order of integration using Tonelli’s theorem). We then

have the following infinite dimensional counterpart to Proposition 2.4.1.
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Proposition 2.4.2. Let E be a Polish space with Borel σ-algebra B(E) and reference

measure ρ ∈ M+(E) with support Supp(ρ) ⊂ E. Consider a kernel operator K :

M+(E) → M+(E) of the form (2.28) defined by a density

d(Kµ)

dρ
(a) :=

∫
E

κ(a, x) dµ(x),

for κ : Supp(ρ)×E → (0,∞). Assume κ is a bounded continuous function. Then the

Birkhoff coefficient of K is given by

τ(K) =
1−

√
ϕ(K)

1 +
√
ϕ(K)

, with ϕ(K) = inf
a,b∈ Supp(ρ)

x,y ∈E

{κ(a, x)κ(b, y)
κ(a, y)κ(b, x)

}
. (2.29)

Proof. From the structure of the operator, we know that the Radon–Nikodym deriva-

tive of Kµ and Kν (for ν ̸= 0) is given by

d(Kµ)

d(Kν)
(a) =

∫
E
κ(a, x) dµ(x)∫

E
κ(a, x) dν(x)

, ∀a ∈ Supp(ρ).

As κ is continuous and bounded, by dominated convergence we have that a 7→
d(Kµ)
d(Kν)

(a) is continuous, and so the ρ-essential supremum of d(Kµ)
d(Kν)

(a) is equal to its

(pointwise) supremum on Supp(ρ). Using the definition of T and (2.17), we know

that

T (Kµ,Kν) = tanh

(
1

4
log
(
sup
a

{∫
E
κ(a, x) dµ(x)∫

E
κ(a, x) dν(x)

}
sup
b

{∫
E
κ(b, y) dν(y)∫

E
κ(b, y) dµ(y)

}))
= sup

a,b

{
tanh

(
1

4
log
(∫

E
κ(a, x) dµ(x)∫

E
κ(b, y) dµ(y)

∫
E
κ(b, y) dν(y)∫

E
κ(a, x) dν(x)

))}
.

From the definition of τ in Theorem 2.2.6 and monotonicity of tanh, we know that

τ(K) = sup
µ,ν∈M+(E)

T (Kµ,Kν)

= sup
a,b

{
tanh

(
1

4
log
(

sup
µ∈M+(E)

{∫
E
κ(a, x) dµ(x)∫

E
κ(b, y) dµ(y)

}
sup

ν∈M+(E)

{ ∫
E
κ(b, y) dν(y)∫

E
κ(a, x) dν(x)

}))}
.

(2.30)

In order to compute the inner suprema, we observe that for all µ ∈ M+(E) and

a, b ∈ E,∫
E
κ(a, x) dµ(x)∫

E
κ(b, y) dµ(y)

=

∫
E

κ(b, x)∫
E
κ(b, y) dµ(y)

κ(a, x)

κ(b, x)
dµ(x) =

∫
E

κ(a, x)

κ(b, x)
dµ̃b(x)

where µ̃b ∈ P(E) is defined by dµ̃b

dµ
(x) = κ(b,x)∫

E κ(b,y) dµ(y)
. Therefore, as κ is continuous,

sup
µ∈M+(E)

∫
E
κ(a, x) dµ(x)∫

E
κ(b, y) dµ(y)

= sup
µ̃∈P(E)

∫
E

κ(a, x)

κ(b, x)
dµ̃(x) = sup

x∈E

κ(a, x)

κ(b, x)
.
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Substituting in (2.30) yields

τ(K) = tanh
(∆(K)

4

)
, with ∆(K) = sup

a,b∈ Supp(ρ)
x,y ∈E

{
log
(κ(a, x)κ(b, y)
κ(a, y)κ(b, x)

)}
,

and essentially the same calculation as (2.26) gives the form (2.29).

2.4.1 Hexagonal polytopes in Hilbert projective geometry

We now introduce a change of coordinates from the interior of Sn to Rn which allows

us to build an understanding of the geometry of the probability simplex as a metric

space equipped with the Hilbert distance H.

Notation. For simplicity, let N := {0, 1, . . . , n} throughout this section.

Let S̊n be the interior of the n-dimensional probability simplex Sn ⊂ Rn+1. Fol-

lowing Amari [2,3], we map any discrete distribution µ ∈ S̊n to its natural parameters

θ ∈ Rn. In other words, for all k = 0, . . . , n, let θk : S̊n → Rn such that

θik(µ) = log
µi

µk
, ∀i ∈ N \ {k}. (2.31)

Since we exclude the kth component, θk(µ) = {θik(µ)}i ̸=k is an n-dimensional vector.

The inverse mapping θ−1
k : Rn → S̊n is given by

µi(θk) =
eθ

i
k∑n

i=0 e
θik
, ∀i ∈ N (where for notational simplicity θkk ≡ 0). (2.32)

Then θk is a diffeomorphism S̊n → Rn, and a global chart for S̊n. Note that we have

n+ 1 choices for k, so in fact we have a family of n+ 1 coordinate transformations.

We note that we have the equivalence

H(µ, ν) = max
i

log
µi

νi
−min

i
log

µi

νi
= max

i,k

{
log

µi

νi
− log

µk

νk

}
= max

i,k

{
θik(µ)− θik(ν)

}
= max

k
∥θk(µ)− θk(ν)∥ℓ∞ ,

(2.33)

where by ℓ∞ we denote the standard supremum norm between vectors.

Remark 2.10. It is informative to compare this with Proposition 2.3.6. We fix k = 0

for simplicity, and ρ as the counting measure on E. Writing 1 ∈ Rn for the vector of

ones, we then have

θ0(µ) =
(
log(µ1/µ0), log(µ2/µ0), ..., log(µn/µ0)

)
=
(
log(µ1), log(µ2), ..., log(µn)

)
− log(µ0)1.
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On the other hand, in the notation of Proposition 2.3.6, we have the equivalence class

θ(µ) =
{(

log(µ0), log(µ1), ..., log(µn)
)
+ c1; c ∈ R

}
∈ Θρ

∼= Rn+1
/
∼const .

Of course, we can identify θ0(µ) with
(
0, θ0(µ)

)
∈ θ(µ). Therefore, we see that

our θ0-coordinates (2.31) simply choose the representative element in θ(µ) with c =

− log(µ0), or equivalently, the (unique) element with 0 in the first entry. Consequently,

Proposition 2.3.6 gives the representation of the metric (in θ0-coordinates)

H(µ, ν) =
(
max
i ̸=0

{
θi0(µ)− θi0(ν)

})+
+
(
min
i ̸=0

{
θi0(µ)− θi0(ν)

})−
,

with x+ = max{0, x} and x− = max{0,−x}. As this representation shows the Hilbert

metric is given by a norm in θk-coordinates (for any k), we know that translation in

θk-coordinates will not change the size or shape of a ball.

The θk-coordinates allow us to investigate in detail the shape of Hilbert balls in

Sn. The main idea is as follows: let µ, ν ∈ S̊n, so µ and ν are equivalent, and for all

k ∈ N consider the transformations µ 7→ θk(µ) and ν 7→ θk(ν). LetH(µ, ν) = R <∞.

Fixing ν and k = 0, we prove that the H-ball of radius R around θ0(ν) is a convex

polytope C ⊂ Rn. Mapping C to the simplex Sn, we find that the image of C through

the inverse transformation θ−1
0 is also a convex polytope.

We start with the following lemma.

Lemma 2.4.3. Consider two probability measures µ, ν ∈ S̊n such that H(µ, ν) = R >

0. Let θ0(µ), θ0(ν) ∈ Rn be their natural parameters under the mapping θ0 given by

(2.31). Then θ0(µ) belongs to the boundary ∂C of an n-dimensional convex polytope

C ⊂ Rn centred at θ0(ν), with 2(2n − 1) vertices at the points

v+I := θ0(ν) +R
∑
i∈I

ei, v−I := θ0(ν)−R
∑
i∈I

ei, (2.34)

where {ei}ni=1 denote the basis vectors of Rn and I ⊆ {1, 2, . . . , n}, I ≠ ∅.

Proof. The first thing we do, to simplify our calculations, is to translate θ0(ν) ∈ Rn

to the origin 0. Now let θik := log(µi/µk) ∈ R for all i, k = 0, . . . , n. We fix the

coordinate system in Rn to be given by (x1, . . . , xn) ≡ (θ10, . . . , θ
n
0 ), so that the basis

vectors ei are the unit vectors in the θi0-direction. We look for a representation of the

H-ball of radius R around the origin in this coordinate system.

By (2.33), clearly |θik| ≤ R for all pairs (i, k) ∈ N × N. We consider all these

inequalities, noting that, since |θik| = |θki | by properties of log, we can avoid need-

less repetitions by restricting our consideration to all pairs of indices (i, k) ∈ In :=
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{(i, k) ∈ N×N : i > k}. Then we have in total n(n+ 1)/2 unique inequalities. Re-

calling that θik = θi0−θk0 , for (i, k) ∈ In we define the (n−1)-dimensional hyperplanes

h±
i,k :=

{
{(x1, . . . , xn) ∈ Rn : xi − xk = ±R} k ̸= 0,
{(x1, . . . , xn) ∈ Rn : xi = ±R} k = 0,

(2.35)

and denote by p+
i,k := {x ∈ Rn : xi − xk ≤ R} the half-spaces bounded by h+

i,k, and

similarly by p−
i,k := {x ∈ Rn : xi−xk ≥ −R} those bounded by h−

i,k (and equivalently

when k = 0).

We let Cn =
⋂

(i,k)∈In p
+
i,k ∩ p−

i,k. By standard results in n-dimensional geometry,

Cn ⊂ Rn is a polyhedron, since it is the intersection of a finite number of closed

half-spaces. We claim Cn is bounded.

Note that the intersection Cn
0 =

⋂n
i=1 p

+
i,0 ∩ p−

i,0 is the n-cube with side-length 2R

centred at 0 with 2n vertices at all possible positive/negative combinations of the

coordinates (±R, . . . ,±R). Then

Cn =
⋂

(i,k)∈In
k ̸=0

p+
i,k ∩ p−

i,k ∩ Cn
0 , (2.36)

and the intersection of a hypercube with closed half-spaces is bounded, so Cn is a

bounded polyhedron, and therefore a convex polytope. (Note that Cn is non-empty,

since one can easily check that 0 ∈ Cn.)

We now would like to find the vertices of Cn. We look for all the points in Rn

where exactly n of the hyperplanes (2.35) intersect uniquely.

Consider a linear system S given by n equations from (2.35). We say indices

i, j are linked if an equation of the form xi − xj = ±R appears in the system S,

and extend this definition by transitivity to partition the indices appearing in S into

linked classes. We say an index i is a base case if xi = ±R appears in S.

1. Consider a class not containing a base case. Then we can add a constant r ∈ R
to each component xi in the class without altering the equations of the form

xi − xj = ±R. Therefore the subsystem of S containing all the equations for

this class cannot have a unique solution, so S cannot give a vertex.

2. For any class containing a base case, let’s say xi, note that (xi − xj)/R ∈ Z for

any xj linked to xi. By transitivity and additive closure of Z, we observe that

all indices in a class containing a base case must have xj/R ∈ Z.

By combining the above observations, all vertices of Cn must have coordinates that

are integer multiples of R, with at least one coordinate given by a base-case, i.e. any
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point v ∈ Rn that solves uniquely S must be of the form (m1R, . . . ,mnR) for mi ∈ Z
with −n ≤ mi ≤ n for all i = 1, . . . , n, and at least one mi ∈ {±1}.

Now, by (2.36) we must have that all the vertices of Cn belong to Cn
0 . Thus, any

point v ∈ Rn that uniquely solves S and is potentially a vertex of Cn must be of the

form (m1R, . . . ,mnR) with mi ∈ {−1, 0, 1} for all i = 1, . . . , n. Moreover, assume

that mi = 1 and mk = −1 for i > k. Then miR −mkR = 2R ≥ R, so v /∈ p+
i,k and

v /∈ Cn. Similarly, if mi = −1 and mk = 1 for i > k, then miR − mkR ≤ −2R so

v /∈ p−i,k and v /∈ Cn.

Thus we must have that any vertex of Cn is of the form (m1R, . . . ,mnR) with

either mi ∈ {−1, 0} for all i = 1, . . . , n or mi ∈ {0, 1} for all i = 1, . . . , n. Conversely,

consider any point v ∈ Rn of this form. It is easy to construct a system S for a choice

of n equations in {xi−xk = ±R}∪{xj = ±R} such that v solves S. Then the points

(m1R, . . . ,mnR) ∈ Rn with either mi ∈ {−1, 0} for all i = 1, . . . , n or mi ∈ {0, 1} for

all i = 1, . . . , n (and not all mi identically 0) are in fact all the vertices of Cn. Letting

C = Cn + θ0(ν), we are done.

Remark 2.11. As can be deduced by (2.33), the H-ball is, in a way, nothing but

the intersection of n+1 skewed ℓ∞-balls, or, geometrically speaking, the intersection

of n + 1 skewed hypercubes. Recall the notation from our proof above. Define the

following intersections

Cn
k :=

[ n⋂
j=k+1

p+
j,k ∩ p−

j,k

]
∩
[ k−1⋂

j=0

p+
k,j ∩ p−

k,j

]
, ∀k = 1, . . . , n.

Then for each k = 1, . . . , n, Cn
k is the image of the hypercube centred at θk(ν) with

side-length 2R under the linear transformation θk 7→ θ0.

We now map our convex polytope from Rn to Sn through the inverse transforma-

tion θ−1
0 given by (2.32). Note that if θ−1

0 were an affine transformation, then Lemma

2.4.4 stated below would be trivially true. However, as θ−1
0 is not affine, a bit more

work is required to prove that convexity, linearity of the boundary, and intersections

are preserved. We give a depiction of this result in Figure 2.1.

Lemma 2.4.4. The H-ball of radius R around θ0(ν), given by the convex polytope

C of Lemma 4.2, maps to a convex polytope D centred at ν in S̊n under the inverse

transformation θ−1
0 : Rn → S̊n. The vertices of D are given by the images of the

vertices of C under the same transformation.
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Proof. We use the same notation as in Lemma 2.4.3. Recall that we centred our

H-ball at θ̂0 = θ0(ν), the image of ν under the mapping θ0 : Sn → Rn. Similarly, we

will fix the centre of D, the representation of the H-ball in Sn, at ν, and proceed as

if ν were known.

We start by noting that the bounds |θik − θ̂ik| ≤ R, which correspond to the linear

constraints (2.35), are equivalent to linear constraints in Sn. Recalling the notation

of the proof of Lemma 2.4.3, consider the half-spaces p+
i,k under the transformation

θ−1
0 : Rn → Sn. We compute

θ−1
0 (p+

i,k) = {θ−1
0 (θ0) ∈ Sn : θi0 − θk0 ≤ θ̂i0 − θ̂k0 +R}

=
{
µ ∈ Sn : log

µi

µk
≤ log

νi

νk
+R

}
=
{
µ ∈ Sn : µi − µk ν

i

νk
eR ≤ 0

}
,

where we have used bijectivity of θ−1
0 and the fact that exp is increasing. Similarly,

θ−1
0 (p−

i,k) =
{
µ ∈ Sn : µi − µk ν

i

νk
e−R ≥ 0

}
.

Note that θ−1
0 (p+

i,k) and θ−1
0 (p−

i,k) are (n − 1)-dimensional flat subspaces of Sn. In

particular, since Sn is a subset of an n-dimensional affine space A ∼= Rn, we see

that θ−1
0 (p+

i,k) and θ
−1
0 (p−

i,k) are closed half-spaces of A, bounded by the hyperplanes

l+i,k := {µ ∈ A : µi = µk νi

νk
eR} and l−i,k := {µ ∈ A : µi = µk νi

νk
e−R}, which are the

images (extended to A) of respectively h+
i,k and h−

i,k under θ−1
0 . Then, recalling that

In := {(i, k) ∈ N×N : i > k}, the intersection

D :=
⋂

(i,k)∈In
θ−1
0 (p+

i,k) ∩ θ
−1
0 (p−

i,k)

is a convex polyhedron in A, and in particular, since θ−1
0 is a bijection from Rn into

S̊n,

θ−1
0 (C) = θ−1

0

( ⋂
(i,k)∈In

p+
i,k ∩ p−

i,k

)
= D ⊂ Sn.

Finally, both boundedness of D in Sn (in the sense that D is bounded away from

∂Sn), so that D is a convex polytope in Sn, and the fact that vertices are preserved

under the mapping follow easily from θ0 being an homeomorphism between S̊n and

Rn.

Remark 2.12. Using Figure 2.1, we can build an intuition of how the transformation

θ−1
0 deforms C by considering what happens to the parallel pairs of hyperplanes h+

i,k

and h−
i,k when mapped into Sn. For each pair (i, k) ∈ N × N, l+i,k = θ−1

0 (h+
i,k) and
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Figure 2.1: On the left: representation in θ0-coordinates of a 2-dimensional H-ball C
of radius R around θ̂0 = θ0(ν) = (0, 0). On the right, the image of C under θ−1

0 , which
gives the H-ball D around ν =

(
1
3
, 1
3
, 1
3

)
as a hexagonal polygon in the simplex S2.

l−i,k = θ−1
0 (h−

i,k) are not parallel in Sn, but meet at the (n − 2)-face of the simplex

given by fi,k = {µ ∈ Sn : µi = 0, µk = 0}. In other words, the ‘point at infinity’

at which h+
i,k and h−

i,k meet in Rn is mapped to the boundary of the simplex, and in

particular to fi,k, under θ
−1
0 .

For example, in dimension 2, fi,k are vertices of S2: when mapping C ∈ R2 to S2, we

can think of squeezing together the∞-extremities of each pair of parallel lines h±
i,k (for

(i, k) ∈ {(1, 0), (2, 0), (2, 1)}) so that they meet at an angle of α = a(eR−e−R)/(1+a2),

where a = νi/νk. Then we place the intersection point at the vertex fi,k of S2, so

that, intuitively, the strip of plane between h+
i,k and h−

i,k is mapped to a slice of S2 of

width α bounded by l+i,k and l−i,k. Then it is easy to visualize how the straight lines

that compose the boundary of C are mapped to straight lines, and how intersections

are preserved, making θ−1
0 (C) into a polytope as well. However, these lines (and those

parallel to them) are in fact the only straight lines in θ0-coordinates that map to

straight lines in S2 (as expected, since θ0 and its inverse are nonlinear). We illustrate

this in Figure 2.2 below.

Remark 2.13. The regularity of the H-balls, when represented in θ0-coordinates, has

other surprising consequences1—for example, Hilbert balls of constant radius natu-

rally tile the space, as illustrated in Figure 2.3.

1In a more artistic vein, Figure 2.3 also illustrates that the map θ0 : Sn → Rn, for n = 2,
corresponds to the classical transformation between parallel oblique perspective (θ0-coordinates)
and three-point perspective (by viewing Sn with its vertices at the three vanishing points), linking
back well beyond Birkhoff (1957) and Hilbert (1895), at least as far as the work of Jean Pelerin
(Viator) in De Artificiali Perspectiva (1505).
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Figure 2.2: Straight lines through the origin in θ0-coordinates on the left, and their
images in S2 under the inverse mapping θ−1

0 on the right. In red the lines parallel to
the axes and the diagonal in R2, which remain straight in S2.

Figure 2.3: Tiling of the 2-dimensional probability simplex S2 with Hilbert balls of
radius 0.5, starting from the ball around the center

(
1
3
, 1
3
, 1
3

)
(corresponding to the

origin in the θ0-coordinates on the left).

2.5 Metric-comparisons for probability measures:

TV and H

We now exploit the geometric intuition we gathered in the previous section to derive

a bound, sharper than (2.18), for the total variation norm with respect to the Hilbert

projective metric. We start by working with discrete probabilities in the simplex Sn

and then extend our result to probability measures on a general measurable space.

Perhaps unsurprisingly, the distance T (µ, ν) = tanh(H(µ, ν)/4), which we defined in
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Section 2.2.1, plays a role once more in the computations below.

2.5.1 Probabilities on finite state-space

First of all, recall that for a measurable space (E,F) the total variation distance

(2.11) between two probability measures µ, ν ∈ P(E) is equivalent to

∥µ− ν∥TV = 2 sup
A∈F

|µ(A)− ν(A)|, (2.37)

which, in the case of E ∼= {0, · · ·n} and µ, ν ∈ Sn, reduces to

∥µ− ν∥TV =
n∑

i=0

|µi − νi| = ∥µ− ν∥ℓ1 . (2.38)

Remark 2.14. Note that the factor of 2 in (2.37) is usually dropped, in which case

(2.38) would be stated as ∥µ− ν∥TV = 1
2
∥µ− ν∥ℓ1 . We keep the factor of 2 in analogy

with Atar and Zeitouni [8].

Theorem 2.5.1. Given two probability measures µ, ν ∈ Sn, we have that

∥µ− ν∥TV = ∥µ− ν∥ℓ1 ≤ 2 tanh
H(µ, ν)

4
. (2.39)

Equivalently, we have

sup
A⊆{0,...,n}

∑
i∈A

|µi − νi| ≤ T (µ, ν). (2.40)

From Lemma 2.4.4 we know that if µ, ν ∈ S̊n with H(µ, ν) = R < ∞, then µ

belongs to the boundary of a convex polytope D ∈ Sn, centred at ν and with vertices

{θ−1
0 (v+I ), θ

−1
0 (v−I ) : I ⊆ {1, . . . , n}, I ≠ ∅}. Finding an upper bound for ∥µ− ν∥ℓ1 is

now a simple convex optimization problem: we know the ℓ1-distance between ν and

µ is maximized when µ is at one of the vertices of D, so we compute the ℓ1-distance

between ν and each of these vertices, and then maximize over the choice of vertex.

Lemma 2.5.2. Assume ν ∈ S̊n is known. If H(µ, ν) = R, the ℓ1-distance between µ

and ν is bounded by

∥µ− ν∥ℓ1 ≤ 2 max
I⊆{1,...,n}

I̸=∅

{
SI(1− SI)(e

R − 1)

1 + SI(eR − 1)
∨ SI(1− SI)(1− e−R)

1 + SI(e−R − 1)

}
, (2.41)

where SI :=
∑

i∈I ν
i for any subset I (not ∅) of the indices.
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Proof. Recall (2.34). Consider a vertex vI+ = θ−1
0 (v+I ) of D ∈ Sn, and let N0 =

N \ {0}. Compute

∥ν − vI+∥ℓ1 =
n∑

i=0

|νi − vi
I+|

=

∣∣∣∣∣ν0 − 1

1 +
∑

i∈I exp{θi0(ν) +R}+
∑

i∈N0\I exp{θ
i
0(ν)}

∣∣∣∣∣
+
∑
k∈I

∣∣∣∣∣νk − exp{θk0(ν) +R}
1 +

∑
i∈I exp{θi0(ν) +R}+

∑
i∈N0\I exp{θ

i
0(ν)}

∣∣∣∣∣
+
∑

k∈N0\I

∣∣∣∣∣νk − exp{θk0(ν)}
1 +

∑
i∈I exp{θi0(ν) +R}+

∑
i∈N0\I exp{θ

i
0(ν)}

∣∣∣∣∣
=

∣∣∣∣∣ν0 − 1

1 + eR
∑

i∈I
νi

ν0
+
∑

i∈N0\I
νi

ν0

∣∣∣∣∣
+
∑
k∈I

∣∣∣∣∣νk − eR νk

ν0

1 + eR
∑

i∈I
νi

ν0
+
∑

i∈N0\I
νi

ν0

∣∣∣∣∣
+
∑

k∈N0\I

∣∣∣∣∣νk − νk

ν0

1 + eR
∑

i∈I
νi

ν0
+
∑

i∈N0\I
νi

ν0

∣∣∣∣∣.
Letting SI :=

∑
i∈I ν

i and S̆I :=
∑

i∈N0\I ν
i, so that SI + S̆I + ν0 = 1, some algebra

yields

∥ν − vI+∥ℓ1 = 2(eR − 1)
SI(1− SI)

1 + SI eR − SI
=: g+R(SI)

Equivalently, if we let vI− = θ−1
0 (v−I ), we obtain

∥ν − vI−∥ℓ1 = 2(1− e−R)
SI(1− SI)

1 + SI e−R − SI
=: g−R(SI)

Then the ℓ1-distance between µ and ν is bounded by the maximum between ∥ν −
vI+∥ℓ1 and ∥ν − vI−∥ℓ1 over all choices of vertices, which yields the lemma.

Proof of Theorem 2.5.1. Let µ, ν ∈ S̊n be such that H(µ, ν) = R. Recall the notation

from the proof of Lemma 2.5.2. Note that g+R(x) and g
−
R(x) for x ∈ [0, 1] are symmetric

around x = 1
2
. By standard calculus, we find that the maximum of g+R is attained at

x∗+ = 1
1+eR/2 ; while g

−
R is maximized at x∗− = 1− x∗+ = eR/2

1+eR/2 . Evaluating g
+
R and g−R
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at their respective maximizers gives the upper bound

∥ν − v∥ℓ1 ≤ max
I⊆{1,...,n}

I̸=∅

{∥ν − vI+∥L1 ∨ ∥ν − vI−∥L1}

≤ max
ν∈S̊n

max
I⊆{1,...,n}

I̸=∅

{∥ν − vI+∥L1 ∨ ∥ν − vI−∥L1}

≤ max
SI∈[0,1]

{g+R(SI) ∨ g−R(SI)}

≤ 2 tanh
R

4
.

Finally, note that the statement is trivial if µ ≁ ν. Moreover, if µ ∼ ν and µ, ν ∈ ∂Sn,

then they must belong to the same (n − d)-face of Sn, which is also a probability

simplex Sd with 1 ≤ d < n. In particular, µ, ν ∈ S̊d, which is the same as the case

we considered originally, so we are done.

Remark 2.15. For low dimensions, Lemma 2.5.2 provides a way to compute a bound

for ∥µ − ν∥ℓ1 which is tighter than Theorem 2.5.1. While this still holds true in

higher dimensions, the improvement gained by computing explicitly the bound (2.41)

instead of using (2.39) can be negligible, since it is likely that at least one of the

possible combinations for SI comes very close to the maximizer.

2.5.2 Probabilities on a general measurable space

We now use the discrete result of Theorem 2.5.1 to give bounds for general probability

measures.

Corollary 2.5.2.1. Let (E,F) be a measurable space. Consider µ, ν ∈ P(E). We

have
1

2
∥µ− ν∥TV = sup

A∈F
|µ(A)− ν(A)| ≤ T (µ, ν).

Proof. Note that if µ ≁ ν, then the statement follows trivially, so assume that µ ∼ ν.

By definition of the total variation distance (2.37), for all n ∈ N there exists a set

An ∈ F such that

1

2
∥µ− ν∥TV − 1

n
≤ |µ(An)− ν(An)| ≤

1

2
∥µ− ν∥TV. (2.42)

Let Fn be the σ-algebra generated by An, i.e. Fn = {An, A
c
n, E, ∅}, and let πn be

the partition of E given by πn = {An, A
c
n}. Consider the probability measures µn, νn

on the space (E,Fn) given by

µn = µ|πn , νn = ν|πn .
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Then µn and νn are probabilities on the finite state space {An, A
c
n}, and in particular

µn, νn ∈ S1. Therefore it holds that

sup
A∈Fn

|µn(A)− νn(A)| = |µn(An)− νn(An)|

≤ tanh
H(µn, νn)

4
= tanh

∣∣∣ log µn(An)
νn(An)

− log µn(Ac
n)

νn(Ac
n)

∣∣∣
4

≤ tanh
supA,B∈F

(
log µ(A)

ν(A)
− log µ(B)

ν(B)

)
4

= tanh
H(µ, ν)

4
.

As for the left-hand side, we have that

sup
A∈Fn

|µn(A)− νn(A)| = |µn(An)− νn(An)| = |µ(An)− ν(An)| ≤ sup
A∈F

|µ(A)− ν(A)|.

But by (2.42) we also have that

sup
A∈Fn

|µn(A)−νn(A)| = |µn(An)−νn(An)| = |µ(An)−ν(An)| ≥ sup
A∈F

|µ(A)−ν(A)|− 1

n
.

Therefore, putting together the two above inequalities, we arrive at the final expres-

sion

lim
n→∞

sup
A∈Fn

|µn(A)− νn(A)| = sup
A∈F

|µ(A)− ν(A)|,

and the result follows.

Remark 2.16. Note that the bounds in Theorem 2.5.1 and Corollary 2.5.2.1 can be

attained, and therefore are sharp. In particular, 2T is nothing but the maximum

TV (or ℓ1) norm between two probability measures which are a fixed H-distance

apart. Theorem 2.2.6 then tells us that this quantity contracts under (positive) linear

transformations.

Remark 2.17. For µ, ν ∈ P(E), we can also find an upper bound for T (µ, ν) in terms

of TV. For all A ∈ F , we have

tanh

(
1

2
log

µ(A)

ν(A)

)
=
µ(A)− ν(A)

µ(A) + ν(A)
,

therefore

T (µ, ν) ≤ tanh

(
1

2
log
(
sup
A∈F

µ(A)

ν(A)
∨ sup

B∈F

µ(B)

ν(B)

))
≤ supA∈F |µ(A)− ν(A)|

2
(
infB∈F µ(B) ∧ infB∈F ν(B)

) .
(2.43)

However, we note that the denominator of the right-hand side may become arbitrarily

small, which is unsurprising given T is a stronger metric than TV on Sn.
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Chapter 3

Exponential contraction estimates
for the Wonham filter

This chapter is concerned with the study of the stability of the Wonham filter. In

it, we establish the fundamental contraction estimates that allow us to move on to

the question of robustness in Chapter 4, and ultimately to compute quantitatively

meaningful error bounds for approximate filters.

3.1 Discussion of known results

Filtering stability has been an active field of study since the 1990’s. A key paper in

the literature is [71], in which Ocone and Pardoux establish a relationship between the

stability of the Kalman filter and detectability/stabilizability of the signal-observation

linear control system. Their arguments for stability in the nonlinear setting, however,

rely on a result by Kunita [59], which was later found to contain a mistake (see

Baxendale, Chigansky and Liptser [12, Section 2] for a detailed explanation and a

counterexample, and Budhiraja [20] for an analysis of its relevance in the context of

nonlinear filtering stability). The gap in Kunita’s proof was addressed by Van Handel,

who established the necessary conditions for the stability of the nonlinear filter in

different settings (for ergodic signals in discrete and continuous time in [85], non-

ergodic signal with compact state-space in [84], and with Polish state-space in [86]).

More recently, in Kim, Mehta and Meyn [56] and Kim and Mehta [55], stability

of the Wonham filter is shown to be equivalent to stabilizability of a dual control

problem, in an extension of [71] to the nonlinear case. We refer the interested reader

to Chigansky [24] for an extensive review of nonlinear filtering stability results (in

discrete time with finite state-space) and to [33, Part 3] for a broad collection of
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survey papers. Of particular relevance to our setting, Chigansky, Liptser and Van

Handel [25] gives an accessible introduction to the stability results of [84–86].

While the above results guarantee stability of the filter in the strongest possi-

ble generality (and under the weakest possible assumptions), their qualitative nature

makes them unsuitable for understanding general approximation errors. On the other

hand, if one is willing to impose relatively strong ergodicity assumptions on the sig-

nal process, there are explicit decay rates available in the literature, at least for the

particular case of the Wonham filter. Delyon and Zeitouni [35] introduced the study

of the top Lyapunov exponent for the Wonham filter, and proved that it is negative

under certain conditions on the model parameters. This method was expanded by

Atar and Zeitouni [8,9], who, under a fairly strong mixing assumption for the signal,

compute an explicit exponential decay rate for the stability error. Applying the tech-

niques of [8], Baxendale, Chigansky and Liptser weakened the ergodicity assumptions

slightly by proving a.s. negativity of the decay rate if all the states of X communi-

cate [12, Theorem 4.1] (although we lose an explicit rate). Finally, by working with

the smoother process (as described in e.g. Liptser and Shiryayev [66, Theorem 9.5]),

they provide an explicit exponential rate of decay for a mixing signal in terms of its

ergodic distribution [12, Theorem 4.2], and a non-asymptotic exponential bound for

the stability error [12, Theorem 4.3], with the same decay rate as [8, 9].

As far as we are aware, the bound in [12, Theorem 4.3] is the only non-asymptotic

bound available in the literature for the stability error of the Wonham filter in con-

tinuous time. The prefactor to the exponential decay term is proportional to the

dimension of the Wonham SDE and the Radon–Nikodym derivatives of the true and

the ‘wrong’ initial distribution, and it is far too large for the bound to be useful from a

quantitative point of view. Van Handel improves it significantly (although the result

still remains far from a contraction), and the best estimate for the prefactor is found

by combining [26, Proposition 3.5] and [83, Corollary 2.3.2]. This stability result is

central in the robustness analysis for the Wonham filter carried out in [26]. On the

other hand, the robustness results for the nonlinear filter in discrete time [21, 62, 63]

that we mentioned previously build on the work on stability by Atar and Zeitouni

(in [8, 9] the analysis is carried out for both discrete and continuous time settings).

The fundamental contribution of [8, 9] is to introduce the use of the Hilbert pro-

jective distance as a metric on the space of probability measures to carry out stability

estimates for the nonlinear filter. As we have seen in Chapter 2 a key advantage of

using the Hilbert metric is that positive linear operators contract under this distance.

Recalling that the generator of a discrete-time Markov chain is a stochastic matrix,
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Birkhoff’s and Seneta’s works make the stability results for discrete-time nonlinear

filtering intuitively straightforward.

Atar and Zeitouni provide asymptotic rates for the decay of the stability error of

the filter, for both the discrete and continuous time case. Building on these ideas, and

on Seneta’s work, Le Gland and Mevel [61,62], and then Le Gland and Oudjane [63]

proved non-asymptotic and non-logarithmic stability bounds for the discrete time

setting, conditional on a strong mixing assumption for the signal process. In [63], they

are also able to tackle the issue of robustness of the nonlinear filter (in discrete time)

and in particular they study the global error of interacting particle approximations to

the filtering process. Our results in this chapter and in Chapter 4 follow roughly along

the same lines, although in the continuous time setting. Moreover, our approach is

fundamentally different from that in [8, 9, 61–63]; the only common aspect is the use

of the Hilbert metric in the stability analysis.

3.2 Filtering set-up and a key result

Let (Ω,F ,P) be a probability space with a filtration {Ft, t ≥ 0} satisfying the usual

conditions. Consider an {Ft}-adapted continuous-time, time-homogeneous Markov

chain X = (Xt)t≥0 with finite state-space S = {a0, . . . , an}, and associated transition

intensity matrix Q = (qij) ∈ R(n+1)×(n+1). We let M+(S) and P(S) denote respec-

tively the non-negative measures and the probability measures on S. Let the initial

distribution of X be given by µi = P(X0 = ai).

Recall that the Q-matrix is defined as the matrix of transition rates such that

its entries for each row sum to 0, and its off-diagonal entries are non-negative,

i.e.
∑

j qij = 0 for all i, and qij ≥ 0 for all i, j ≤ n+ 1, i ̸= j, and

Mφ
t = φ (Xt)− φ (X0)−

∫ t

0

Qφ (Xs) ds, t ≥ 0

is an {Ft}-adapted, right-continuous martingale for all bounded functions φ : S → R,
with Qφ(ai) =

∑n
j=0 qijφ(aj) for all ai ∈ S.

Let h = (hi)
d
i=1 : S → Rd be a bounded function and σ ̸= 0. Suppose W is a

standard {Ft}-adapted d-dimensional Brownian motion independent of X, and let

Y = (Yt)t≥0 be the process satisfying the SDE

Yt = Y0 +

∫ t

0

h (Xs) ds+ σWt. (3.1)
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Let {Yt}t≥0 be the (completed) natural filtration generated by the observation process

Y . This describes the information available from observing Y in the time-interval

[0, t].

By common practice, we identify the state-space S with {e0, . . . , en}, the standard
basis for Rn+1. Denote by πt = E [Xt|Yt] the conditional expectation of X given Yt.

In other words, by abuse of notation, πi
t = P(Xt = ai|Yt).

The process πt satisfies the Wonham form of the Kushner–Stratonovich equation

(see e.g. [10, Eq. 3.53]):

dπt = Q⊤πt dt+
1

σ2

d∑
k=1

(
Hk − π⊤

t hk In+1

)
πt
(
dY k

t − π⊤
t hk dt

)
, π0 = µ, (3.2)

where, for k = 1, . . . , d, Hk = diag (hk(ai)) is an (n + 1) × (n + 1)-dimensional

diagonal matrix and In+1 is the identity matrix. Note that (3.2) is initialized at

µ = law(X0) = E [X0].

The probabilities πt for t ≥ 0 are (n + 1)-dimensional (column) vectors, so (3.2)

is a (n + 1)-dimensional nonlinear SDE. In fact, since the components πi
t must sum

to 1 for all t ≥ 0, the SDE (3.2) describes a flow on the n-dimensional probability

simplex Sn, where

Sn =

{
x ∈ Rn+1 :

∑
i

xi = 1, xi ≥ 0

}
.

We write S̊n for the interior of the simplex, that is, x ∈ S̊n if x ∈ Sn and xi > 0 for

all i.

Our choice of metric on Sn for the stability analysis of (3.2) is the Hilbert projec-

tive distance H, which we recall is given by

H(µ, ν) =

 log

(
max

j:νj>0
µj

νj

mini:νi>0
µi

νi

)
, µ ∼ ν,

∞, µ ≁ ν,

(3.3)

for µ, ν ∈ Sn expressed as non-negative vectors in Rn+1.

In this chapter and the next, we make the following assumptions on the nonlinear

filtering system described above

(A1) X is a time-homogeneous continuous-time Markov chain on n+ 1 states.

(A2) h = (hi)
d
i=1 is bounded for all i.

(A3) σ = 1 and d = 1 in (3.1) and (3.2).
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The final assumption only serves the purpose of simplifying notation – all our

results are easily extendable to the case of multi-dimensional Y and invertible σ ∈
Rd×d. Similarly, we could easily allow for time-dependence in σ and h, as long as the

first is bounded away from zero, and the second stays bounded for all t, and for time

inhomogeneity in the Markov chain dynamics of X.

Notation. Given that we take the observations Y to be one-dimensional, the sensor

function h : S → R can be seen as a vector h ∈ Rn+1 with entries hi = h(ai) for i =

0, . . . , n. From now on we will employ this notation. We also denote by H = diag(h)

the diagonal matrix with entries (H)ii = hi. In general, we will always denote the

components of vectors (or vector-valued processes) with superscripts. We denote by

N the set of natural numbers {0, . . . , n}. Sometimes we will write dAt ≤ dÃt for two

Lebesgue–Stieltjes measures At and Ãt on [0,∞), by which we mean
∫ t

s
dAr ≤

∫ t

s
dÃr

for all 0 ≤ s < t <∞.

For reference, we rewrite here equation (3.2) for the Wonham filter given the above

assumptions and notation

dπt = Q⊤πt dt+
(
H − π⊤

t h In+1

)
πt
(
dYt − π⊤

t h dt
)
, π0 = µ. (3.4)

We consider the long time behaviour of the error between πt and π̃t, where π̃t is

the filter initialized with the ‘wrong’ initial data π̃0 = ν ̸= µ but the same dynamics

as π. The evolution equation for π̃t is given by

dπ̃t = Q⊤π̃t dt+
(
H − π̃⊤

t h In+1

)
π̃t
(
dYt − π̃⊤

t h dt
)
, π̃0 = ν. (3.5)

Our key result is the following pathwise estimate on the stability of the filter.

Theorem 3.2.1 (Contraction rate of H(πt, π̃t)). Let πt be the solution to (3.4) and

π̃t the solution to (3.5). Suppose qij > 0 for all i ̸= j. Then for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ tanh

(
H(µ, ν)

4

)
e−λt,

where λ = 2mini ̸=j
√
qijqji. In particular,

H(πt, π̃t) ≤ H(µ, ν)e−λt.

Unsurprisingly, our contraction rate is the same as the asymptotic rate in [9],

and the non-asymptotic rate in [12, Theorem 4.3], and shares the issue of only being

(strictly) positive if all the off-diagonal entries of Q are (strictly) positive. This is

a very strong mixing assumption on X; however, it seems necessary to be able to
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compute an explicit contraction rate, and in fact a similar assumption is made in [63]

in the discrete-time setting (see [63, Definition 3.2]).

Given these stability estimates, in Chapter 4 we will be able to proceed to the

next challenge of understanding the error of approximate filters, and then apply these

estimates to projection filters on the simplex in Chapter 5.

3.3 Contraction rates in the Hilbert projective

metric

The rest of this chapter is dedicated to proving Theorem 3.2.1 and a few more results

related to the stability of the nonlinear filter with respect to its initial conditions.

We start by reintroducing the family of coordinate transformations (2.31) from

S̊n to Rn that map a discrete probability distribution to its natural parameters. We

derive the evolution equation for the Wonham filter in these new parametrizations,

and then consider the difference between the natural parameters of the Wonham filter

initialized at µ = law(X0) and those of the Wonham filter ‘wrongly’ initialized at

ν ̸= µ. By relating the ℓ∞ norm of the difference, maximized over parametrizations,

to the Hilbert projective metric, we are able to compute explicitly an exponential

contraction rate in the Hilbert metric for the Wonham filter. Up until the proof of

Theorem 3.2.1, we will regularly make the extra assumption that π0 = µ and π̃0 = ν

belong to the interior of the simplex.

Remark 3.1. For the entirety of this chapter, (πt)t≥0 represents the Wonham filter

initialized at π0 = µ, and (π̃t)t≥0 the Wonham filter initialized at π̃0 = ν.

3.3.1 Coordinate transformations

Recall the coordinate transformation (2.31) from Section 2.4.1 which sends a probabil-

ity distribution to what, in statistics, are called the natural (or canonical) parameters.

For all k ∈ N, we have the diffeomorphism θk : S̊n ∋ p 7→ θk ∈ Rn given by

θik = log
pi

pk
, ∀i ∈ N, (3.6)

and its inverse map θ−1
k is

pi =
exp θik

1 +
∑

j ̸=k exp θ
j
k

, ∀i ∈ N. (3.7)

We remark that θkk = 0 can be ignored as an entry of the vector θk (and it can be

‘skipped’), so that indeed θk ∈ Rk−1 × {0} × Rn−k ∼= Rn.
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Natural parameters are the usual choice of parametrization for an exponential

family of distributions, which have probability densities that can be written in general

form as

p(x, θ) = exp{θ · c(x) + k(x)− ψ(θ)}, (3.8)

where θ ∈ Rn is the n-dimensional vector of natural parameters, c(x) is the vector

of sufficient statistics of the distribution (and its n components are linearly inde-

pendent), k(x) is a function of x and ψ(θ) is the log partition function. A change

of measure from dx to dυ(x) = exp{k(x)} dx allows us to ignore k(x), as long as

p(x, θ) is understood as a density with respect to the measure dυ(x) instead. We will

assume k(x) = 0 for simplicity. Note that S̊n is an n-dimensional exponential family,

and we can write a discrete distribution p ∈ S̊n in the form (3.8) by fixing k ∈ N and

choosing ci(x) = δai(x) (for ai ∈ S).
Our choice of studying the filtering equations in the coordinate system θ of natural

parameters is motivated by Amari’s theory of information geometry [2, 3]. If µ, ν ∈
S̊n, then the filtering process πt lives in S̊n, which, in the language of information

geometry, is an n-dimensional statistical manifold, with θ (and its dual affine, the

expectation parameter η) as a global chart. The Riemannian metric for S̊n is the

Fisher Information, which infinitesimally agrees with the KL-divergence. In this

thesis, we will not make much use of the differential geometrical structures for S̊n

developed by Amari, as our choice of distance between probability vectors is the

Hilbert metric, which does not allow for a smooth geometry. However, it will still be

convenient to work in the global coordinate system given by the θ-parametrization.

We now would like to apply the coordinate transformation (3.6) to (πt)t≥0 and

(π̃t)t≥0 and derive evolution equations for the parameters θk(πt) and θk(π̃t). For all

k ∈ N, for notational simplicity define

θk(t) := θk(πt), θ̃k(t) := θk(π̃t),

so that, component-wise, we have

θik(t) := log
πi
t

πk
t

, θ̃ik(t) := log
π̃i
t

π̃k
t

, ∀(i, k) ∈ N×N.

The following lemma guarantees that these processes are almost surely well-defined

for all t <∞. For its proof we refer to [26].

Lemma 3.3.1 (Lemma 2.1 in [26]). Denote by πs,t(µ) the solution at time t ≥ 0 to

(3.4) initialized at time s ≤ t with πs = µ. Then

P
(
πs,t(µ) ∈ S̊n for all µ ∈ S̊n and all 0 ≤ s ≤ t <∞

)
= 1.
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Corollary 3.3.1.1. Assume µ, ν ∈ S̊n. We have that, almost surely,

H(πt, π̃t), |θik(t)|, |θ̃ik(t)| <∞, ∀ (i, k) ∈ N×N,

for all times 0 ≤ t <∞.

The proof of Lemma 3.3.1 also directly yields the following alternative result.

Lemma 3.3.2. Denote by πt(µ) the solution at time t ≥ 0 to (3.4) initialized at time

0 ≤ t with π0 = µ. Suppose qij > 0 for all i ̸= j. Then

P
(
πt(µ) ∈ S̊n for all µ ∈ Sn and all 0 < t <∞

)
= 1.

We now proceed to study the dynamics of the natural parameters θik(t) and θ̃
i
k(t).

For all pairs of indices (i, k) ∈ N×N, define the difference process

∆ik(t) := (θik(t)− θ̃ik(t))t≥0, (3.9)

where ∆ii = 0 for all i ∈ N.

We start with the following proposition.

Proposition 3.3.3. Assume µ, ν ∈ S̊n. For all 0 ≤ t < ∞ and all pairs of indices

(i, k) ∈ N×N, the process ∆ik(t) is C
1 in time and has the dynamics

d

dt
∆ik(t) = −

n∑
j=0
j ̸=k

qjk
(
eθ

j
k − eθ̃

j
k

)
+

n∑
j=0
j ̸=i

qji
(
eθ

j
i − eθ̃

j
i
)
,

∆ik(0) = log
µi

µk
− log

νi

νk
.

(3.10)

Proof. For i = k the process ∆kk is identically 0, so the statement holds trivially.

Assume i ̸= k. Consider θik(t) = log(πi
t/π

k
t ) for i ̸= k. We apply Itô’s formula and

obtain that, for any choice of k ∈ N, and i ̸= k, we have

d log
πi

πk
(t) = −

n∑
j=0
j ̸=k

qjk
πj
t

πk
t

dt+
n∑

j=0
j ̸=i

qji
πj
t

πi
t

dt+ (qii − qkk) dt+ (hi − hk) dBt

+
1

2

(
(hk)2 − (hi)2 + 2(hi − hk)π⊤

t h
)
dt,

log
πi

πk
(0) = log

µi

µk
,

(3.11)
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where for readability we have introduced the innovation process Bt = Yt −
∫ t

0
π⊤
s h ds,

which is a {Yt}-adapted Brownian motion (see e.g. [10, Proposition 2.30]). Similarly,

d log
π̃i

π̃k
(t) = −

n∑
j=0
j ̸=k

qjk
π̃j
t

π̃k
t

dt+
n∑

j=0
j ̸=i

qji
π̃j
t

π̃i
t

dt+ (qii − qkk) dt+ (hi − hk) dBt

+
1

2

(
(hk)2 − (hi)2 + 2(hi − hk)π̃⊤

t h
)
dt+ (hi − hk)

(
π⊤
t h− π̃⊤

t h
)
dt,

log
π̃i

π̃k
(0) = log

νi

νk
.

Subtracting the two equations, we see that the difference has absolutely continuous

dynamics

d

(
log

πi

πk
(t)− log

π̃i

π̃k
(t)

)
= −

n∑
j=0
j ̸=k

qjk

(
πj
t

πk
t

− π̃j
t

π̃k
t

)
dt+

n∑
j=0
j ̸=i

qji

(
πj
t

πi
t

− π̃j
t

π̃i
t

)
dt,

log
πi

πk
(0)− log

π̃i

π̃k
(0) = log

µi

µk
− log

νi

νk
.

(3.12)

Noting that the right-hand side of the above equation is continuous in time (since

πt and π̃t are both continuous), we have that the derivative of ∆ik exists and is

continuous for every t ≥ 0, and (3.10) follows.

3.3.2 The Hilbert error

Recalling the convenient equality (2.33), we now observe that

H(πt, π̃t) = ∆∞(t), (3.13)

where we have defined the the maximal process

∆∞(t) := max
k∈N

∥∥∥θk(t)− θ̃k(t)
∥∥∥
ℓ∞

= max
(i,k)∈N×N

∆ik(t).

We want to study the evolution in time of the stochastic process ∆∞(t). We here

adapt some arguments from [12], since it turns out that our difference processes ∆ik of

Proposition 3.3.3 have dynamics somewhat similar to the equations of the smoother

process considered in [12, Section 5.2, Eq. 5.6 & Eq. 5.7].

We shall be needing the next lemma in what follows.

Lemma 3.3.4 (Theorem A.6.3 in Dupuis and Ellis [38]). Let g : [0, 1] → R be an

absolutely continuous function. Then for every real number r ∈ R, the set {t : g(t) =

r, ġ(t) ̸= 0} has Lebesgue measure 0.
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Unless specified otherwise, when we say that an adapted stochastic process Z(t, ω)

is absolutely continuous or has absolutely continuous paths (a.s.), we mean not only

that it can be written as dZ(t, ω) = g(t, ω) dt with g ∈ L1([0, t]), for all t > 0 (a.s.),

but also that the weak derivative g(t, ω) is jointly measurable and adapted to the

underlying filtration. The next lemma confirms that this is the case for the process

∆∞(t, ω).

Lemma 3.3.5. Assume µ, ν ∈ S̊n. The stochastic process (t, ω) 7→ ∆∞(t, ω) has

absolutely continuous paths (in particular, it is predictable).

Proof. Fix an arbitrary k ∈ N. Start by considering the processes ∆⋆
i,k(t) = ∆0k ∨

∆1k ∨ · · · ∨∆ik for i ∈ N. We proceed by induction to prove absolute continuity of

∆⋆
n,k(t) = maxi∈N∆ik. Trivially, ∆⋆

0,k(t) = ∆0k(t) is absolutely continuous, since it

is either constant 0 by definition (if k = 0), or is absolutely continuous by Proposi-

tion 3.3.3 (if k ̸= 0). Consider the case i = 1, with ∆⋆
1,k(t) = ∆0k(t) ∨∆1k(t). Recall

that a ∨ b = 1
2
(a+ b+ |a− b|). Then

∆⋆
1,k(t) =

1

2

(
∆0k(t) + ∆1k(t) + |∆0k(t)−∆1k(t)|

)
.

By Proposition 3.3.3 we have that ∆0k(t) and ∆1k(t) are C
1 in time, and Ft-measurable

in ω. By the chain rule for weakly differentiable functions, if F (t) is absolutely con-

tinuous with weak derivative f(t), then

d|F (t)| = sign(F (t))f(t) dt. (3.14)

Thus we have that |∆0k(t) − ∆1k(t)| is absolutely continuous in time (for each ω),

and it is clear from the form of (3.14) that the weak derivative is jointly measurable

in (t, ω) and Ft-adapted. Hence the same is true for ∆⋆
1,k(t).

Now noting that ∆⋆
i,k(t) = ∆⋆

i−1,k(t) ∨ ∆ik(t) for all 2 ≤ i ≤ n, as before we can

write

∆⋆
i,k(t) =

1

2

(
∆⋆

i−1,k(t) + ∆ik(t) + |∆⋆
i−1,k(t)−∆ik(t)|

)
,

and by induction it follows that ∆⋆
n,k(t) = maxi∈N∆ik has absolutely continuous

paths.

Since the argument above is independent of our choice of k, we have that ∆⋆
n,k(t)

is absolutely continuous for all k ∈ N. Now all we have to do is take the maximum

of ∆⋆
n,k(t) over all k ∈ N and prove it is also absolutely continuous. Consider the

processes ∆⋆
k(t) = ∆⋆

n,0 ∨ ∆⋆
n,1 ∨ · · · ∨ ∆⋆

n,k for k ∈ N. Proceeding by induction

exactly as above, by exploiting the absolute continuity of the processes ∆⋆
n,k, we finally

obtain that the process ∆⋆
n(t) = maxk∈N∆⋆

n,k is measurable in (t, ω) and absolutely

continuous in time. Noting that ∆⋆
n(t) = ∆∞(t), we are done.
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Lemma 3.3.6. Assume µ, ν ∈ S̊n. There exists a {Yt}-predictable selection of indices

(t, ω) 7→ (i⋆(t, ω), k⋆(t, ω)) such that

∆∞(t, ω) = ∆i⋆(t,ω)k⋆(t,ω)(t, ω) for all t, ω.

Moreover, the dynamics of ∆∞(t, ω) are given by

d∆∞(t) =
∑
i∈N

∑
k∈N

1{(i⋆,k⋆)(t)=(i,k)}
d

dt
∆ik(t) dt,

∆∞(0) = log
µi⋆(0)

µk⋆(0)
− log

νi
⋆(0)

νk⋆(0)
.

(3.15)

Proof. Consider the measurable space (M,M), whereM = ([0,∞)×Ω) and M is the

{Yt}-predictable σ-algebra. Let U = N×N be endowed with the discrete topology.

Consider the function f :M×U → R such that f((t, ω), (i, k)) = ∆ik(t, ω). Note that

z(·, (i, k)) = ∆ik(·) is M-measurable for all (i, k) ∈ U by Proposition 3.3.3. Moreover,

z((t, ω), ·) = ∆·(t, ω) is continuous as a function U → R (because it is defined on the

discrete space U = N×N). The function ∆∞ :M → R is M-measurable by Lemma

3.3.5. Since ∆∞ = max(i,k)∈N×N∆ik, we must have that the image of ∆∞ is contained

in the image of f . In other words, we have

∆∞(t, ω) ∈ f((t, ω), U) ∀(t, ω) ∈M.

Then by Filippov’s implicit function lemma (see e.g. [28, Theorem A.10.2]) there

exists an M-measurable (i.e. {Yt}-predictable) map u : M → U that maps (t, ω) 7→
(i⋆(t, ω), k⋆(t, ω)) such that

∆∞(t, ω) = f
(
(t, ω), u(t, ω)

)
= f

(
(t, ω), (i⋆(t, ω), k⋆(t, ω))

)
= ∆i⋆(t,ω)k⋆(t,ω)(t, ω).

To prove the second part of the Lemma, recall that by Lemma 3.3.5 we have that

∆∞(t, ω) is absolutely continuous. Then d∆∞(t) = g(t) dt for some density g(t) such

that
∫ t

0
|g(s)| ds < ∞ a.s. for each t ≥ 0. Since

∑
i∈N
∑

k∈N 1{(i⋆,k⋆)(t)=(i,k)} = 1, we

can write

∆∞(t) = ∆∞(0) +

∫ t

0

∑
i∈N

∑
k∈N

1{(i⋆,k⋆)(t)=(i,k)}g(s) ds.

So, if we can show that for any (i, k) ∈ N×N and any t > 0 we have∫ t

0

1{(i⋆,k⋆)(t)=(i,k)}

∣∣∣g(s)− d

dt
∆ik(s)

∣∣∣ ds = 0 a.s., (3.16)
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we are done. Rewriting the left-hand side of the above, we have

0 ≤
∫ t

0

1{(i⋆,k⋆)(t)=(i,k)}

∣∣∣g(s)− d

dt
∆ik(s)

∣∣∣ ds
≤
∫ t

0

1{∆∞(s)−∆ik(s)=0}

∣∣∣g(s)− d

dt
∆ik(s)

∣∣∣ ds
=

∫ t

0

1{
∆∞(s)−∆ik(s)=0, g(s)− d

dt
∆ik(s)̸=0

}∣∣∣g(s)− d

dt
∆ik(s)

∣∣∣ ds,
and since the set

{
s : ∆∞(s) −∆ik(s) = 0, g(s) − d

dt
∆ik(s) ̸= 0

}
has measure 0 by

Lemma 3.3.4, we see (3.16) holds and the proof is complete.

The equality (3.13) gives us the chance to spell out the following lemmata, which

will be useful later.

Lemma 3.3.7. Assume µ, ν ∈ S̊n. For all t < ∞, the indices i⋆(t, ω) and k⋆(t, ω)

respectively maximize and minimize the quantity
πj
t

π̃j
t

over j ∈ N. Moreover, we have

that
πi⋆

t

π̃i⋆
t

=:Mt ≥ 1 and
πk⋆

t

π̃k⋆
t

=: 1
mt

≤ 1 for all t <∞.

Proof. Fix (t, ω) ∈ [0,∞)× Ω. Recalling Lemma 3.3.6, we see from the definition of

∆ik and (3.13) that

log
π
i⋆(t,ω)
t

π̃
i⋆(t,ω)
t

(ω)− log
π
k⋆(t,ω)
t

π̃
k⋆(t,ω)
t

(ω) = ∆i⋆(t,ω)k⋆(t,ω)(t, ω)

= ∆∞(t, ω) = logmax
i∈N

πi
t

π̃i
t

(ω)− logmin
k∈N

πk
t

π̃k
t

(ω),

so the first part of the lemma follows. For the second part, assume for contradiction

that there exists ω ∈ Ω such that Mt(ω) < 1. Then, for all j ∈ N

πj
t

π̃j
t

(ω) ≤Mt(ω) < 1 =⇒ πj
t < π̃j

t ,

which implies that
∑

j π
j
t < 1, and contradicts the fact that πt is a probability distri-

bution. The argument for 1/mt(ω) is analogous.

Lemma 3.3.8. Assume µ, ν ∈ S̊n. For all i, k ∈ N × N, define Tik(t) :=
πi
t

πk
t
− π̃i

t

π̃k
t
.

For all t < ∞, we have that Tji⋆(t) ≤ 0 and Tjk⋆(t) ≥ 0, where i⋆ = i⋆(t, ω) and

k⋆ = k⋆(t, ω) are the maximizing/minimizing indices from Lemma 3.3.7.

Proof. Trivially, Ti⋆i⋆(t) = Tk⋆k⋆(t) = 0. Now consider Tjk⋆(t) for j ̸= k⋆. Note that

Tjk⋆(t) =
πj
t

πk⋆
t

− π̃j
t

π̃k⋆
t

=

(
πj
t

π̃j
t

− πk⋆

t

π̃k⋆
t

)
π̃j
t

πk⋆
t

, ∀j ∈ N, j ̸= k⋆.
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By Lemma 3.3.7, k⋆ minimizes
πj
t

π̃j
t

over j ∈ N, so we have that
πj
t

π̃j
t

− πk⋆

t

π̃k⋆
t

≥ 0 for all

j ̸= k⋆. Moreover, π̃j
t/π

k⋆

t > 0 as well, since πt and π̃t have positive entries for t <∞.

We conclude that Tjk⋆(t) ≥ 0 for all t <∞.

For the case of Tji⋆(t) we argue in the same way by noting that

Tji⋆(t) =
πj
t

πi⋆
t

− π̃j
t

π̃i⋆
t

= −
(
πi⋆

t

π̃i⋆
t

− πj
t

π̃j
t

)
π̃j
t

πi⋆
t

, ∀j ∈ N, j ̸= i⋆,

and using that i⋆ maximizes
πj
t

π̃j
t

.

Finally, we will need the following continuity result for the Hilbert metric.

Lemma 3.3.9. For any (µ, ν) ∈ Sn × Sn, it holds that

(i) lim infm→∞H(µm, νm) ≥ H(µ, ν), for all sequences (µm, νm) → (µ, ν) converg-

ing in the Euclidean metric;

(ii) there exists a sequence (µm, νm) ∈ S̊n × S̊n such that limm→∞ H(µm, νm) =

H(µ, ν), and (µm, νm) → (µ, ν) in the Euclidean metric;

(iii) if µ, ν ∈ S̊n, then limm→∞ H(µm, νm) = H(µ, ν), for all sequences (µm, νm) →
(µ, ν) converging in the Euclidean metric.

Proof. If (µ, ν) ∈ S̊n × S̊n, the result is immediate from the definition of the Hilbert

metric and continuity of division and logarithms, establishing (iii). Consider now a

pair of sequences {µm}, {νm} ∈ S̊n convergent in the Euclidean metric, with respective

limits µ, ν ∈ Sn. Suppose first that µ ≁ ν, then it is easy to verify that either

maxi{µi
m/ν

i
m} → ∞ or mini{µi

m/ν
i
m} → 0, hence H(µm, νm) → ∞ = H(µ, ν).

Suppose instead that µ ∼ ν, let J = {j : µj = νj = 0}. If

lim sup
m→∞

max
j∈J

{µj
m/ν

j
m} ≤ max

i:νi>0
{µi/νi} and lim inf

m→∞
min
j∈J

{µj
m/ν

j
m} ≥ min

i:νi>0
{µi/νi},

then a direct calculation shows H(µm, νm) → H(µ, ν). Since we can always choose

{µm} and {νm} satisfying the two above inequalities, this proves (ii).

If a given sequence (µm, νm) does not satisfy the inequalities above, then take any

subsequence, still indexed by m, such that H(µm, νm) converges in [0,∞], and such

that at least one of the above inequalities is violated for every term in the subsequence;

in particular, suppose that for some ϵ > 0, for all m,

max
j∈J

{µj
m/ν

j
m} > max

i:νi>0
{µi/νi}+ ϵ.
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Then

lim
m→∞

H(µm, νm) ≥ log

(
maxi:νi>0{µi/νi}+ ϵ

mini:νi>0{µi/νi}

)
> H(µ, ν).

For any subsequence with minj∈J{µj
m/ν

j
m} < mini:νi>0{µi/νi}− ϵ, a similar argument

holds. Therefore, we conclude lim infm→∞H(µm, νm) ≥ H(µ, ν), which is (i).

3.3.3 Proof of Theorem 3.2.1

We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let us start by considering (3.15), and assuming µ, ν ∈ S̊n.

Writing it out in full we have

d∆∞(t) =
∑
i∈N

∑
k∈N

1{(i⋆,k⋆)(t)=(i,k)}
d

dt

(
log

πi
t

πk
t

− log
π̃i
t

π̃k
t

)
dt

=

[
−

n∑
j=0
j ̸=k⋆

qjk⋆

(
πj
t

πk⋆
t

− π̃j
t

π̃k⋆
t

)
+

n∑
j=0
j ̸=i⋆

qji⋆

(
πj
t

πi⋆
t

− π̃j
t

π̃i⋆
t

)]
dt, (3.17)

where we have dropped the (t, ω)-dependence of (i⋆, k⋆) for readability.

Rewriting (3.17) in the notation of Lemma 3.3.8, we have

d∆∞(t) = −
[ n∑

j=0
j ̸=k⋆

qjk⋆Tjk⋆(t)−
n∑

j=0
j ̸=i⋆

qji⋆Tji⋆(t)

]
dt

= −
(
qi⋆k⋆Ti⋆k⋆(t)− qk⋆i⋆Tk⋆i⋆(t)

)
dt−

n∑
j=0

j ̸=i⋆,k⋆

(
qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t)

)
dt.

(3.18)

and the right-hand side is non-positive, since the off-diagonal entries of the Q-matrix

are non-negative by definition, and the differences qi⋆k⋆Ti⋆k⋆(t) − qk⋆i⋆Tk⋆i⋆(t) and

qjk⋆Tjk⋆(t) − qji⋆Tji⋆(t) for j ̸= i⋆, k⋆ are also all non-negative by Lemma 3.3.8. We

look for an upper bound on the Stieltjes measure d∆∞(t) on [0,∞). Dropping non-

positive terms in the sum, we simplify to

d∆∞(t) ≤ −
(
qi⋆k⋆Ti⋆k⋆(t)− qk⋆i⋆Tk⋆i⋆(t)

)
dt

= −

[
qi⋆k⋆

(
πi⋆

t

πk⋆
t

− π̃i⋆

t

π̃k⋆
t

)
+ qk⋆i⋆

(
π̃k⋆

t

π̃i⋆
t

− πk⋆

t

πi⋆
t

)]
dt

= −

[
qi⋆k⋆

(
Mt −

1

mt

)
π̃i⋆

t

πk⋆
t

+ qk⋆i⋆

(
mt −

1

Mt

)
πk⋆

t

π̃i⋆
t

]
dt

≤ −2
√
qi⋆k⋆qk⋆i⋆

(
Mtmt − 1√

Mtmt

)
dt,
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where Mt :=
πi⋆

t

π̃i⋆
t

and mt :=
π̃k⋆

t

πk⋆
t

as in Lemma 3.3.7, and we have made use of the

inequality a+ b ≥ 2
√
ab for a, b ≥ 0. Recall that ∆∞(t) = ∆i⋆k⋆(t) = log(Mtmt) ≥ 0,

since Mtmt ≥ 1 by Lemma 3.3.7. Then we can rewrite the inequality above as

d∆∞(t) ≤ −4
√
qi⋆k⋆qk⋆i⋆ sinh

(
∆∞(t)

2

)
dt

Now, if ∆∞(t) = 0, then the theorem holds trivially, so we can assume ∆∞(t) > 0.

Since sinh(x) > 0 for x > 0, we can divide both sides by sinh
(
∆∞(t)/2

)
. Integrating

over [s, t] yields

log tanh

(
∆∞(t)

4

)
− log tanh

(
∆∞(s)

4

)
≤ −λ(t− s),

where we have defined λ := 2mini ̸=j
√
qijqji, and it follows that

tanh

(
∆∞(t)

4

)
≤ tanh

(
∆∞(0)

4

)
e−λt.

Concavity and monotonicity of tanh(x) for x ≥ 0 imply that tanh(x)e−λt ≤
tanh(xe−λt) and hence

∆∞(t) ≤ ∆∞(0)e−λt,

and, recalling (3.13), we are done.

Finally, we lift the assumption that µ, ν ∈ S̊n. From Lemma 3.3.9, we can choose

sequences µm, νm ∈ S̊n such that H(µm, νm) → H(µ, ν), and (µm, νm) → (µ, ν) in the

Euclidean norm. Consider the corresponding filters πt(µm), π̃t(νm) (the solutions to

(3.4) and (3.5) initialized at µm and νm respectively). As the Kushner–Stratonovich

equations are Lipschitz on Sn, by standard stability results for SDEs (e.g. [28, Theo-

rem 16.4.3]), we know that πt(µm) → πt and π̃t(νm) → π̃t in probability as m→ ∞.

We know from Lemma 3.3.2 that πt, π̃t ∈ S̊n. Using the continuity given in Lemma

3.3.9, and applying the result above, we know that

tanh
(H(πt, π̃t)

4

)
= lim

m→∞

[
tanh

(H(πt(µm), π̃t(νm))

4

)]
≤ lim

m→∞

[
tanh

(H(µm, νm)

4

)]
e−λt = tanh

(H(µ, ν)

4

)
e−λt

as desired. Monotonicity and concavity of tanh again complete the argument.

Remark 3.2. Previously, the best non-asymptotic stability estimate for the continuous-

time finite state-space nonlinear filter was given by

∥πt − π̃t∥ℓ1 ≤
(
2 ∧ ∥µ− ν∥ℓ1

mink{µk, νk}

)
e−λt (3.19)
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(where λ is the same rate as in Theorem 3.2.1), which is obtained by combining

[26, Proposition 3.5] (which relies on [12, Lemma 5.7]) and [83, Corollary 2.3.2].

Combining Theorem 3.2.1 with Theorem 2.5.1, we obtain the tighter bound

∥πt − π̃t∥ℓ1 ≤ 2 tanh
(H(µ, ν)

4

)
e−λt. (3.20)

3.3.4 On the optimality of the contraction rate

The deterministic contraction rate λ = 2mini ̸=j
√
qijqji that we just proved is sharp

for the case πt, π̃t ∈ S1 uniformly in µ, ν ∈ S̊1, in the sense that if we have ρ ∈ R
s.t. ∆∞(t) ≤ ∆∞(s)e−ρ(t−s) a.s. for all s < t, we know ρ ≤ λ. In this basic case, the

maximum process is simply given by ∆∞ = |θ10 − θ̃10|. Consider the specific situation

when Q is symmetric, so that the diagonal entries are given by q00 = q11 = −q and

the off-diagonal entries by q01 = q10 = q. Then λ = 2q. We compute

d|θ10(t)− θ̃10(t)| = sign
(
θ10(t)− θ̃10(t)

)[
− q
(
eθ

1
0(t) − eθ̃

1
0(t) + e−θ̃10(t) − e−θ10(t)

)]
dt

= sign
(
θ10(t)− θ̃10(t)

)[
− 2q

[
(θ10(t)− θ̃10(t)) +

1

3!
((θ10(t))

3 − (θ̃10(t))
3) + . . .

]]
dt

= −2q|θ10(t)− θ̃10(t)|
(
1 +

1

3!

(
(θ10(t))

2 + (θ̃10(t))
2 + θ10(t)θ̃

1
0(t)
)
+ . . .

)
dt

=: −2q|θ10(t)− θ̃10(t)|Rt dt,

from which we deduce

|θ10(t)− θ̃10(t)| = e−2q
∫ t
s Ru du|θ10(s)− θ̃10(s)|, for all 0 ≤ s ≤ t. (3.21)

Note that Rt is close to 1 iff θ10(t) ≈ θ̃10(t) ≈ 0, which happens if πt and π̃t are

near the centre of the simplex, i.e. πt ≈ π̃t ≈
(
1
2
, 1
2

)
. Let τ < ∞ be a time such

that Rτ ≈ 1. Note that such τ exists with positive probability, since the Brownian

dynamics (under a change of measure) for θ10(t) ensure that θ
1
0(t) must visit 0 infinitely

many times; then by Theorem 3.2.1, for all large enough τ , there exists ε ≪ 1 such

that |θ̃10(τ)− θ10(τ)| ≤ ε.

Since Rt is continuous in time, for all δ > 0 there exists tδ such that Rs ∈ (1, 1+δ]

for all s ∈ [τ, τ + tδ]. Then by (3.21) for all s ∈ [τ, τ + tδ],

|θ10(τ + τδ)− θ̃10(τ + τδ)| ≥ e−2q(1+δ)tδ

∣∣∣θ10(τ)− θ̃10(τ)
∣∣∣.

Since δ was arbitrary, we see that the bound λ = 2q is achieved. We illustrate this in

a simulated example in Figure 3.1(left).
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Figure 3.1: On the left, in log scale, we plot 300 realizations of the Hilbert projective
error H(πt, π̃t) (in light blue), where πt, π̃t ∈ S̊1 ⊂ R2 are solutions to (3.4) initialized
at µ, ν ∈ S̊1 respectively. In blue we plot the sample mean, and in red we have
the deterministic pathwise bound H(µ, ν)e−λt from Theorem 3.2.1. We see that the
bound is attained. For this simulation, the signal X is a 2-state Markov chain with
symmetric rate matrix Q and jump rate q = 1, initialized at its invariant distribution
µ =

(
1
2
, 1
2

)
. This gives π0 = µ as the initial condition for the Wonham filter. The

‘wrong’ filter π̃t is initialized at ν =
(
2
5
, 3
5

)
. Fixing these parameters, and setting

the sensor function to be h = (−1, 1), we simulate 300 paths for the signal and the
observation processes, compute the two filters for these paths, and plot their Hilbert
error. On the right, we plot once more the realizations of the Hilbert error (very light
blue), and add to the same plot the pathwise ODE bounds (fuchsia) given by solving
numerically, for each realization of π̃t, the ODE (3.23) from Proposition 3.3.11. In
purple we plot the mean of the ODE bounds; out of 300 pairs of Hilbert error and
ODE bound, we highlight one at random.

On the other hand, as the dimension of the state-space increases, numerical exper-

iments suggest that λ becomes less optimal. Recalling the notation from the previous

subsection and looking back at our proof, it is easy to pinpoint the cause of this sub-

optimality to having discarded the negative sum of terms of the form qjk⋆Tjk⋆−qji⋆Tji⋆
on the right-hand side of equation (3.18). In particular, there are n− 2 such negative

terms, and they can take values in (0,∞), which suggests that, as n increases, the

derivative of ∆∞ becomes more negative (and potentially quite substantially so), and

∆∞ should in fact tend to 0 faster than our bound indicates.

Unfortunately, we have not been able to find a uniform bound from below of the

form Kq∆∞ for
∑

j(qjk⋆Tjk⋆ − qji⋆Tji⋆), where Kq is some constant depending only on

Q. However, assuming one can observe the path of the wrongly initialized filter π̃t,

we can provide a sharper, π̃t-dependent bound for the decay rate. This allows one to

dynamically compute a more refined estimate of the stability error.
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We will need the following classical result, which we include for completeness.

Lemma 3.3.10 (Comparison principle). Let Xt ∈ R be an absolutely continuous

process such that its almost everywhere derivative satisfies

dXt ≤ α(t,Xt) dt, X0 = x0,

on [0,∞), where x 7→ α(t, x) is locally Lipschitz continuous. Let ut be the unique

solution (up to its first explosion time T > 0) to the ODE

dut
dt

= α(t, ut), u0 = x0. (3.22)

Then Xt ≤ ut for all t < T .

Proof. First of all, recall that standard results in ODE theory (see e.g. [81, The-

orem 2.5]) give that (3.22) has a unique solution ut up to its first explosion time

T > 0. For t < T , consider Ht = Xt − ut. Note that H0 = 0, and that Ht is

absolutely continuous with a.e. derivative satisfying

dHt

dt
≤ α(t,Xt)− α(t, ut).

Assume for a contradiction that there exists τ < T s.t. Hτ > 0. By continuity of Ht,

there exists t0 ∈ [0, τ) such that Ht0 = 0 and Hs ≥ 0 for all s ∈ [t0, τ ]. Moreover,

by continuity of Xt and ut, there exists R ∈ R such that Xs, us ∈ (−R,R) for all

s ∈ [t0, τ ]. Then

Hτ =

∫ τ

t0

dHs

ds
ds ≤

∫ τ

t0

(
α(s,Xs)− α(s, us)

)
ds

≤
∫ τ

t0

CR(s)|Xs − us| ds =
∫ τ

t0

CR(s)Hs ds,

where CR(t) ≥ 0 is the Lipschitz constant of α(t, xt) for xt ∈ (−R,R), and we have

used that Hs = Xs − us > 0 on [t0, τ ] by assumption. Then Grönwall’s inequality

yields that Hτ ≤ 0, which is a contradiction. Therefore Xt ≤ ut for all t < T .

Proposition 3.3.11. Suppose µi, νi > 0 for all i ∈ N. For all t ≥ 0, let ut ∈ (0, 1)

be the unique solution to the ODE with random coefficients given by

dut
dt

= −λ̃⋆(t, ut)ut, u0 = tanh

(
H(µ, ν)

4

)
, (3.23)
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where

λ̃⋆(t, ut) = min
i ̸=k

{(
qik

π̃i
t

π̃k
t

+
∑
j ̸=i,k,

j /∈J̃ i
k(t,ut)

qjk
π̃j
t

π̃k
t

)
1 + ut
1− ut

+

(
qki
π̃k
t

π̃i
t

+
∑
j ̸=i,k,

j∈J̃ i
k(t,ut)

qji
π̃j
t

π̃i
t

)
1− ut
1 + ut

}
,

(3.24)

and

J̃ i
k(t, ut) :=

{
j ∈ N :

qjk
π̃k
t

≥ qji
π̃i
t

(1− ut
1 + ut

)2}
.

Then for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ ut. (3.25)

In particular, λ̃⋆(t, ut) ≥ λ̃⋆t , where

λ̃⋆t := 2min
i ̸=k

min
S⊆N

√√√√√qikqki +
∑

j∈S, j ̸=i,k

qjiqik
π̃j
t

π̃k
t

+
∑

l /∈S, l ̸=i,k

qlkqki
π̃l
t

π̃i
t

+
∑
j∈S,
j ̸=i,k

∑
l /∈S,
l ̸=i,k

qjiqlk
π̃j
t π̃

l
t

π̃i
tπ̃

k
t

 ,

≥ 2min
i ̸=k


√√√√qikqki +

∑
j ̸=i,k

min

{
qjiqik
π̃k
t

,
qjkqki
π̃i
t

}
π̃j
t

 =: λ̃t, (3.26)

which gives that for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ tanh

(
H(µ, ν)

4

)
e−

∫ t
0 λ̃⋆

s ds. (3.27)

Proof. Recall the notation from the proof of Theorem 3.2.1. Consider (3.18) and

apply the chain-rule to derive the dynamics of tanh(∆∞(t)/4), to yield

d tanh

(
∆∞(t)

4

)
=− 1

4
cosh−2

(
∆∞(t)

4

)(
qi⋆k⋆Ti⋆k⋆(t)− qk⋆i⋆Tk⋆i⋆(t)

)
dt

− 1

4
cosh−2

(
∆∞(t)

4

) n∑
j=0

j ̸=i⋆,k⋆

(
qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t)

)
dt. (3.28)

We consider the terms on the right-hand side of the above equation one by one. Start

from Ti⋆k⋆(t) and notice that

Ti⋆k⋆(t) = eθ̃
i⋆

k⋆ (t)
(
eθ

i⋆

k⋆ (t)−θ̃i
⋆

k⋆ (t) − 1
)
= eθ̃

i⋆

k⋆ (t)
(
e∆∞(t) − 1

)
= eθ̃

i⋆

k⋆ (t)+
∆∞(t)

2

(
e

∆∞(t)
2 − e−

∆∞(t)
2

)
= 2eθ̃

i⋆

k⋆ (t)+
∆∞(t)

2 sinh

(
∆∞(t)

2

)
.
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Recalling the identity sinh(2x) = 2 sinh(x) cosh(x), we have that

Ti⋆k⋆(t)

cosh2
(

∆∞(t)
4

) = 4eθ̃
i⋆

k⋆ (t)+
∆∞(t)

2 tanh

(
∆∞(t)

4

)
= 4

π̃i⋆

t

π̃k⋆
t

e
∆∞(t)

2 tanh

(
∆∞(t)

4

)
.

Similarly,

− Tk⋆i⋆(t)

cosh2
(

∆∞(t)
4

) = 4e−θ̃i
⋆

k⋆ (t)−
∆∞(t)

2 tanh

(
∆∞(t)

4

)
= 4

π̃k⋆

t

π̃i⋆
t

e−
∆∞(t)

2 tanh

(
∆∞(t)

4

)
.

Now, for j ̸= i⋆, k⋆, consider qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t). Note that

∆jk⋆(t) = θjk⋆(t)− θ̃jk⋆(t) =
(
θi

⋆

k⋆(t)− θ̃i
⋆

k⋆(t)
)
+
(
θji⋆(t)− θ̃ji⋆(t)

)
= ∆∞(t) + ∆ji⋆ .

By Lemma 3.3.8, and recalling that log is increasing, we have that ∆jk⋆(t) ≥ 0 and

∆ji⋆ ≤ 0. Moreover, by definition of ∆∞(t), we have that ∆jk⋆(t) ≤ ∆∞(t) and

|∆ji⋆(t)| ≤ ∆∞(t). Then we can write

qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t) = qjk⋆e
θ̃j
k⋆ (e∆jk⋆ (t) − 1) + qji⋆e

θ̃j
i⋆ (1− e∆jk⋆ (t)−∆∞(t))

= π̃j
t

[
qjk⋆

π̃k⋆
t

(e∆jk⋆ (t) − 1) +
qji⋆

π̃i⋆
t

(1− e∆jk⋆ (t)−∆∞(t))

]
,

and in particular if
qjk⋆

π̃k⋆
t

≥ qji⋆

π̃i⋆
t
e−∆∞(t), then qjk⋆Tjk⋆(t) − qji⋆Tji⋆(t) is increasing in

∆jk⋆(t); otherwise it is decreasing. Therefore

qjk⋆

π̃k⋆
t

≥ qji⋆

π̃i⋆
t

e−∆∞(t)=⇒ min
0≤∆jk⋆ (t)≤∆∞(t)

{
qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t)

}
= qji⋆

π̃j
t

π̃i⋆
t

(1− e−∆∞(t)),

qjk⋆

π̃k⋆
t

<
qji⋆

π̃i⋆
t

e−∆∞(t)=⇒ min
0≤∆jk⋆ (t)≤∆∞(t)

{
qjk⋆Tjk⋆(t)− qji⋆Tji⋆(t)

}
= qjk⋆

π̃j
t

π̃k⋆
t

(e∆∞(t) − 1).

For all t <∞, and all i, k ∈ N×N, let

J̃ i
k(t,∆∞(t)) :=

{
j ∈ N :

qjk
π̃k
t

≥ qji
π̃i
t

e−∆∞(t) and j ̸= i, k
}
,

and cJ̃ i
k(t,∆∞(t)) := N \

(
J̃ i
k(t,∆∞(t)) ∪ {i, k}

)
. Putting all the above estimates

together, we can bound (in the sense of Lebesgue–Stieltjes measures) the right-hand

side of (3.28) as

d tanh

(
∆∞(t)

4

)
≤ −

[
qi⋆k⋆

π̃i⋆

t

π̃k⋆
t

e
∆∞(t)

2 + qk⋆i⋆
π̃k⋆

t

π̃i⋆
t

e−
∆∞(t)

2

]
tanh

(
∆∞(t)

4

)
dt

−
[ ∑

j∈J̃i⋆

k⋆
(t,∆∞(t))

qji⋆
π̃j
t

π̃i⋆
t

e−
∆∞(t)

2 +
∑

j∈cJ̃i
k(t,∆∞(t))

qjk⋆
π̃j
t

π̃k⋆
t

e
∆∞(t)

2

]
tanh

(
∆∞(t)

4

)
dt

≤ −λ̃(t,∆∞(t))tanh

(
∆∞(t)

4

)
dt,

(3.29)
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where we have defined

λ̃(t,∆∞(t)) := min
i ̸=k

{
qik

π̃i
t

π̃k
t

e
∆∞(t)

2 + qki
π̃k
t

π̃i
t

e−
∆∞(t)

2

+
∑

j∈J̃i
k(t,∆∞(t))

qji
π̃j
t

π̃i
t

e−
∆∞(t)

2 +
∑

j∈cJ̃i
k(t,∆∞(t))

qjk
π̃j
t

π̃k
t

e
∆∞(t)

2

}
.

Using the inequality a + b ≥ 2
√
ab for a, b ≥ 0, we have, ∀(i, k) ∈ N × N, and

∀t <∞,

qik
π̃i
t

π̃k
t

e
∆∞(t)

2 + qki
π̃k
t

π̃i
t

e−
∆∞(t)

2 +
∑

j∈J̃i
k(t,∆∞(t))

qji
π̃j
t

π̃i
t

e−
∆∞(t)

2 +
∑

j∈cJ̃i
k(t,∆∞(t))

qjk
π̃j
t

π̃k
t

e
∆∞(t)

2

≥ 2

[
e

∆∞(t)
2

π̃k
t

(
qikπ̃

i
t +

∑
j∈cJ̃i

k(t,∆∞(t))

qjkπ̃
j
t

)] 1
2
[
e

−∆∞(t)
2

π̃i
t

(
qkiπ̃

k
t +

∑
j∈J̃i

k(t,∆∞(t))

qjiπ̃
j
t

)] 1
2

≥ 2

qikqki + ∑
j∈J̃i

k(t,∆∞(t))

qikqji
π̃j
t

π̃k
t

+
∑

l∈cJ̃i
k(t,∆∞(t))

qkiqlk
π̃l
t

π̃i
t

+
∑

j∈J̃i
k(t,∆∞(t)),

l∈c
J̃j
k(t,∆∞(t))

qjiqlk
π̃j
t π̃

l
t

π̃i
tπ̃

k
t


1
2

,

which yields

λ̃(t,∆∞(t)) ≥ 2min
i ̸=k

min
S⊆N

qikqki +∑
j∈S,
j ̸=i,k

qjiqik
π̃j
t

π̃k
t

+
∑
l /∈S,
l ̸=i,k

qlkqki
π̃l
t

π̃i
t

+
∑
j∈S,
j ̸=i,k

∑
l /∈S,
l ̸=i,k

qjiqlk
π̃j
t π̃

l
t

π̃i
tπ̃

k
t


1
2

.

(3.30)

Then, bounding the right-hand side of (3.29) and applying a Grönwall’s argument

(for absolutely continuous processes) yields (3.27). The inequality (3.26) follows im-

mediately by minimizing further the right-hand side of (3.30), and in particular

λ̃(π̃t,∆∞(t)) ≥ λ̃t := 2min
i ̸=k


√√√√qikqki +

∑
j ̸=i,k

min

{
qjiqik
π̃k
t

,
qjkqki
π̃i
t

}
π̃j
t

 > 0, (3.31)

since by assumption Q has strictly positive non-diagonal entries and π̃t ∈ S̊n for all

t <∞ by Lemma 3.3.1.

Now let Xt := tanh(∆∞(t)/4). Then we can rewrite (3.29) as

dXt ≤ −λ̃⋆(t,Xt)Xt dt,
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where

λ̃⋆(t,Xt) := λ̃(t, 4 arctanh(Xt))

= min
i ̸=k

{(
qik

π̃i
t

π̃k
t

+
∑

j∈cJ̃ i
k(t,Xt)

qjk
π̃j
t

π̃k
t

)
1 +Xt

1−Xt

+

(
qki
π̃k
t

π̃i
t

+
∑

j∈J̃ i
k(t,Xt)

qjk
π̃j
t

π̃k
t

)
1−Xt

1 +Xt

}
,

and J̃ i
k(t,Xt) := J̃ i

k(t, 4 arctanh(Xt)) and cJ̃ i
k(t,Xt) = N \

(
J̃ i

k(t,Xt

)
∪ {i, k}). We

want to compare Xt to the solution to (3.23). Next, we argue that (3.23) has a well-

defined solution for all t <∞. Then the proposition follows from a direct application

of Lemma 3.3.10.

Let ut be a solution to (3.23). Note that H(µ, ν) ∈ [0,∞) since µ, ν ∈ S̊n by

assumption, so u0 ∈ [0, 1). If H(µ, ν) = 0, then u0 = 0, and ut = 0 for all t ≥ 0,

so the proposition holds trivially. So from now on, assume u0 ∈ (0, 1). Now, the

coefficient λ̃⋆(π̃t, ut) depends on the process π̃t, which is fixed ω-by-ω. Observe that

λ̃⋆(π̃t, ut) blows up when ut ↑ 1. Since u0 < 1, the explosion time T such that

uT−= 1 is strictly positive. Recall that by Lemma (3.3.1) π̃t ∈ S̊n for all t < ∞.

Then on the interval [0, T ), x 7→ λ̃⋆(π̃t, x)x is locally Lipschitz continuous (with

Lipschitz constant dependent on t, ω and x) and standard results in ODE theory (see

e.g. [81, Theorem 2.5]) give that (3.23) has a unique solution ut in [0, T ). On the

other hand, λ̃⋆(π̃t, ut) ≥ λ̃t ≥ 2mini ̸=k
√
qikqki is strictly positive for ut ∈ (−1, 1),

so −λ̃⋆(π̃t, ut)ut is strictly negative for ut ∈ (0, 1). Then ut ≤ u0 < 1 for all t ≥ 0,

so in fact the explosion time T = ∞ and (3.23) has a unique solution for all t ≥ 0.

Moreover, −λ̃⋆(π̃t, ut)ut tends to 0 as ut approaches 0, hence it readily follows that

ut ∈ (0, u0] for all t ≥ 0.

By symmetry, the bounds of Proposition 3.3.11 can also be expressed in terms of

the true filter πt.

Corollary 3.3.11.1. Suppose µi, νi > 0 for all i ∈ N, and πt is observed. For all

t ≥ 0, let ut ∈ (0, 1) be the unique solution to the ODE with random coefficients given

by
dut
dt

= −λ⋆(t, ut)ut, u0 = tanh

(
H(µ, ν)

4

)
, (3.32)

where

λ⋆(t, ut) = min
i ̸=k

{(
qik

πi
t

πk
t

+
∑
j ̸=i,k,

j∈J i
k(t,ut)

qjk
πj
t

πk
t

)
1− ut
1 + ut

+

(
qki
πk
t

πi
t

+
∑
j ̸=i,k,

j∈J i
k(t,ut)

qji
πj
t

πi
t

)
1 + ut
1− ut

}
,

(3.33)
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and J i
k(t, ut) :=

{
j ∈ N :

qjk
πk
t
≤ qji

πi
t

(
1+ut

1−ut

)2}
. Then for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ ut.

In particular, for all t <∞, tanh
(

H(πt,π̃t)
4

)
≤ tanh

(
H(µ,ν)

4

)
e−

∫ t
0 λ⋆

s ds, where λ⋆t ≥ λt,

with λ⋆t and λt defined equivalently to λ̃⋆t and λ̃t in (3.26), with πt in place of π̃t.

Proof. Similar to the proof of Proposition 3.3.11.

In (3.26) we state a lower bound λ̃t for λ̃⋆t because, numerically, finding λ̃⋆t by

minimizing over all possible subsets of N for each t can be costly, especially in high

dimensions. On the other hand, λ̃t is easy to compute. We illustrate the performance

of the bounds from Proposition 3.3.11 in Figure 3.2: we plot both the pathwise

bound H(µ, ν)e−2
∫ t
0 λ̃s ds, which follows directly from (3.27), using the rate λ̃t, and

the ODE bound given by 4 arctanh(ut), where ut is the numerical solution to (3.23),

and compare them with the deterministic rate from Theorem 3.2.1.

As we can see from the plots in Figure 3.2, even when using the pathwise con-

traction rate or the ODE bound from Proposition 3.3.11, our bounds are not tight in

dimension n ≥ 2. This affects our simulations for the error bounds in Section 4.4 as

well. Since further algebraic manipulations in the spirit of what we have attempted

so far do not seem likely to yield a better bound, one could think of improving our

estimates by looking instead at the rate of decay of the expected Hilbert error, which

from our simulations seems very well behaved, or even at the expected contraction

rate. To proceed in either of these directions, one would need to find a way to estimate

the expectation of the indicators of the argmax and argmin of the ratios between the

components of πt and π̃t.

Our numerical experiments also suggest, at least for the examples we consider,

that there is a concentration of measure phenomenon occurring in high-dimensional

examples, where a much faster convergence rate than we have established will hold

with overwhelming probability. We leave the study of this problem open for future

research.
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Figure 3.2: For dimensions n = 2, 20, 50, 100, and πt, π̃t ∈ S̊n, initialized at µ, ν ∈ S̊n

respectively, we plot 300 realizations of the Hilbert projective error H(πt, π̃t) (light

blue), of the pathwise bound H(µ, ν)e−
∫ t
0 λ̃s ds (light green), and of the ODE bound

from Proposition 3.3.11 (fuchsia), all in log scale, for t ∈ [0, 1]. In blue, darker green
and purple we have the respective sample means. In red we plot the deterministic
bound H(µ, ν)e−λt from Theorem 3.2.1. In the case of n = 2, we highlight one realiza-
tion of the Hilbert error (selected randomly), and its corresponding ODE bound. For
this simulation, we keep the structure of the rate matrix fixed across all dimensions,
so that the deterministic rate λ is also fixed, and it is equal to 2 throughout. We
see that as the dimension increases, the deterministic contraction rate becomes less
and less optimal, and that the improvement gained by computing the pathwise rate
or the ODE bound instead is significant (although the bound still remains far from
sharp). For further details about this simulation, see Appendix A.2.
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Chapter 4

Robustness and error bounds

In this chapter we build on the contraction results of Chapter 3 to investigate the

behaviour of the error when approximate filters, rather than the optimal filter, are

employed. The error bounds are stated for a general approximate filter, but are most

useful when the coefficient of the stochastic term of the approximate filter matches

that of the Wonham SDE (3.4).

4.1 Main results

Consider a general approximate filter of the form

dπ̃t = f̃t dt+ g̃t dYt, π̃0 = ν, (4.1)

where f̃t, g̃t are Rn+1-valued {Yt}-predictable process and π̃t ∈ S̊n for all t, and we

refer to Section 4.3 for the necessary assumptions on f̃t, g̃t and π̃t.

Theorem 4.1.1 (Bounds for the expected Hilbert error). Let πt be the solution to

(3.4) and π̃t the solution to (4.1). Suppose µ, ν ∈ S̊n and qij > 0 for all i ̸= j.

Assuming sufficient integrability in (4.1) (see Assumption (A4)), for all t < ∞, we

have that

E [H(πt, π̃t)] ≤ H(µ, ν)e−λt +

∫ t

0

e−λ(t−s)E

[
max
i,k

{
E1,i
s − E1,k

s − 1

2

(
E2,i
s − E2,k

s

)}]
ds

+max
j

|hj|
∫ t

0

e−λ(t−s)E

[
max
i,k

{
E3,i
s − E3,k

s

}]
ds

+
1

4

∑
(i,k)

∑
(j,l)̸=(i,k)

E

[∫ t

0

e−λ(t−s) dL0
s(∆ik(·)−∆jl(·))

]
,
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where λ = 2mini ̸=k
√
qikqki is the deterministic contraction rate from Theorem 3.2.1.

For j ∈ N the error terms are given by

E1,j
t =

(
n∑

m=0

qmj
π̃m
t

π̃j
t

)
− f̃ j

t

π̃j
t

, E2,j
t = (hj)2 − (g̃jt )

2

(π̃j
t )

2
, E3,j

t = hj − g̃jt

π̃j
t

, (4.2)

and the processes (∆ik(t))t≥0 for (i, k) ∈ N×N are defined as ∆ik(t) = log πi
t

πk
t
−log π̃i

t

π̃k
t
.

For all (i, k), (j, l) ∈ N × N, L0
t (∆ik(·) − ∆jl(·)) denotes the local time at 0 of the

difference process (∆ik −∆jl).

Assuming there is no error in the stochastic terms when comparing (4.1) and (3.4),

a stronger result is possible.

Theorem 4.1.2 (Pathwise decay rate for the Hilbert error). Under the same assump-

tions as in Theorem 4.1.1, suppose that the error terms E3,i
t defined in (4.2) vanish

for all i ∈ N and all t ≥ 0, and π̃t is observable. Let ut ∈ (0, 1) be the unique solution

to the ODE with random coefficients given by

dut
dt

= −λ̃⋆(t, ut)ut +
1

4
max
i,k

{
E1,i
s − E1,k

s

}
(1− u2t ), u0 = tanh

(
H(µ, ν)

4

)
, (4.3)

where

λ̃⋆(t, ut) = min
i ̸=k

{(
qik

π̃i
t

π̃k
t

+
∑
j ̸=i,k,

j /∈J̃ i
k(t,ut)

qjk
π̃j
t

π̃k
t

)
1 + ut
1− ut

+

(
qki
π̃k
t

π̃i
t

+
∑
j ̸=i,k,

j∈J̃ i
k(t,ut)

qji
π̃j
t

π̃i
t

)
1− ut
1 + ut

}
,

and J̃ i
k(t, ut) :=

{
j ∈ N :

qjk
π̃k
t
≥ qji

π̃i
t

(
1−ut

1+ut

)2}
. Then for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ ut.

In particular, λ̃⋆(t, ut) ≥ λ̃⋆t , where

λ̃⋆t := 2min
i ̸=k

min
S⊆N

√√√√√qikqki +
∑

j∈S, j ̸=i,k

qikqji
π̃j
t

π̃k
t

+
∑

l /∈S, l ̸=i,k

qkiqlk
π̃l
t

π̃i
t

+
∑
j∈S,
j ̸=i,k

∑
l /∈S,
l ̸=i,k

qjiqlk
π̃j
t π̃

l
t

π̃i
tπ̃

k
t

 ,

≥ 2min
i ̸=k


√√√√qikqki +

∑
j ̸=i,k

min

{
qjiqik
π̃k
t

,
qjkqki
π̃i
t

}
π̃j
t

 =: λ̃t, (4.4)

which gives that for all t <∞, we have the two bounds

tanh

(
H(πt, π̃t)

4

)
≤ tanh

(
H(µ, ν)

4

)
e−

∫ t
0 λ̃⋆

s ds +
1

4

∫ t

0

e−
∫ t
s λ̃⋆

r dr max
i,k

{
E1,i
s − E1,k

s

}
ds,

(4.5)
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and

H(πt, π̃t) ≤ H(µ, ν)e−
∫ t
0 λ̃⋆

s ds +

∫ t

0

e−
∫ t
s λ̃⋆

r dr max
i,k

{
E1,i
s − E1,k

s

}
ds. (4.6)

Remark 4.1. Theorem 4.1.2 suggests an approach to constructing approximate filters

with relatively small error. If h is known, and we can choose g̃t = Hπ̃t such that

the error terms E3,i (and consequently E2,i) vanish for all i ∈ N, then the errors due

to the stochastic term vanish, and the local time terms as well. From a numerical

perspective, this is equivalent to killing the infinitesimal errors of order
√

dt; this is

natural when looking for an approximate solution to the Wonham SDE.

Remark 4.2. As in the proof of Theorem 3.2.1, by using Lemma 3.3.9, it is possible

to lift the assumption that µ, ν ∈ S̊n in Theorem 4.1.2, provided one takes sufficient

care in constructing the solution to the ODE (4.3).

The following corollary provides some exchangeability between πt and π̃t when

computing the decay rates.

Corollary 4.1.2.1. Assume the Wonham filter πt is observable. Theorem 4.1.2 holds

equivalently if one substitutes λ⋆(t, ut) for λ̃
⋆(t, ut) in (4.3) and λ⋆t for λ̃

⋆
t in (4.5) and

(4.6), where

λ⋆(t, ut) = min
i ̸=k

{(
qik

πi
t

πk
t

+
∑
j ̸=i,k,

j∈J i
k(t,ut)

qjk
πj
t

πk
t

)
1− ut
1 + ut

+

(
qki
πk
t

πi
t

+
∑
j ̸=i,k,

j∈J i
k(t,ut)

qji
πj
t

πi
t

)
1 + ut
1− ut

}
,

and J i
k(t, ut) :=

{
j ∈ N :

qjk
πk
t
≤ qji

πi
t

(
1+ut

1−ut

)2}
, and λ⋆t is defined equivalently to (4.4)

with πt in place of π̃t.

4.2 Continuity of the Wonham filter with respect

to the model parameters

In this section, we recover a version of Chigansky and Van Handel’s results on robust-

ness of the Wonham filter with respect to the model parameters (see [26]). Note that

our approach is entirely different from [26], and we obtain robustness in terms of the

Hilbert error instead of the ℓ1-norm. Since the Hilbert metric is stronger than ℓ1 (see

Lemma 1 in [8]), the error estimates we obtain here are tighter than those in [26].

Consider an approximate Wonham filter with incorrect model parameters

dπ̃t = Q̃T π̃t dt+
(
H̃ − π̃⊤

t h̃ In+1

)
π̃t

(
dYt − π̃⊤

t h̃ dt
)
, π̃0 = ν, (4.7)
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where Q̃ = (q̃ij) and h̃ are respectively a transition rate matrix and a bounded sensor

function different from Q and h, and H̃ = diag(h̃) the diagonal matrix with entries

(H̃)ii = h̃i. We are interested in the Hilbert error H(πt, π̃t).

Notation. Compared to Chapter 3, (π̃t)t≥0 now denotes the solution to (4.7), while

(πt)t≥0 is still the solution to (3.4).

Remark 4.3. Once more, we recall that all our results can be extended to the case

of multidimensional observations (d ̸= 1) and invertible σ. In particular, note that

the arguments we present here allow easily for σ ̸= 1 in (3.1) and (3.4) (which would

correspond to invertible σ ̸= Id in higher dimensions). This would add another

‘misspecified’ parameter σ̃ to (4.7). In the proofs we present below, σ and σ̃ can be

directly incorporated into respectively h and h̃ in the equations (3.4) and (4.7) for

the ‘right’ and ‘wrong’ Wonham filter. This case cannot be treated in [26] since the

arguments therein require knowledge of the quadratic variation of the observations Y

(see also [26, Remark 4.2]).

The rest of this section is devoted to proving the following theorem.

Theorem 4.2.1 (Model robustness). Let πt be the solution to (3.4) and π̃t the solution

to (4.7). Assume µi, νi > 0 for all i ∈ N and qij, q̃ij > 0 for all i ̸= j. For all t <∞,

E [H(πt, π̃t)] ≤ H(µ, ν)e−λt +Kq

∫ t

0

e−λ(t−s)E

[
1

mink π̃k
s

]
ds+Kh

∫ t

0

e−λ(t−s) ds

+
1

4

∑
(i,k)

∑
(j,l)̸=(i,k)

E

[∫ t

0

e−λ(t−s) dL0
s(∆ik(·)−∆jl(·))

]
,

where λ = 2mini ̸=j
√
qijqji, Kq = 2maxj,k |q̃jk − qjk| and Kh = 2maxj |hj|maxi |hi −

h̃i| + maxi |(hi)2 − (h̃i)2|, and L0
t (∆ik(·) − ∆jl(·)) denotes the local time at 0 of the

process (∆ik(t)−∆jl(t))t≥0, where ∆ik evolves according to (4.8) below for all (i, k) ∈
N×N.

Moreover, for all t <∞, we have that the local time terms disappear as h̃→ h for

h̃ in a compact set around h, in the sense that there exists a constant C̃ < ∞ such

that

lim
h̃→h

E [H(πt, π̃t)] ≤ H(µ, ν)e−λt +KqC̃(1− e−λt).

Even in the case where h̃ remains fixed, this result gives us good control over

H(πt, π̃t), as shown by the next Proposition.
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Proposition 4.2.2. The error terms in Theorem 4.2.1 stay finite as t→ ∞. Specif-

ically,

sup
t≥0

E

[∫ t

0

e−λ(t−s) dL0
s(∆ik(·)−∆jl(·))

]
<∞, ∀(i, k), (j, l) ∈ N×N, (i, k) ̸= (j, l).

Remark 4.4. We have stated Theorem 4.2.1 above with the decay rate λ a function

of Q, the ‘true’ dynamics of the Markov chain, and the (first) error term a function

of the ‘misspecified’ process π̃t. However, nothing in our proof prevents us from

doing the opposite, if we so wish: the theorem still holds if we replace λ with λ̃ =

2mini ̸=j

√
q̃ij q̃ji, and π̃t with πt. Note that the error term due to the misspecification

of h (and the local time terms) stay the same.

We now set out to prove these results. As in section 3.3, we start by transforming

πt, π̃t into θt, θ̃t and derive the dynamics of ∆ik(t) = θik(t)−θ̃ik(t) = log πi

πk (t)−log π̃i

π̃k (t)

for (i, k) ∈ N × N (recalling that ∆ii = 0). Note that θik, θ̃
i
k and H(πt, π̃t) are all

a.s. well-defined for finite t ≥ 0, (since Lemma 3.3.1 holds equivalently when the

dynamics of the filter π̃ are given by parameters Q̃ and h̃).

Applying Itô’s formula to (3.4) and (4.7), we derive the dynamics of the difference

process ∆ik(t) as

d∆ik(t) = −
n∑

j=0
j ̸=k

(
qjk

πj
t

πk
t

− q̃jk
π̃j
t

π̃k
t

)
dt+

n∑
j=0
j ̸=i

(
qji
πj
t

πi
t

− q̃ji
π̃j
t

π̃i
t

)
dt

+ (qii − q̃ii − qkk + q̃kk) dt+ (hi − h̃i − hk + h̃k)( dBt + π⊤
t h dt)

+
1

2

(
(hk)2 − (h̃k)2 − (hi)2 + (h̃i)2

)
dt,

∆ik(0) = log
µi

µj
− log

νi

νj
,

(4.8)

where we have again introduced the innovation process Bt = Yt −
∫ t

0
π⊤
s h ds.

We note straight away that if h̃ = h, the stochastic term disappears, as well as all

the drift terms involving h and h̃. So, in this simple case, we recover once again C1

dynamics for ∆ik(t) and arguments similar to the ones in Section 3.3 apply, to yield

the following estimate for all t <∞

H(πt, π̃t) ≤ H(µ, ν)e−
∫ t
0 λ̃s ds +

∫ t

0

e−
∫ t
s λ̃r dr max

i,k

{
(δQ⊤π̃s)

i

π̃i
s

− (δQ⊤π̃s)
k

π̃k
s

}
ds

≤ e−λtH(µ, ν) + 2max
i,k

|q̃ik − qik|
∫ t

0

e−λ(t−s) 1

minj π̃j(s)
ds

≤ e−λtH(µ, ν) +
2

λ
max
i,k

|q̃ik − qik|
1

minj∈N, s∈[0,t] π̃j(s)
(1− e−λt), (4.9)
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where δQ := Q− Q̃ and minj∈N, s∈[0,t] π̃
j(s) ̸= 0 almost surely by Lemma 3.3.1, and λ̃t

and λ are respectively the pathwise contraction rate from (3.26) in Proposition 3.3.11

and the deterministic rate of Theorem 3.2.1. Tighter bounds for this error, in the spirit

of Proposition 3.3.11, are possible, but we will state them later in Section 4.3, when

we treat the error of general approximate filters (of which a filter with misspecified

model parameters is a specific example).

In the case h̃ ̸= h, the strategy of proof developed in Section 3.3 cannot be applied

directly. It is not unlikely that, by carefully modifying the arguments to account

for the stochastic terms, for example by iterated application of Tanaka’s formula,

one could derive dynamics for ∆∞(t) = max(i,k)∈N×N∆ik(t) similar to (3.15). Here,

however, we present a different strategy. We start by introducing a few definitions.

Recall the following smooth approximations of the maximum and the argmax.

Definition 4.2.3. Let α ∈ (0,∞) and let Xt = {X0
t , . . . , X

n
t } be a family of real-

valued, continuous random variables. Define the LogSumExp function LSEα(X·)(t)

as

LSEα(X·)(t) =
1

α
log

∑
i

eαX
i
t . (4.10)

For gt = {git(x)}ni=0 a family of real-valued functions, define the SoftArgMax (also

known as SoftMax ) function Sarg
α (X·,g·)(t) as

Sarg
α (X·,g·)(t) =

∑
i g

i
t(X

i
t)e

αXi
t∑

k e
αXk

t

. (4.11)

Note that, for each ω, we have pointwise convergence of LSEα(X·) to maxiX
i

and of Sarg
α (X·,g·(X·))(t) to 1

|I|
∑

j∈I g
j
t (X

j
t ) where I = argmaxiX

i as α → ∞ for

every t (see Appendix A.1).

We will also need the definition of the local time Lt
a of a continuous semimartingale

in the arguments that follow. In particular, we will only be concerned with local times

of continuous semimartingales whose finite variation part is absolutely continuous (e.g.

Itô processes). In this case we can take the following definition for the local time of

a semimartingale Z with absolutely continuous finite variation part (adapting from

Revuz and Yor [74, Chapter 6, Corollary 1.9] and noting that if the finite variation

part of Z is absolutely continuous, then the proof of [74, Chapter 6, Theorem 1.7]

yields that La
t has a a.s. bicontinuous modification in a and t).

Definition 4.2.4. Let Zt = Mt + At be a real valued continuous semimartingale,

where M is a local martingale and A is an absolutely continuous finite variation
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process. We take the local time of Z at a ∈ R, at time t, to be the process Lt
a

continuous in t ∈ R+ and a given by

La
t = lim

ε→0

1

2ε

∫ t

0

1(a−ε,a+ε)(Zs) d⟨Z⟩s a.s.

4.2.1 Proof of Theorem 4.2.1

Our strategy for the proof of Theorem 4.2.1 is as follows. We use (4.10) to define

a smooth approximation of the maximal process ∆∞, and we derive its dynamics

through Itô’s formula. Then a bit of care is required when taking the limit as α → ∞,

as some of the integrands converge to Dirac masses when the maximal process is

attained at multiple indices at the same time. In Appendix A.1 we show how to deal

with these terms, which determine the emergence of local times in our estimates.

Proof of Theorem 4.2.1. Consider the family of processes ∆t = {∆ik(t)}i∈N,k∈N with

evolution equations given by (4.8). We apply Itô’s Lemma to derive the dynamics of

LSEα(∆·)(t)

dLSEα(∆·)(t) =
∑
(j,l)

eα∆jl(t)∑
(i,k) e

α∆ik(t)
d∆jl(t)

+
1

2

∑
(j,l)

∑
(u,v)

αeα∆jl(t)

(
1{(u,v)=(j,l)}∑
(i,k) e

α∆ik(t)
− eα∆uv(t)

(
∑

(i,k) e
α∆ik(t))2

)
d⟨∆jl(·),∆uv(·)⟩t,

where all the summations happen over the set of double indices N×N.

Recalling our notation Tik(t) := πi
t

πk
t
− π̃i

t

π̃k
t
from Section 3.3, we add and subtract

terms appropriately to the dynamics of ∆ik to yield

d∆ik(t) =

(
−

n∑
j=0
j ̸=k

qjkTjk(t) +
n∑

j=0
j ̸=i

qjiTji(t)

)
dt+

(
(δQ⊤π̃t)

i

π̃i
t

− (δQ⊤π̃t)
k

π̃k
t

)
dt

+ (hi − h̃i − hk + h̃k) dBt +
(
hi − h̃i − hk + h̃k

)
π⊤
t h dt

+
1

2

(
(hk)2 − (h̃k)2 − (hi)2 + (h̃i)2

)
dt

=: Cq,1
ik (t) dt+ Cq,2

ik (t) dt+ Ch,1
ik dBt + Ch,1

ik π
⊤
t h dt+

1

2
Ch,2

ik dt,

where again δQ = Q− Q̃.
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Then we have, for all s ≤ t <∞

LSEα(∆·)(t) = LSEα(∆·)(s)

+

∫ t

s

∑
(j,l)

eα∆jl(r)∑
(i,k) e

α∆ik(r)

(
Cq,1

jl (r) + Cq,2
jl (r) + Ch,1

jl π⊤
r h+

1

2
Ch,2

jl

)
dr

+

∫ t

s

∑
(j,l)

eα∆jl(r)∑
(i,k) e

α∆ik(r)
Ch,1

jl dBr

+
1

2

∫ t

s

∑
(j,l)

∑
(u,v) ̸=(j,l)

αeα(∆jl(r)+∆uv(r))

(
∑

(i,k) e
α∆ik(r))2

(
(Ch,1

jl )2 − Ch,1
jl C

h,1
uv

)
dr

=: LSEα(∆·)(s) + I1 + I2 +
1

2
I3.

We want to take the limit, on both sides, as α → ∞.

Denote

∆∞(t) = max
(j,l)∈N×N

∆jl(t),

and we immediately have that LSEα(∆·)(t) converges to ∆∞(t) as α → ∞.

We let λ = 2mini ̸=k
√
qik qki, and for j ∈ N define the error terms

E1,j
t =

(δQ⊤π̃s)
j

π̃j
s

, E2,j = (hj)2 − (h̃j)2, E3,j = hj − h̃j.

For each time t, define by It ⊂ N×N the argmax of ∆t, i.e. the set of double indices

(i, k) such that ∆ik(t) = ∆∞(t) for all (i, k) ∈ It. Let |It| denote the size of It. Let

us consider I1, I2 and I3 one at a time.

Start with I1. We recognize as integrands Sarg
α (∆·,C

q,1(·))(r), Sarg
α (∆·,C

q,2(·))(r),
and Sarg

α (∆·,C
h,1)(r) π⊤

r h, as well as Sarg
α (∆·,C

h,2)(r). The first two terms are

bounded respectively by maxi,j∈N×NC
q,1
ij and maxi,j∈N×NC

q,2
ij , which are contin-

uous in time and therefore integrable on [0, t]. The second two respectively by

maxk |hk| maxi,j∈N×NC
h,1 < ∞ and maxi,j∈N×NC

h,2 < ∞ which are bounded by

assumptions on h, and therefore integrable. Then we can apply the dominated con-

vergence theorem to bring the limit inside the integral and Lemma A.1.2 yields, for
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all s ≤ t,

lim
α→∞

I1 =

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(
Cq,1

ik (r) + Cq,2
ik (r) + Ch,1

ik π⊤
r h+

1

2
Ch,3

ik

)
dr

≤ −
∫ t

s

4

|Ir|
∑

(i,k)∈Ir

√
qik qki sinh

(
∆ik(r)

2

)
dr

+

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(
(δQ⊤π̃r)

i

π̃i
r

− (δQ⊤π̃r)
k

π̃k
r

)
dr

+max
j

|hj|
∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(
hi − h̃i − hk + h̃k

)
dr

+

∫ t

s

1

2|Ir|
∑

(i,k)∈Ir

(
(hk)2 − (h̃k)2 − (hi)2 + (h̃i)2

)
dr

≤ −λ
∫ t

s

∆∞(r) dr +

∫ t

s

max
i,k

{
E1,i
r − E1,k

r +
1

2

(
E2,k − E2,i

)}
dr

+max
j

|hj|max
i,k

{
E3,i − E3,k

}
(t− s),

where we have bounded Cq,1
ik (r) as in the proof of Theorem 3.2.1, and noted that

2 sinh(x/2) ≥ x for x ≥ 0.

Similarly, we can swap limit and integration when dealing with I2 by dominated

convergence for stochastic integrals, and we get

lim
α→∞

I2 =

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(hi − h̃i − hk + h̃k) dBr.

Finally, recalling (4.8) and noting that the processes {∆ik} are continuous semi-

martingales of the form (A.1) considered in Appendix A.1, Proposition A.1.6 applies

and we have

lim
α→∞

I3 ≤
1

2

∑
(i,k)

∑
(j,l) ̸=(i,k)

(
L0
t (∆ik(·)−∆jl(·))− L0

s(∆ik(·)−∆jl(·))
)

a.s.,

where L0
t (∆ik(·) − ∆jl(·)) denotes the local time at 0, at time t, of the difference

process (∆ik(r)−∆jl(r))r≥0.

Putting all these estimates together, we have that, for all s ≤ t,

∆∞(t) ≤ ∆∞(s)− λ

∫ t

s

∆∞(r) dr +

∫ t

s

max
i,k

{
E1,i
r − E1,k

r +
1

2

(
E2,k − E2,i

)}
dr

+max
j

|hj|max
i,k

{
E3,i − E3,k

}
(t− s) +

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(hi − h̃i − hk + h̃k) dBr

+
1

4

∑
(i,k)

∑
(j,l) ̸=(i,k)

(
L0
t (∆ik(·)−∆jl(·))− L0

s(∆ik(·)−∆jl(·))
)
.
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Taking expectation with respect to the reference measure P on both sides, the stochas-

tic integral vanishes since the integrand is bounded, so we have

dE [∆∞(t)] ≤ −λE [∆∞(t)] dt+ E

[
max
i,k

{
E1,i
t − E1,k

t +
1

2

(
E2,k − E2,i

)}]
dt

+max
j

|hj|max
i,k

{
E3,i− E3,k

}
dt+

1

4

∑
(i,k)

∑
(j,l)̸=(i,k)

dE
[
L0
t (∆ik(·)−∆jl(·))

]
,

where the left-hand side and the last term on the right-hand side are to be under-

stood as Lebesgue–Stieltjes measures. Using the product rule to find the dynamics of

eλtE [∆∞(t)], and integrating both sides of the resulting differential inequality yields

that, for all s ≤ t <∞,

E [∆∞(t)] ≤ E [∆∞(s)] e−λ(t−s)+

∫ t

s

e−λ(t−r)E

[
max
i,k

{
E1,i
r − E1,k

r +
1

2

(
E2,k − E2,i

)}]
dr

+max
j

|hj|max
i,k

{
E3,i − E3,k

}∫ t

s

e−λ(t−r) dr

+
1

4

∑
(i,k)

∑
(j,l) ̸=(i,k)

∫ t

s

e−λ(t−r) dE
[
L0
r(∆ik(·)−∆jl(·))

]
.

Bounding the error terms, since the local time is of finite variation (hence also its

expectation), we can apply integration by parts for Stieltjes integrals twice and use

Fubini–Tonelli on the last term of the right-hand side to obtain

E [∆∞(t)] ≤ E [∆∞(s)] e−λ(t−s) + 2max
i,k

|q̃ik − qik|
∫ t

s

e−λ(t−r)E

[
1

minj π̃
j
r

]
dr

+
(
2max

j
|hj|max

i
|hi − h̃i|+max

i
|(hi)2 − (h̃i)2|

)∫ t

s

e−λ(t−r) dr

+
1

4

∑
(i,k)

∑
(j,l)̸=(i,k)

E

[ ∫ t

s

e−λ(t−r) dL0
r(∆ik(·)−∆jl(·))

]
, (4.12)

for all s ≤ t <∞, which is what we set out to prove.

We now move on to the second part of the theorem. First of all, analogously

to [26, Lemma 3.6], one can get an explicit bound on E[(minj π̃
j
t )

−1] which depends

continuously on the parameters (ν, Q̃, h̃) for ν ∈ S̊n. In particular, we have

E

[
1

minj π̃
j
t

]
≤ max

j

{
1

νj
exp

{
− q̃jjt+max

k
(h̃j − h̃k)2t

}}
for all t < ∞, and the first integral on the right-hand side of (4.12) is controlled as

we take the limit as h̃→ h, for h̃ in a compact set around h. The second term clearly

vanishes as h̃→ h.
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Next, we move to the integrals against the local times. Let π̃t(v) denote the

unique solution to (4.7) with v ∈ Rn+1 in place of h̃. Note that the drift of each

process ∆ik−∆jl, for (i, k), (j, l) ∈ N×N and (i, k) ̸= (j, l), is then given by bik,jlt (h̃),

where

bik,jlt (v) := −
n∑

r=0

(
qrk

πr
t

πk
t

− q̃rk
π̃r
t (v)

π̃k
t (v)

)
+

n∑
r=0

(
qri
πr
t

πi
t

− q̃ri
π̃r
t (v)

π̃i
t(v)

)

+
n∑

r=0

(
qrl
πr
t

πl
t

− q̃rl
π̃r
t (v)

π̃l
t(v)

)
−

n∑
r=0

(
qrj
πr
t

πj
t

− q̃rj
π̃r
t (v)

π̃j
t (v)

)
+ (hi − vi − hk + vk − hj + vj + hl − vl)π⊤

t h

+
1

2

(
(hk)2 − (vk)2 − (hi)2 + (vi)2 − (hl)2 + (vl)2 + (hj)2 − (vj)2

)
. (4.13)

Consider the difference of bik,jl(h̃) and bik,jl(h) on [0, t]. Using that π̃(h) and π̃(h̃) live

in the simplex, we get

E

[
sup
s≤t

∣∣bik,jls (h)− bik,jls (h̃)
∣∣]2

≤
∑

u∈{i,k,j,l}

∑
r ̸=u

q̃ruE

[
sup
s≤t

(
1

π̃u
s (h)π̃

u
s (h̃)

)2]
E

[
sup
s≤t

(∣∣π̃u
s (h̃)− π̃u

s (h)
∣∣+∣∣π̃r

s(h̃)− π̃r
s(h)

∣∣)2].
For all u ∈ N, a minor extension of [26, Lemma 3.6] gives that the first expectation

is controlled uniformly in h̃, for h̃ belonging to a compact set around h. Since π̃t lives

in the simplex, the SDE (4.7) has Lipschitz coefficients, and we can apply standard

stability arguments (such as [28, Theorem 16.4.3]) to see that the second expectation

tends to 0 as h̃ → h. Hence we have ucp convergence bik,jl(h̃) → bik,jl(h) on [0, t] as

h̃→ h.

Now fix an arbitrary sequence {h̃n}n∈N such that h̃n → h. By the above, we

can take a subsequence {h̃nr}r∈N such that bik,jls (h̃nr) converges uniformly to bik,jls (h)

on [0, t] a.s. From now on, when we write h̃ → h, we mean the limit along this

subsequence. Denote by (∆ik −∆jl)
⋆
t the limit of (∆ik −∆jl)t as h̃ → h. Using this

uniform convergence, we get that, a.s., for all s ∈ [0, t],

(∆ik −∆jl)
⋆
s = (∆ik −∆jl)0 + lim

h̃→h

∫ s

0

bik,jlr (h̃) dr

+ lim
h̃→h

(hi − h̃i − hk + h̃k − hj + h̃j + hl − h̃l)Bs

= (∆ik −∆jl)0 +

∫ s

0

bik,jlr (h) dr,

and (∆ik −∆jl)
⋆
s is absolutely continuous with derivative bik,jls (h).
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Now, by Tanaka’s formula we have that

L0
t (∆ik −∆jl) = |(∆ik −∆jl)t| − |(∆ik −∆jl)0|+

∫ t

0

sign((∆ik −∆jl)s) d(∆ik −∆jl)s,

with the convention sign(0) = −1. Taking the limit as h̃ → h on both sides of the

equation above, the stochastic integral vanishes, and applying dominated convergence

to the integral involving bik,jl, we have

lim
h̃→h

L0
t (∆ik−∆jl) = |(∆ik−∆jl)

⋆
t |−|(∆ik−∆jl)0|+

∫ t

0

lim
h̃→h

sign((∆ik−∆jl)s)b
ik,jl
s (h̃) ds.

(4.14)

Consider the limit inside the integral. Note that for all s ≤ t such that bik,jls (h) ̸= 0

and (∆ik −∆jl)
⋆
s ̸= 0, we have a.s.

lim
h̃→h

sign((∆ik −∆jl)s)b
ik,jl
s (h̃) = sign((∆ik −∆jl)

⋆
s)b

ik,jl
s (h).

Now consider s ≤ t such that bik,jls (h) = 0. Then we have

lim
h̃→h

sign((∆ik −∆jl)s)b
ik,jl
s (h̃) = 0 = sign((∆ik −∆jl)

⋆
s)b

ik,jl
s (h),

for all such s. Finally, consider times s ≤ t such that bik,jls (h) ̸= 0 but (∆ik−∆jl)
⋆
s = 0.

Then potentially we have sign((∆ik −∆jl)s)b
ik,jl
s (h̃) ↛ sign((∆ik −∆jl)

⋆
s)b

ik,jl
s (h) as h̃

goes to h. However, by Lemma 3.3.4, the set{
s : (∆ik −∆jl)

⋆
s = 0,

d

ds
(∆ik −∆jl)

⋆
s = bik,jls (h) ̸= 0

}
has Lebesgue measure zero. So finally we can conclude that a.s.

lim
h̃→h

sign((∆ik −∆jl)s)b
ik,jl
s = sign((∆ik −∆jl)

⋆
s)b

ik,jl
s (h), for a.a. s ≤ t,

and hence, by absolute continuity of (∆ik − ∆jl)
⋆
t , the right-hand side of (4.14) is

0. Thus we have proven a.s. convergence of L0
t (∆ik − ∆jl) → 0 as h̃ → h along

the subsequence {h̃nr}r∈N, which implies convergence in probability along the same

subsequence. On the other hand, the original sequence {h̃n}n∈N was arbitrary, so we

can repeat the argument above along any sequence and always find a subsequence

along which L0
t (∆ik−∆jl) converges to 0 in probability. It follows that L0

t (∆ik−∆jl)

vanishes in probability as h̃→ h. By Tanaka’s formula, we can also check, similarly to

how the ucp convergence was deduced, that E[L0
t (∆ik −∆jl)

2] is bounded uniformly

in h̃, for h̃ in a compact set around h, and thus Vitali’s convergence theorem gives

E[L0
t (∆ik −∆jl)] → 0 as h̃→ h. This yields the theorem.
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Proof of Proposition 4.2.2. We focus on the local time terms, since by similar argu-

ments to [26, Proposition 3.7], we immediately have that supt>0E[(mink π̃
k
t )

−1] <∞.

Let (i, k), (j, l) ∈ N×N, with (i, k) ̸= (j, l). Recall that by Tanaka’s formula we can

write the local time at 0 of Xt := (∆ik −∆jl)t as

L0
t (X) = |Xt| − |X0|+

∫ t

0

sign(Xs) dXs.

Then we have

E

[ ∫ t

0

e−λ(t−s) dL0
s(X·)

]
= E

[ ∫ t

0

e−λ(t−s) d|Xs|
]
+ E

[ ∫ t

0

e−λ(t−s) sign(Xs) dXs

]
= E

[ ∫ t

0

e−λ(t−s) d|Xs|
]
+ E

[ ∫ t

0

e−λ(t−s) sign(Xs)b
ik,jl
s (h̃) ds

]
≤ E

[ ∫ t

0

e−λ(t−s) d|Xs|
]
+ sup

s≤t
E
[∣∣bik,jls (h̃)

∣∣] ∫ t

0

e−λ(t−s) ds,

(4.15)

where bik,jls (h̃) is the drift of Xt, defined in (4.13). Since

|bik,jlt | ≤ Kq
1

mini πi
t

+Kq̃
1

mini π̃i
t

+Kh,

where Kq, Kq̃ and Kh are constants only depending on Q, Q̃, h and h̃, it follows that

the second term in (4.15) is finite as we take the supremum over all t > 0. As for the

first term, integrating by parts twice we have that

E

[ ∫ t

0

e−λ(t−s) d|Xs|
]
= E

[
|Xt|

]
− |X0|e−λt − λE

[ ∫ t

0

|Xs|e−λ(t−s) ds
]
,

and since Xt = ∆ik − ∆jl, ∆ik = log πi/πk − log π̃i/π̃k and | log(x)| ≤ 1/x, we can

again bound the right-hand side by multiples of E
[
1/mini π

i
t

]
and E

[
1/mini π̃

i
t

]
,

which remain finite as we take a supremum over t > 0.

4.3 Error bounds for an approximate filter

The approach we presented in the previous section allows for a more general result.

We can proceed exactly as before to compute the error of a general approximate

filter, rather than simply the filter with modified Q and h (and σ, if we allow for

σ ̸= 1). The discussion in this section will yield the proofs of Theorem 4.1.1 and

Theorem 4.1.2.

Consider a general approximate filtering model given by (4.1), i.e.

dπ̃t = f̃t dt+ g̃t dYt, π̃0 = ν, (4.16)
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where f̃t, g̃t are Rn+1-valued predictable processes. We will also need the following

assumption:

(A4) With probability 1, π̃t ∈ S̊n for all t < ∞. Moreover, f̃t and g̃t are locally

bounded and satisfy the integrability condition

E

[∫ t

0

max
i

|f̃ i
s|
πi
s

ds+

(∫ t

0

max
i

( g̃is
πi
s

)2
ds

)1/2
]
<∞

for all t <∞.

Note that the Wonham filter SDE (3.4), or the Wonham filter with misspec-

ified model parameters given by (4.7), immediately satisfy Assumption (A4) by

Lemma 3.3.1 and (a simple extension of) [26, Lemma 3.6].

We start by proving an intermediate result.

Proposition 4.3.1 (Dynamics of the Hilbert error of an approximate filter). Let πt

be the solution to (3.4) and π̃t the solution to (4.16). Suppose µi, νi > 0 ∀i and
qij > 0 for all i ̸= j. Under Assumption (A4), for all s ≤ t <∞, we have

H(πt, π̃t) ≤ H(πs, π̃s)− 2

∫ t

s

κr sinh
(H(πr, π̃r)

2

)
dr (4.17)

+

∫ t

s

max
i,k

{
E1,i
r − E1,k

r +
1

2

(
E2,k
r − E2,i

r

)}
dr

+max
j

|hj|
∫ t

s

max
i,k

{
E3,i
r − E3,k

r

}
dr +

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(
E3,i
r − E3,k

r

)
dBr

+
1

4

∑
(i,k)

∑
(j,l) ̸=(i,k)

∫ t

s

dL0
r(∆ik(·)−∆jl(·)), (4.18)

where Bt = Yt −
∫ t

0
π⊤
s h ds is the innovation process. For j ∈ N the error terms are

given by

E1,j
t =

(
n∑

m=0

qmj
π̃m
t

π̃j
t

)
− f̃ j

t

π̃j
t

, E2,j
t = (hj)2 − (g̃jt )

2

(π̃j
t )

2
, E3,j

t = hj − g̃jt

π̃j
t

,

and the processes (∆ik(t))t≥0 for (i, k) ∈ N×N are defined as ∆ik(t) = log πi
t

πk
t
−log π̃i

t

π̃k
t
.

The set It = {(i, k) : ∆ik(t) = H(πt, π̃t)} is the argmax of these processes for all

t < ∞, and L0
t (∆ik(·) − ∆jl(·)) denotes the local time at 0 of the difference process

(∆ik −∆jl) for all (i, k), (j, l) ∈ N×N. The decay coefficient κt > 0 can be taken to
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be any of

κt =


λ,

λ̃⋆
(
t, tanh

(
H(πt,π̃t)

4

))
,

λ⋆
(
t, tanh

(
H(πt,π̃t)

4

))
,

(4.19)

where λ is the deterministic rate from Theorem 3.2.1, and λ̃⋆ and λ⋆ are the func-

tions defined in Proposition 3.3.11 and Corollary 3.3.11.1 (in (3.24) and (3.33) re-

spectively).

Proof. Assumption (A4) allows us to move our analysis from the simplex to Rn by

defining the usual transformations θik : (0, 1)×2 → R. The dynamics of θ̃ik = log π̃i
t

π̃k
t

are given by

d log
π̃i

π̃k
(t) =

1

π̃i
t

(
f̃ i
t dt+ g̃it dYt

)
− 1

π̃k
t

(
f̃k
t dt+ g̃kt dYt

)
+

1

2

((
g̃kt
π̃k
t

)2

−
(
g̃it
π̃i
t

)2
)
dt,

so that, letting θik(t) = log πi
t

πk
t
and ∆ik(t) = θik(t) − θ̃ik(t), defining the innovation

process Bt = Yt −
∫ t

0
π⊤
s h ds, and recalling (3.11) for the dynamics of θik(t), we have

d∆ik(t) =

[
1

πi
t

( n∑
j=0

qjiπ
j
t

)
− f̃ i

t

π̃i
t

]
dt+

[
f̃k
t

π̃k
t

− 1

πk
t

( n∑
j=0

qjkπ
j
t

)]
dt

+
1

2

(
(hk)2 − (hi)2 +

(
g̃it
π̃i
t

)2

−
(
g̃kt
π̃k
t

)2
)
dt

+
(
hi − hk − g̃it

π̃i
t

+
g̃kt
π̃k
t

)
( dBt + π⊤

t h dt). (4.20)

This equation might seem a bit daunting at first, but it can be treated exactly as we

did in the case of misspecified Q and h. Adding and subtracting terms as appropriate,

we can rewrite (4.20) as

d∆ik(t) =

( n∑
j=0
j ̸=i

qji

(
πj
t

πi
t

− π̃j
t

π̃i
t

)
−

n∑
j=0
j ̸=k

qjk

(
πj
t

πk
t

− π̃j
t

π̃k
t

))
dt+

(
E1,i
t − E1,k

t

)
dt

+
1

2

(
E2,k
t − E2,i

t

)
dt+

(
E3,i
t − E3,k

t

)
( dBt + π⊤

t h dt), (4.21)

where for all j ∈ N we have defined the error terms

E1,j
t =

(
n∑

m=0

qmj
π̃m
t

π̃j
t

)
− f̃ j

t

π̃j
t

, E2,j
t = (hj)2 −

(
g̃jt

π̃j
t

)2

, E3,j
t = hj − g̃jt

π̃j
t

. (4.22)
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Now we proceed as in the proof of Theorem 4.2.1 by letting ∆t = {∆ik(t)}i∈N,k∈N

be the family of processes with evolution equations given by (4.21), defining the

process LSEα(∆·)(t) and its dynamics, and finally taking α → ∞ to yield our error

estimates.

Letting once more Tik(t) = πi
t

πk
t
− π̃i

t

π̃k
t
for all (i, k) ∈ N × N, we have, for all

s ≤ t <∞,

LSEα(∆·)(t) = LSEα(∆·)(s) +

∫ t

s

Sarg
α

(
∆·,

n∑
j ̸=i

qjiTji(·)−
n∑

j ̸=k

qjkTjk(·)
)
(r) dr

+

∫ t

s

Sarg
α

(
∆·, E1,i

· − E1,k
·
)
(r) dr +

1

2

∫ t

s

Sarg
α

(
∆·, E2,k

· − E2,i
·
)
(r) dr

+

∫ t

s

Sarg
α

(
∆·, E3,i

· − E3,k
·
)
(r)( dBr + π⊤

s h dr)

+
1

2

∫ t

s

∑
(j,l)

∑
(u,v)̸=(j,l)

αeα(∆jl(r)+∆uv(r))

(
∑

(i,k) e
α∆ik(r))2

((
E3,j
r − E3,l

r

)2 − (E3,j
r − E3,l

r

)(
E3,u
r − E3,v

r

))
dr.

Note that by Lemma 3.3.1 and Assumption (A4), the first four integrands on the

right-hand side have enough regularity to apply dominated convergence for Lebesgue

or stochastic integrals when taking the limit as α → ∞. For the final term, we invoke

once more Proposition A.1.6, which is justified by Assumption (A4), to bound the

integral in terms of the local times of the difference processes ∆ik − ∆jl as we let

α → ∞. This yields, for all s ≤ t <∞,

∆∞(t) ≤ ∆∞(s) +

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

( n∑
j ̸=i

qjiTji(r)−
n∑

j ̸=k

qjkTjk(r)

)
dr

+

∫ t

s

max
i,k

{
E1,i
r − E1,k

r +
1

2

(
E2,k
r − E2,i

r

)}
dr +max

j
|hj|

∫ t

s

max
i,k

{
E3,i
r − E3,k

r

}
dr

+

∫ t

s

1

|Ir|
∑

(i,k)∈Ir

(
E3,i
r − E3,k

r

)
dBr +

1

4

∑
(i,k)

∑
(j,l)̸=(i,k)

∫ t

s

dL0
r(∆ik(·)−∆jl(·)),

(4.23)

where for all r ∈ [s, t], we have defined Ir = {(i, k) : ∆ik(r) = ∆∞(r)} ⊂ N ×N to

be the argmax of ∆r, and let |Ir| denote its size.

Finally, consider the drift terms in the first integral on the right-hand side. By

Lemma 3.3.7, for all r ∈ [s, t] and all (i, k) ∈ Ir we have that

∆ik(r) = ∆∞(r) = H(πr, π̃r) = logmax
j

πj
r

π̃j
r

− logmin
j

πj
r

π̃j
r

=: logMr − log
1

mr

,

where Mr ≥ 1 and 1/mr ≤ 1 are respectively the pointwise maximum and minimum

ratio between the components of πr and π̃r. By Lemma 3.3.8 we have that, for all
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r ∈ [s, t] and for all (i, k) ∈ Ir, Tji(r) ≤ 0 and Tjk(r) ≥ 0, for all j ∈ N. Then the

first integral on the right-hand side is negative and in particular∫ t

s

1

|Ir|
∑

(i,k)∈Ir

( n∑
j ̸=i

qjiTji(r)−
n∑

j ̸=k

qjkTjk(r)

)
dr

≤ −
∫ t

s

min
(i,k)∈Ir

( n∑
j ̸=k

qjkTjk(r)−
n∑

j ̸=i

qjiTji(r)

)
dr.

Now we can minimize the integrand with algebraic calculations as in the proof of

Theorem 3.2.1, or Proposition 3.3.11, or Corollary 3.3.11.1, which yields∫ t

s

1

|Ir|
∑

(i,k)∈Ir

( n∑
j ̸=i

qjiTji(r)−
n∑

j ̸=k

qjkTjk(r)

)
dr ≤ −2

∫ t

s

κr sinh

(
∆∞(r)

2

)
dr,

where the decay rate κr can be chosen to be any of the rates λ from Theorem 3.2.1,

λ̃⋆(t, tanh(∆∞(t)/4)) from (3.24) in Proposition 3.3.11, or λ⋆(t, tanh(∆∞(t)/4)) from

(3.33) in Corollary 3.3.11.1.

Theorem 4.1.1 and Theorem 4.1.2 now follow easily from the above proposition.

Proof of Theorem 4.1.1. Start from (4.18). For all t < ∞, we bound κt from below

by the deterministic rate λ = 2mini ̸=k
√
qikqki. Moreover, recall that 2 sinh(x/2) ≥ x

for x ≥ 0. Substitute both these bound in the first integral in the right-hand side

of (4.18). We take expectation and note that the stochastic integral vanishes, since

it is a martingale (as the integrand is locally L2-integrable by assumption (A4)).

A modification of the standard Grönwall argument to deal with Lebesgue–Stieltjes

measures (as in the proof of Theorem 4.2.1) concludes the proof.

Proof of Theorem 4.1.2. If E3,i
t = 0 for all i ∈ N and t < ∞, then E2,i

t = 0 as well.

Then (4.21) reduces to

d∆ik(t) =

( n∑
j=0
j ̸=i

qji

(
πj
t

πi
t

− π̃j
t

π̃i
t

)
−

n∑
j=0
j ̸=k

qjk

(
πj
t

πk
t

− π̃j
t

π̃k
t

))
dt+

(
E1,i
t − E1,k

t

)
dt,

for all (i, k) ∈ N×N, so we recover C1 dynamics for the difference processes ∆ik(t).

A C1 process does not generate local time, so (4.18) simplifies to

∆∞(t) ≤ ∆∞(s)− 2

∫ t

s

κr sinh

(
∆∞(r)

2

)
dr +

∫ t

s

max
i,k

{
E1,i
r − E1,k

r

}
dr,
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for all s ≤ t, where κt > 0 is the coefficient given by any of the rates in (4.19). Now

the second part of the theorem follows easily, by first bounding κr from below by a

positive (measurable) process γt given by one of

γt =


λ,

λ̃⋆t ≤ λ̃⋆
(
t, tanh

(
H(πt,π̃t)

4

))
,

λ⋆t ≤ λ⋆
(
t, tanh

(
H(πt,π̃t)

4

))
,

where λ̃⋆t and λ⋆t are as in Proposition 3.3.11 and Corollary 3.3.11.1. Then, recalling

once more that 2 sinh(x/2) ≥ x for x ≥ 0, the usual Grönwall argument yields

∆∞(t) ≤ ∆∞(0)e−
∫ t
0 γs ds +

∫ t

0

e−
∫ t
s γr dr max

i,k

{
E1,i
s − E1,k

s

}
ds,

which is (4.6) for γt = λ̃⋆t .

We now look for a tighter bound. Consider the process Xt = tanh
(
∆∞(t)/4

)
.

Applying the chain rule we have

dXt =
1

4
cosh−2

(
∆∞(t)

4

)
d∆∞(t)

≤ −κt
sinh

(∆∞(t)
2

)
2 cosh2

(∆∞(t)
4

) dt+ 1

4

maxi,k
{
E1,i
r − E1,k

r

}
cosh2

(∆∞(t)
4

)
≤ −κtXt dt+

1

2
max
i,k

{
E1,i
t − E1,k

t

} Xt

sinh
(
2 arctanh(Xt)

) dt,
where we have used the identity sinh(2x) = 2 sinh(x) cosh(x). Moreover, since

sinh(2 arctanh(x)) = 2x
1−x2 , we can rewrite the above as

dXt ≤ α(t,Xt) dt, where α(t,Xt) = −λ̃⋆(t,Xt)Xt +
1

4
max
i,k

{
E1,i
t − E1,k

t

}(
1−X2

t

)
,

where we have substituted λ̃⋆(t,Xt) for κt for clarity in the exposition below (but the

arguments are analogous whether κt is the deterministic rate λ from Theorem 3.2.1,

the pathwise rate λ̃⋆t from Proposition 3.3.11, or the coefficient λ⋆(t,Xt) or the path-

wise rate λ⋆t from Corollary 3.3.11.1). Bounding λ̃⋆(t,Xt) from below by λ̃⋆t , and

(1−X2
t ) from above by 1, another application of Grönwall yields (4.5).

We recall (3.24) for the definition of λ̃⋆. Note that the mapping x 7→ α(t, x)

is locally Lipschitz continuous (with Lipschitz constant dependent on ω, t and x),

since x 7→ λ̃⋆(t, x)x is locally Lipschitz continuous and maxi,k
{
E1,i
t − E1,k

t

}
is locally
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bounded by Lemma 3.3.1 and Assumption (A4). Now let ut be the solution to the

ODE with random coefficients given by

dut
dt

= α(t, ut), u0 = X0 = tanh

(
∆∞(0)

4

)
, (4.24)

where α, or, specifically, λ̃⋆ and maxi,k
{
E1,i
t − E1,k

t

}
depend on the process π̃t, which

is fixed for each ω. Recall that, since µ, ν ∈ S̊n by assumption, H(µ, ν) < ∞, and

therefore u0 ∈ (0, 1). Since the right-hand side is locally Lipschitz, (4.24) has a unique

solution ut up to its first explosion time T > 0 (again, see e.g. [81, Theorem 2.5]).

Now, if T <∞, then T is the first time such that uT−= 1. By continuity of ut, for all

ε > 0 there exists a δ > 0 such that for s ∈ (T − δ, T ), we have us ∈ (1− ε, 1). Then

1 = uT−δ +

∫ T

T−δ

α(s, us) ds

≤ uT−δ −
δ(2− ε)(1− ε)

ε
inf

s∈[T−δ,T ]
min
i ̸=k

{
qik
π̃i
s

π̃k
s

}
+
δε(2− ε)

4
sup

s∈[T−δ,T ]

max
i,k

{
E1,i
s − E1,k

s

}
,

using (strict) positivity of λ⋆ and maxi,k
{
E1,i
t − E1,k

t

}
, and that 1+ut

1−ut
≥ (2−ε)(1−ε)

ε
and

(1 − u2s) ≤ ε(2 − ε) for s ∈ (T − δ, T ). Since, for small enough ε, the negative term

dominates the positive term, this implies 1 < uT−δ, which is strictly less than 1, and

therefore a contradiction. Then T = ∞ and (4.24) has a unique solution for all t ≥ 0.

A similar argument proves that ut > 0 for all t ≥ 0, and finally Lemma 3.3.10

yields the theorem.

Proof of Corollary 4.1.2.1. Analogous to the proof of Theorem 4.1.2.

4.4 A numerical example

We conclude this chapter by testing our bounds in a couple of simulations.

We consider a Wonham filter with approximate model parameters, whose dynam-

ics are given by (4.7). We assume h to be known, so h̃ = h. We approximate Q by

applying a non-negative factorization algorithm: we subtract the diagonal from Q,

approximate the resulting positive matrix using the NMF class from the python pack-

age sklearn.decomposition, and reconstruct the diagonal to ensure all the rows

sum to 0 to yield Q̃. In this setting, there is no error due to the misspecification of

h, so we do not have to worry with estimating the local time terms. We consider the

error bounds given in Theorem 4.1.2.
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In the figure below we compare this approximate filter with the Wonham filter for

a 3-state and a 6-state Markov chain. We take the Q matrices to be given by

Q =

 −3 1 2
1 −3 2
1.5 1.5 −3

 , Q =


−9 3 1 1.5 2.5 1
1 −7.5 1 2 2.3 1.2
3 2 −8 1 1 1
2 1.3 1 −6 0.7 1
1.1 1 0.9 3 −9 3
1 1 3 2 2.5 −9.5

 , (4.25)

respectively, and the sensor functions h to be

h = (−1, 0, 1) , h = (−3,−2,−1, 1, 2, 3) . (4.26)

For the 3-state Markov chain, we take the initial law of the signal X to be given by its

ergodic distribution, i.e. law(X0) =
(
0.3, 0.3, 0.4

)
. This is also the initial condition

for the Wonham filter πt. The approximate rate matrix Q̃ for the approximate filter π̃t

is obtained using a 2-channel NMF approximation of Q. We take the initial condition

for π̃t to be π̃0 =
(
0.2, 0.2, 0.6

)
. In the 6-state case, we start the signal X quite close

to the boundary of S5, with its initial law given by µ =
(
0.5, 0.04, 0.09, 0.2, 0.04, 0.13

)
,

which is also the initial condition for πt. For the rate matrix Q̃ for π̃t we use a 4-

channel NMF approximation of Q. We start π̃t also relatively close to the boundary

of S5, but near a different edge from µ, and take π̃0 =
(
0.25, 0.1, 0.06, 0.07, 0.22, 0.3

)
.

For transparency, we write here the matrices Q̃ (rounded to the second significant

digit) resulting from the NMF approximation in each case:

Q̃ ≈

 −2.5 0.5 2
0.5 −2.5 2
1.5 1.5 −3

, Q̃ ≈


−9 3.04 1.04 1.54 2.43 0.95
0.94 −7.25 1.70 2.02 1.58 1.01
2.92 2.05 −7.8 0.69 0.88 1.26
2.11 1.24 0.52 −5.34 0.84 0.62
1.13 0.86 0.63 3.02 −8.68 3.04
1.02 0.77 2.64 1.92 2.92 −9.28

.

In Figure 4.1, on the left, both for the 3-state and the 6-state nonlinear filter, we

plot 100 realizations of the Hilbert error between πt and π̃t (and their sample mean)

in blue, and of the error bounds from Theorem 4.1.2 (and their sample means). Since

these bounds are path-by-path, each realization of the error between πt and π̃t has

three corresponding error bounds: in fuchsia we plot 4 arctanh(ut), where ut is the

(numerical) solution to the ODE (4.3); in green we plot the bound (4.6) where the

decay rate is given by λ̃t as defined in (4.4); in red we plot again the bound (4.6), but

using the deterministic decay rate λ from Theorem 3.2.1 instead. The error terms
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(4.2) are evaluated pathwise at each time-step. In the pictures on the right, for the

same simulations, we plot 100 realizations of tanh(H(πt, π̃t)/4) (blue), and of the

numerical solution ut to (4.3) (fuchsia).

Figure 4.1: For dimensions n = 2, 5, we test our error bounds from Theorem 4.1.2
against the actual Hilbert error between the Wonham filter and an approximate filter.
On the right we plot 100 realizations of the Hilbert projective error H(πt, π̃t) (faded,
light blue), of the ODE bound given by 4 arctanh(ut), where ut solves (4.3) (faded,
fuchsia), of the pathwise bound (4.6) with pathwise decay rate λ̃t (faded, light green),
and of the pathwise bound with deterministic decay rate λ (faded, orange), for t ∈
[0, 10]. We highlight one sample path of the Hilbert error at random, together with
its three corresponding pathwise bounds. In blue, purple, green and red we plot the
sample means of the errors and of the three bounds. On the right, for the same
simulations, we plot 100 realizations of the quantity tanh(H(πt, π̃t)/4) together with
the ODE bound ut, and the sample means of both. Again, we highlight at random
one realization of the tanh error and its corresponding ODE bound.

In the 3-state case, where the filter lives in S2, we can see that our estimates for

the error are very close to its actual value (the ODE bounds given by the solution to

(4.3) in particular). In the 6-state case, with a 5-dimensional filter, our error bounds

are less sharp. In fact, it is safe to assume that our error bounds get progressively
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worse as we increase the dimension of the state-space.

Why is this the case? As we already mentioned in Section 3.3.4, the main issue

with our error bounds is the contraction rate. Our numerical experiments for the

stability estimates (see Figure 3.2) show that the error contracts at a much faster

rate than what we can prove. This makes sense, since by minimizing over all entries

of Q, the decay rates in Theorem 3.2.1 and Proposition 3.3.11 give pathwise bounds

for ‘worst case’-type of scenarios. A similar argument applies to our treatment of the

approximation-error terms (4.2): to ensure our bounds hold, we need to maximize over

all possible indices, and this implies that we are more and more likely to overestimate

the errors as the dimension increases.

There are a couple of directions that one could pursue at this point, to tighten our

error estimates. The first would be to try to exploit some averaging over the indices,

instead of simply minimizing/maximizing over them, to yield tighter decay rates/error

terms. This could potentially be achieved if one looked for a bound in expectation

instead of pathwise. This problem seems difficult, however, as it involves estimating

the expectation of the argmin and argmax of the log differences between the ratios

of πt and π̃t. On the other hand, if, instead of proceeding analytically, one were

able to estimate quantities numerically, it should be relatively easy to obtain good

numerical estimates for the decay rate of the stability error in high dimensions, as we

can see from the plots in Figure 3.2. The estimated rate can then be substituted into

(4.6) to yield tighter bounds for the error of approximate filters in high dimensions

(which should hold with high probability). The issue of overestimating the error terms

remains, but, since they are dominated by the negative exponentials, tightening the

decay rate would yield a significant overall improvement.

Numerical estimation of the decay rate opens up other possibilities as well. The

arguments we developed in this chapter work when the signal is given by any ergodic

time-continuous Markov chain – the strict positivity of the off-diagonal entries of

Q is only required to guarantee that the decay rates we derive are nonzero. In

other words, the stability error of the Wonham filter decays as long as the signal is

ergodic (as discussed by [12]) even when the Q-matrix is sparse. By discretization,

the nonlinear filter on a compact state space, given by the solution to the Kushner–

Stratonovich SPDE, is often approximated by a Wonham filter on a high number

of states. However, the diffusion operator corresponds to a very sparse transition

matrix. Given a numerical estimate for the decay rate of the Hilbert error of the

discretized diffusion operator, one could then use our error estimates to understand

the error of approximate filters in infinite dimensions.
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Chapter 5

The projection filter in finite
dimensions

In this last chapter we finally consider the question of how to define an ‘optimal’ pro-

jection filter for the continuous-time, finite-dimensional filtering problem introduced

in Chapter 3. We use the error bounds we developed in Chapter 4 both to gain an

intuition of how to achieve this, and to evaluate the error of our low dimensional

approximation compared to the Wonham filter.

5.1 Introduction

The projection filter was introduced by Brigo, Hanzon and Le Gland in [19]. The

filtering setting in [19] is different from the one we are considering here: the signal

X is taken to be a diffusion process on R, and the optimal filter is then the (infinite

dimensional) solution to the Kushner–Stratonovich SPDE (see e.g. [10, Thm. 3.30]).

However, the methodology presented in [19] can easily be adapted to fit our context

as well. We give a short overview of the main ideas in [19] and subsequent related

works [4,6], both to provide some background to those unfamiliar with the projection

filter, and to motivate the direction of our own research.

In [19], the authors start with the assumption that the nonlinear filter, which, in

the setting under their consideration, is a probability measure on R, has a density

with respect to the Lebesgue measure. They endow the space of probability measures

with the Hellinger distance, which induces an L2 structure on the square-root of the

corresponding probability densities. Then, they consider a subspaceM ⊂
√
P , where√

P = {
√
p(x) : p(x) ≥ 0, ∥p∥L1 = 1} is the space of root-densitites, such that p(x) ∈

M has a finite dimensional parametrization ξ ∈ Rn. In other words, they choose M

to be a parametric family of (square-root) densitiesM = {
√
p(x, ξ) ∈

√
P : ξ ∈ Rn}.
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In the language of Amari’s theory of information geometry [2, 3], M is a statistical

manifold, with Riemannian metric given by the Fisher information. By choosing M

to be an exponential family, a parametrization is immediately provided by the natural

parameters, so ξ = θ. At this point, proceeding very much in the spirit of Amari, the

authors of [19] identify the tangent space Tp(x,θ)M with

span
({
∂1
√
p(x, θ), · · · , ∂n

√
p(x, θ)

})
,

where ∂i denotes the partial derivative with respect to θi for i = 1, . . . , n, and x ∈
R, θ ∈ Rn. Note that the tangent vectors in TpM are in fact random variables

(see [2, Sec. 2.2]). Then, the L2 inner product on the square-rooted probabilities

becomes a stochastic operation on TpM , specifically〈
∂
√
p(·, θ)
∂θi

,
∂
√
p(·, θ)
∂θj

〉
L2

=
1

4
Eµ [∂i log p(·, θ)∂j log p(·, θ)] ,

where the expectation is taken with respect to µ, the probability measure associated

to p(x, θ) ∈ M . On the right-hand side we recognize (within a factor of 1/4) the

variance of the score function, which is the Fisher information metric. Adopting the

Fisher information as a Riemannian metric for M , in [19] Brigo, Hanzon and Le

Gland define the orthogonal projection operator Tp(x,θ)
√
P → Tp(x,θ)M , which, when

applied to the flow operators of the Kushner–Stratonovich SPDE, constrains the flow

to the tangent bundle of M . Therefore the solution of this modified equation, which

they name the projection filter, remains on M , thus simplifying the SPDE into an

n-dimensional SDE for the parameter θ, and, crucially, reduces the filtering problem

from infinite to finite dimension.

At this point, one might wonder how good an approximation the projection filter

actually provides. Or, turning the problem around, whether it is possible to define

an ‘optimal’ projection filter with small (or even minimal) error when compared to

the optimal filter. In particular, there are a couple of questions that arise naturally.

1. How does one select the statistical family M?

2. What is the impact of the choice of ambient space and geometric structure

(the square-root densities with the L2 inner product in the case of [19]) on the

projection filter?

3. Is it possible to bound the error of the projection filter (as an approximation

for the true filter) without solving the original filtering equations?
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To attempt to answer either of these questions with some degree of completion, one

first needs a good understanding of the error between the optimal filter and the projec-

tion filter. In the setting considered in [19], this amounts to obtaining ‘sharp enough’

estimates to quantify the error between the solution to the Kushner–Stratonovich

SPDE and the projection filter. As we have already stressed many times before, sat-

isfactory quantitative estimates of this type, necessarily related to the study of the

stability and robustness of the Kushner–Stratonovich SPDE, are not available in the

literature, and are hard to find. This is why here we focus on the simpler case of

finite state-space nonlinear filtering, where we hope that the estimates we obtained

in Chapter 4 can help us shed some light on the answers to these questions.

It should be noted that Brigo and collaborators are certainly aware of the chal-

lenges that arise when attempting to construct an optimal projection filter. The

selection of the statistical family M is a topic already explored in [19, Sec. 6], where,

by considering the residual of the projection operator, Brigo, Hanzon and Le Gland

show how to choose an exponential family which kills part of the projection error.

The lack of understanding of the cumulative error between the projection filter and

the optimal filter makes this manifold selection process somewhat heuristic, although

numerical experiments presented in [18] show remarkably good results for the case of

the cubic filter (which is known to be infinite-dimensional, see [44]). We will see in

Section 5.5 that the manifold selection approach we suggest for the finite state-space

nonlinear filtering setting shares similarities with [19].

The issue of the choice of geometric structure on the ambient space has also been

partly explored. In [19], the choice to work in the space
√
P of square-root prob-

ability densities endowed with the L2 inner product seems quite arbitrary. In [4],

Armstrong and Brigo consider instead P = {p(x) : p(x) ≥ 0, ∥p∥L1 = 1}∪L2 as their

ambient space, endowed with the L2 inner product. This results in a different metric

on Tp(x,θ)M (which we call the L2-metric for lack of a better name), and therefore

a different orthogonal projection Tp(x,θ)P → Tp(x,θ)M . They also take M to be a

mixture family of probability distributions (instead of an exponential family). These

choices lead to the definition of a new projection filter, which numerically is found to

perform similarly to (and, in one case, slightly better than) the exponential projection

filter. While these combinations (i.e. Fisher information metric with projection onto

exponential families, and L2-metric onto mixture families) might be computationally

convenient, neither of them is, a priori, justified. One could just as easily mix up the

choices of metric and family of distribution (e.g. projecting using the Fisher infor-

mation onto a mixture family), and define yet another projection filter. In Amari’s
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work, for example, the metric of choice is the Fisher information for both exponential

and mixture families. And of course, one could work directly with the space of prob-

ability measures instead of the space of densities, and choose a geometric structure

appropriate to this more general context. In our simpler finite dimensional setting

we still have a choice of metric on Sn,

Finally, somewhat related to these geometric musings, one more question that we

might ask in our pursuit of the optimal projection filter is:

4. How do we define our projection operator so that the infinitesimal error is

minimized?

This is the topic of [6, 7] by Armstrong, Brigo and Rossi Ferrucci, which builds on

[5] and the classical theory of stochastic calculus on manifolds (see e.g. [39, 47]) to

define and compare three different ways to project SDEs from Rn to a submanifold

M ≊ Rd, with d ≪ n. Throughout the chapter we will consider these three types

of projection and keep track of the error estimates for each of them. However, the

choice of projection (in the sense of how to project an SDE, not in the sense of what

geometric projection to employ!) will turn out to be somewhat irrelevant in our work,

for two reasons. The first one is that the optimality criteria developed in [6] are not

applicable to our problem, and the way we measure the error between the optimal

filter and the projection filter. The second reason is that, once we are able to select

the “right” submanifold for the projection filter, the three projections defined in [6]

are all equivalent!

5.2 Hidden Markov models and SDEs on the

probability simplex

For the purpose of keeping the exposition self-contained, we start by recalling our

filtering setting. Compared to Chapter 3 and Chapter 4, we now consider time-

dependent coefficients, since this will allow for interesting observations when it comes

to the projection filter. Note that the stability and robustness results of Chapters 3

and 4 apply to this time-dependent setting as well.

AssumeX is a continuous-time Markov chain taking values in the state-space given

by the standard basis S = {e0, . . . , en} of Rn+1. For t ≥ 0, denote by Qt = (qij(t)) ∈
R(n+1)×(n+1) the transition rate matrix of X, so that Xt−X0−

∫ t

0
Q⊤

s Xs ds is a right-

continuous martingale. Let the initial distribution of X be given by µ = E [X0],

where µ is an element of the n-dimensional probability simplex Sn. Suppose W is a
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standard d-dimensional Brownian motion independent of X at time t, and let Y be

the Rd-valued process satisfying the SDE

dY i
t = hi(t)

⊤Xs ds+ σ dW i
t , Y i

0 = 0, for all i = 1, . . . , d,

where hi(t) ∈ Rn+1 for i = 1, . . . , d and t ≥ 0, and σ ̸= 0. Assume that hi(t) is

bounded for all i = 1, . . . , d and t ≥ 0. Let {Yt}t≥0 be the (completed) natural

filtration generated by the observation process Y . We consider the problem of esti-

mating the state of X given Yt. Denote the posterior distribution of X at time t by

πt = E [Xt|Yt]. The Sn-valued process π = (πt)t≥0 satisfies the Wonham SDE:

dπt = Q⊤
t πt dt+

1

σ2

d∑
k=1

(
Hk(t)− π⊤

t hk(t) In+1

)
πt
(
dY k

t − π⊤
t hk(t) dt

)
, π0 = µ,

(5.1)

where, for k = 1, . . . , d and t ≥ 0, Hk(t) is the (n+1)× (n+1)-dimensional diagonal

matrix diag (hk(t)) and In+1 is the identity matrix. Note that (5.1) is initialized at

µ = E [X0]. We call π, the solution to the SDE (5.1), the Wonham filter : πt is the

optimal estimate for Xt given all the information collected by observing the process

Y over the time interval [0, t]. In the next section it will be useful to have expressed

(5.1) in Stratonovich form, instead of Itô. The Stratonovich dynamics of (5.1) are

dπt = Q⊤
t πt dt+

1

2σ2

d∑
k=1

(
hk(t)

⊤Hk(t)πt In+1 −Hk(t)
2
)
πt dt

+
1

σ2

d∑
k=1

(
Hk(t)− π⊤

t hk(t) In+1

)
πt ◦ dY k

t , π0 = µ.

(5.2)

(A5) For the sake of clarity in the exposition below, we assume σ = 1, although our

results remain valid for σ ̸= 1 or even invertible and time-dependent σt ∈ Rd×d, as

long as it is bounded away from 0.

Now that our set-up is clear, let us state our goal: for m≪ n, we want to find an

m-dimensional SDE of the form

dξt = At(ξt) dt+Bt(ξt) dYt (5.3)

together with a map Rm ∋ ξt 7→ π̃t ∈ Sn such that π̃t is a good approximation of the

Wonham filter πt, the solution to (5.1). We will reduce the dimensionality of (5.1)

using geometric projections, in the spirit of the projection filter. Thus, the first thing

to do is understand how to project the flow of the Wonham SDE (5.1) onto a chosen

m-dimensional submanifold M .
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5.2.1 Projecting the Wonham SDE

The Wonham filter π lives in the probability simplex Sn, so the SDE (5.1) describes

a flow on Sn. To define a projection filter for the problem under consideration we

need a subset M ⊂ Sn, such that M ≊ Rm with m ≪ n, and a way to project

the Wonham SDE (5.1) onto M . In this section we consider three different ways to

define the projection of (5.1) onto a given submanifold M ⊂ Sn, following the work

in [6]. Note that the exposition in [6] is tailored to SDEs living in Rn projected onto a

m-dimensional submanifold of Rn, and consequently it is mainly concerned with the

standard Euclidean metric as the choice of Riemannian metric tensor on Rn. Since

we can embed Sn ↪→ Rn+1 and M ↪→ Rn+1, we see that [6] is closely related to our

setting. We keep our exposition here as simple as possible, without losing sight of

our objective, which is ultimately to use this theory to define a projection filter. For

further details, we refer to [6] and to Rossi Ferrucci’s PhD thesis [75, Chapter 1]1,

a rewriting of the differential geometric content of [6] which provides an excellent

introduction to the topic of SDEs on manifolds embedded in Rn.

Before we start to describe the three different ways to define a ‘projected Wonham

SDE’, there is a technicality, which was not an issue in [6,75], that we have deal with:

the boundary of Sn. The probability simplex Sn is an n-dimensional submanifold

of Rn+1 with boundary. This could make the analysis a little bit more complicated,

because one needs to make sure the projection operator is well-defined at boundary

points. We will start by making an assumption so that we can get rid of problems at

the boundary.

(A6) The Wonham SDE (5.1) is initialized in the interior of Sn, i.e. π0 = µ =

E [X0] ∈ S̊n.

By [26, Lemma 2.1], we then have that πt ∈ S̊n almost surely for all t <∞, so we

can work with the interior of the simplex S̊n and project (5.1) on a submanifoldM ≊
Rm, with M ⊂ S̊n. Note that we do not have to worry about local coordinates: by

embedding Sn ↪→ Rn+1, we can take p = (p0, . . . , pn) ∈ Rn+1 as the global coordinate

system for Sn. Moreover, the SDE (5.1) is driven by the observation process Y ,

which is an Rd-valued semi-martingale. Thus we can also dispense with having to

use local coordinates for the ambient space of Y (which would be needed if Y were

manifold-valued instead).

1A version of this chapter has recently been published in [7].
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Notation. For any manifold M and p ∈ M , we denote by TxM the tangent space of

M at p. By TM we denote the tangent bundle ofM and by Γ(TM) the set of tangent

vector fields along M . If M is embedded in another manifold, we let NpM = (TpM)⊥

denote the normal space of M at p, NM the normal bundle, and Γ(TN) the normal

vector fields along M . By g = gij we denote the (Riemannian) metric tensor, and by

⟨·, ·⟩g(p) : TpM × TpM → R the inner product associated to g at p ∈M .

Let M be a smooth m-dimensional submanifold of S̊n. In particular, we take M

to be a parametrized statistical family embedded in S̊n, i.e.

M =
{
p ∈ S̊n : p = F (ξ) =

(
p0(ξ), . . . , pn(ξ)

)
for ξ ∈ Rm

}
, (5.4)

where M is smooth as long as p0(ξ), . . . , pn(ξ) are smooth. Note that M is defined

globally, and ξ is a global coordinate system for M . We will see in Section 5.5 that

we can take M to vary with time, but for the sake of clarity we consider M fixed,

for now. The map F : M → S̊n is an immersion. It is an embedding if F is a

homemorphism onto its image in the subspace topology.

Now we equip S̊n with a Riemannian metric g (for example, we might take g to

be the Fisher Information metric, or the Euclidean metric induced by the embedding

S̊n ↪→ Rn+1, or anything else that we might think suitable). The submanifold M

inherits the Riemannian structure of S̊n induced by F , and its metric tensor is F ∗g

(the pullback of g through F , or the restriction of g to TM). Canonically, the tangent

space of M at a point p ∈ M is given by TpM ∼= span({∂i|p}) where ∂i denotes the
derivative of F with respect to ξi for i = 1, . . . ,m.

At each point p ∈M , the tangent space of S̊n at p decomposes into the direct sum

TpS̊n = TpM⊕NpM . In particular, we can define the smooth bundle homomorphisms

Π⊤ : T S̊n|M → TM, Π⊥ : T S̊n|M → NM,

called the tangential and normal projections, which for each p ∈ M restrict to or-

thogonal projections from TpS̊n to TpM and NpM respectively. Since the tangent

vectors ∂i|p ∈ TpM are not necessarily orthogonal, we can either apply the Gram–

Schmidt algorithm to obtain an orthonormal basis, or equivalently we can define the

orthogonal projection, for p ∈M , as

pp : TpS̊n → TpM,

w 7→
m∑
i=1

m∑
j=1

g−1
ij (p)⟨w, ∂j|p⟩g(p)∂i|p,

(5.5)

where g−1 = (g−1
ij ) is the inverse of the matrix g = (gij) =

(
⟨∂i|p, ∂j|p⟩g(p)

)
.
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Remark 5.1. If we take the metric g on S̊n to be the canonical Euclidean metric

(induced from Rn+1), for p ∈ M the matrix g(p) defined above is given by g(p) =

JF (p)⊤JF (p), where JF ∈ R(n+1)×m is the Jacobian matrix of the the immersion

F :M → S̊n (i.e. the matrix with columns given by the basis vectors of TpM). If g is

not Euclidean, we can still express g(p) in matrix form as JF (p)⊤G(p)JF (p) for some

positive semi-definite matrix G(p) ∈ R(n+1)×(n+1) which defines the inner product on

TpS̊n, so that in particular the orthogonal projection (5.5) can be written in matrix

form as

w 7→ JF (p)(JF (p)⊤G(p)JF (p))−1JF (p)⊤G(p)w. (5.6)

Compare this expression with [75, Eq. 1.56] (or [7, Eq. 45]), where the Riemannian

metric is taken to be Euclidean (and instead of an immersion, the authors define the

submanifold M through a submersion).

Given the projection pp, let us now investigate how to project the Wonham

SDE (5.1) on M . There are three classical ways to define an SDE on a manifold:

Stratonovich, Schwartz–Meyer and Itô . Each of these comes with a natural way to

project the SDE on a submanifold: respectively the Stratonovich projection, the Itô-

jet projection and the Itô-vector projection (where we stick with the nomenclature

chosen in [6]). We consider each of these in order, starting from the Stratonovich

case, which is the most straightforward.

Consider the Wonham SDE in Stratonovich form (5.2). For simplicity we rewrite

it as

dπt = b0(πt, t) dt+
1

2

d∑
k=1

ck(πt, t) dt+
d∑

k=1

σk(πt, t) ◦ dY k
t , π0 = µ, (5.7)

where b0(p, t) = Q⊤
t p, ck(p, t) = (hk(t)

⊤Hk(t)p In+1−Hk(t)
2)p and σk(p, t) = (Hk(t)−

p⊤hk(t) In+1)p for k = 1, . . . , d and p ∈ S̊n. Note that the coefficients b0, ck and σk are

independent of Y . They are smooth linear maps from R≥0 to T S̊n: letting f = b0, ck

or σk (for k = 1, . . . , d), f corresponds to a smooth map (S̊n,R≥0) ∋ (p, t) → f(p, t) ∈
Hom(R≥0, TpS̊n). In other words, the coefficients of the Stratonovich SDE (5.7) are

elements of Γ(Hom(R≥0, T S̊n)) ∼= C∞(R≥0,Γ(T S̊n)).

The Stratonovich projection of (5.2) is given by applying the orthogonal projection

(5.5) to the coefficients of (5.7). For p ∈M and X ∈ TpS̊n, we denote by X = pp(X)

the orthogonal projection of X onto TpM . The resulting projected Wonham SDE on

M , in Stratonovich form, is given by

dπ̃t = b0(π̃t, t) dt+
1

2

d∑
k=1

ck(π̃t, t) dt+
d∑

k=1

σk(π̃t, t) ◦ dY k
t , π̃0 ∈M. (5.8)
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Note that unless π0 = µ ∈ M , we need to choose a suitable initial condition π̃0: for

example, π̃0 can be taken to be the point on M with the shortest geodesic path to µ,

i.e. π̃0 = argmin{dg(µ, p) : p ∈M} (although this might be hard to compute). Recall

that Stratonovich SDEs started from an embedded submanifold M in S̊n will stay on

M as long as their flow is mapped to TpM for all p ∈ M (see e.g. [47, Prop. 1.2.8]),

which is exactly what we are ensuring by applying the orthogonal projection (5.5) to

the coefficients of (5.7).

For comparison with the other projections, we transform (5.8) from Stratonovich

to Itô form. For each component σi
k(π̃t, t) of σk(π̃t, t) ∈ Tπ̃tM , we compute

d⟨σi
k(π̃·, ·), Y k

· ⟩t =
n∑

j=0

∂σi
k(π̃t, t)

∂pj
σj
k(π̃t, t) d⟨Y

k
· ⟩t,

which yields the Itô form of the Stratonovich projection

dπ̃t = b0 dt+
1

2

d∑
k=1

[
ck +

n∑
j=0

∂σk

∂pj
σj
k

]
dt+

d∑
k=1

σk dY
k
t ,

= b0 dt−
d∑

k=1

bk dt+
1

2

d∑
k=1

[ n∑
j=0

∂σk

∂pj
σj
k − pπ̃t

(∂σk
∂pj

)
σj
k

]
dt+

d∑
k=1

σk dY
k
t ,

π̃0 ∈M,

(5.9)

where it is implied that all the terms are evaluated at (π̃t, t), and for k = 1, . . . , d

we have defined bk(p, t) = p⊤hk(t)(Hk(t)− p⊤hk(t) In+1)p, so we have that ck(p, t) =

−bk(p, t)− 1
2

∑n
j=0

∂σk(p,t)
∂pj

σj
k(p, t). For reference, we write here the Wonham SDE (5.1)

using this simplified notation:

dπt = b0(πt, t) dt−
d∑

k=1

bk(πt, t) dt+
d∑

k=1

σk(πt, t) dY
k
t , π0 = µ. (5.10)

Now, before we proceed with the Itô-vector and the Itô-jet projections, we need

to be a bit more precise when it comes to the immersion of M in S̊n. In particular,

to define the next two projections, we need a better understanding of the relationship

between the geometry of the ambient manifold S̊n and the submanifold M . The first

step in this direction would be to compare the extrinsic Levi–Civita connection of S̊n

with the intrinsic connection ofM : a measure of this difference is given by the second

fundamental form ofM (see e.g. [64, Chapter 8]). However, to carry out such analysis

precisely would require the introduction of many elements of differential geometry,

which is beyond the scope of this thesis. To keep the exposition fluid, we give here a

more intuitive approach, following [75, Chapter 1].
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Let U be a tubular neighbourhood of M in S̊n. For p ∈ U , consider the smooth

Riemannian submersion p : U →M given by

p(p) = argmin
{
dg(p, q) : q ∈M

}
, (5.11)

where dg is the Riemannian (geodesic) distance of p ∈ U from q ∈ M . For q ∈ M ,

each fiber S̊n
q = p−1(q) is an embedded smooth submanifold of S̊n. Then at each point

p ∈ S̊n we can decompose the tangent space TpS̊n into the direct sum of the vertical

tangent space at p, given by Vp = Tp
(
S̊n
p(p)

)
, and its orthogonal (horizontal) component

(Vp)
⊥. In particular, the Riemannian submersion p gives a linear isometry from (Vp)

⊥

to Tp(p)M , and consequently also from Vp to Np(p)M , so it automatically induces the

decomposition of any vector field along S̊n into a tangential and a normal component

alongM (for more details, see [64, Chapter 2]). In other words, locally on the tangent

bundle of M the Riemannian submersion p agrees with the orthogonal projection

(5.5). As readers familiar with differential geometry might imagine, differentiating

the map p provides an easy alternative (at least formally) to working directly with

connections.

Given the tangential othogonal projection (5.5), we can define the normal orthog-

onal projection as

p⊥p : TpS̊n → NpM, p⊥p (w) = (Id− pp)(w). (5.12)

For p ∈ M and X ∈ TpS̊n, denote by X̆ = p⊥p (X) the orthogonal projection of X

onto NpM .

Now let us consider the Itô SDE (5.10) on S̊n. In general, the theory of Itô cal-

culus on manifolds is more complicated than that of Stratonovich calculus, due to

the second order chain rule for the Itô integral (which reduces to the standard Itô

formula in Rn). Thus, it makes sense that to define an Itô SDE on a general manifold

M it is necessary to look at differential operators of order higher than 1. Generally an

Itô SDE on a manifold M , driven by a manifold-valued semimartingale, will depend

explicitely on the connections on M and on the semimartingale-manifold. In the

case of the Schwartz–Meyer formulation of an SDE on M , the matter of higher order

terms is taken care of by considering the second order tangent bundle of M , TM ,

which consists of second order differential operators (without a constant term). Then

a Schwartz–Meyer equation on M driven by an Rd-valued semimartingale Y has dif-

fusion coefficients which are elements of C∞(R≥0,Γ(T S̊n)), but drift terms which are

instead in C∞(R≥0,Γ(TS̊n)). For the (better known) Itô formulation, the Christoffel

symbols which describe the metric connection should appear in any description of the
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SDE in local coordinates, although the diffusion and drift coefficients remain elements

of C∞(R≥0,Γ(T S̊n)).

This being said, our Wonham SDE (5.10) is quite simple. The Christoffel symbols

have vanished—this is because S̊n is a flat manifold in Rn+1. Projecting the SDE

onto M is simply a matter of finding the right correction term for the drift so that

the projected SDE does not leave M . To do so, one goes back to Stratonovich form

and sets the condition that the Stratonovich drift and diffusion coefficients belong to

TM . The procedure for this is explained in [75]. Here, we limit ourselves to state the

final results. The Itô-jet projection of (5.10) is given by

dπ̃t = b0 dt−
d∑

k=1

bk dt+
1

2

d∑
k=1

n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ

j
k dt+

d∑
k=1

σk dY
k
t , π̃0 ∈M. (5.13)

The Itô-vector projection of (5.10) is given by

dπ̃t = b0 dt−
d∑

k=1

bk dt+
1

2

d∑
k=1

n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ

j
k dt+

d∑
k=1

σk dY
k
t , π̃0 ∈M. (5.14)

Both in (5.13) and (5.14) evaluation of all the terms at (π̃t, t) is implied. Note that

the ‘drift correction’ 1
2

∑d
k=1

∑n
i,j=0

∂2
p(π̃t)

∂pi∂pj
σi
kσ

j
k appears in all three types of projection

(5.9), (5.13) and (5.14). To see this, use [75, Eq.1.57, Eq.1.63] to decompose the drift

of (5.9) into elements of TM and of NM . This results in the following formulation

for the Stratonovich projection (in Itô form)

dπ̃t = b0 dt−
d∑

k=1

bk dt+
1

2

d∑
k=1

[ n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ̆

j
k −

n∑
j=0

pπ̃t

(∂σk
∂pj

)
σ̆j
k

]
dt

+
1

2

d∑
k=1

n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ

j
k dt+

d∑
k=1

σk dY
k
t , π̃0 ∈M,

(5.15)

while for the Itô-jet projection, decomposing σk = σk + σ̆k for all k = 1, . . . , d, we

have

dπ̃t = b0 dt−
d∑

k=1

bk dt+
1

2

d∑
k=1

n∑
i,j=0

[
2
∂2p

∂pi∂pj
σi
kσ̆

j
k +

∂2p

∂pi∂pj
σi
kσ

j
k

]
dt+

d∑
k=1

σk dY
k
t ,

π̃0 ∈M.

(5.16)

5.3 Error bounds for the projection filter

The work we did in the previous section has given us three possible candidates for an

SDE of the form (5.3). The Stratonovich, Itô-jet and Itô-vector projections given by
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(5.15) (5.16) and (5.14) respectively are nothing but projection filters, living in the

parametrized statistical family M , fixed by the expression (5.4). Assume F (ξ), the

parametrization of M , is bijective and invertible over its domain (so that essentially

F : M → S̊n is an embedding). We can express the three projections (5.15) (5.16)

and (5.14) as m-dimensional SDEs for the parameter ξ ∈ Rm of M in the required

form (5.3). For example, consider the Stratonovich projection (5.8) (in Stratonovich

form to make the calculations easier). Since the solution π̃t ∈ M for all t ≥ 0, we

can write π̃t = F (ξt) for ξt ∈ Rm the parameter of the distribution evolving in time.

Then, applying the chain rule and writing down explicitly the orthogonal projection

pπ̃t defined in (5.5), (5.8) can be expressed as

dF (ξt) =
m∑
i=1

∂i|F (ξt) ◦ dξit

= b0(F (ξt), t) dt+
1

2

d∑
k=1

ck(F (ξt), t) dt+
d∑

k=1

σk(F (ξt), t) ◦ dY k
t ,

=
m∑
i=1

[ m∑
j=1

g−1
ij (F (ξt))⟨b0, ∂j|F (ξt)⟩g(F (ξt))

]
∂i|F (ξt) dt

+
m∑
i=1

[
1

2

d∑
k=1

m∑
j=1

g−1
ij (F (ξt))⟨ck, ∂j|F (ξt)⟩g(F (ξt))

]
∂i|F (ξt) dt

+
m∑
i=1

[ d∑
k=1

m∑
j=1

g−1
ij (F (ξt))⟨σk, ∂j|F (ξt)⟩g(F (ξt))

]
∂i|F (ξt) ◦ dY k

t ,

ξ0 = F−1(π̃0), with π̃0 ∈M,

where {∂i|F (ξt)}i are the tangent vectors ∂ξiF (ξ) evaluated at points F (ξt) along the

submanifoldM , and the coefficients b0, ck and σk are implicitely intended to be evalu-

ated at (F (ξt), t). Then, simplifying, the above reduces to the followingm-dimensional

SDE for ξt ∈ Rm

dξt = g−1(F (ξt))Pvec(b0, F (ξt)) dt

+ g−1(F (ξt))
d∑

k=1

[1
2
Pvec(ck, F (ξt)) dt+Pvec(σk, F (ξt)) ◦ dY k

t

]
, ξ0 = F−1(π̃0),

where, for p ∈ M and w ∈ TpS̊n, we denote by Pvec(w, p) the m-dimensional vector

with each entry the component of w with respect to each basis vector of TpM , i.e.

Pvec(w, p) =

 ⟨w, ∂1|F (ξt)⟩g(F (ξt))
...

⟨w, ∂m|F (ξt)⟩g(F (ξt))

 .
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Remark 5.2. If g is the standard Euclidean metric, for p ∈M we can write g−1(p) =

(JF (p)⊤JF (p))−1 and for w ∈ TpS̊n we have Pvec(w, p) = JF (p)⊤w.

The calculations to obtain SDEs for the parameters ξt ∈ Rm in the cases of the

Itô-jet and Itô-vector projection are analogous (although tedious, since we have to

take care of the second order terms that appear in Itô’s formula), and we omit them.

In Section 5.2.1 we essentially gave a recipe to construct three types of projection

filters given a submanifold M ∈ S̊n. To proceed any further with our objective of

defining a projection filter which gives a ‘good approximation’ of the optimal filter, we

need some understanding of the error between the Wonham filter and these projection

filters. We apply Theorem 4.1.1, which provides a first answer in this direction. We

recall that the error analysis in Chapter 4 was carried out through the use of the

Hilbert projective metric H, given by (3.3).

Notation. Let N denote the set {0, . . . , n}.

For clarity, we quickly recall here some notation from the previous section. Con-

sider a parametrized family of discrete probability distributions M ⊂ S̊n given by

M =
{
p ∈ S̊n : p = F (ξ) =

(
p0(ξ), . . . , pn(ξ)

)
for ξ ∈ Rm

}
,

where F : M → S̊n is an embedding. Equip S̊n with a Riemannian metric g and

define the orthogonal projection pp : TpS̊n → TpM for p ∈ M and the Riemannian

submersion p : S̊n → M as in (5.5) and (5.11). For p ∈ Sn and t ≥ 0, denote the

coefficients of the Wonham SDE (5.1) by

b0(p, t) = Q⊤
t p,

bk(p, t) = p⊤hk(t)(Hk(t)− p⊤hk(t) In+1)p, for k = 1, . . . , d,

σk(p, t) = (Hk(t)− p⊤hk(t) In+1)p, for k = 1, . . . , d.

(5.17)

For p ∈ M , let the tangential orthogonal projections of the above coefficients be

denoted by b0(p, t) = pp(b0(p, t)), and similarly for bk(p, t) and σk(p, t); denote the

normal projection of σk by σ̆k(p, t) = p⊥p (σk(p, t)) = (Id− pp)(σk(p, t)).

We have the following result.

Theorem 5.3.1 (Expected Hilbert error bounds for the projection filter). Let πt

be the solution to (5.1) and let Stratπ̃t,
Itô-jπ̃t and

Itô-vπ̃t be the solutions respectively

to the Stratonovich projection (5.15), the Itô-jet projection (5.16) and the Itô-vector

projection (5.14) of (5.1) on M . Let π0 = µ ∈ S̊n and pπ̃0 = ν ∈ M for p ∈
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{Strat, Itô-j, Itô-v}, and assume qij(t) > 0 for all i ̸= j and all t ≥ 0. For all t <∞,

and p ∈ {Strat, Itô-j, Itô-v}, we have that

E [H(πt,
pπ̃t)] ≤ H(µ, ν)e−

∫ t
0 λs ds

+

∫ t

0

e−
∫ t
s λr drE

[
max
i,j

{
pE1,i

s − pE1,j
s − 1

2

d∑
k=1

(
pE2,k,i

s − pE2,k,j
s

)}]
ds

+
d∑

k=1

∫ t

0

max
l

|hlk(s)|e−
∫ t
s λr drE

[
max
i,j

{
pE3,k,i

s − pE3,k,j
s

}]
ds

+
1

4

∑
(i,j)

∑
(u,v) ̸=(i,j)

E

[∫ t

0

e−
∫ t
s λr dr dL0

s(
p∆ij(·)− p∆uv(·))

]
,

(5.18)

where

• λt = 2mini ̸=j

√
qij(t)qji(t) is the time-dependent deterministic contraction rate;

• for (i, j) ∈ N ×N, the processes (p∆ij(t))t≥0 are defined as p∆ij(t) = log πi
t

πj
t

−

log
pπ̃i

t
pπ̃j

t

;

• L0
t (

p∆ij(·) − p∆uv(·)) denotes the local time at 0 of the difference processes

(p∆ij − p∆uv), for all (i, j), (u, v) ∈ N×N;

• the error terms pE1,j
t , pE2,k,j

t , pE3,k,j
t are given by

pE1,j
t =

(
n∑

r=0

qrj(t)
pπ̃r

t

pπ̃j
t

)
−

pBj
(
pπ̃t, t

)
pπ̃j

t

,

pE2,k,j
t = hjk(t)

2 −
σj
k

(
pπ̃t, t

)2(
pπ̃j

t

)2 , for k = 1, . . . , d,

pE3,k,j
t = hjk(t)−

σj
k

(
pπ̃t, t

)
pπ̃j

t

, for k = 1, . . . , d,

(5.19)
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where the terms pB are given by the drifts of (5.15), (5.16) and (5.14), i.e.

StratB(p, t) = b0 −
d∑

k=1

bk

+
1

2

d∑
k=1

[
n∑

i,j=0

∂2p

∂pi∂pj
σi
kσ̆

j
k −

n∑
j=0

pπ̃t

(∂σk
∂pj

)
σ̆j
k +

n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ

j
k

]
,

(5.20)

Itô-jB(p, t) = b0 −
d∑

k=1

bk +
1

2

d∑
k=1

n∑
i,j=0

[
2
∂2p

∂pi∂pj
σi
kσ̆

j
k +

∂2p

∂pi∂pj
σi
kσ

j
k

]
, (5.21)

Itô-vB(p, t) = b0 −
d∑

k=1

bk +
1

2

d∑
k=1

n∑
i,j=0

∂2p

∂pi∂pj
σi
kσ

j
k, (5.22)

and evaluation of all terms at (p, t) ∈M × R≥0 is implied.

Proof. This is a direct application of Theorem 4.1.1. For p ∈ {Strat, Itô-j, Itô-v},
note that pπ̃t ∈M ⊂ S̊n by construction, and that the drifts StratB(p, t) and diffusion

coefficients σk for k = 1, . . . d inherit local-boundedness and integrability from the

coefficients of (5.1). Then (A4) is satisfied and we can indeed apply Theorem 4.1.1.

The generalizations of the results in Theorem 4.1.1 to time-dependent transition ma-

trix Qt and sensor function ht = (hk(t)) and multi-dimensional Yt require some work

but are straightforward.

The error bounds of Theorem 5.3.1 are mainly useful from a qualitative point of

view: we see that if the transition matrix Qt has positive off-diagonal entries for all

t ≥ 0, then the expected Hilbert error of the projection filter does not accumulate,

and in fact it stays finite (bounded) as t→ ∞ as long as the infinitesimal error terms

(5.19) are finite (bounded) for all t ≥ 0 (to prove this, in light of the local time terms,

one would need arguments similar to those in Section 4.2—and Proposition 4.2.2 in

particular). Clearly, for a fixed manifold M , the error terms in (5.18) are minimized

if the orthogonal projection (5.5) and the submersion (5.11) minimize the Hilbert

distance, locally on TM and in a tubular neighbourhood U of M . If it were possible,

the obvious choice would be to take H as a Riemannian metric on S̊n. However, the

geometry induced by H on S̊n is not Riemannian (as we saw in Chapter 2), so this

is clearly not a viable option. One possible avenue to explore is approximate the H
metric by a Riemannian metric on S̊n: we will suggest a way to do this in Section 5.6.

Meanwhile, looking at the error terms (5.19) and at the drifts (5.20), it is also not

immediately clear if one out of the Stratonovich, Itô-jet and Itô-vector projections
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is preferable to the others. In [6, 7] a case is made for the optimality of the Itô-jet

and Itô-vector projections. Provided that projπ̃0 = π0 ∈ M , the Itô-jet projection

minimizes the first and second order coefficients in the Taylor expansion around t = 0

of the error E
[
dg
(
projπ̃t, p(πt)

)2]
(where dg is the Riemannian distance under the

metric g). The Itô-vector projection satisfies a similar optimality criteria by mini-

mizing the first/second order terms of the strong/weak Taylor expansion of the error

E [||ψ(pπ̃t), ψ(πt)||ℓ2 ], where ψ is any normal chart for S̊n centred at π̃0 ∈ M(see [7,

Thm. 4.3, Thm. 4.8, Rmk. 5.6]). However, in our case we are not interested in either

of these errors, but wish to minimize the expected infinitesimal Hilbert errors ap-

pearing on the right-hand side of (5.18) instead. Therefore which projection among

Stratonovich, Itô-jet and Itô-vector performs better in our setting remains an open

question.

Overall, it looks like working with the error bounds from Theorem 5.3.1 might

not be as useful as we could have hoped, in terms of making progress towards the

definition of an ‘optimal’ projection filter. The error terms (5.19) are hard to analyze,

and therefore hard to minimize. The error bound (5.18) does not shed much light

directly on the type of projection to employ, nor on the choice of Riemannian metric

for S̊n, nor on the choice of submanifold M . Intuitively, we know that all of the

above should be selected so that the infinitesimal Hilbert error between the dynamics

of pπ̃ and those of π is minimized, but Theorem 5.3.1 does not offer much insight on

how to accomplish this. From Theorem 4.1.2 we know that tighter, pathwise error

estimates of the error between the Wonham filter π and an approximate filter (such

as the projection filter pπ̃) are possible if the error terms pE3,k,j
t from (5.19) vanish

for all i ∈ N and k = 1, . . . , d (and consequently pE2,k,j
t vanish as well). Finding a

way to force these error terms to vanish is going to be our goal in the next sections,

although we will need to slightly alter our approach to achieve it.

Remark 5.3. (We refer to Theorem 5.3.1 above for the notation.) Another issue of

the bounds of Theorem 5.3.1 is the presence of local times in our estimates. Unless

the processes p∆ij − p∆uv have a density (w.r.t. Lebesgue), these terms are very hard

to estimate. However, we know heuristically that the local time of the process p∆ij −
p∆uv(t) is ‘proportional’ to its quadratic variation (see e.g. [74, Chapter VI,Cor. 1.9],

which is often taken as the definition of the local time). The quadratic variation of
p∆ij − p∆uv(t) is given by

d∑
k=1

(
pE3,k,i

t − pE3,k,j
t − pE3,k,u

t + pE3,k,v
t

)2
,
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so minimizing the error terms pE3,k,i
t in (5.19) for all i ∈ N and k = 1, . . . , d would

potentially minimize the error due to the local times as well.

Remark 5.4. As we mentioned earlier, in [4, 19] the authors work with the space of

probability distributions on R, not with the simplex Sn. However, the methodology

that we implemented in Section 5.2.1 to derive the projection filter is exactly the one

proposed in these papers. In fact, our manifold M is a statistical family of discrete

distributions, which means that it is both an exponential and a mixture family. Then,

endowing S̊n with the Fisher Information or the Euclidean metric (both of which make

S̊n into a Riemannian manifold), and defining the inner product on TpM to be the

one induced by either of these metrics, yields respectively the Hellinger projection

filter of [19] or the mixture projection filter of [4]. Finally, we note that the fact that

the error terms of Theorem 5.3.1 are hard to quantify does not necessarily signify

that the projection filters defined in Section 5.2.1 perform badly as approximations of

the Wonham filter. As long as the infinitesimal Hilbert errors between the dynamics

of the Wonham filter and those of the projection filter are small enough at each point

of the submanifold M , the total error should remain small as well.

5.4 Projection filters in the space of natural

parameters

It is quite curious to note that, for all that the Wonham SDE (5.1) is an equation on

a manifold, we have never really needed to work in local coordinates, since the SDE

is perfectly well-defined globally in the coordinate-system of Rn+1. Now, it would

probably not be particularly useful to move from a global coordinate system to a

local one. However, not counting p ∈ S̊n ⊂ Rn+1, there are two global charts for S̊n

that are natural when working in a statistical setting. These are given by the natural

parameters, denoted by θ (which we have employed many times throughout this thesis)

and the expectation parameters, denoted by η, by viewing discrete probabilities in

the simplex respectively as an exponential and a mixture statistical family. These

two parametrizations, and an interesting duality relationship between them, are the

starting point of information geometry [1, 3]. These two charts are given by

S̊n ∋ p 7→ θ ∈ Rn : θi = log
pi

p0
, and S̊n ∋ p→ η ∈ (0, 1)×n : ηi = pi, (5.23)

for i = 1, . . . , n, and their respective inverses

p0 =
1

1 +
∑

k e
θk
, pi =

eθ
i

1 +
∑

k e
θk
, and p0 = 1−

∑
k

ηk, pi = ηi. (5.24)
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Notation. For p ∈ S̊n, we might write θ(p) or η(p) for the representation of p in θ- or

η-coordinates, i.e. the image of p under the diffeomorphisms in (5.23). Similarly, by

p(θ) or p(η) we denote the mapping of θ ∈ Rn or η ∈ (0, 1)×n back to S̊n.

Now, we do not expect the η-coordinates to offer any significant advantage com-

pared to the standard coordinates p ∈ S̊n, since the Wonham SDE (5.1) expressed in

η is essentially the same as when expressed in p, removing the first component. On

the other hand, as we have seen already in Chapters 3 and 4, the θ-coordinates can be

very effective when working with the Wonham filter. In particular, we attribute some

of the difficulties we encounter in the analysis of the error of the projection filters

in Theorem 5.3.1 to the nonlinearities in the stochastic term of the Wonham SDE

(5.1). Moving to the θ-coordinates gets rid of this problem. Applying Itô’s formula

(or from (3.11)) we have that the Wonham SDE (5.1) in the natural parameters,

componentwise, is given by

dθit =
n∑

j=0

[
qji(t)

πj
t

πi
t

− qj0(t)
πj
t

π0
t

]
dt+

d∑
k=1

[
(hik(t)− h0k(t)) dY

k
t +

1

2

(
h0k(t)

2 − hik(t)
2
)
dt
]
,

θi0 = log
µi

µ0
, (5.25)

for i = 1, . . . , n and θit = log π
i
t

π0
t
. In vector form, the Wonham SDE for θt ∈ Rn is

dθ(t) = AD(πt)Q
⊤
t πt dt+

d∑
k=1

[
hk(t) dY

k
t − 1

2
Hk(t) dt

]
, θ0 = θ(µ), (5.26)

where

D(πt) = diag

({ 1

πi
t

}n

i=0

)
∈ R(n+1)×(n+1), A =

 −1
... Idn×n

−1

 ∈ Rn×(n+1),

and for k = 1, . . . d,

hk(t) =

 h1k(t)− h0k(t)
...

hnk(t)− h0k(0)

 ∈ Rn, Hk(t) =

 h1k(t)
2 − h0k(t)

2

...
hnk(t)

2 − h0k(t)
2

 ∈ Rn. (5.27)

Remark 5.5. Since the diffusion coefficients hk(t) are deterministic for all k = 1, . . . , d,

the Itô and Stratonovich integrals agree, so (5.26) does not change when written in

Stratonovich form.

Notation. Let the first drift term of (5.26) be denoted by a(θ, t) := AD(p(θ))Q⊤
t p(θ)

(where p(θ) is the image of θ ∈ Rn in S̊n).
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We now proceed to define a projection filter in the space Θ of the natural param-

eters. The methodology is exactly the same as in Section 5.2.1, although we consider

Rn, instead of S̊n, as our ambient space now, and instead of distributions p ∈ S̊n we

will work with their natural parameters θ ∈ Rn. We find that our calculations are

much simplified.

Let m ≪ n and let M ⊂ Rn be an m-dimensional submanifold embedded in Rn

of the form

M = {θ(ξ) ∈ Rn : θ(ξ) = F (ξ) = (θ1(ξ), . . . , θn(ξ)), ξ ∈ Rd}, (5.28)

where F : M → S̊n is an embedding. Equip Rn with a Riemannian metric g and

induce the same metric on M . Define the Riemannian submersion q : U →M , where

U is a tubular neighbourhood of M , by q(θ) = argmin{dg(θ, x) : x ∈ M}, which
reduces to the orthogonal projection on the tangent spaces qθ : TθRn ∼= Rn → TθM ∼=
span({∂i|θ}) given by, for θ ∈M ,

w 7→
m∑
i=1

m∑
j=1

g−1
ij (θ)⟨w, ∂j|θ⟩g(θ)∂i|θ. (5.29)

Equivalently to Section 5.2.1, we define the Stratonovich, Itô-jet and Itô-vector

projections of (5.26) on M . For θ ∈ M and X ∈ TθRn, let X = qθ(X) ∈ TθM , and

X̆ = q⊥θ (X) = (Id− qθ)(X) ∈ NθM .

The Stratonovich projection (in Stratonovich form) of (5.26) is given by

dθ̃t = a(θ̃t, t) dt−
1

2

d∑
k=1

Hk(θ̃t, t) dt+
d∑

k=1

hk(θ̃t, t) ◦ dY k
t , θ̃0 ∈M, (5.30)

where we have stressed dependence of hk and Hk on both t and θ since the projection

operator (5.29) depends on θ (although the vectors hk and Hk do not). From now

on, unless specifically stated, evaluation of the projected SDE’s coefficients at (θ̃t, t)

is implied. Note that as in Section 5.2.1, if the initial conditions of (5.26) θ(µ) /∈M ,

we need to fix a criterion to choose the initial conditions of (5.30) (e.g. choose

θ̃0 = argmin{dg(θ, θ(µ)) : θ ∈ M}). We now transform (5.30) back into Itô form,

which results in

dθ̃t = a dt− 1

2

d∑
k=1

Hk dt+
1

2

d∑
k=1

n∑
j=1

∂hk

∂θj
h
j

k dt+
d∑

k=1

hk dY
k
t , θ̃0 ∈M. (5.31)

The Itô-jet projection of (5.26) onto M is the SDE

dθ̃t = a dt− 1

2

d∑
k=1

Hk dt+
1

2

d∑
k=1

n∑
i,j=1

∂2q

∂θi∂θj
h
i
kh

j
k dt+

d∑
k=1

hk dY
k
t , θ̃0 ∈M, (5.32)
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while the Itô-vector projection is given by

dθ̃t = a dt− 1

2

d∑
k=1

Hk dt+
1

2

d∑
k=1

n∑
i,j=1

∂2q

∂θi∂θj
h
i

kh
j

k dt+
d∑

k=1

hk dY
k
t , θ̃0 ∈M. (5.33)

For comparison, we rewrite here the drifts of (5.31), (5.32) and (5.33), using once

more [75, Eq.1.57, Eq.1.63] to decompose the drift of (5.31). Recall that we can write

the orthogonal projection (5.29) as a an n×n matrix acting on w ∈ TθRn analgously

to (5.6). Denote this matrix by L(θ), so that for θ ∈ M and w ∈ TθM we can write

qθ(w) = L(θ)w. Consider the last term of the drift of the Stratonovich projection

(5.31). Componentwise, we compute

n∑
j=1

∂h
i

k

∂θj
h
j

k dt =
n∑

j=1

∂(Lhk)
i

∂θj
h
j

k dt =
n∑

j=1

n∑
l=1

∂Lil

∂θj
h
l
kh

j

k dt

=
n∑

j=1

n∑
l=1

∂Lil

∂θj
h
j

k(h
l

k + h̆
l
k) dt =

n∑
u=1

n∑
v=1

∂2qi

∂θuθv
h
j

k(h
u

k + h̆
v
k).

Then finally, for p ∈ {Strat, Itô-j, Itô-v}, t ≥ 0 and θ ∈ M , we write the drifts of

the three projected SDEs as

pD(θ, t) = −1

2

d∑
k=1

Hk +
pC(θ, t), (5.34)

where

StratC(θ, t) = a+
1

2

d∑
k=1

n∑
i,j=0

[
∂2q

∂θi∂θj
h
i

kh̆
j
k +

∂2q

∂θi∂θj
h
i

kh
j

k

]
,

Itô-jC(θ, t) = a+
1

2

d∑
k=1

n∑
i,j=0

[
2
∂2q

∂θi∂θj
h
i

kh̆
j
k +

∂2q

∂θi∂θj
h
i

kh
j

k

]
,

Itô-vC(θ, t) = a+
1

2

d∑
k=1

n∑
i,j=1

∂2q

∂θi∂θj
h
i

kh
j

k.

(5.35)

Note in particular that the the drift of the Stratonovich projection and that of the

Itô-jet projection only differ by a factor of 2 (compare with (5.20)). This is due to the

fact that the vectors hk(t) in (5.26) are independent of θt for all k = 1, . . . , d, while

in Section 5.2.1 we were working with the Wonham SDE (5.1), where the diffusion

coefficients depend on πt.

Just as in the case of the projected SDEs in Section 5.2.1, the Stratonovich (5.31),

Itô-jet (5.32) and Itô vector projections (5.33) of (5.26) on M ⊂ Rn are examples of
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projection filters, and can be expressed as m-dimensional SDEs for the parameter of

M . To distinguish these new projection filters from those we defined in Section 5.2.1,

we refer to (5.31), (5.32) and (5.33) as θ-projection filters, to emphasize that the pro-

jections are defined in the space of the natural parameters θ. We state the equivalent

result to Theorem 5.3.1.

Theorem 5.4.1 (Expected Hilbert error bounds for the θ-projection filter). Let πt be

the solution to (5.1) and let
Strat

θ̃t,
Itô-j

θ̃t and
Itô-v

θ̃t be the solutions respectively to the

Stratonovich projection (5.31), the Itô-jet projection (5.32) and the Itô-vector projec-

tion (5.26) of the SDE (5.26) on the submanifold M ⊂ Rn defined by (5.28). Assume

qij(t) > 0 for all i ̸= j and all t ≥ 0, and π0 = µ ∈ S̊n. For p ∈ {Strat, Itô-j, Itô-v},
let pπ̃t = p

( p
θ̃t
)
∈ S̊n be the image of

p
θ̃t in S̊n under the inverse of the θ-chart given

by (5.24) and let pπ̃0 = ν ∈ p(M) (where p(M) is the image of M ⊂ Rn in S̊n). Then

the bounds (5.18) hold, with the error terms given by, for p ∈ {Strat, Itô-j, Itô-v},
t ≥ 0, and for j ∈ N,

pE1,j
t =

(
n∑

r=0

qrj(t)
pπ̃r

t

pπ̃j
t

)
− δ̂j0

pCj
( p
θ̃t, t
)
,

pE2,k,j
t = δ̂j0

[
H

j
k(t)−H

j

k

( p
θ̃t, t
)]
, for k = 1, . . . , d,

pE3,k,j
t = δ̂j0

[
h
j
k(t)− h

j

k

( p
θ̃t, t
)]
, for k = 1, . . . , d,

(5.36)

where we have defined δ̂ij := 1−δij (with δij the Kronecker delta), and the drift terms
pC are given by (5.35).

Proof. This result is again a consequence of Theorem 4.1.1. One way to prove it is to

apply Itô’s formula to derive the SDEs for pπ̃t = p
( p
θ̃t
)
for p ∈ {Strat, Itô-j, Itô-v},

where p : Rn → S̊n is the inverse of the θ-chart from (5.24). Then a direct application

of Theorem 4.1.1 yields the result. To avoid these tedious calculations, we present a

simpler alternative proof.

Let θt ∈ Rn be the solution to (5.26) and θ̃t ∈ Rn the solution to any of the

equations (5.31), (5.32) or (5.33). Let πt = p(θt) (so πt is effectively the solution to

(5.1)) and π̃t = p(θ̃t). Consider the processes ∆ij(t) = log πi
t

πj
t

− log π̃i
t

π̃j
t

for i, j ∈ N.

Since π̃t and θ̃t are connected by diffeomorphism, we can write ∆ij in terms of θt and

θ̃t as ∆ij = θit − θjt − θ̃it + θ̃j for i, j = 1, . . . , n, and ∆i0 = θit − θ̃it, and ∆0i = −∆i0 for

i = 1, . . . , n. Writing (5.26) and (any of) (5.31), (5.32), (5.33) (for p = Strat, Itô-j

and Itô-v respectively) componentwise, we get that the SDEs for the ∆ij processes
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are given by

d∆ij(t) =
n∑

r=0

[
qri(t)

πr
t

πi
t

− qrj(t)
πr
t

πj
t

]
dt

+
d∑

k=1

[(
h
i
k(t)− h

j
k(t)
)
dY k

t − 1

2

(
H

i
k(t)−H

j
k(t)
)
dt
]

−
(

pCi(θ̃t, t)− pCj(θ̃t, t)
)
dt−

d∑
k=1

(
h
i

k(θ̃t, t)− h
j

k(θ̃t, t)
)
dY k

t

+
1

2

d∑
k=1

(
H

i

k(θ̃t, t)−H
j

k(θ̃t, t)
)
dt,

∆ij(0) = log
µi

µj
− log

νi

νj
,

for i, j = 1, . . . , n, and similarly

d∆i0(t) =
n∑

r=0

[
qri(t)

πr
t

πi
t

− qr0(t)
πr
t

π0
t

]
dt+

d∑
k=1

[
h
i
k(t) dY

k
t − 1

2
H

i
k(t) dt

]
− pCi(θ̃t, t) dt−

d∑
k=1

[
h
i

k(θ̃t, t) dY
k
t − 1

2
H

i

k(θ̃t, t) dt
]
,

∆ij(0) = log
µi

µ0
− log

νi

ν0
.

Putting these two equations together and adding and subtracting terms appropriately,

we can write, for all i, j ∈ N,

d∆ij(t) =
n∑

r=0

[
qri(t)

(πr
t

πi
t

− π̃r
t

π̃i
t

)
− qrj(t)

(πr
t

πj
t

− π̃r
t

π̃j
t

)]
dt

+

[( n∑
r=0

qri(t)
π̃r
t

π̃i
t

−
n∑

r=0

qrj(t)
π̃r
t

π̃j
t

)
−
(
δ̂i0

pCi
(
θ̃t, t
)
− δ̂j0

pCj
(
θ̃t, t
))]

dt

− 1

2

d∑
k=1

[
δ̂i0

(
H

i
k(t)−H

i

k

(
θ̃t, t
))

− δ̂j0

(
H

j
k(t)−H

j

k

(
θ̃t, t
))]

dt

+
d∑

k=1

[
δ̂i0

(
h
i
k(t)− h

i

k

(
θ̃t, t
))

− δ̂j0

(
h
j
k(t)− h

j

k

(
θ̃t, t
))]

dYt,

∆ij(0) = log
µi

µj
− log

νi

νj
,

(5.37)

where we have defined δ̂ij := 1 − δij (where δij is the Kronecker delta). On the

right-hand side of the above we recognize our error terms (5.36). Then we can pro-

ceed exactly as in the proof of Theorem 4.1.1, by recalling the equality H(πt, π̃t) =
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maxij ∆ij(t) from (3.13), approximating this process using a smooth function and

taking the limit to yield the desired result.

Remark 5.6. The error terms pE2,k,j
t and pE3,k,j

t from (5.36) can equivalently be ex-

pressed as

pE2,k,j
t = hjk(t)

2 − δ̂j0H
j

k

( p
θ̃t, t
)

and pE3,k,j
t = hjk(t)− δ̂j0h

j

k

( p
θ̃t, t
)
.

5.5 The primary natural submanifold of the

Wonham filter

As we mentioned in Section 5.2.1, our goal in defining the θ-projection filter was

to find a simple way to understand, and subsequently eliminate, the error terms
pE3,k,j

t from (5.19) in Theorem 5.3.1, for all k = 1, . . . , d, j ∈ N and t ≥ 0 (and for

p ∈ {Strat, Itô-j, Itô-v}). When dealing with projection filters defined directly on a

submanifold of the simplex (such as those of Section 5.2.1), this seemed a daunting

task. If we now look instead at the error terms (5.36) in Theorem 5.4.1, we see

that the errors of the θ-projection filter are much easier to work with. In fact, it is

straightforward to notice that if the vectors hk(t) are invariant under the orthogonal

projection (5.29), the errors pE3,k,j
t from (5.36) in Theorem 5.4.1 vanish for all k =

1, . . . , d and all i ∈ N. In particular, this means that the stochastic terms in (5.37)

disappear, which in turn implies that we can find tighter, pathwise error estimates for

the Hilbert error of the θ-projection filter in the spirit of Theorem 4.1.2. We proceed

to implement all these ideas, starting from the definition of the primary natural

submanifold of the Wonham filter, along which the vectors hk(t) are invariant.

Remark 5.7. Note that in Theorem 5.3.1 if the error terms pE3,k,j
t from (5.19) vanish,

then so do the errors pE2,k,j
t (for k = 1, . . . , d and j ∈ N). This is not the case for

Theorem 5.4.1: even if pE3,k,j
t from (5.36) vanish, there is no guarantee that the same

should happen to pE2,k,j
t . If one is curious about the lack of symmetry, recall that to

compute the error bounds in Theorem 5.3.1 we essentially have to go through the proof

of Theorem 4.1.1, which relies on transforming both the SDE for the Wonham filter

and that for the projection filter into θ-coordinates. So in the case of a projection

filter of the type constructed in Section 5.2.1, defined directly by projecting on a

submanifold of S̊n, we first define the SDE (in Sn-coordinates) and then change

coordinates to θ to obtain Theorem 5.3.1, while in the case of the θ-projection filters

we first move to the θ-coordinate system and then project. Since projections and

θ-transformation do not commute, some differences are to be expected.
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Definition 5.5.1 (Primary natural submanifold). Consider the vectors hk(t) ∈ Rn

given in (5.27), for k = 1, . . . , n. Assume that we can find a set B (such that

|B| = d̂ constant, for simplicity) of time-dependendent, C2, linearly independent

vectors {vk(t)}k such that span
(
{hk(t)}k

)
⊆ span

(
{vk(t)}k

)
. Then d̂ ≤ d. Fix a

point θ̂ ∈ Rn. We define the primary natural submanifold through θ̂ of the Wonham

filter to be the statistical family given by

γt =

{
p(ξ, θ̂) ∈ S̊n : p(ξ, θ̂) = exp

{
θ̂ +

d̂∑
k=1

vk(t)ξ
k − 1 log(ψt(ξ, θ̂))

}
for ξ ∈ Rd̂

}
,

(5.38)

where 1 ∈ Rn is the vector of 1’s, and ψt(ξ, θ̂) = 1 +
∑n

i=1 exp
{
θ̂i +

∑d̂
k=1 v

i
k(t)ξ

k
}
.

At this point we should make a few remarks.

First of all, at each time t ≥ 0 the dimension of γt is at most d, which is the

dimension of the observation process Y . It is exactly d if the sensor function h(t) =

(hk(t))k is ‘distinct enough’ for each k: clearly, if there exists i, j such that hi(t) is

a multiple of hj(t), we gain no more information from observing both Y i and Y j

than we would from observing only one of them. Thus, for the sake of keeping the

dimension of γt as low as possible, we make a selection of the vectors hk(t) so that the

set B in Definition 5.5.1 is maximally informative, but as small as possible. Related

to this, we note that we could potentially allow the dimension of B to change over

time: for example, if two vectors hi(t) and hj(t) are initially linearly independent but

after some time become linearly dependent, we might want to remove one of them

from B (and vice versa, they might start out dependent but become independent

as time passes, in which case we might want to add to B the vector we are not yet

keeping track of). As long as these changes happen smoothly, having a time-varying

dimension for γt should not constitute a problem, although for simplicity we will not

treat this case here.

Finally, we should spend a few words on θ̂ ∈ Rn, since its role in Definition 5.5.1 is

(purposefully) vague. As we will shortly see, the submanifold γt is flat when mapped

to Rn using the θ-chart from (5.23). So for example, when γt is 1-dimensional, it is a

line in Rn (at each time t ≥ 0). The slope of this line is fixed by the vectors in B, so

that, in a way, the vectors hk are parallel to it (i.e. the orthogonal projection of hk

on γt is the identity). However, this criterion does not help us decide which, of the

infinite number of lines in Rn with the correct slope (the same slope as γt), we should

select. The point θ̂ ∈ Rn serves the purpose of fixing this selection. Although neither

of them might be optimal, we suggest two possible choices for θ̂.
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Remark 5.8. Two sensible choices for the point θ̂ ∈ Rn in Definition 5.5.1 are

(i) θ̂ = θ(µ), where µ ∈ S̊n is the initial condition for the Wonham filter SDE (5.1);

(ii) θ̂ = θ(pinv), where pinv ∈ S̊n is the underlying Markov chain X (assuming it is

stationary).

Let us now move on to the definition of the the projection filter onto the primary

submanifold γt, which we call the γ-projection filter.

First of all, let us embed γt in Rn through the usual θ-transformation. This yields

γ̃t := θ(γt) =

{
θ(ξ, θ̂) ∈ Rn : θ(ξ, θ̂) = θ̂ +

d̂∑
k=1

vk(t)ξ
k for ξ ∈ Rd

}
, (5.39)

which is a linear subspace of Rn. At a point θ ∈ γ̃t, the tangent space of γ̃t is given

by

Tθγ̃t ∼= span
(
{vk(t)}d̂k=1

)
= span

(
{hk(t)}dk=1

)
.

Equip Rn with a Riemannian metric g, and let qt : Ut → Rn (where Ut is a tubular

neighbourhood of γ̃t) be defined as the Riemannian submersion qt(θ) = argmin{dg(θ, y) :

y ∈ γt} at each time t ≥ 0. Let the time-dependent orthogonal projection qt,θ :

TθRn → Tθγ̃t be

w 7→
d̂∑

i=1

d̂∑
j=1

G−1
ij (θ, t)⟨w, vi(t)⟩g(θ)vj(t), (5.40)

where G−1 = (G−1
ij ) is the inverse of the matrix (G(θ, t)ij) =

(
⟨vi(t), vj(t)⟩g(θ)

)
.

Now we would like to proceed as in the previous section and define the Stratonovich,

Itô-jet and Itô-vector projections of the Wonham SDE in θ-coordinates (given by

(5.26)) onto γ̃t. There are a couple of observations to make before doing so, however:

the first one is that γ̃t is time dependent, so we need to adapt our projections accord-

ingly; the second is that, due to our choice of submanifold, the Stratonovich, Itô-jet

and Itô-vector projections are all equivalent.

Let us start with this second remark, and assume for a moment that γ̃t = γ̃,

independent of time. Then we can define the three projected SDEs on γ as in (5.31),

(5.32) and (5.33). Since the vectors hk(t) are invariant under the orthogonal projec-

tion (5.40), by letting hk = hk in (5.31), (5.32) and (5.33) we see that the three SDEs

are the same. In regard to the time-dependency of γ̃t, in [7, Example 4] it is shown

how, to maintain tangency along the submanifold γ̃t as it varies in time, one needs to

add to the drifts of the projected SDEs (all three of them, Stratonovich, Itô-jet and

Itô-vector) the time-derivative of the submersion qt.
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Therefore in the end we define the γ-projection filter as the solution to the SDE

dθ̃t = a(θ̃t, t) dt−
1

2

d∑
k=1

Hk(θ̃t, t) dt+
d∑

k=1

hk(t) ◦ dY k
t + q̇t(θ̃t) dt, θ̃0 ∈ γ̃0, (5.41)

which becomes, in Itô’s form,

dθ̃t = a dt− 1

2

d∑
k=1

Hk dt+
1

2

d∑
k=1

n∑
i,j=1

∂2qt
∂θi∂θj

h
i
kh

j
k dt+

d∑
k=1

hk dY
k
t + q̇t(θ̃t) dt, θ̃0 ∈ γ̃0.

(5.42)

Remark 5.9. If the orthogonal projection (5.40) does not depend on θ ∈ γ̃t (so for

example if g is taken to be the Euclidean metric on Rn), then the Stratonovich (5.41)

and Itô’s form (5.42) of the SDE for the γ-projection filter are the same.

We can write the γ-projection filter as a d̂-dimensional SDE for the parameter

ξ ∈ Rd̂ of the statistical family γt. In the case where the tangent vectors vk(t) = vk

are independent of time, letting the solution to (5.41) be given by the γ-projection

filter θ̃t = θ(ξt, θ̂) ∈ γ̃t, we apply the chain rule to see

dξt = G−1
ij (θ̃t)

(
Qvec(a(θ̃t, t), θ̃t) dt+

1

2

d∑
k=1

Qvec(Hk(t), θ̃t) dt+
d∑

k=1

hk(t) ◦ dY k
t

)
ξ0 ∈ Rd̂,

(5.43)

where, for θ ∈ γ̃t and w ∈ Tθγ̃t, we denote by Qvec(w, p) the d̂-dimensional vector

with each entry the component of w with respect to each basis vector of Tθγ̃, i.e.

Qvec(w, θ) =

⟨w, v1⟩g(θ)...
⟨w, vd̂⟩g(θ)

 .
When {vk(t)} are time dependent, it should still be possible to obtain an SDE

similar to (5.43) for the parameters ξt, but the presence of the drift term q̇t makes

the calculations more complicated (one needs to compute the components of q̇t with

respect to the basis {vk(t)}).
We conclude this section with a theorem analogous to Theorem 4.1.2 for the error

bounds of the γ-projection filter.

Theorem 5.5.2 (Pathwise Hilbert error bounds for the γ-projection filter). Let πt be

the solution to (5.1) and let θ̃t be the solution to the SDE (5.42). Assume qij(t) > 0

for all i ̸= j and all t ≥ 0, and π0 = µ ∈ S̊n. Let π̃t = p(θ̃t) be the image of θ̃t in S̊n
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under the inverse of the θ-chart given by (5.24), and let π̃0 = ν ∈ γ0. Assume π̃t is

observable. Let ut ∈ (0, 1) be the unique solution to the ODE with random coefficients

given by

dut
dt

= −λ̃⋆(t, ut)ut +
1

4
max
i,j

{
E1,i
t − E1,j

t − 1

2

d∑
k=1

(
E2,k,i
t − E2,k,j

t

)}
(1− u2t ),

u0 = tanh

(
H(µ, ν)

4

)
,

(5.44)

where for t ≥ 0 and α ∈ N the error terms are

E1,α
t =

(
n∑

r=0

qrα(t)
π̃r
t

π̃α
t

)
− δ̂α0

(
aα(θ̃t) +

1

2

d∑
k=1

n∑
i,j=1

∂2qαt (θ̃t)

∂θi∂θj
h
i
k(t)h

j
k(t) + q̇αt (θ̃t)

)
,

E2,k,α
t = δ̂α0

[
H

α
k (t)−H

α

k

(
θ̃t, t
)]
, for k = 1, . . . , d,

(5.45)

and we have defined δ̂ij := 1−δij (with δij the Kronecker delta). The decay coefficient

is

λ̃⋆(t, ut) = min
i ̸=k

{(
qik(t)

π̃i
t

π̃k
t

+
∑
j ̸=i,k,

j /∈J̃ i
k(t,ut)

qjk(t)
π̃j
t

π̃k
t

)
1 + ut
1− ut

+

(
qki(t)

π̃k
t

π̃i
t

+
∑
j ̸=i,k,

j∈J̃ i
k(t,ut)

qji(t)
π̃j
t

π̃i
t

)
1− ut
1 + ut

}
,

and J̃ i
k(t, ut) :=

{
j ∈ N :

qjk(t)

π̃k
t

≥ qji(t)

π̃i
t

(
1−ut

1+ut

)2}
. Then for all t <∞,

tanh

(
H(πt, π̃t)

4

)
≤ ut.

Proof. For i, j ∈ N, write the dynamics of the difference processes ∆ij(t) = log πi
t

πj
t

−

log π̃i
t

π̃j
t

as in (5.37), replacing the appropriate coefficients with the drift and diffusion

coefficients of (5.42). Letting hk = hk for all k = 1, . . . , d, we see that the stochas-

tic term of (5.37) vanishes. Then exactly the same arguments as in the proof of

Theorem 4.1.2 yield the result.

Before proceeding to implement the γ-projection filter and test it numerically,

we make one final remark. The way we constructed the primary submanifold γt

is similar to how the exponential families for the exponential projection filter are

selected in Brigo, Hanzon and Le Gland [19, Sec. 6]. In particular, in discrete-time

stochastic filtering we can view the filter as a sequence of prediction and correction

steps. Bending the terminology a little bit to fit our continuous-time setting, what

both us and the authors of [19] suggest is to choose the statistical family for the

projection filter so that there is no error in the correction step, as the stochastic part

of the filter equations are matched perfectly.
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5.6 Numerics and future directions

In this final section we present some simple numerical examples for the γ-projection

filter, and discuss a few ideas (to be explored in more detail in the future) to system-

atically augment the dimension of the submanifold γt until sufficient precision for the

projection filter is achieved.

We consider the same examples as in Section 4.4. Recall the homogenous 3-

state and 6-state Markov chains with transition matrices given by (4.25). As in

Section 4.4, for the 3-state chain, we take the initial law of the signal X to be given

by its ergodic distribution, i.e. µ = law(X0) =
(
0.3, 0.3, 0.4

)
. For the 6-state chain,

we start X close to the boundary of the simplex, and take its initial law to be µ =(
0.25, 0.1, 0.06, 0.07, 0.22, 0.3

)
. The Wonham filter πt is initialized at π0 = µ in both

cases. We take γ to be the (in this case) time-independent manifold given by (5.38).

We choose as reference point θ̂ for γ the stationary distribution of X (expressed in

θ-coordinates), in both the 3-state and 6-state case. Since Y is 1-dimensional, γ must

also be 1-dimensional, and in particular the representation of γ in the space of natural

parameters is given by the line

γ̃ = {θ ∈ Rn : θ̂ + hξ, for ξ ∈ R}, (5.46)

for n = 2, 5. We now need to choose the projection operator (5.40). For simplicity,

we begin by fixing the metric to be the standard Euclidean metric in Rn.

At this point, it only remains to determine the initial conditions for the γ-

projection filter π̃t. In the 3-state case, since µ ∈ γ, we can start πt from µ as

well, so π̃0 = µ. In the 6-state case, π0 = µ /∈ γ, so we take π̃0 to be the projection

of µ onto γ, i.e. π̃0 ≈
(
0.79, 0.03, 0.07, 0.06, 0.01, 0.02

)
. We simulate 100 paths for

the Wonham filter and the projection filter, and compute their Hilbert errors. In Fig-

ure 5.1 we plot the results. As we have already discussed extensively in Section 3.3.4

and Section 4.4, we know that our error bounds are far from tight, mostly because our

contraction rate is far too low for how fast the stability error of the filter contracts

in reality. However, we see that the γ-projection filter performs well, in both the

examples we consider.

We now consider examples in slightly higher dimensions. We take a 10-state and

a 20-state Markov chain, with randomly generated transition matrices Q and sensor

functions h. We take their initial law µ also to be randomly sampled, from S9 and

S19 respectively. We implement the γ-projection filter in each case, projecting µ on

γ to obtain the initial conditions for π̃t. In Figure 5.2 we plot a realization of the
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Figure 5.1: For dimensions n = 2, 5, we test our error bounds from Theorem 5.5.2
against the Hilbert error between the Wonham filter and the γ-projection filter. In
each case, we plot 100 realizations of the Hilbert projective errorH(πt, π̃t) (faded, light
blue) and of the ODE bound given by 4 arctanh(ut), where ut solves (5.44) (faded,
fuchsia). We highlight one sample path of the Hilbert error at random, together with
its corresponding pathwise bound. In blue and purple we plot the sample means of
the errors and of the bounds.

Hilbert error between the Wonham filter and the γ-projection filter for each of this

systems. The performance of the γ-projection filter, as expected, is worse then in the

previous examples, although the Hilbert error does not change much in magnitude

from the 9- to the 19-dimensional case. Our error bounds, sadly, become virtually

useless.

Figure 5.2: For dimensions n = 9, 19 we plot a realization of the Hilbert error (blue)
between the Wonham filter and the γ-projection filter, and of the the ODE bound
given by 4 arctanh(ut), where ut solves (5.44) (purple).

Given these numerical results, there are a few approaches that we might take

to try and make the γ-projection filter a viable alternative to the Wonham filter in
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high dimension. The main idea is to systematically enlarge the submanifold γt so

that the error bounds stay within a certain acceptable range. One way we might do

this is to sample a few points at random from γt and to compute, at each of these

points, the error of the projection operator (5.29). Running a PCA algorithm over the

resulting error vectors, we can then select the directions along which the projection

error is largest, and add them to γt. Note that this procedure can be done offline,

before starting to run the projection filter, or adaptively: we can run the projection

filter on the primary submanifold γt for a short amount of time, keeping track of the

projection errors, and then add directions to γt based on a PCA on the projection

errors at points of γt that the projection filters has actually visited.

We plan to implement this method, and variations of it, in the near future, and test

it for high-dimensional problems. For now, we conclude the thesis with a geometric

remark, as a final nod to the Hilbert projective metric, which has been such an

instrumental part of the thesis.

Our work in this final chapter has focused on the use of Riemannian projections

to construct projection filters. However, this is somewhat at odds with our analysis

of the error using the Hilbert projective norm. A first reason for this is that, as

the ball in the Hilbert geometry is not strictly convex, one cannot define a unique

minimal-distance projection in Hilbert distance. We illustrate this issue in Figure

5.3, where we see (in red) the projection of a point P on a variety of subspaces l –

in the latter two examples, there is an interval of points on l equidistant from P in

the Hilbert geometry. A second reason is to better connect with existing work – the

analysis of the three projection methods we have considered is only in the context of

Riemannian manifolds. A final reason is computational, as there are simple, explicit

methods of computing projections in inner product spaces, which can then be applied

in a Riemannian context.

Nevertheless, the fact that we focus on the Hilbert geometry may suggest that

alternatives to the Euclidean inner product are appropriate. Considering the apparent

geometry of the Hilbert ball, we see that an ellipsoid with primary axis given by the

vector 1 = (1, 1, 1), and all other axes symmetric may form a good approximation

to the Hilbert ball. In fact, for 2-dimensional θ, the ellipse can be chosen to pass

through all six vertices of the Hilbert ball. In higher dimension it can be chosen

as the minimal ellipse of this type containing (or equivalently contained within) the

Hilbert ball. We illustrate this ellipse in green in Figure 5.3.

Using this ellipse, with the corresponding inner product, we can define an inner

product on θ vectors, and the metric this induces should approximate the Hilbert
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Figure 5.3: We compare the projections in Hilbert metric (red), Euclidean metric
(blue), and elliptic-H (green) of a point P ∈ R2 onto a line l with different slopes.
When l is parallel to the y-axis or the diagonal, the Hilbert projection is not unique.
The Euclidean and elliptic-H projections are not generally the same unless the slope
of l is 1 or -1. If the slope is −1, all three projections agree (not shown).

metric well, particularly when compared with the ℓ2 geometry (shown in blue in

Figure 5.3). We call this the elliptic-H inner product, and will consider this as an

alternative projection geometry in our future analysis.

120



Figure 5.4: Evolution in time of the Wonham filter πt and of the γ-projection filter
π̃t, shown side-by-side in S2 and in R2, together with the bounding Hilbert ball for
the error H(πt, π̃t), centered at π̃t, and with radius given by 4 arctanh(ut), where ut
solves (5.44).
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Appendix A

Auxiliary results

A.1 The maximum process of a family of

semimartingales

In this appendix we use an appropriate smooth approximation to study the dynamics

of the maximum of a family of continuous stochastic processes driven by a common

Brownian motion.

Recall the following smooth approximations of the maximum and the argmax.

Let α ∈ (0,∞) and let x = {xi}ni=0 be a sequence of real numbers. We define the

LogSumExp function LSEα(x) as

LSEα(x) =
1

α
log

∑
k

eαxk ,

and the SmoothMax function Sα(x) as

Sα(x) =

∑
j xje

αxj∑
k e

αxk
.

Given a family c = {ci}ni=0 of real-valued coefficients, we also define the Soft-

ArgMax (or SoftMax ) function Sarg
α (x, c) as

Sarg
α (x, c) =

∑
j cje

αxj∑
k e

αxk
.

We start by proving a few simple lemmata.

Notation. Let I be the argmax of x, i.e. I := {j ∈ N : xj = maxi∈N xi} ⊂ N.

Lemma A.1.1 (Convergence to maximum).

lim
α→∞

LSEα(x) = lim
α→∞

Sα(x) = max
i∈{0,...,n}

xi
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Proof. Let M = maxi∈{0,...,n} xi. We have that

M =
1

α
log eαM ≤ LSEα(x) ≤

1

α
log

(
(n+ 1)eαM

)
=

log(n+ 1)

α
+M,

and taking the limit as α → ∞ yields the result. For the SmoothMax function,

consider I, the argmax of x, and let |I| = d ≥ 1 be its size. Then

Sα(x) =
∑
j∈I

xj
d+

∑
k/∈I e

α(xk−xj)
+
∑
j /∈I

xj
1 +

∑
k ̸=j e

α(xk−xj)

=
dM

d+
∑

k/∈I e
−α(M−xk)

+
∑
j /∈I

xj
1 +

∑
k ̸=j
k∈I

eα(M−xk) +
∑

k ̸=j
k/∈I

eα(xk−xj)

α→∞−−−→M.

Lemma A.1.2. Let I be the argmax of x and |I| = d ≥ 1 be its size. Then

lim
α→∞

Sarg
α (x, c) =

1

d

∑
j∈I

cj.

Proof. Similar to Lemma A.1.1.

Lemma A.1.3 (Derivatives of LSEα(x)).

∂

∂xi
LSEα(x) =

eαxi∑
k e

αxk
,

∂2

∂x2i
LSEα(x) = α

∑
j ̸=i

eα(xi+xj)(∑
k e

αxk

)2 ,
∂2

∂xi∂xj
LSEα(x) = −α eα(xi+xj)(∑

k e
αxk

)2 .
Proof. Easy calculations.

Now consider the function

fα(x) =
∑
i

∂2

∂x2i
LSEα(x) = −

∑
i

∑
j ̸=i

∂2

∂xi∂xj
LSEα(x) = α

∑
i

∑
j ̸=i

eα(xi+xj)(∑
k e

αxk

)2 .
Lemma A.1.4. If maxi xi is unique, i.e. if ∃! j⋆ such that maxi xi = xj⋆, then

lim
α→∞

fα(x) = 0.
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Proof. Let xj⋆ := maxi xi. Since xj⋆ is the unique maximizer, there exists εj > 0 such

that xj = xj⋆ − εj for all j ̸= j⋆. Then we have

fα(x) = α

[∑
j ̸=j⋆

eα(xj⋆+xj)(∑
k e

αxk

)2 +
∑
i ̸=j⋆

eα(xi+x⋆
j )(∑

k e
αxk

)2 +
∑
i ̸=j⋆

∑
j ̸=i
j ̸=j⋆

eα(xi+xj)(∑
k e

αxk

)2
]

=
α(

eαxj⋆ +
∑

k ̸=j⋆ e
α(xj⋆−εk)

)2
[
2
∑
j ̸=j⋆

eα(2xj⋆−εj) +
∑
i ̸=j⋆

∑
j ̸=i

eα(2xj⋆−εi−εj)

]

=
α(

1 +
∑

k ̸=j⋆ e
−αεk

)2
[
2
∑
j ̸=j⋆

e−αεj +
∑
i ̸=j⋆

∑
j ̸=i

e−α(εi+εj)

]
,

and since εj is strictly positive for all j ̸= j⋆, in the limit as α → ∞ the negative

exponentials e−αεj dominate α, and fα → 0.

Lemma A.1.5. Consider the function

gα(x) = α
eαx

(1 + eαx)2
.

We have that gα(x) dx→ δ0 as α → ∞ in the sense of weak convergence of measures,

where δ0 denotes the Dirac mass at 0.

Proof. First, note that for all α > 0∫
R
gα(x) dx = 1.

Consider any continuous bounded function φ(x) ∈ Cb(R). For all ε > 0 there exists

a δ > 0 such that∣∣∣ ∫
R
φ(x)gα(x) dx− φ(0)

∣∣∣ ≤ ∫
R
gα(x)

∣∣φ(x)− φ(0)
∣∣ dx

≤ ε

∫ δ

−δ

gα(x) dx+

∫ −δ

−∞
αe−αδ

∣∣φ(x)− φ(0)
∣∣ dx

+

∫ ∞

δ

α

1 + eαδ
∣∣φ(x)− φ(0)

∣∣ dx
≤ ε+

∫ −δ

−∞
αe−αδ

∣∣φ(x)− φ(0)
∣∣ dx+ ∫ ∞

δ

α

1 + eαδ
∣∣φ(x)− φ(0)

∣∣ dx.
Taking the limit as α → ∞, the last two integrals go to 0. Hence the limit of the

left-hand side is less then ε for any ε > 0, so we are done.
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We now move on to studying the dynamics of the maximum of a family of continu-

ous semimartingales driven by a common Brownian motion. Note that we specifically

deal with semimartingales which have absolutely continuous finite variation part,

which implies that their local times have a bicontinuous modification in t ∈ R+ and

a ∈ R (see Definition 4.2.4). This is the case for all stochastic processes which can be

written as the solution of an Itô SDE with integrable drift and stochastic term driven

by a semimartingale with absolutely continuous finite variation.

Consider a family of R-valued continuous semimartingales Xt = {X i
t}ni=0 with

dynamics

dX i
t = bit dt+ σi

t dBt, (A.1)

where bit and σi
t are (real, predictable, stochastically integrable) drift and diffusion

coefficients for all i = 0, . . . , n, and Bt is a standard Brownian motion.

We apply Itô’s Lemma to derive the dynamics of LSEα(X ·)(t) as

dLSEα(X ·)(t)

=
n∑

i=0

eαX
i
t∑

k e
αXk

t

dX i
t +

1

2

n∑
i=0

n∑
j=0

αeαX
i
t

(
δij∑
k e

αXk
t

− eαX
j
t

(
∑

k e
αXk

t )2

)
d⟨X i

· , X
j
· ⟩t

=
n∑

i=0

eαX
i
t∑

k e
αXk

t

bit dt+
n∑

i=0

eαX
i
t∑

k e
αXk

t

σi
t dBt +

1

2
fα(X·,σ·)(t) dt, (A.2)

where we have written δij for the Kronecker delta and defined the function

fα(X·,σ·)(t) := α
∑
i

∑
j ̸=i

eα(X
i
t+Xj

t )(∑
k e

αXk
t

)2 ((σi
t)

2 − σi
tσ

j
t

)
. (A.3)

We rewrite (A.2) in integral form as follows, for all s ≤ t,

LSEα(X ·)(t) = LSEα(X ·)(s) +

∫ t

s

Sarg
α (X·,b·)(r) dr +

∫ t

s

Sarg
α (X·,σ·)(r) dBr

+
1

2

∫ t

s

fα(X·,σ·)(r) dr. (A.4)

We are interested in the limit of the above when we send α to infinity. For each

time t, define the argmax of Xt by It = {j ∈ N : Xj
t ≥ X i

t ∀i ∈ N}. Since

Sarg
α (X·,b·)(r) ≤ maxi b

i
t, and b

i is integrable for all i by assumption, we can apply

dominated convergence to yield

lim
α→∞

∫ t

0

Sarg
α (X·,b·)(s) ds =

∫ t

0

1

|Is|
∑
j∈Is

bjs ds.
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Similarly, maxi σ
i
t is integrable against Bt, so we can apply dominated convergence

for stochastic integrals and get

lim
α→∞

∫ t

s

Sarg
α (X·,σ·)(r) dBr =

∫ t

s

1

|Ir|
∑
j∈Ir

σj
r dBr.

The last integral on the right hand side of (A.4) is trickier to deal with.

Proposition A.1.6. Consider a family of continuous semimartingales Xt = {X i
t}ni=0

with dynamics given by (A.1). Let fα be defined as in (A.3). Then for all s ≤ t

lim
α→∞

∫ t

s

fα(X·,σ·)(r) dr ≤
∑
i

∑
j>i

(
L0
t (X

i
· −Xj

· )− L0
s(X

i
· −Xj

· )
)

a.s.

Proof. Exploiting symmetry, we start by rewriting fα(X·,σ·)(t) as

fα(X·,σ·)(t) =
1

2
α
∑
i

∑
j ̸=i

eα(X
i
t+Xj

t )(∑
k e

αXk
t

)2 (σi
t − σj

t

)2
,

and hence note that the last integral on the right-hand side of (A.4) is always positive.

Moreover, with gα as in Lemma A.1.5,

αeα(X
i
t+Xj

t )(∑
k e

αXk
t

)2 =
α

2 + eα(X
i
t−Xj

t ) + eα(X
j
t−Xi

t) +
∑

k ̸=i,j

∑
l ̸=i,j e

α(Xk
t +Xl

t−Xi
t−Xj

t )

≤ αeα(X
i
t−Xj

t )

(1 + eα(X
i
t−Xj

t ))2
= gα(X

i
· −Xj

· )(t).

The occupation time formula (see e.g. [74, Chapter 6, Corollary 1.6]) yields

lim
α→∞

∫ t

s

fα(X·,σ·)(r) dr ≤ lim
α→∞

1

2

∫ t

s

∑
i

∑
j ̸=i

gα(X
i
· −Xj

· )(r)
(
σi
r − σj

r

)2
dr

=
∑
i

∑
j ̸=i

lim
α→∞

1

2

∫ t

s

gα(X
i
· −Xj

· )(r) d⟨X i
· −Xj

· ⟩r

=
∑
i

∑
j ̸=i

lim
α→∞

1

2

∫
R
gα(z)

(
Lz
t (X

i
· −Xj

· )− Lz
s(X

i
· −Xj

· )
)
dz

=
1

2

∑
i

∑
j ̸=i

(
L0
t (X

i
· −Xj

· )− L0
s(X

i
· −Xj

· )
)

almost surely, where the final equality relied on the weak convergence of gα(z) dz to a

Dirac mass at 0 by Lemma A.1.5. Note that the gα(z) are not compactly supported

(compare with Definition 4.2.4), but this is fine since the local time Lz
t (X

i
· −Xj

· ) is

bounded in z a.s. (see Barlow and Yor [11, Corollary 5.2.2]).
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A.2 Numerical experiments

In this appendix we provide some details about the simulations for the plots in Fig-

ure 3.2. For the sake of comparison between the different dimensions, we give the

rate matrix Q a fixed structure, and keep the contraction coefficient constant across

dimensions.

For n = 2, 20, 50, 100, we take the signal process X to be a Markov chain on n+1

states {0, . . . , n} such that if X is at state i at some time t, it will be equally likely

to jump to state i + 1 or i− 1, while it will only jump to state j ̸= i± 1 with much

lower probability. In other words, the chain switches quickly between a state and its

two closest neighbours, but it only mixes slowly with the states further away. We let

the jump rate from state i grow with the dimension of the chain: for n ≥ 3, we set

the off-tridiagonal entries of Q = (qij) to be 1, the upper and lower diagonals to be

n+ 1, and therefore the diagonal to be −3n, i.e.

(qij) =


n+ 1, if j ≡ i± 1 (mod n),
−3n, if j = i,
1, otherwise.

For n = 2, we simply take Q to be the symmetric matrix with −2 on the diagonal and

1 in the other entries. By fixing Q this way for all n, we have that the contraction

rate from Theorem 3.2.1 is λ = 2, and does not change across all dimensions.

The chain X has uniform stationary distribution, denoted by µ = ( 1
n
, . . . , 1

n
).

This is the point at the centre of the probability simplex Sn. We take law(X0) = µ.

Finally, we set the sensor function h ∈ Rn+1 to be a randomly generated vector such

that, for each i ∈ N, hi = zi + xi, where zi is a random integer in {−10, . . . , 10}, and
xi is a realization of a uniform random variable in [0, 1].

The initial condition for the optimal filter πt is π0 = µ. The ‘wrong’ Wonham

filter π̃t is initialized at ν ̸= µ: to determine ν, we perturb µ by adding/subtracting
1
2
mini µi from all the components of µ according to n + 1 independent Bernoulli

random variables, and renormalizing.

Having fixed all these parameters, we generate 300 sample paths for the sig-

nal and the observation processes, and compute the optimal and ‘wrong’ Wonham

filters by solving the Zakai equation (see e.g. [10, Remark 3.26]) with a simple

Euler scheme and renormalizing after each step. We plot the realizations of the

Hilbert error H(πt, π̃t), together with the bounds from Theorem 3.2.1 and Proposi-

tion 3.3.11. Note that the bounds from Proposition 3.3.11 are path-dependent (to

compute them we need to observe π̃t), so for each realization of the Hilbert error
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we have corresponding realizations of the bounds from Proposition 3.3.11. They

are also expressed as bounds for tanh(H(πt, π̃t)/4) (as opposed to H(πt, π̃t)). Tak-

ing arctanh on both sides of (3.25), and multiplying by 4, yields that H(πt, π̃t) ≤
4 arctanh(ut), where ut solves (3.23); given the potential for the dynamics of u to

have very large Lipschitz coefficients, we use a tamed Euler scheme (see e.g. Hutzen-

thaler, Jentzen and Kloeden [48]) to solve the ODE numerically. Concavity and

monotonicity of tanh yield H(πt, π̃t) ≤ H(µ, ν)e−
∫ t
0 λ̃s ds from (3.27); we compute

λ̃t = 2mini ̸=k

(
qikqki +

∑
j ̸=i,k π̃

j
t min{qjiqik/π̃k

t , qjkqki/π̃
i
t}
)1/2

at each timestep and

perform numerical integration to plot the bound.
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on submanifolds: the Itô-vector and Itô-jet projections. Proceedings of the Lon-

don Mathematical Society, 119(1):176–213, 2019.

[7] J. Armstrong, D. Brigo, and E. Rossi Ferrucci. Projections of sdes onto subman-

ifolds. Information Geometry, pages 1–31, 2023.

[8] R. Atar and O. Zeitouni. Exponential stability for nonlinear filtering. Ann. Inst.
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[33] D. Crisan and B. Rozovskĭı, editors. The Oxford handbook of nonlinear filtering.

Oxford University Press, Oxford, 2011.

[34] P. de la Harpe. On Hilbert’s metric for simplices. In Geometric group theory,

Vol. 1 (Sussex, 1991), volume 181 of London Math. Soc. Lecture Note Ser., pages

97–119. Cambridge Univ. Press, Cambridge, 1993.

[35] B. Delyon and O. Zeitouni. Lyapunov exponents for filtering problems. In Applied

stochastic analysis (London, 1989), volume 5 of Stochastics Monogr., pages 511–

521. Gordon and Breach, New York, 1991.

[36] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo meth-

ods in practice. Statistics for Engineering and Information Science. Springer-

Verlag, New York, 2001.

131



[37] L. Dubois. Projective metrics and contraction principles for complex cones. J.

Lond. Math. Soc. (2), 79(3):719–737, 2009.

[38] P. Dupuis and R. S. Ellis. A weak convergence approach to the theory of large

deviations. Wiley Series in Probability and Statistics: Probability and Statistics.

John Wiley & Sons, Inc., New York, 1997. A Wiley-Interscience Publication.

[39] M. Emery. Stochastic Calculus in Manifolds. Universitext. Springer-Verlag Berlin

Heidelberg, 1 edition, 1989.

[40] S.N. Ethier and T.G. Kurtz. Markov processes: characterization and convergence.

John Wiley & Sons, 2009.

[41] G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic

model using monte carlo methods to forecast error statistics. Journal of Geo-

physical Research: Oceans, 99(C5):10143–10162, 1994.

[42] J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear

Algebra Appl., 114/115:717–735, 1989.

[43] B. Hanzon. A differential-geometric approach to approximate nonlinear filtering.

Geometrization of statistical theory, pages 219–223, 1987.

[44] M. Hazewinkel, S. I. Marcus, and H. J. Sussmann. Nonexistence of finite-

dimensional filters for conditional statistics of the cubic sensor problem. Systems

& control letters, 3(6):331–340, 1983.

[45] D. Hilbert. Ueber die gerade linie als kürzeste verbindung zweier punkte. Math-

ematische Annalen, (46):91–96, 1895.

[46] E. Hopf. An inequality for positive linear integral operators. J. Math. Mech.,

12:683–692, 1963.

[47] E. P. Hsu. Stochastic analysis on manifolds, volume 38 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2002.

[48] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. Strong convergence of an

explicit numerical method for sdes with nonglobally lipschitz continuous coeffi-

cients. The Annals of Applied Probability, 22(4):1611–1641, 2012.

[49] J. Jacod and A.N. Shiryaev. Limit theorems for stochastic processes. Springer,

2nd edition, 2013.

132
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