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Abstract
The Grad–Shafranov equation (GSE) for axisymmetric MHD equilibria is a nonlinear, scalar
PDE which in principle can have zero, one or more non-trivial solutions. The conditions for the
existence of multiple solutions has been little explored in the literature so far. We develop a
simple analytic model to calculate multiple solutions in the large aspect ratio limit. We compare
the results to the recently developed deflated continuation method to find multiple solutions in a
realistic geometry and right-hand side of the GSE using the finite element method. The analytic
model is surprisingly accurate in calculating multiple solutions of the GSE for given boundary
conditions and the two methods agree well in limiting cases. We examine the effect of plasma
shaping and aspect ratio on the multiple solutions and show that shaping generally does not alter
the number of solutions. We discuss implications for predictive modelling, equilibrium
reconstruction, plasma stability and disruptions.

Keywords: MHD, Grad–Shafranov equation, nonlinear PDEs, multiple solutions

1. Introduction

The Grad–Shafranov equation (GSE) for axisymmetric mag-
netohydromagnetic (MHD) equilibria is a nonlinear, scalar
partial differential equation (PDE) which in principle can have
no solution, one solution or multiple solutions. The topic of
solutions of the GSE has not been widely explored in the liter-
ature so far even though calculating the correct equilibrium
is vital to any stability or transport analysis that is carried
out. In particular, an improved understanding of the existence
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of multiple equilibria may give insights into plasma stability
and triggers for major disruptions, the avoidance of which is
key on the route to a fusion power plant. It may also have
implications for predictive scenario modelling or equilibrium
reconstruction.

The topic has been discussed in Solano [1] at a conceptual
level but no equilibria with multiple solutions were shown in
that paper. Indeed, that paper called for developments to allow
the calculation and understanding of multiple solutions of the
GSE. This paper answers that call. Solano [1] also raises the
important question of what happens when a solution branch
disappears as transport in the plasma changes the profiles.
We must assume that the initial plasma equilibrium is lost on
an Alfvénic timescale and the plasma will evolve to a new
state. It may transition to a different nontrivial equilibrium
(albeit at a much lower plasma pressure i.e. a major disrup-
tion), a periodic orbit, or a chaotic trajectory. The work by
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Berestycki and Brezis [2] discusses existence and uniqueness
but the results depend on restrictions to the profile shapes. A
mathematically focussed treatment of the problem has also
been given in Jeyakumar et al [3] but again without the cal-
culation of examples. Results based on a force-free plasma
may also provide insights to this problem, see Taylor [4] for
example.

An analytic demonstration of multiple solutions of the GSE
was given in Schnack [5], in the case of a free boundary equi-
librium surrounded by a perfectly conducting wall. This prob-
lem was shown to have either two solutions, one deeply con-
fined and the other shallow, or no solution. However, the equi-
librium is assumed to be a thin, vertically extended plasma.
This does not produce an equilibrium that it is easy to match
with a numerical model. Our analysis overcomes this limita-
tion, and provides solutions that match well with numerical
simulations.

Our analytic model is still an idealisation and does not
provide solutions to the complete GSE. We must understand
the solutions in realistic geometry to be sure of the relev-
ance to tokamak experiments. We therefore deploy a recently
developed algorithm called deflated continuation [6, 7] to find
multiple solutions in a full geometry, discretising the GSE
with the finite element method using Firedrake [8].

This paper is organised as follows. We describe the GSE
and give the weak form in section 2. We develop a new ana-
lytic model—assuming a large aspect ratio torus—which pro-
duces an example of no (non-trivial) solution, moving to two
solutions as a control parameter is varied. In section 3, we
describe deflated continuation, a method for finding multiple
solutions of PDEs. We apply this technique to the test case
that we developed and solved analytically in section 2 and find
good agreement. In section 4, we use deflated continuation to
understand the effect of aspect ratio and plasma shaping on
multiple solutions of the GSE. In section 5 we discuss possible
implications for this work and finally we give conclusions.

2. GSE

The GSE is very well known in magnetic confinement fusion.
It is used ubiquitously, but it is important to understand when
multiple solutions (or non-existence of non-trivial solutions)
may occur and the possible consequences.

In a non-rotating plasma the GSE is derived from force bal-
ance, namely J×B=∇p, where J is the plasma current dens-
ity, B is the magnetic field and p is the isotropic plasma pres-
sure (see, for example Goedbloed et al [9] or Freidberg [10] for
more details on the derivation). Using cylindrical coordinates,
see figure 1, the GSE becomes

∇2ψ − 2
R
∂ψ

∂R
≡ R

∂

∂R

(
1
R
∂ψ

∂R

)
+
∂2ψ

∂Z
=−F(ψ)F ′ (ψ)−R2p ′ (ψ) (1)

where ψ(R,Z) is the poloidal magnetic flux to be solved for, R
is the coordinate in the major radius direction, Z is the vertical

Figure 1. Cartoon of the coordinate system used for the
Grad–Shafranov equation.

coordinate, and F= RBϕ is the poloidal current stream func-
tion, where Bϕ is the component of the magnetic field in the
toroidal direction.

The weak form of the GSE is to find ψ ∈ H1(Ω) such that

ˆ
1
R
∇ψ ·∇ξ dΩ=

ˆ [
µ0Rp

′ +
FF ′

R

]
ξ dΩ for all ξ ∈ H1 (Ω) ,

(2)

where Ω is a bounded Lipschitz domain, ξ is the test function,
p ′ = dp(ψ)

dψ and F ′ = dF(ψ)
dψ .

The functions p(ψ) and F(ψ) are specified in this problem.
These profiles could in principle be the output of a transport
model. The pressure, p, is generally always a monotonically
decreasing function. This means that p′ will be negative across
the whole plasma. There may be regions of large gradient and
possibly very small gradient. The function FF′ can be both
positive and negative and so the right-hand side may change
sign in the domain.

2.1. An analytic model with multiple solutions

We assume a large aspect ratio toroidal plasma. Specifically,
we assume that the radius of the magnetic axis, R0, is much
larger than the minor radius, a, so that R0 ≫ a. In this case we
see that the 2

R
∂ψ
∂R term can be ordered small compared to the

other terms in (1). This results in the Grad–Shafranov oper-
ator reducing to a Laplacian on the left hand side. If we now
move to a cylindrical coordinate system with the axis along
the axis of the plasma, (R0,Z0), and we assume poloidal sym-
metry then we can reduce the problem to one dimension. We
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also assume that at sufficiently large aspect ratio the flux sur-
faces are concentric, nested tori which coincide with the sur-
faces of constant radius, and that the right-hand side is a pure
function of ψ. This is reasonable since at large aspect ratio the
variation in R over the minor radius will be small. The theory
of cylindrical equilibrium is well known. This is equivalent to
using the βp ≈ 1, ϵ≪ 1 expansion of the GSE given in [10].
This simple model will allow us to explore multiple solutions
of the GSE and provide test cases for comparison to numerical
simulations.

In cylindrical coordinates, assuming no poloidal variation,
(1) becomes

∂2ψ

∂r2
+

1
r
∂ψ

∂r
= G(ψ) (3)

where r is the minor radius variable and G(ψ) is a function
of ψ which mimics the behaviour of the right-hand side. This
function is often monotonically decreasing in physical cases
but this does not necessarily hold.

Clearly if G is a constant then the differential equation
is linear, and a unique solution will exist. If G(ψ) = λψ,
then a unique solution exists whenever λ is not an eigen-
value. However, ifG is nonlinear then the differential equation
becomes nonlinear and thus permits more interesting beha-
viour of solutions. As an example, we take a tanh function

G(ψ) =
C
2

[
1− tanh

(
ψ−ψp
w

)]
(4)

where we take C and w as parameters that can be varied. This
function allows us to use a continuous function to investigate
the situation where we have a linear pressure profile which
transitions to a flat pressure profile at a given value. In the
limit that w→ 0 we have a discontinuity which is the func-
tion that was used by Schnack [5]. Figure 2 shows this function
for C=−5, ψp =−1 and w= 0.05. Other nonlinear functions
may also produce multiple solutions.

We use a shooting method to find the solutions of
equation (3), fixing ψp =−1 and w= 0.05, enforcing the
boundary condition that ψ(2) = 0. As we vary C, we find
that for C< 2.7 there is only one solution, the trivial solu-
tion. However, forC> 2.7 we find that there are two additional
solutions. The bifurcation diagram is shown in figure 3.

We can also produce a bifurcation diagram by varying w
and keeping C= 2.9 fixed. Figure 4 shows that there are three
solutions when w< 0.88 and only one when w> 0.88.

We can also cast the problem of finding multiple solutions
in a different way. We can ask that we have a fixed value of
central poloidal flux and investigate the equilibria at differ-
ent values of another control parameter. We have varied the
value of w with C= 2.9 and fixed values of ψ0 to confirm that
we can find two solutions, one with high w and one with low
w. This is a situation more akin to equilibrium reconstruction,
especially with magnetics only, where measurements of the
internal plasma profiles are not used.

Figure 2. Plot of the tanh function with C=−5, ψp =−1 and
w= 0.05.

Figure 3. Bifurcation diagram for our toy model varying the
parameter C with w= 0.05 and ψp =−1. The trivial solution
always exists but at C≈ 2.7 two new solutions appear at a fold
bifurcation and persist as C increases.

3. Deflated continuation

Our analytic model is useful for insight, but the GSE cannot
generally be reduced to a one dimensional equation for solu-
tion in this way. It is fundamentally a two dimensional prob-
lem. In this section, we will apply an algorithm of bifurcation
analysis, deflated continuation [6, 7], to findmultiple solutions
of the GSE in full geometry. The algorithm is applied to a
finite element discretisation implemented in Firedrake [8, 11].
Firedrake lets users write the variational formulation of their
problem in a domain-specific language. It also allows users to
flexibly construct finite element spaces for use in Galerkin’s
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Figure 4. Bifurcation diagram for our toy model varying the
parameter w with C= 2.9 and ψp =−1.0. The most negative
solution is always there but at w≈ 0.88 two new solutions appear at
a fold bifurcation and persist as w decreases.

method applied to this variational formulation 3. We will com-
pare the results from deflated continuation with our analytic
model in appropriate limiting cases.

The aim of the deflated continuation algorithm is to com-
pute the solutions of an equation

f(u,λ) = 0, (5)

where u is the solution of a PDE and λ ∈ R is a parameter
on which the PDE depends. For each parameter value, each
known solution branch is continued to that parameter, and
then the nonlinear problem is modified so that those solutions
are excluded (the solutions are deflated, just as known roots
of polynomials can be deflated by dividing by the appropri-
ate factor). The algorithm then seeks solutions of the modified
nonlinear problem; if any are found, they are new solutions of
the original problem. Importantly, this approach can compute
disconnected bifurcation diagrams, like those already presen-
ted in figures 3 and 4.

We now apply deflated continuation to our model
equation (3). We take the weak form of (3) and approx-
imate its solutions with a piecewise linear finite element
method on a disk (radius, a= 2 and origin (0,0) in two
dimensions). We then use deflated continuation (as imple-
mented in the Defcon library4) to explore the solutions of
the problem. We have solved the cylindrical variant of the
problem, i.e. without toroidal effects, in these cases so R0 has
no effect.

Figures 5–7 show three solutions that have been calculated
for C= 2.9 with this procedure. The central value of the flux

3 https://firedrakeproject.org.
4 https://bitbucket.org/pefarrell/defcon.

agrees between the two methods to 0.9% or better. This excel-
lent agreement gives confidence to move forward to applying
the same computational methods to the full GSE. It should
also be noted that the finite element solutions and the shooting
method are both well converged. These are real multiple solu-
tions of the reduced GSE arrived at by completely different
numerical methods and not numerical artifacts.

An issue to note is that deflated continuation is not guar-
anteed to find all the solutions of the equation. We observed
failure of the algorithm if there is a discontinuity or too sharp
a gradient in the function G. For the case in [5] with a dis-
continuity, our code only finds one non-trivial solution unless
a very specific initial guess is given. In the example above if
w< 0.1 then again our code does not find the roots. However,
forw⩾ 0.1 there is excellent agreement between deflated con-
tinuation and the results from the shooting method. We bear
this caveat in mind as we proceed to a more realistic case. It
should be noted that the shooting method is very robust.

4. Multiple solutions of Grad–Shafranov

In section 3 we showed excellent agreement between our ana-
lytic model and finite element simulations for a plasma with
circular cross-section. We now apply the same computational
techniques to solve the problem with a more complete geo-
metry to understand the effects of aspect ratio and plasma
shaping on the multiple equilibria. In this section we will
assume that the profile of F is a constant so that FF ′ = 0 and
that the pressure has the profile we used previously,

p ′ (ψ) =
C
2

[
1− tanh

(
ψ−ψp
w

)]
. (6)

This represents a plasma that has a constant gradient of pres-
sure with flux up to the value ψp and then transitions to zero
after that. The weak formulation of the problem that we now
solve then becomes: find ψ ∈ H1(Ω) such that

ˆ
1
R
∇ψ ·∇ξ dΩ=

ˆ [
Cµ0R
2

[
1− tanh

(
ψ−ψp
w

)]]
ξ dΩ

for all ξ ∈ H1 (Ω) , (7)

since FF ′ = 0 if F is taken as a constant. The boundary con-
dition is that ψ= 0.

The difference between equation (7) and (the weak form of)
(3) is the 1/R term that appears in the left hand side of (7) and
also the factor of R that appears on the right hand side of (7).
These extra geometric terms break the poloidal symmetry of
the plasma which exists in the cylindrical case but not in the
toroidal case.

We first study the effect of aspect ratio. We take a circular
cross section plasma of minor radius, a= 1, and change the
major radius R0 with a fixed value of w= 0.18 and R2

0C= 6.
The results are plotted in figure 8. We see that the aspect ratio
makes little difference to the number of solutions in this case
and also to their values. It has the strongest effect at small
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Figure 5. First of the non-trivial solutions of (3) with C= 2.9 and w= 0.7.

Figure 6. Second of the non-trivial solutions of (3) with C= 2.9 and w= 0.7.

aspect ratio when the variation of R across the plasma cross
section is relatively largest. The results of the two approaches
converge at large aspect ratio.

We next study the effect of plasma shaping at low aspect
ratio. We parametrise the plasma shape with the standard
elongation, κ, and triangularity, δ as defined by

R= R0 + acos(θ+ δ sin(θ)) , (8)

Z= aκsin(θ) , (9)

where θ is the poloidal angle. We used Gmsh [12] to
generate appropriate triangular meshes of these geomet-
ries. We show an example of the mesh and solution for a
plasma with triangularity δ= 0.3 and elongation κ= 2 in
figure 9.

We fix R0 = 3 for this computation and vary elonga-
tion, figure 10 and triangularity, figure 11. We see that

5
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Figure 7. Third of the non-trivial solutions of (3) with C= 2.9 and w= 0.7.

Figure 8. Solutions of (7) with circular cross-section as the aspect ratio of the torus is varied. The central value of poloidal magnetic flux
(ψ0) for the three solutions is shown.

plasma triangularity does not have a strong influence on
the number of solutions. However, for small enough elonga-
tion the two solution branches coalesce and disappear. This
is not in a regime where tokamaks are normally operated

as high elongation has other benefits. The strong effect of
increasing elongation on the lower solution is partly due to
the plasma cross sectional area changing significantly with
elongation.

6
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Figure 9. Example of solution mesh, generated with Gmsh, and solution, computed by Firedrake/Defcon, for a plasma with elongation
κ= 2, triangularity δ= 0.3, and major radius R0 = 3.

Figure 10. Scan of plasma elongation, κ, with fixed major radius R0 = 3 with fixed minor radius a= 1. The central value of poloidal
magnetic flux (ψ0) for the three solutions is shown. Two solution branches coalesce at around κ= 0.9 and only the trivial solution exists for
smaller values of elongation.

Figure 11. Scan of plasma triangularity major radius R0 with fixed minor radius a= 1 with circular cross section which amounts to a scan in
aspect ratio of the torus. The central value of poloidal magnetic flux (ψ0) for the three solutions is shown.

7
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5. Discussion and conclusions

We have presented methods to calculate multiple tokamak
equilibria solutions of the GSE and demonstrate their use in
relatively simple cases. It should be noted that if there is non-
linearity in the profiles used in the GSE then there are likely to
be multiple solutions. The results are generic in the mathemat-
ical sense.We have shown that as system parameters are varied
we can lose equilibrium solutions. One immediate question is
what will happen to the plasma in this case. If the plasma is no
longer in an equilibrium state then it will evolve on anAlfvénic
timescale until it reaches a new equilibrium, or transitions to
a periodic orbit, or to a chaotic orbit. In principle, this may
result in a complete loss of the plasma, but this is not seen in
experiments where the initial stage of a disruption is the loss
of the thermal energy, the thermal quench. The plasma that is
left is much cooler and broadly force-free. It may be that some
types of major tokamak disruption are caused by such a loss
of equilibrium. For example, if we follow the highest confine-
ment equilibrium branch in figure 3 and we say the parameter
C is continuously dropping (as may occur in experiment as a
result of plasma transport) the equilibrium will be lost once
C< 2.7 and this would be experienced as a major disruption
experimentally. We will attempt to make more detailed com-
parisons to experimental results in future work.

A key part of understanding tokamak plasmas is equilib-
rium reconstruction where diagnostic measurements are used
to constrain an equilibrium model to infer the experiment-
ally realised equilibrium. There are various ways this is done,
for various purposes. If only magnetic diagnostic data is used
then there are no measurements of the internal profiles. In
this case highly simplified profiles are used for FF′ and p′

which strongly constrains the potential shapes of the recon-
structed equilibria. We have shown that two very different
profile shapes can produce the same flux on axis. If internal
measurements of the plasma are used, for example from MSE
or Thomson Scattering diagnostics, in what is often called
kinetic equilibrium reconstruction, then the profile shapes are
given more freedom by using more basis functions. However,
there are more measurements to constrain the final equilib-
rium. Extreme care still needs to be taken here to ensure that
the basis functions used do not overly constrain the potential
profiles or generate spurious detail. It is important to ensure
that the choice of basis functions for equilibrium reconstruc-
tion does not determine the conclusions of studies of the sta-
bility and transport of a given plasma.

The effect of multiple equilibria should be evaluated in pre-
dictive modelling where an equilibrium model is coupled to a
transport model. These two are evolved in time to simulate a
tokamak pulse, therefore ramping up the current to flat top and
then ramping down. It may be imagined that in this process
bifurcation points will be passed where an equilibrium model
only finds one of the available equilibrium branches. It may be
that an improved shot evolution can be found (or a deleterious
one avoided) if all bifurcation points are properly understood.
The work done on theoretically predicting super-H mode [13]
may give indications of how this should be done.

A further observation is that our analytic model is more
accurate and robust than we might expect. This means that
we can use this method to explore a wide range of potential
profile shapes to find out when multiple solutions might be
important. We may also use simple transport models along
with this analytic model to understand when equilibria may
be lost. This could improve our understanding of some types
of major disruption or how we can plot a path to higher per-
formance plasmas.

We have assumed that the plasma here is axisymmetric,
indeed this is required as we are using the GSE. However, if
we have a non-axisymmetric model of the plasma we could
compute not only additional axisymmetric equilibria but also
non-axisymmetric states that could be thought of as saturated
instabilities such as the helical core mode [14]. This may also
be the topic of further work.

In this work we have answered a call to develop techniques
to calculate multiple solutions to the GSE. We have provided
both analytical and numerical techniques and shown that they
agree in the correct limits. We have shown that even in a rel-
atively simple model that bifurcation points can occur. If we
have more complicated profiles of FF′ and p′ then we would
expect more of this behaviour. These tools can be exploited in
future work to potentially improve our understanding of dis-
ruptions and to to find routes to improved performance in toka-
mak plasmas.
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Appendix

In this appendix we demonstrate that the β and plasma cur-
rent are relevant to practical situations for the large aspect ratio
case. The theory of cylindrical equilibrium is well known. We
reproduce some results here for reference based on the βp ≈ 1,
ϵ≪ 1 expansion of the GSE given in Freidberg [10]. We start
with the equations of static ideal MHD

J×B=∇p, (10)

∇·B= 0, (11)

5 See also https://doi.org/10.14468/yk04-h275.
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J=
1
µ0

∇×B. (12)

We assume cylindrical symmetry so all variables are inde-
pendent of θ and z. We can then calculate the current density

µ0J=
[
0,−dBz (r)

dr
,
1
r
d
dr

(rBθ (r))

]
, (13)

and so the radial component of the static momentum equation
becomes

d
dr

[
p+

(
B2
θ +B2

z

)
2µ0

]
=− B2

θ

µ0r
, (14)

where we may specify two of the profiles, i.e. Bθ and p(r) with
the third, Bz(r) in this case, being determined by these two.

We may multiply equation (14) by π r2 and integrate from
0 to a to get

⟨p⟩+
⟨
B2
z

2µ0

⟩
−
B2
z (a)

2µ0
− B2

θ (a)
2µ0

= 0, (15)

where

⟨X⟩= 1
πa2

ˆ a

0
2π rX(r)dr (16)

is the average value of X(r) over a cross-section of radius a.
The ratio of the thermal pressure to the magnetic pressure

is the plasma β:

⟨β⟩= 2µ0⟨p⟩
B2 (a)

. (17)

The poloidal and toroidal parameters are defined as

βp =
2µ0⟨p⟩
B2
θ (a)

, βt =
2µ0⟨p⟩
B2
z (a)

. (18)

We have assumed for simplicity in this paper that Bz is a con-
stant so (15) results in βp = 1.

A.1. Safety factor profile

The twist of the magnetic field lines is captured by the safety
factor which in a cylindrical screw pinch is

q(r) =
rBz (r)
R0Bθ (r)

. (19)

In this approximation we have [10]

Br0 (r) = 0, (20)

Bθ0 (r) =
1
R0

dψ0

dr
, (21)

Bz0 (r) =
−F(ψ0)

R0
. (22)

We have assumed that Bz is a constant so

q(r) =
rBz
ψ ′
0
. (23)

A.2. Toroidal current profile

We need an expression for the toroidal current Jϕ which can
be obtained from the derivation of the GSE (and in the βp 1,
ϵ≪ 1 expansion of the GSE given in Freidberg [10])

−µ0R0Jz (r) =∇2ψ =−µ0R
2
0
dp
dψ

− 1
2
dF 2

dψ
, (24)

and so in our case, given we have taken F as a constant,

Jz (r) = R0
dp
dψ

=
R0C
2

[
1− tanh

(
ψ−ψp
w

)]
. (25)

A.3. Equilibrium scaling

The equilibrium can be scaled following the rules given in
Lutjens et al [15]. These allow us first to specify the value
of the q profile at one radial location, therefore allowing us to
move the q profile up and down but not to change its shape.We
can also scale the value of ψ and so we can alter the toroidal β.
We cannot alter the poloidal β or the internal inductance with
these scalings. The first rescaling is

ψnew = α1ψold, Fnew = α1Fold, pnew = α2
1pold, (26)

and the second rescaling is

F 2
new = F 2

old +α2. (27)

We use (27) first to pick the q-profile and then (26) is used
to set the βt and toroidal current. We have used the scalings
to produce a set of equilibria with pressure profiles shown in
figure 12 and safety factor profiles shown in figure 13. These
show that the pressures and safety factor profiles for these
simple cases are not pathological in any sense. The equilib-
rium scaling shows that suitable equilibria can always be found
and that when a bifurcation point exists the two equilibria can
always be scaled to be sensible.

9
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Figure 12. Plot of the pressure profiles for the three solutions of the large aspect ratio GSE with C= 2.9.

Figure 13. Plot of the safety factor profiles for the three solutions of the large aspect ratio GSE with C= 2.9.
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