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Abstract

In a broad class of non-linear representative agent models, represented by a system
of difference equations, we replace rational expectations with linear forecast models
conditioning on a predetermined set of regressors. Within this framework, a restricted
perceptions equilibrium (RPE) corresponds to a forecast rule that is optimal within
that class of models. Local uniqueness of a stationary rational expectations equilib-
rium (REE) near the non-stochastic steady state is shown to guarantee the existence,
uniqueness and E-stability of an RPE local to that steady state. A benchmark RBC
model with government spending shocks illustrates the theoretical results.
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1 Introduction

Nonlinear dynamic stochastic general equilibrium (DSGE) models comprise the scaffold-
ing of modern macroeconomics, and here the imperialism of the rational expectations hy-
pothesis manifests quite clearly: these models, unless otherwise specified, take rational
expectations equilibrium (REE) as their solution concept. In particular, agents are assumed
to make forecasts optimally using the economy’s endogenous conditional distributions,
and to make decisions optimally conditional on their forecasts; and then, magically, these
decisions aggregate to form realizations of the endogenous variables consistent with the
endogenous distributions that formed the basis for the agents’ decisions.

Implicit in an REE are thus two intertwined assumptions: that agents know the true
conditional distribution of the variables they need to forecast; and, since this distribution
depends on the expectations and resulting actions of other agents, that the economy is in a
model consistent equilibrium in which expectations are self-fulfilling. Put differently, it is
not in general rational to have “rational expectations” unless (almost) all other agents have
rational expectations. The equilibrium aspect of REE then naturally raises the stability
question of how agents could come to coordinate on an REE.

The mental gymnastics required of economic agents in rational expectations (RE) models
does not square with experience: even professional forecasters use estimated models, with
parsimonious linear models often competing with, if not out-classing, state-of-the-art non-
linear models. This same experience suggests a natural alternative to RE: assume agents
populating a DSGE economy use simple linear forecast rules to form expectations, but
otherwise act in a manner analogous to their rational counterparts. In particular, these
agents must make decisions taking into account constraints and prices induced by a non-
linear world. Furthermore, if agents, like professional forecasters, are assumed to update
the estimated coefficients of their forecast rules over time, using recursive least squares and
newly observed data, then this approach provides a natural way to assess the stability of the
resulting equilibrium.

There is an extensive literature that has studied the stability of REE using least-squares
adaptive learning (AL), e.g. Bray and Savin (1986), Marcet and Sargent (1989b) and Evans
and Honkapohja (2001). This literature has focused either on multivariate linear or lin-
earized models or on specific nonlinear models in which the REE have simple closed form
solutionsﬂ This has left a major gap in the literature, discussed below, concerning the
application of adaptive learning in prominent nonlinear dynamic stochastic general equi-
librium models. This paper aims to fill this gap by studying equilibria that can arise when
agents implement their nonlinear decision rules based on linear forecast models.

In the same manner that adaptive learning in a linearized model can allow agents to

IFor example, results on convergence to steady states, cycles or finite-state Markov sunspot solutions have
been obtained in Woodford (1990), Evans and Honkapohja (1994), Evans and Honkapohja (1995). See also
Evans and McGough (2020b).



coordinate on a rational expectations equilibrium, by recursively updating their linear fore-
casting rule in a non-linear environment we expect that agents could coordinate on an
equilibrium restricted to those linear forecasting rules. The equilibrium follows the same
logic as the REE. The agent’s use of a given linear forecast model determines a data gener-
ating process for the economy, and by projecting onto the span of the agent’s regressors an
optimal linear forecast model is determined. The natural solution concept for this economy
is a restricted perceptions equilibrium (RPE), which requires that the linear forecast model
used by agents aligns with the optimal linear forecast model of the economy. Like an REE,
an RPE should be viewed as a Nash equilibrium concept: the associated forecast model is
optimal only if (almost) all other agents in the economy are also using it.

The “restricted perceptions” terminology indicates that the forecast model used by agents
does not nest RE forecast rules. In general, this can arise naturally in various ways that are
familiar to applied econometricians. These include omitted explanatory variables, parsimo-
nious lag structures and misspecified functional forms. In many cases, the formal existence
of an RPE can be established In the current paper, the RPE arises because agents are using
a linear forecasting model in a non-linear world, and the gap in the literature, mentioned
above, has been the absence of RPE existence results in nonlinear models that include
lagged endogenous variables, e.g. real business cycle (RBC) models and DSGE models
that incorporate capital accumulation, habit persistence and/or inflation inertia. The first,
central, contribution of this paper is to provide tools to address this omission, and to show
how they can be applied to nonlinear DSGE models in which agents use linear forecasting
rules.

The second contribution of this paper is to obtain appropriate conditions, within a non-
linear DSGE framework, for stability of an RPE under adaptive learning. In contrast with
REE of nonlinear models, RPE, due to their explicit functional form, are amenable to sta-
bility analysis. Under AL the forecasting models used by agents are updated over time
as new data become available, just as is done in linear models. If, over time, the forecast
models of agents converge in an appropriate sense to the optimal forecast model, then the
RPE is stable, and can be viewed as an emergent outcome of a natural learning processﬂ
In linear REE models, stochastic approximation results can be used to show, under suit-

2The term RPE was introduced in Evans and Honkapohja (2001) but the concept is older. Branch (2006)
provides a nice survey. In the context of linear models, Marcet and Sargent (1989a), Sargent (1991), Evans,
Honkapohja, and Sargent (1993) and Bullard, Evans, and Honkapohja (2008) study forecast rules that omit
relevant lags or dynamics. In Branch and Evans (2006a), Branch and Evans (2007) and Adam (2007) fore-
cast models omit relevant explanatory variables, while Evans and McGough (2020b), Evans and McGough
(2020a) focus on misspecified functional form. Evans and McGough (2018) consider the case in which ex-
ogenous variables are unobserved and use autoregressions or VARs as forecast models. Branch, McGough,
and Zhu (2021) combine non-observability of exogenous shocks with the presence of observable sunspot
processes to demonstrate the existence of stable RPE even in models that are determinate under RE. Hommes
and Zhu (2014) introduce the concept of behavioral learning equilibria, which casts agents as using sim-
ple AR(1) forecast models in complex economic environments. RPE have also been central in a number of
empirical DSGE models, e.g. Slobodyan and Wouters (2012).

3For more on this view, see Sargent (2008).



able assumptions, the equivalence of stability under AL with the “expectational stability”
or “E-stability” conditions described in Evans and Honkapohja (2001)@ This is known as
the E-stability principle since it appears to hold generally even in cases where this equiv-
alence cannot be formally proved. In linear models, the E-stability conditions are readily
computable and can be applied to assess stability of RPEs under AL.

In this paper, for a broad class of DSGE models, we provide conditions guaranteeing
both existence and E-stability of an RPE local to a determinate, non-stochastic steady state.
Conditional on forecast model specification, uniqueness is also established. One version of
our results can be informally stated as follows: if the non-stochastic steady state of a DSGE
model is determinate then, provided the exogenous drivers have sufficiently small support,
there is a unique, E-stable RPE associated with the linear forecast model that conditions
on the same variables as the rational modelE] Because E-stability in general appears to
govern stability under AL even in settings where convergence cannot be formally proved,
our results provide a natural way to establish the attainability of the RPE.

The main results of the paper leverage a technical lemma that allows us to navigate the
complications introduced by lagged endogenous variables. To get a feel for the result, con-
sider the non-linear Markov process associated with the dynamics of an economy where
agents have a fixed forecasting rule. The lemma states that if the linearized dynamics are
asymptotically stationary then, provided the innovations have small support, the non-linear
Markov process will remain close to the linearized dynamics and will converge weakly to
a unique ergodic distribution. This limiting distribution is necessary to characterize the
projections which determine the optimal forecast model of the dynamic system and the re-
sulting function mapping agent’s forecast models to their optimal counterparts — the T-map.
The RPE is a fixed point of the T-map, and the properties of the asymptotic distribution of
the linearized dynamic are enough to guarantee existence and local uniqueness of this fixed
point and its E-stability.

After establishing these results for a general class of DSGE models, we use a bench-
mark real business cycle (RBC) model to examine RPE and compare them to REE. In our
model, government spending, financed by budget-neutral lump-sum taxes, serves as the
exogenous driver. We compare impulse response functions across three models: the lin-
earized REE, the RPE and the non-linear REE, the latter computed numerically by solving
the associated planner’s problem. We find that, compared to the linearized REE, the RPE
more closely matches the nonlinear REE. This is not surprising as the RPE incorporates all
of the non-linearities present in the economic environment. However, we emphasize that,
in our view, the importance of the RPE is not to provide a useful computational approxi-
mation to the REE. Instead, we treat the RPE as the appropriate equilibrium concept under
natural bounded rationality assumptions. This is, first, because agents are making decisions
based on plausible forecasting models; and, second, because the RPE in the RBC model

4See also Bray and Savin (1986) and Marcet and Sargent (1989b).
3i.e. those in the minimal state variable (MSV) solution.



is stable under adaptive learning, i.e. it can arise as an emergent outcome based on these
forecasting models.

With these results for the RBC model in hand we illustrate the additional implications
of the learning dynamics themselves when there is a structural change. Specifically we
consider an announced, but unanticipated, permanent rise in (mean) government spending.
Here, sharp departures from REE are observed in the learning dynamics: even though the
policy change is announced, agents must learn over time how to adjust their forecast model.
This leads to non-monotonic responses of consumption and capital en route to the new RPE.

The paper is structured as follows. We start by reviewing the literature in the follow-
ing subsection. Section 2 then provides our general formal framework, consistent with
standard representative-agent DSGE models. Under suitable assumptions we establish, for
sufficiently small bounded support of the exogenous shocks, that a locally unique RPE ex-
ists. Section 3 examines the nonlinear system under adaptive learning, specifically under
recursive least-squares updating of the coefficients of the linear forecasting rule, and es-
tablishes E-stability of the RPE. Section 4 adopts a standard RBC model to illustrate the
results, using a calibrated model to show learning dynamics for the RPE, to compare IRFs
for the REE, the linearized REE and the RPE, and to study the impact of structural change
on the RPE under learning. Section 5 concludes.

1.1 Related Literature

As emphasized in Sargent (1993) and Evans and Honkapohja (2001), there is a wide range
of alternative ways to model bounded rationality in a macroeconomic context. In models
with learning it can be useful to distinguish two distinct connected issues: key parameters
governing state dynamics may not be known, and the assumption that agents can solve
dynamic stochastic programming problems may be too strong.

Cogley and Sargent (2008) examine the first issue in a permanent-income model with
risk aversion in which income follows a 2-state Markov process with unknown transition
probabilities. They show that a fully optimal Bayesian decision-maker would require an
expanded state space as well as a finite planning horizon to make the problem tractable. A
second, less sophisticated approach, is to employ the “anticipated utility” model of Kreps
(1998), in which agents make decisions each period by re-solving their dynamic program-
ing problem based on current estimates of transition probabilities. This is boundedly ra-
tional, because agents ignore that their estimates will be revised in the future, but compu-
tationally simpler; in their set-up Cogley and Sargent found the fully optimal procedure
provided only a small improvement in decision-making.

Bayesian decision-making has also been implemented in asset-pricing settings, e.g. Adam,
Marcet, and Beutel (2017). Their agents are “internally rational,” in the sense that they have
a prior over variables exogenous to their decision-making that they update over time using



Bayes Law; however their beliefs need not be externally rational in the sense of agreeing
with the actual law of motion for these variables. Their simple choice of priors allows
agents to avoid the expanded state-space issues noted by Cogley and Sargent.

The anticipated utility framework has also been employed in adaptive learning set-ups
in which long-lived agents use least-squares learning to estimate and update their models
for forecasting, over an infinite horizon, variables exogenous to decision-making: see, e.g.,
Preston (2005) and Eusepi and Preston (2011). However, these implementations generally
rely on a linearized model.

While our focus is on RPEs that arise because agents use linear forecast models in non-
linear environments, as previously noted they also arise in other contexts. When agents are
concerned about time-variation in forecast-model parameters (perhaps because their mod-
els are parsimonious, i.e. underparameterized), the Kalman filter is a natural way to extend
the recursive least-squares learning approach. Prominent examples include Bullard and
Suda (2016), Evans, Honkapohja, Sargent, and Williams (2013), Slobodyan and Wouters
(2012), Sargent and Williams (2005), and McGough (2003).

The approach that we adopt in this paper is closest to the shadow-price learning frame-
work of Evans, Evans, and McGough (2022). In this setting infinitely-lived agents optimize
by solving a two-period problem based on the perceived shadow prices for the endogenous
state variables in the second period. This is an anticipated utility approach in which the
shadow prices for the second period encode benefits for entire future. For the general set-
tings they study, Evans, Evans, and McGough (2022) show, under suitable assumptions,
that if agents update over time their estimates of shadow price parameters they will learn to
optimize over timeﬂ

A related recent approach is McKay, Nakamura, and Steinsson (2017), which shows
that a simple model with incomplete markets and unemployment risk can generate a log-
linearized consumption Euler equation with a discount factor on expected consumptionm
Gabaix (2020) gives a behavioral rationale for this approach based on “cognitive discount-
ing,” in which RE forecasts of relevant variables exogenous to the decision maker are
shrunk geometrically toward their steady state values, and shows how to apply this in the
standard two-equation, one-step-ahead linearized setting of the benchmark New Keynesian
model. This approach has the advantage that computation of the equilibrium uses standard
techniques for solving RE models, but from our point of view is subject to the same cri-
tique as RE in that no account is given for how agents come to form the RE benchmark
from which they choose to deviate.

A closely related approach is value function learning. Evans, Evans, and McGough (2021) show how to
apply this in a qualitative choice labor search model.

"They study the implications of the discounted Euler equation approach for monetary policy forward
guidance in this and their companion paper McKay, Nakamura, and Steinsson (2016).



2 DSGEs

We begin our examination in an abstract dynamic environment, taking the form of a sys-
tem of expectational difference equations commonly associated with representative-agent
DSGE models. Systems of this type can be represented in the following formﬁ

O:EtF()’tH»)’t,ZnCt) (D
41 :h(YnZzaCz) (2)
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Here y; € R”" is the vector of contemporaneously determined endogenous (jump/choice)
variables, z; € R™ is the vector of predetermined endogenous (state) variables and §; € R/
is the vector of exogenous (state) variables. The exogenous state is assumed to follow a
VAR process with coefficient matrix p¢, long-run mean 5 , and exogenous shock process &
that represents the sole source of uncertainty in the economyﬂ Finally, o is a perturbation
parameter which controls the level of risk in the economy.

It may be helpful to have a simple model in mind as an example. In the Ramsey model
y can be taken as the vector of consumption (c), real interest rates (r) and real wages (w),
z can be taken as the capital stock (k) and { as the log TFP shock. The function 4 is
the law of motion for the endogenous state variable and, in the Ramsey model, can be
constructed from the resource constraint. Finally, the function F includes the remaining
equilibrium conditions of the model: the representative household’s Euler equation and the
no-arbitrage conditions of the firm.

In our general set-up, (I)-(3), the model’s primitives are F, h, Pe and the stochastic
properties of €. On these we make the following assumptions:

Assumptions A.

A.1 The innovations & are zero mean, i.i.d., with compact support & and measure . The
matrix p¢ has spectral radius less than one.

A.2 The functions F and & are twice differentiable.

A.3 There is a non-stochastic steady state (¥,7) that is locally determinatem

Given initial conditions zy and {y, a rational expectations equilibrium (REE) is a uni-
formly bounded (a.e.) triple of processes (yr,z, ;) satisfying (I)-(B). Assumption A.3

8DSGE models with a finite number of agent types can also be put in this form, though in the presence of
incomplete asset markets the more common approach to incorporating heterogeneity assumes a continuum
of agent-types, and the associated dynamics are more involved.

9The VAR assumption is for notational simplicity: all our results extend to general Markov processes that
are locally stable.

10We take local determinacy to mean that there is a unique stationary equilibrium of the linearized model.
Assessment of determinacy amounts to studying the linearized system associated with equations (I)-(3)
and verifying the Blanchard and Kahn (1980) conditions. See Ferndndez-Villaverde, Rubio-Ramirez, and
Schorfheide (2016) for an overview.



implies that, provided o is sufficiently small and zq is near Z, there is a unique REE that
remains close to the steady state. A recursive representation of this REE is a function f
such that

Yt :f(Zt7Ct)~ “4)

The equations (2)-()) then characterize the model’s equilibrium dynamics when agents are
rational.

A common approach to studying the rational expectations equilibrium is to construct a
linear approximation. The equilibrium dynamics, (2)) and (), may be linearized to obtain

i =y+rfE" =)+ fe(G—8) (5)
g =2+ =) +h(g" —2) +he (6= 0), (6)

where derivatives are evaluated at the steady state, and the superscript “LE” indicates the
solution to the linearized model, i.e. the Linearized Equilibrium dynamics. The matrices
hy and h can be computed directly by differentiating equation (2) while f; and f¢ can be
found using the implicit function theorem. After substituting for (y;* — ) in () using (5),
one obtains the following law of motion for the states:

35—z _ hyf.+h; hyf§+h€> (Z;E__Z) (O)
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Our assumptions guarantee that Ay f, + h; has spectral radius less than one, which implies
that the linearized dynamics have a unique stable ergodic distribution.

A final observation will nicely motivate the expectations of our boundedly rational agents
in the next section. Iterating equation (5) forward one period and rearranging terms gives a
natural linear rule for forecasting y; ;| given current states, namely,

Vel =W Wz + ‘VEE ((I_PC)E‘FPCQ +0841), @)

where the coefficients are given by Y =y — f.7 — fgf , W° = f, and l[/]éiE = f¢. The
coefficients y'* can be viewed as approximating, to first order, the forecasting model used
by rational agents when forming expectations of future choices, which is why we assign
them the LE superscript. Even in a non-linear world this forecasting function can be used
to easily evaluate the conditional expectation of any non-linear function G(y,;1):

EY G(yiy) = /gG <‘I’5E ¥ty (- PC)E TPl + II/EEG&H) L (de11).

LE
Note that the endogenous state vector z is predetermined: EY z; = z41. Since z1

depends on y;, the values of y; and forecasts of (functions of) y;;| are simultaneously
determined. Returning to the Ramsey example, this implies that agents may condition on
their savings decisions today when making forecasts about, say, the marginal utility of
income tomorrow.



2.1 RPEs

In a rational expectations equilibrium, agents’ forecasts are optimal: given their informa-
tion, agents’ expectations are formed using the forecast model that minimizes mean-square
error. In a restricted perceptions equilibrium, agents’ forecasts are constrained optimal:
given their information, agents’ expectations are formed using the forecast model that min-
imizes mean-square error, subject to the constraint that the forecast model must lie within
a pre-selected class.

We assume that agents observe both state variables, z;.1 and §;, and use a forecast-
ing model motivated by the linearized rational expectations equilibrium: see equation (8]).
Specifically, we assume that agents forecast future values of y,, | using the perceived law
of motion (PLM)

Vet = Yo+ Vet + Wi = Yo+ Wz + W (U= po)l +pcG+0841) . 9)

The matrix ¥ = (yo, Y., l//g) represents the beliefs of the economy’s representative agent.
Note that we are explicitly assuming that agents know the law of motion for {;. We make
these assumptions for simplicity. We could assume that agents do not observe z;,; and
must, instead, construct forecasts for both 7,1 and 1. All the results would go through
in this environment. We discuss this further in Section

For a given set of beliefs, y, and states, z; and {;, the time 7 endogenous outcomes, y;,
obtain from a temporary equilibrium that solves

/(gaF(IVO_FWZh(yl;ZvaI)_FWC ((I_pg)§+pCCt+G£l+l)ayt7zt7gt):u“(d£l+l):O' (10)
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This equation, which is obtained by inserting the PLM (9) into the reduced-form equation
(1), implicitly gives an equilibrium policy rule y; = f (21, &, v, o) for an economy populated
by agents with beliefs y. While it is not possible in general to guarantee that a temporary
equilibrium exists or is unique, we can guarantee that this is the case when beliefs are close
enough to y'* and o is small enough

For fixed beliefs, v, the economy then evolves according to

v = f(z,G, v, 0) (11)
U+l = h()’nZzaCz) (12)
G =T —p)C+pcli+ 08 (13)

" ocal existence of a temporary equilibrium is all that is needed for our theoretical results. In our simu-
lations in Section ff] we found that, numerically, there always existed a temporary equilibrium even when we
initialized beliefs far away from the linearized RPE. In principle, existence of temporary equilibria could be
an issue in models with more non-linearity, but this possibility only emphasizes the need for using non-linear
analysis when studying bounded rationality.



One immediate problem faced in this analysis is that for given values of y and o there is no
reason to expect that the dynamics (11)-(13]) are stable in any natural sense. However, the
linearization of this system with beliefs y'* has a unique ergodic distribution. We would
expect this property to hold for y near y'* and for sufficiently small o. We formalize this
concept in the following lemma.

Lemma 1 (Local Ergodicity). If v is near W™, zq is near z, and o is small enough, then
the process (y;,z;,;) defined by the system (L1)-(13) has a unique ergodic distribution

u(y,o), and
vz &) 2 ((w,0),2(9,6),8) ~ (v, 0). (14)

All proofs are in the Appendix. This lemma is key to our analysis. It guarantees the
existence of an ergodic distribution of state variables for beliefs close enough to y'* and for
small enough . Intuitively, the stability of the linearized REE implies that the linearization
of the dynamics (T1)-(I3) has a unique ergodic distribution when beliefs are consistent
with the linearized REE, i.e. ¥ = y**. For small enough o it’s possible to bound the
errors of the linear dynamics relative to the true non-linear process enough to show that
the state dynamics are locally an average contraction, which guarantees a unique ergodic
distribution. The remaining work is to show that we can lift this property to an open set of
beliefs containing y'*.

We use Lemma |1 to construct an RPE by defining a function y — 7T (y, o) that maps
beliefs onto the coefficients obtained by projecting y(y, o) onto z(y,0), {(y,0), and a
constant. Thus the T-map takes beliefs to the coefficients of the linear forecast model that
is optimal given the ergodic distribution implied by those beliefs. A restricted perceptions
equilibrium is a fixed point y*(o) of this T-map. Two points merit emphasis. First, RPE
beliefs are constrained optimal at the agent-level: if the economy is in an RPE and a given
agent is required to pick, once and for all, a linear forecast model that conditions on current
states and exogenous shocks, then y*(0o) is their best choice. Second, like an REE, an RPE
is appropriately interpreted as a Nash concept: RPE beliefs are optimal for a given agent
only if (almost) all other agents hold RPE beliefs. The first of our two main results may
now be stated.

Theorem 1. Given assumptions A, if 6 > 0 is sufficiently small then an RPE y*(0) exists.
Furthermore:

1. The RPE is locally unique: for given o there is an open neighborhood U of w"* such
that y*(0) is the unique fixed point of T(-,0) in U.

2. y*(o) = y*asoc—0.

This theorem provides two important conclusions. First, an RPE exists and is locally
unique for small shocks. This is as much as could be expected from a result that conditions

10



on the local determinacy of the non-stochastic steady state. Second, an RPE meets the
linearized REE in the small-shock limit, which is exactly as expected: the optimal linear
forecast model becomes unconstrained optimal as the economy becomes linear. This last
point is subtle and it is the reason we are using the concept of a RPE rather than a REE. The
agent’s forecasting model is necessarily misspecified: they are using a linear forecasting
model in a non-linear world. Their decisions take into account the curvature of their utility
functions and that prices that clear markets have a non-linear dependence on the aggregate
state.

2.2 Alternative RPEs

The RPEs of Theorem || are specific to the functional form of the forecast model used by
agents when forming expectations: see equation (9). This PLM was chosen for its align-
ment with the linearized REE given in (8). However, it may be quite natural, within a given
modeling environment, to make different assumptions about the information available to
agents and about the set of regressors they use to make forecasts; and the nature, and possi-
bly the number, of the resulting RPEs will depend on the informational assumptions made
and the set of regressors used. Within our framework, three natural variations arise, and we
discuss these here in turn.

Above it was assumed that agents observe, and condition forecasts on, z;,1. Alterna-
tively, it may be natural to assume agents do not observe z; 1, and instead use a PLM to
forecast it. For example, the PLM

Z+1 = a0+ azz +ayy; +ag G (15)

can be used to replace 4 in (I0)), yielding the temporary equilibrium condition

F(thnCt»ll/aa,G) :0

The analysis proceeds just as above, though now the RPE will have two endogenous beliefs
vectors: y*(o) and a*(o). Of course establishing existence of RPE in this case requires
extending Theorem (I} but this extension would be a mechanical exercise as / is invariant
to beliefs.

It may be natural to assume that agents do not observe, or otherwise do not use, some
of the state variables when making forecasts. Furthermore, agents may choose to condi-
tion forecasts on contemporaneously determined variables, especially when the exogenous
states are not observed. For example, in the Ramsey model it may be natural to assume
that agents do not observe the TFP shock, and instead forecast wages and interest rates
using a vector autoregression. RPE associated with underspecified forecast models have
been studied extensively within the context of linearized models. To capture this type of
behavior within our framework, one could use the following PLM:

Yer1 = Yo+ Wby + Welozvn + Wele G, (16)
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where [, is a selector matrix identifying which of the variables in x are used as regressors.
The analysis proceeds as before, with y'* replaced by the beliefs associated with the RPE
of the linearized model with PLM (16).

Finally, it may also be natural for agents to use a PLM that allows for interaction terms
or other nonlinearities. This poses no conceptual difficulty: the only requirement for our
analysis is that the PLM be linear in coefficients, so that projection can be used to estab-
lish conditions needed for consistency of beliefs. In fact, RPE associated with forecast
models that condition on higher order terms can globally approximate the REE to arbitrary
precision.

3 Learning your RPEs

Equilibrium objects requiring accumulated information and endogenous coordination among
agents are most naturally viewed as emergent outcomes of natural learning processes. In
macroeconomics, as emphasized earlier, adaptive learning provides the needed natural pro-
cess: agents are assumed to update their forecast rules as new data become available; if,
over time, their forecast rules become consistent with the equilibrium object, then it is said
to be stable under adaptive learning, and thus can be viewed as an emergent outcome of a
natural learning process.

RPE, by construction, are amenable to this type of stability analysis. For the case at
hand, we proceed as follows: let y; be the representative agent’s beliefs used in period ¢
to form forecasts and take decisions. To update their beliefs as new data become available,
the agent uses recursive least squares to regress realized outcomes y; on their information
setx] = (1,z],¢T). The recursion can be written

Riv1 =R+ %11 (xzsz _Rt)

_ 17)
vl = R (o — i) T

Here ¥ is the “gain sequence” and R; is the period ¢ estimate of the regressors’ second
moments.

It is well-known that for the decreasing-gain sequence ¥, = 1/¢, equation (I7), suitably
initialized, reproduces the sequence of standard least-squares estimates y;: see Ch. 2 of
Evans and Honkapohja (2001). In stochastic systems with AL, analytical results showing
convergence to REE or RPE parameters require decreasing gains in which lim; % — 0
at a suitable rate like #~!. This assumption is appropriate when the economic environment
is stationary and agents perceive it to be stationary.

An alternative “constant-gain” assumption is often used, in which % = 7, where 0 <
Y < 1, with 7 typically taken to be “small.” Under constant-gain recursive least squares
(RLS), agents in effect discount older data at geometric rate 1 — . For the small gain

12



limit, formal convergence results are available for constant-gain RLS in stationary systems.
These results show that beliefs converge to a distribution around the REE (or RPE) beliefs.
However, in practice stochastic simulations are frequently employed to study constant-gain
learning dynamics.

While decreasing gain is appropriate in stationary environments, realistic economies are
subject to structural change, and consequently applied models often adopt the constant-
gain assumption. Prominent early examples include Sargent (1999), Branch and Evans
(2006b), Bullard and Eusepi (2005), Milani (2007) and Orphanides and Williams (2007).
As emphasized in Evans, Evans, and McGough (2021), three distinct reasons can be given
for the use of constant gain learning:

1 Structural change and model misspecification. See, for example, Williams (2019).

ii Perception of potential structural change. This can be viewed as a form of robust
decision making, see Evans, Honkapohja, and Williams (2010).

11 Availability bias. This refers to a tendency, observed in the behavioral economics
literature, notably Kahneman (2011), to weight more heavily experiences that read-
ily come to mind. In the AL literature this is interpreted as a tendency to weight
current and recent experience more heavily than past experiences. This has also been
described as a “fading memory” effect, e.g. Malmandier and Nagel (2016), or a
“recency bias”, Cole and Milani (2021).

For these reasons, our simulations use constant-gain learning.

Equation can be combined with equations (T1)-(13)) to obtain a recursive system
characterizing the dynamics of our DSGE model populated with learning agents. The full
system, reproduced here for completeness, takes as the state (z;, &, Ry, ¥; ), and is given by

T =048
Ve = f(Zt, &, 0)
ze1 = h(y, 2, &)
Grv1= (1_P§)§+P§CI+G&+1
Rit1 =R+ %41 (XthT _Rz)
‘VtT+1 =y + %+1R;_11xt (v —wix) T

(18)

Given an initial state, the system (18] determines the time path of the economy populated by
homogeneous adaptive learners. If, for appropriate initial conditions, y; — y*(o) almost
surely for suitable decreasing gain sequences, then we say that the RPE y*(0o) is locally
stable under least-squares learning.
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3.1 RPEs and E-stability

Assessment of stability under adaptive learning is commonly conducted using the E-stability
Principle, which invites practitioners to forgo the challenges of the discrete, stochastic sys-
tem (18)), and instead consider the continuous-time, deterministic system

WZT(W7G)_W7 (19)

where T is the map defined in Section An RPE y*(0), as captured by a fixed point
of the T-map, is E-stable if it is a Lyapunov stable equilibrium of (I9). The E-stability
Principle says that E-stable equilibria are locally stable under appropriate adaptive learning
algorithms.

The dynamics of beliefs under adaptive learning algorithms like (I8) are governed by the
forecast error, in this case f (2,8, W, 0) — Wyx;. The system lb is analogous: the RHS
acts as a forecast error, measuring the discrepancy between perception ¥ and implication
T(y,0). If y*(0) is E-stable then “moving” according to this discrepancy pushes beliefs
towards the RPE. The E-stability principle encapsulates the intuitive connection between
these two dynamic systems.

The formal connection between E-stability and stability of systems like (18) is quite deep
and technical, and relies on the theory of stochastic recursive algorithms, as developed by
Ljung (1977) and first used by Marcet and Sargent (1989b) in the context of adaptive learn-
ing. The E-stability Principle provides a simple side-step to the technicalities: sufficient
conditions for Lyapunov stability are obtained from the eigenvalues of DT (y*,c): Evans
and Honkapohja (2001) for many details.

E-stability of the RPE follows as collateral serendipity from the proof of Theorem |1} as
McCallum (2007) showed that the REE of the linearized model is E-stable whenever the
steady state is locally determinate In particular, we have

Corollary 1. If F satisfies assumptions A and if ¢ > 0 is sufficiently small then the RPE
y*(0) is E-stable.

Theorem [I] demonstrates existence and uniqueness of RPE. This corollary establishes that
the RPE is the expected, emergent outcome of a natural learning process.

3.2 Agent-level learning and the shadow-price approach

Our implementation of boundedly rational expectations formation has been necessarily
mechanical: we did not use the details of the underlying economic model to inform the

2McCallum’s result assumes agents are able to condition forecasts on contemporaneous information,
which aligns with the assumptions adopted here: see equation (I0). Separately, to formally establish sta-
bility under least-squares learning might be challenging — the state dynamics are not conditionally linear so
the more general Markov versions of the theorems on stochastic recursive algorithms are needed.
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behavioral assumptions we made (e.g. which variables were forecasted and what regressors
were used) because we did not specify an underlying model. This was intentional: we
wanted to provide generic existence, uniqueness and stability results based on determinacy
and E-stability, without referring to the particulars of a given economy.

The mechanical approach taken here is sometimes referred to as reduced-form learn-
ing: bounded rationality is implemented only after aggregation, market clearing, and often
considerable algebraic manipulation has taken place. Due to its relative tractability, this is
by far the most popular approach for the implementation of adaptive learning in a given
modeling environment, particularly for addressing questions of applied interest.

The alternative is to adopt bounded rationality, in terms of both forecasting and decision
making, as a behavioral primitive, necessarily implemented prior to aggregation and market
clearing. This general approach — agent-level learning — has been examined in a variety of
settings, and based on a variety of different models of boundedly rational decision making.
Evans and Honkapohja (2006) use Euler equation learning to justify reduced-form learning
in a new Keynesian environment; Preston (2005) emphasizes the long-horizon approach
in which households use a form of anticipated utility, together with their life-time budget
constraints, to take decisions; and Adam and Marcet (2011) put forth the concept of internal
rationality, in which agents act fully rationally based on their beliefs, but these beliefs may
not align with endogenous reality.

While the papers just referenced, as well as others like them, consider agent-level learn-
ing implementations within the context of specific DSGE environments, Evans, Evans,
and McGough (2022) develop a theory of boundedly rational decision making that can
be applied to any environment in which a fully rational agent would be modeled as solv-
ing a dynamic program. Their implementation — the shadow price approach — takes as
primitive that agents make decisions using perceived shadow prices to assess the trade-off
between today and the future; and they update their perceptions over time as they realize
the consequences of past decisions. Evans and McGough (2021) provide a road map for
the application of this approach in general environments, as well as a comparison of it to
the approaches listed above.

Evans, Evans, and McGough (2022) demonstrate that the shadow price approach achieves
asymptotically optimal decision making in linear-quadratic environments. Using the new
technologies developed in this paper, we are currently working to extend the theoretical
results of Evans, Evans, and McGough (2022) to fully general environments.

4 The RPEs of RBCs

We adopt a benchmark real business cycle model as a laboratory for a specific examination
of the RPE associated with a DSGE model. Using numerical methods, we analyze the
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dynamics of the economy in an RPE and under the assumption that agents use a constant
gain learning algorithm to learn the RPE. We compare these dynamics to those associated
with the model’s REE. The dynamics under RE are obtained and presented in two ways:
using a local approximation to the REE by linearizing the model around the non-stochastic
steady state; and using a global approximation to the REE by applying standard techniques
to approximate the solution to the associated planner’s problem.

4.1 Environment and calibration

Time is discrete. There is a continuum of identical households (agents) who receive flow
utility from the consumption of goods and leisure. Via competitive factor markets, agents
supply capital and labor to firms, the former inelastically and the latter with Frisch elasticity
x~!. The representative household’s problem is

max E Z B’ (u(cr) —v(n))

t>0

S = 1gS—1 +wihy — ¢ — Ty, (20)

together with the restriction that agents cannot run Ponzi games (NPG). Here ¢ is con-
sumption, s is savings in the form of (real) capital, and n is the quantity of labor sup-
plied. Wages w and gross returns r are written in terms of consumption goods. T repre-
sents lump sum taxes used to finance an exogenous government expenditure process. The
function # measures flow utility from goods consumption, and is taken to be CRRA with
risk parameter 6 > 0. The function v measures the disutility of labor and has the form
vin)=&(1+ x)_l n'*X, with x > 0 capturing the inverse Frisch elasticity, and & > 0 a
scaling parameter used to tune steady-state labor hours.

Under rationality, the representative agent enters period ¢ holding savings s;_; and fac-
ing prices r; and wy, and taxes T;. Their period ¢ consumption, savings, and labor-supply
decisions must satisfy their budget constraint (20) and

W'(c;) = PBEAg (21)
Vi(n) = u(c))wy (22)
A = rid(c), (23)

where A; is their period ¢ shadow price of savings s, ;. Their decisions must also sat-
isfy the usual transversality condition (TVC). Equation (21J) is the standard Euler condition
measuring the agent’s consumption/savings trade-off, and equation measures their la-
bor/leisure trade-off.

There is a continuum of identical firms, each owning technology f that is CRTS in
capital k and labor 1 : f(k;,n;) = k%n} ~%. There are no inter-temporal frictions and capital
depreciates at rate 6 € (0, 1). Competitive factor markets ensure

1 =1+ fi(ki,n) — 6 and w; = fi(ks,my). (24)

16



Finally, each period, the government must finance an exogenous expediture process, g;. We
assume that g; follows a stationary AR(1) process in logs:

logg: = (1 —p,)logg +pglogg;—1+0¢, (25)

with p, € (0,1) and & begin zero-mean, iid, and having compact support. The government
runs a balanced budget each period, 7; = g;. Market clearing, therefore, implies k; = s;_1,
and so we may identify these variables to characterize the REE.

By modern standards, this is a particularly simple version of a DSGE model. We could
have embellished this model by adding multiple shocks; pricing or financial frictions; and
even a finite number of heterogeneous agents. All of our theorems would still apply to any
of these extensions. However, our main interest is understanding the behavior of a model
populated by small agents who are using linear forecast rules in a non-linear world. To
isolate this behavior, we have opted to study one of the simplest non-linear models whose
dynamics are well understood.

To map this environment into our general framework, we specify our model in logs and
set
y: = (logcy,logny,log A, logr;,logw;) and z; = logk; and §; = log g,
Then the functions F and % in (1)) and (2) are given by
u'(cr) = B
u' (cr)wy — V' (ny)
F(thlvyt)ZtvCl) = A _rl”/(ct) (26)
re—1— fi(ke,n) + 6
Wi — fulke )

exp (h()’t,kt, Ct)) = flke,ne) +(1—0)ks — ¢ — g1 (27)

For standard calibrations of the RBC model, assumptions A hold, so that the steady state
is determinate. In the unique REE y; is a function of the states logk; and logg;. Following
Section [2.T] we assume that boundedly rational agents forecast future values of y with a
PLM which is linear in these states and given by (9). As logA, is the only variable that
requires forecasting, the linear PLM can be written simply as

log A1 = Yo+ Wilogki 1 + Yglog g1,
with expectations formed according to
EY 21 = exp (Wo + Wiloghi 11+ W (1 — pg) log @+ pglogg:) ) - Eexp(O g€ 1 1).

This PLM can be combined with equations and to obtain the temporary equilib-
rium function £, given in (T0). Finally, we can write the REE functional dependence of

17



Table 1: Calibration

parameter | B | 6 | x | &€ | a | & | p (o g
value 099]1.0]1.09.72]0.360.025 | 0.965 | 0.0136 | 0.185

the shadow price on the states as: logA, = A(logk;,logg;). Linearizing A about the steady
state yields the beliefs y** associated with the linearized REE.

Our calibration follows that of Evans, Li, and McGough (2021). The model is calibrated
to a quarterly frequency with f set to 0.99 to give an annualized steady-state real interest
rate of 4%. « is set to 0.36 to target capital’s share of output, while the depriciation rate o
is set to 0.025 to match a capital to output ratio of 10.26 (see Den Haan, Judd, and Juillard
(2010)). Flow utility from consumption is assumed logarithmic (6 = 1), and we take the
Frisch elasticity, ¥ !, to be 1. The parameter £ is calibrated to 9.72 to target the average
supply of hours by the households of 1/3. Finally, the parameters of the government ex-
penditures process are set to p = 0.965 and o = 0.0136 to match the autocorrelation and
standard deviation of log-linearly detrended real government expenditures, with g = 0.185
to give a steady-state spending to gdp ratio of 15%. For convenience, the Table [I] records
the calibrated values.

4.2 RPE Beliefs and Stability

The RPE can be computed using a sample analog of the T-map: for fixed y, the economy
can be simulated to approximate the ergodic distribution of (logA;,logk;,logg;); we can
then sample from this distribution and regress log A on logk, log g and a constant to obtain
the sample analog of the T-map. The fixed point can then be found using a non-linear
solver.

We find that the RPE values of beliefs in the non-linear model are very close but not
exactly identical to y'*, i.e. the REE beliefs in the linearized model. This can be observed
by looking at the red and blue dashed lines in Figure [I] which represent the linear and
RPE beliefs respectively. That the beliefs are close to each other reflects that our RBC
model is very close to linear in logs; and indeed, for this same reason, the linearized model
provides a very good approximation to non-linear model along certain measures. However,
this should not be misconstrued as meaning that the models’ dynamics themselves are
isomorphic; indeed, in the RPE the Euler equation predicates that an agent’s consumption
decision is non-linear in shadow-price forecasts.

We now consider stability of RPE under real-time adaptive learning. The REE of the
linearized RBC model is known to be E-stable, and Corollary (1| says that this stability
property lifts to RPE of the non-linear model. As noted Section [3| a formal connection
between E-stability and stability under adaptive learning has not yet been established in
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the non-linear environment we are studying here; however, the E-stability principle, with
its robust history of successfully predicting when equilibria will be stable under adaptive
learning, strongly suggests that an E-stable RPE will be learnable. Figure [I]confirms this.
The figure was created using 100,000 simulations with gain set at ¥ = 0.05. The initial
value of the second moments matrix R was taken as common across simulations and set at
the linear REE value. Initial beliefs were drawn randomly within 50% of the linear REE
values. The thicker black curve is the cross-sectional mean of beliefs and the outer curves
identify the lowest and highest deciles.

Two observations are warranted. First, the simulations capture the stability of the RPE
under learning. Even though the initial beliefs of the economy start of away from the
RPE they eventually coalesce around the RPE. Second, the simulations take the gain to be
constant. For this reason, beliefs do not converge to RPE values but rather to an ergodic
distribution that is centered very near themE-I If the gain decreased at an appropriate rate,
for example 7 o ¢!, then we would expect beliefs to converge almost surely to the RPE
All taken together, we find results consistent with our theoretical statements: namely, that
an RPE exists, that it lies close to the linearized REE, and that it is stable under learning.

4.3 RPE dynamics

Impulse responses to a one-standard-deviation government expenditure shock highlight
both the similarities and differences across models: see the left-hand panels of Figure
The red curve is the linear REE time-path, with black and blue the RPE and non-linear
REE paths respectively. All variables are in percent deviations from their initial state val-
ues. The non-linear REE and RPE are almost indistinguishable, demonstrating, even with
a linear forecasting rule, that the model with boundedly rational agents does a good job of
capturing the non-linearities of the model.

To investigate this point further, we study the transition dynamics from a point farther
away from the non-stochastic steady state, yet still visited frequently by the dynamic model.
To achieve this, we take the ergodic distribution of state variables generated by the REE
and compute their average values conditional on government expenditures being above
their mean. We initialize all three models at these states and plot expected paths of the
capital stock and consumption in the right-hand panels of figure[2] All values are in percent

13 As the gain approaches zero the mean of the ergodic distribution of beliefs approaches the RPE.

“While the learning algorithm can be tuned to ensure converge with probability arbitrarily close to one,
due the presence of a lagged variable, it is possible for a sequence of unusual shocks to move the system
outside its basin of attraction. If almost sure convergence is desired, the standard “fix” is to modify the
algorithm to include a projection facility, i.e. a conditional reset of beliefs that is mechanically triggered
when they move outside some pre-specified set. In the current setting, beliefs are constrained so that the
relevant eigenvalues remain inside the unit circle. See Evans and Honkapohja (2001) for general details.

5The IRFs for the the non-linear REE and RPE paths are computed by averaging across multiple simu-
lations, and, for each simulation, netting out the dynamics resulting from the same sequence of innovations,
but without the initial impulse shock.
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Figure 1: Dashed red lines are linearized REE beliefs, dashed blue lines correspond to RPE beliefs, and
the black curves describe the dynamics of beliefs under learning with the middle curve representing mean
beliefs and the shaded band identifying the lower and upper deciles. The upper label of each panel gives the
numerical value of the associated RPE coefficient.
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consumption
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Figure 2: IRF to a government expediture shock with o = 0.0136 (left) and transition dynamics (right). Red
curve corresponds to linear REE. The blue curve represents the response of the REE while the black line plots
the response of the RPE. All variables are percent deviations from non-stochastic steady state.

deviation from the non-stochastic steady state. With the initial state values further away
from the non-stochastic steady state, the discrepancy between the linear and non-linear
REE increases, while the time-path of the RPE remains similar to the REE. Interestingly,
the non-linear REE and RPE both converge to the same long run average values, which are
different from the non-stochastic steady state. Even though the forecasting rule in the RPE
is linear, agents are still exposed to the non-linearities of the model and feature the same
precautionary savings motives present in the non-linear REE. This leads to both models
having long-run capital levels that are larger than those of the non-stochastic steady state,
which is the long run average of the linear REE model.

The results of figure[2|highlight that the differences between the RPE and REE dynamics
are solely a result of the differences between the RPE forecasting rule and the REE forecast-
ing rule. One would expect larger deviations in models featuring significant non-linearities,
specifically non-linearities in the REE forecasting rule. In such cases, adding non-linear
terms to the forecasting rule as discussed in Section would bring the dynamics of
the resulting RPE much closer to those of the REE. The inclusion of additional non-linear
terms in the agents’ forecast model is consistent with a common method for approximating
the REE: the parameterized expectation algorithm (PEA) of den Haan and Marcet (1990),
which finds an optimal forecast rule (usually by minimizing the mean squared forecasting
errors) within a class of non-linear forecasting models. The solution to the PEA is typically
found using stochastic simulation to approximate the ergodic distribution of equilibrium
outcomes, much as we did in approximating the RPE. The RPE presented in this section

16For example, adding up to n’"-order Chebyshev polynomials in the states.
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would therefore align with solution to the PEA when restricted to this simple linear fore-
casting rule.

Our analysis of the RPE differs from the PEA in a few key dimensions. Firstly, the goal
of the PEA is to approximate the rational expectations equilibrium and therefore, the objec-
tive is also to find a forecasting model such that a rational agent would not wish to change
its functional form. In comparison, the RPE with linear forecasting rules is not attempting
to approximate the REE but, rather, we are appealing to bounded rationality to make the
RPE with linear forecasting rules a natural object to study in its own right. Secondly, we
provide general conditions which guarantee the local existence of the RPE in a non-linear
setting Finally, our RPE with linear forecasting rules is amenable to stability analysis
under learning. Our theoretical results guarantee that the RPE with linear forecasting rules
is E-stable which generally implies that the RPE is also stable under learning. The numer-
ical results confirmed this hypothesis that the RPE is as an emergent outcome of a natural
learning process.

4.4 Structural change

The findings of Section [4.3] reflect that the environment is stationary. In the presence of
structural change, the behavior of models with learning agents can differ quite significantly,
and in our view, realistically, from the predictions of rational expectations. To examine
this, we consider a simple comparative dynamics experiment: assume that the economy
has existed for an extended period of time and has reached, at time 0, an ergodic distribu-
tion of state VariablesF_gI At time 0, the government unexpectedly and permanently raises
government expenditures by 5%. This is achieved by raising current government expendi-
tures, go, by 5% and permanently raising the long government expenditures to a new level
g = 1.053. Figure [3| plots the expected paths of capital and consumption as percentage
deviations from their time O values. The blue curve is the non-linear REE and the black
curve is the dynamics under learning.

The outcomes of the REE are as expected. The permanent increase in spending is imple-
mented as a lump-sum tax, which reduces consumption and leisure via the income effect.
The increase in labor raises the return to capital, thus increasing savings. This raises income
over time, with consumption and leisure rising to their new, lower steady state values.

The time paths in the learning economy are strikingly different. On impact, as in the REE
environment, the rise in taxes imparts an income effect leading to a fall in consumption, but
one that is smaller than under RE. This difference is due to differing expectations about the

7In fact, our approach could be extended to guarantee the local existence of a solution to the PEA.
8For the REE, (logko,loggop) is drawn from the ergodic distribution of the REE model. For the learning
economy, (logkg,loggo, Wo) is drawn from the ergodic distribution of the constant-gain learning model.

22



0.8

—— non-linear REE
—— RPE with learning
0.6 4

0.4 4

0.2 1

capital

0.0 4

T T T T T
1000 1500 2000 2500 3000
time

o
o
S 4
S

consumption

T T T T T
1000 1500 2000 2500 3000
time

o
o
S 4
S

Figure 3: Expected path of consumption and capital to a permanent government spending increase (left) and
dynamics of beliefs (right). Blue curve is non-linear REE, red curve is linear REE, and black curve is learning
RPE. Black curves give mean beliefs, and the shaded band identifies lower and upper deciles.

future. Expectations of the learning agents are formed according to

EY 21 = exp (Wio+ Wixloghi 1+ Wi (1 —pg)logg +pglogg:) ) - Eexp(0¥ z&11).  (28)

where y; represents the agent’s beliefs at time 7. When forming expectations in (28)), agents
fully recognize that the increase in government expenditures is permanent and thus accu-
rately forecast log(g;+1). They, however, have never experienced a permanent change in
government expenditure and, thus, must rely on their experience with persistent but transi-
tory changes to forecast the effect of the permanent shock on their shadow price of savings.
As a result, the 5% increase in expenditures yields an expected increase in the log shadow
price of 0.05y; .. The positive coefficient, y; ¢, implies that agents update their expecta-
tions of the shadow price of savings to be higher due to the increase in government expen-
diture, but not to the same degree as the fully rational agent. Thus, the fall in consumption
in the learning model is smaller than that of the rational expectations economy and, as a
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result, the capital stock initially declines. This occurs even though agents have had experi-
ence with government expenditure shocks that were highly persistent. Over time, however,
the learning agents notice that their realized shadow price of savings is higher than expected
and adjust their beliefs accordingly. In the long run, the capital stock converges to a new
average value close to that of the non-linear REE.

5 Conclusions

In DSGE models the decision rules used by agents are inherently both forward-looking and
nonlinear. Under rational expectations the forecasts of agents are assumed to be optimal,
based on correct conditional distributions. However, those conditional distributions are en-
dogenously determined by the future decisions of agents. Hence, the REE must be viewed
as an equilibrium, and this begs the question of how the equilibrium is attained, a concern
that is acute in nonlinear settings. This paper has shown a natural path through these issues,
based on plausible bounded rationality considerations.

We assume agents estimate linear forecast models and use them to form the required
conditional expectations needed for subjectively optimal decision-making. Estimated co-
efficients of the forecast models are updated over time using least-squares learning. Within
an abstract framework that can represent most representative-agent DSGE models, we show
under standard assumptions that there exists a restricted perceptions equilibrium — which
can be viewed as a counterpart to the models associated REE — in which agents’ forecast
rules are optimal within the linear class under consideration. Furthermore, the RPE is sta-
ble under least-square learning, i.e. forecast rules converge over time to the RPE, which
addresses the issue of attainability of the RPE.

We used the RBC model to demonstrate the tractability of our approach, as well as to
study the novel transitional learning dynamics following structural change. Applications
to New Keynesian models and to DSGE models that include empirically relevant frictions
are clearly feasible, using the shadow-price approach developed in Evans, Evans, and Mc-
Gough (2022), and this approach can be extended to allow for agent heterogeneity. Finally,
the theoretical framework developed in this paper can be applied to decision problems of
the kind commonly modeled using dynamic programming, thus allowing for the develop-
ment of a theory of bounded-rational decision making that can be used to model agent-level
learning in DSGE environments. These applications and extensions are the subject of cur-
rent research.
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Appendix

We begin with a technical lemma that provides conditions for existence of stable er-
godic distributions associated with homogeneous recursive dynamic systems. First, some
notation. Let . C R” be open, & C R™ be compact, convex, with non-empty interior con-
taining the origin, and ¥ C Rf be open. Let ¢ : ¥ ® & Y B R — .# be C* on the interior
for k > 2. The dynamical system of interest is

Yt :(p(yl*lvaghll/ao)? (29)
where 6 € (0,1),y_| € .7, and & € & is iid, zero mean.

The technical lemma establishes conditions sufficient to guarantee that has a unique,
stable ergodic distribution, and to do this we will apply results from Loskot and Rudnicki
(1995). A definition is needed. Fixing y and o, note that ¢(-,0 X -, y,0): S X & — .
is measurable.

Definition 1. The map ¢(-,0 X -, ¥, 0) is an average contraction on . if there is a mea-
surable function L : & — R such that

L |9(y.08,y,0)—0(Y,08,y,0)|| < L(¢) [y =Yl for all y,y' €
2. E(L(e)) <1

The following assumptions provide the needed restrictions on ¢.
Assumptions B.

B.1 There exists y** € ¥ and y(y**) € .# such that y(y'*) = ¢ (F(y**),0, y**,0).
B.2 The matrix D, ¢ (y(y**),0, y**,0) is invertible, with spectral radius smaller than one.

The following result is the desired technical lemma.

Lemma (Technical Lemma). Suppose ¢ satisfies assumptions B. Then there exists G > 0,
ry > 0and ry > 0 such that
1. If 6 €(0,6) and y € B(y*, ry) then the system (IZQI) has a unique ergodic distribu-
tion u(y, o) with support in CI(B (7 (y**),ry)).
—_ —_ 2
2. Ify-1 € CL(B(y(y*),ry)) then y, € CL(B(Y (W) ,1y)) and yr — y ~ u(y,0).

Proof. The work of the proof is establishing that ¢ (-, 0 X -, ¥, ¢) is an average contraction
for appropriately restricted parameters and on an appropriate state space. To this end, for
given r, > 0, define L(-, 0, y,r,) : & — R as follows:

Lie.c.y.r,) =sup{[|Dy (v.0e. v, 0)| :y € CLBEW) 25} (G0)

Noting that € — L(€, 0, y,ry) is measurable, our goal is to find 6 > 0, ry >0 and r, > 0
so that o € (0,6) and W € B(y"*,ry) imply ¢(-,0 x -, y) and L(-,0, y, ry) satisfy items
1 and 2 of definition[[jon CI(B (7 (y'*) ,ry)).
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For given ry, > 0, a version of the vector-valued mean value theorem implies

1600/, 0¢,w,0) —¢(v,08,¥,0)[| < L(e,0,y,ry)|ly’ =yl for ',y € CL(B( (¥ ,1y)),

which establishes item 1. Since the spectral radius of Dy¢ (y(y**),0, y'*) is less than one,
we may choose a matrix norm so that ||D,¢ (5(y**),0,y**) || < 1. Since D, ¢ is continuous
and & is compact, we can choose ry >0, 7y >0and 6 > 0 so that y € B (I,LILE,fw) and
o € (0,6) implies L(e) <A < 1 for all € € &. This establishes item 2.

It remains to demonstrate that for appropriately chosen 6 € (0,6) and ry € (0,7y),
the dynamics remain in the compact set CI(B (7 (y*¥),ry)) provided ¥ € B (y'*,ry) and
o € (0,6). Define

E(o,y)=sup{[|¢ (v,08,y,0) — ¢ (y,08,¥"",0) || :y € CL(B(F(¥"),1y)) € €}

Noting that = is continuous and that Z(c, y**) = 0, we may choose ry € (0,7y) and 6 €
(0,6) so that Z(o, y) < 1/3(1 — A)r,. Finally, define

Y(o) =sup{[|¢ (¥(¥"), 08, ¥, 0) =y (y") [ ;e € £}

Then Y is continuous and Y(0) = 0, so we may further restrict & to ensure Y(o) < 1/3(1 —
A)ry forall 6 € (0,6). It follows that y € CI(B (5 (y'") ,ry)) =

¢ (y.oe,w,0) =5 (v'F) | <[|¢ (v,0¢,¥,0) — ¢ (y,08,¥"",0) | + ¢ (v,08, ¥, 0) =7 (¥*F) |
<[|¢ (v,0¢,y,0)— ¢ (y,08,9"",0) |+ ¢ (v,08, ¥*,0) — ¢ (F(v'*), 08, y'*,0) ||
+l¢ (7(y'*), 08,9, 0) =3 (v ||
<E(o,y,ry) +Y(0) +L(e, 0, yF) [y =7 (y') |

2(1=A)ry

Ty
< 3 +A-ry <y,

which demonstrates that the dynamics remain in CI/(B(y(y**),ry)). This completes the
argument that ¢(-,0 x -, y¥) is an average contraction on CI (B (y (y**),ry)) provided & €
(0,0) and y € (0,ry). Proposition 1 in the Appendix of Loskot and Rudnicki (1995) then
completes the proof. m

Proof of Lemma [I|and Theorem I} Combining equations and yields the follow-
ing dynamics for the state variable

Jt+1 = h (fA(ZZ;CMW; G)aztact) EH<ZI7CI7W7G)'

Along with equation (13), H can be used to determine a dynamic system for E, = (z,&),
which we denote by

E=9¢ (&fl,cst,w,o) G1)

We claim ¢ satisfies assumptions A. First, notice that 7 = H(Z, ¢, Y 0); it follows that
¢ satisfies A.1. Next, notice that the eigenvalues of Dg‘P are given by the eigenvalues
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of D;H and py, so it suffices to show that D H (Z, Zj ,0) has spectral radius less than one.
To this end, recall that y'* is constructed such that the linearized model with beliefs y**
is identical to the linearized rational expectations equilibrium. A direct consequence of
this construction is that D_H(Z, 5 , W'*,0) must match the behavior of the endogenous state
variable in the linearized RE equilibrium, &, f; + h;, and, hence, local stability of the RE
equilibrium implies D.H(Z, ¢, W'*,0) has spectral radius less than 1. We conclude that ¢
satisfies assumptions A, so that & converges to a stationary distribution for appropriately
restricted parameters, and concludes the proof of Lemmal|I] For the remainder of the proof
we assume Y and o are chosen appropriately.

Finally, it will be helpful to expand the state to & = (yy, 7, &) . Since y; is determined by

7 and ;, we have that & 7, & (y, 0). Abusing notation somewhat, we will denote by ¢ the
transition dynamic for &. For the remainder of the proof it will prove convenient to define

the random variables &;(y, o) and & (y, o) such that y; 7, &i(y,0) and (z,&) 2,
éZ(W? G) with (51(11/7 G)? 62(1% G)) = 5(‘/’7 G)'

Now let x(y,0) = (1,&(y,0)), and define the T-map as

T(y,0)" = (E[x(y,0) @x(y,0)]) " E [x(y,0)&1(y,0)T],

where the expectation is taken with respect to the distribution &(y, ). To analyze the T-

A

map we need to approximate &(y, ¢). To this end, define the process & () recursively as

&(y) =Dgd-&-1(y) +Ded -, (32)
where the derivatives D, ¢ are understood to be evaluated at (é (y,0),0, vy, O). Since the
matrix D¢ ¢ is stable there is an ergodic distribution £ (y) such that & () Z, E(y). Let

(y) = <l,éz(w)) , and let T(y) be the coefficients of the projection of & () onto £(),
Le.

T(y)" = (E[2(y) @£(w)]) " ELR(w)&i (v)T],
where the expectation is taken with respect to the distribution é(l//) We analyze the T-map

by connecting it to 7.

We begin by expanding ¢ about & = &(y) and ¢ = 0, which gives us

,o)—¢& c :
SW.0)ZSW) 2, £(y) 1 Aly.0). with Aly.0) = /(o). (33)
We now use establishing the following:

Claim. For appropriately chosen ry,

1. T(-,0): B(y*,ry) — R is C!

2. lim T(y** o) = T(y**) = v
c—0
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3. lim DTy (y**, 6) = DT (y**)
c—0

To establish this claim, fix o and drop it as an argument; then, write equation as
E(w) =@, (E_1,€,y), where €' = (&,...,&), and &, is C* in . We may compute

w7 = (55 (el adiiivr) o (aip) o0 e

where % is the joint distribution of (§_1,€"). Now notice that, for fixed v, the functions
that comprise the components of the matrices in (34)) are smooth in & (y), so that T;(y) —
T(y). In fact, more is true. Let f : R" — R be C* for k > 1 and let f;(y) = Ez f (&(y)).
Then

Dy fi(W) = [ Def(&) Dy (61,6, y) dF(€)

is CK=1. Tt follows that Dy, T;(y) is continuous. Combining this with the compactness of
the state space, we can find ry so that Dy, T; is uniformly bounded on CI (B(V/LE,rl,,))
Thus {7;} and {DT;} are uniformly equicontinuous on CI (B(y'",ry)). We may use the
point-wise convergence of 7;(y) to T (y) and apply the Ascoli-Arzela theorem to conclude
that 7; converges to 7 uniformly. We may again apply the Ascoli-Arzela theorem, now to
{DT;} to conclude that a subsequence {DT;)} converges uniformly to some continuous
function on CI (B (y'*, ”W))- But we may then restrict attention to this subsequence to get
that T,y — T uniformly and {DT; )} converges uniformly, whence T is differentiable and
DT = lim; 0 DT7(;), which is continuous. This establishes item 1 of the Claim. Items 2
and 3 are straightforward computations based on the RHS of (33).

The last step of the proof requires continuity of 7 in 6. We may use symmetry to define
T (y,:) on (—36,0), and define T (y,0) = lin%)T(l//, o). We claimthat T (y,-) : (—6,6) —
o—

B(y'*, §) is continuous. It suffices to consider ¢ # 0. Pick a closed interval I about ¢ that
does not contain zero. Then D4s7; is uniformly bounded on /, so that the Ascoli-Arzela
theorem provides for uniform convergence of 7; to 7 on / @ Thus T is continuous on the
interior of /, which contains ©.

9That ¢ satisfies assumption A allows us to conclude, through lemma 1, that & is uniformly bounded. To
obtain the same result for Dy, & we note that

Dy& =Dy¢(&-1,06,¥,0) +De¢(§-1,08,¥,0)Dy& 1.

Combined with the law of motion for & this equation constructs a function ¢ operating on the stacked vector
& = [&,Dy& | such that

ét = ¢ (étflacgvu/v G) .

It is straightforward to verify that ¢ satisfies assumption A and, hence, Dy &; is uniformly bounded.
20yUniform boundedness of D7, is inherited from the uniform boundedness of Ds&. As Dg&, satisfies

Ds& = Ds¢(&-1,08,y,0) +D§¢(‘§t—l ,0€,¥,0)Ds&

we can use the same approach as footnote to show uniform boundedness of Ds&;.
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We are finally able to finish the proof. The result by McCallum (2007), that determinacy
implies E-stability in our framework, guarantees that DT (y"*) does not have a unit eigen-
value. It follows from items 1 and 3 of the Claim that, local to 6 = 0 and y = y'*, the
map ¥ — T(y,0) — y is injective. By item 2 of the Claim, 7 (y**,0) = y'*, and then the
Claim plus the continuity of 7" in ¢ allows for the application of a continuous version of
implicit function theorem — see Theorem 5.1 of Blackadar (2015) — to show that for o near
zero there is a unique solutionto 7'(y,0) = y. =
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