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This paper presents a machine learning-based method for the detection of the unique gravitational
microlensing signatures of extended dark objects, such as boson stars, axion miniclusters and subhalos. We
adapt MicroLIA, a machine learning-based package tailored to handle the challenges posed by low-cadence
data in microlensing surveys. Using realistic observational time stamps, our models are trained on
simulated light curves to distinguish between microlensing by pointlike and extended lenses, as well as
from other object classes which give a variable magnitude. We focus on boson stars and Navarro-Frenk-
White (NFW) subhalos and show that the former, which are examples of objects with a relatively flat mass
distribution, can be confidently identified for 0.8≲ r=rE ≲ 3. Intriguingly, we also find that more sharply
peaked structures, such as NFW subhalos, can be distinctly recognized from point lenses under regular
observation cadence. Our findings significantly advance the potential of microlensing data in uncovering
the elusive nature of extended dark objects. The code and dataset used are also provided.
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I. INTRODUCTION

Macroscopic dark matter candidates, with masses rang-
ing from large asteroids (∼10−15M⊙) to stars (∼M⊙), offer
compelling alternatives to the traditional particle-based
theories. These celestial objects, potentially formed in
the early Universe, are primarily detectable via their
gravitational effects: gravitational lensing (e.g. [1–4])
and gravitational waves (e.g. [5–12]). Indeed, gravitational
microlensing is one of the most important ways of probing
compact objects such as “machos” or primordial black
holes (PBHs), a dark matter (DM) candidate consisting of
compact objects formed in the early Universe. Through
surveys of a range of sources, microlensing of such
pointlike lenses has been used to constrain the fraction
of DM such objects can comprise in a wide range of masses
(see e.g. [4]).
It has also been proposed that dark matter can instead

be comprised of extended objects, such as boson stars
(e.g. [13–16]), axion miniclusters [17], and subhalos
[18–22]. Like compact objects, such objects can also bend
the light of distant stars. Whether this effect can be probed
by a microlensing survey depends on the comparison

between the object radius and the Einstein radius—the
characteristic length scale which is a function of the mass of
the dark matter lens and the distance to the light source. The
effectiveness of (micro-)lensing then depends on the size
of the object compared to the Einstein radius: dilute dark
objects, which are transparent to light, are ineffective
lenses. Using conservative assumptions about the number
of events observed, Refs. [23,24] derived modified con-
straints on extended dark matter objects.
Interestingly, structures with radii close to the Einstein

radius may give distinct microlensing signatures. How the
mass is spread within these structures affects the lensing
effect. This was demonstrated explicitly for microlensing of
various dark matter structures in [23–25]. In objects with a
flatter density profile, such as boson stars, the microlensing
magnification time series can deviate significantly from
that expected from a pointlike lens such as a PBH, for
example featuring caustics crossings as can be seen in
Fig. 1. These distinguishable features of extended dark
lenses can in principle be used to make a positive discovery.
In this work we take the first step towards a positive

discovery of a microlensing signature by an extended dark
object. To this end we develop an analysis pipeline to
search for signatures of extended dark matter objects in
time series data. Specifically, we train a histogram-based
gradient boosted classifier to identify such features, and
describe how these observations can be used to search for
dark objects in a range of experiments.
This paper is organized as follows. We first review

microlensing by extended lenses and estimate the sensi-
tivity of the OGLE survey to the modified light curves of
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boson stars. We then describe the generation of our dataset
and methodology, followed by an analysis of our results
and a discussion.

II. MICROLENSING SIGNATURES
OF EXTENDED LENSES

Let us first review some basics of gravitational micro-
lensing, largely following the treatment in Ref. [26]. Wewill
need to define some important parameters in the lens setup;
a depiction of the geometry can be found in [23]. The
observer-lens, lens-source, and observer-source distances
are denoted DL, DS, and DLS respectively. From the
perspective of the observer, the lens center subtends angles
of β and θi with the source and images of the source
respectively. As DL, DS, and DLS are much larger than all
other scales in the problem, lensing calculations can be
simplified using the small angle approximation. In this
approximation, the deflections α ¼ 4GM=ðc2ξÞ only occur
when starlight encounters the “lens plane” perpendicular to
the observer-source axis.
Assuming that the lens is spherically symmetric

with density distribution ρðrÞ [and total mass M ¼
4π

R∞
0 drr2ρðrÞ], the lensing equation may be written

β ¼ θ −
θ2E
θ

MðθÞ
M

; ð1Þ

with the surface mass density projected onto the lens
plane as

MðθÞ ¼ 2πD2
L

Z
θ

0

dθ0θ0Σðθ0Þ;

ΣðθÞ ¼
Z

∞

−∞
dz ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Lθ
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; ð2Þ

and where [27]

θE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM
c2

DLS

DLDS

s
; ð3Þ

is the pointlike Einstein angle, the value of θ for a
pointlike lens [MðθÞ → M] at zero impact parameter
(β ¼ 0). This in turn defines the pointlike Einstein radius
rE ≡DLθE on the lens plane.
As the only way in which the total lens mass M and the

distances DL; DLS; DS enter the problem is through their
contributions to the Einstein radius rE, it is convenient to
express all angles in units of θE and all distances rE. Thus,
we define u≡ β=θE ¼ DLβ=rE, and τ≡ θ=θE ¼ DLθ=rE
(note that the latter was named t in [23,24]), which allows
us to rewrite (1) as

u ¼ τ −
mðτÞ
τ

; ð4Þ

where we have also defined mðτÞ≡MðθEτÞ=M which
describes the distribution of the lens mass projected onto
the lens plane,

mðτÞ ¼
R
τ
0 dσσ

R
∞
0 dλρðrE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ λ2

p
ÞR

∞
0 dγγ2ρðrEγÞ

; ð5Þ

where ρ is the density distribution of the lens.
The lensing equation (4) can be used to find the

position(s) of the images θi given a position of the lens β.
As the images subtend different solid angles than the
unlensed source, microlensing alters the observed flux.
The magnification is the ratio of the angular extent of an
image to that of the source:

μ¼
X
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: ð6Þ

The light curve as a function of time t for a lens with
velocity v and minimum impact parameter ξmin can now be
found through βrE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2min þ v2t2

p
. Whether a microlens-

ing event is observable depends on the minimum detectable
magnification for a given telescope, as well as the range of
cadences at the microlensing survey, which sets the transit
timescales to which it is sensitive. Typically, a transit is
counted as a lensing event if μ > 1.34, which occurs for a
pointlike lens for impact parameter (in units of the Einstein
radius) u≡ ξ=rE ¼ β=θE ¼ 1.
In [23,24] the microlensing efficiency of an extended

lens compared to that of a pointlike lens was defined as the
maximum impact parameter u1.34 for which a threshold

FIG. 1. The 10 most distinctive boson star light curves, using
the dataset generated with OGLE-II time stamps.
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magnification is produced: μtotðu ≤ u1.34Þ ≥ 1.34. For a
pointlike lens, u1.34 ¼ 1 by definition, and the naive
expectation for extended lenses would be that u1.34 ≤ 1.
Remarkably, this is not necessarily the case: in particular
for lenses with a reasonably flat density profile, u1.34 can be
larger than one. Given u1.34, the microlensing differential
event rate for a single source with respect to the typical
event timescale tE and x ¼ DL=DS, observed by a par-
ticular experiment, can be calculated as

d2Γ
dxdtE

¼ εðtEÞ
2DS

v20M
fDMρDMðxÞv4EðxÞe−v

2
EðxÞ=v20 ; ð7Þ

where εðtEÞ is the efficiency of telescopic detection,
vEðxÞ≡ 2u1.34ðxÞrEðxÞ=tE, v0 ¼ 220 km=s is the dark
matter circular speed in the galaxy, and ρDMðxÞ is the
DM density projected onto the line of sight, for example
following an isothermal profile in the Milky Way galaxy,

ρDMðrÞ ¼
ρs

1þ ðr=rsÞ2
;

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Sol − 2xRSolDS cosl cos bþ x2D2

S

q
;

with RSol ¼ 8.5 kpc, ρs ¼ 1.39 GeV=cm3, and rs ¼
4.38 kpc [28]; l and b are the longitude and latitude of
the source in galactic coordinates. The total number of
events is then given by

Nevents ¼ N⋆Tobs

Z
1

0

dx
Z

tE;max

tE;min

dtE
d2Γ
dxdtE

; ð8Þ

where N⋆ is the number of observed sources, Tobs is the
total observation time, and tE;min (tE;max) is the minimum
(maximum) timescale of an event.
Comparing Nevents with the number of observed events in

microlensing surveys, [23,24] set constraints on extended
lenses. However, it is important to point out that the surveys
identify microlensing events based on a comparison with
the pointlike magnification light curve. For extended lenses,
in particular lenses with τm ≡ rlens=rE ∼ 1, this is not a good
approximation. In Fig. 2 we estimate the range of lens
masses and radial sizes for which we expect significant
deviations from the pointlike light curve, for the example
of a boson star observed in the OGLE-IV survey (5 year
dataset) [3], anticipating that the noncompactness of the lens
can be resolved for 0.8 < τm < 3 (which we will verify in
the next section). Here we follow the mass profile of boson
starsmðtÞ outlined in the Appendix of [23]. As in this work,
the sensitivity is computed using the Poissonian 90% con-
fidence limit based on a signal comprised of dark matter and
astrophysical foregrounds (see Ref. [3]). We note that as
the OGLE Collaboration did not search for the particular
microlensing light curves predicted by boson stars, this is an
estimate only. Comparing Fig. 2 with the sensitivity of the

OGLE-IV survey to boson stars in [23], we note that for a
given lens size, the lighter masses lead to distinguishable
features in the light curve, as can be expected from the
dependence of the Einstein radius on M.
Because the Einstein radius varies along the line of

sight to the source, for a lens of a particular size rlens, a
range of τmðxÞ is relevant, where x ¼ DL=DS. One might
wonder what the distribution in τm is. This is given by
dN=dτm ¼ ðdN=dxÞðdx=dτmÞ ¼ fDMρDMðxÞdx=dτm. For
the OGLE sources, we find that this distribution peaks
for τmðx ¼ 0.5Þ, and rapidly falls like τ−3m away from it.
Thus, we expect that given a particular lens mass, it is in
practise possible to interpret a measurement of τm directly
in terms of a lens size.

III. DATASET GENERATION
AND METHODOLOGY

In this work we adapt MicroLIA, a tool developed and
detailed in [29]. The classifier developed in this paper is a
machine learning model utilizing the Random Forest
algorithm, specifically designed for the detection of micro-
lensing events in astronomical surveys. It is tailored to
handle the challenges posed by low-cadence data, which
typically suffer from irregular signal sampling and thus
lower signal-to-noise ratios, making microlensing event
detection more difficult. MicroLIA distinguishes between
microlensing and other variable star events using 148
features derived from the light curve and its derivative
time series. The classifier categorizes events into classes
like microlensing, eclipsing binaries, and regular variable
stars, focusing on accurate identification of microlensing
amidst these.
In this work, we extend the scope of MicroLIA by

including extended dark matter objects which act like
nonpointlike microlensing lenses, such as boson stars

FIG. 2. Sensitivity of the OGLE survey to a modified lensing
light curve of a boson star. Here we anticipate that a boson star
can be distinguished from a pointlike lens for 0.8 < τm < 3.
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(BS, focusing here on non-relativistic condensates of mas-
sive bosons without self-interactions) and Navarro-Frenk-
White (NFW) subhalos. For this, we generated microlensing
light curves for these extended objects using their mass
profile,mðτÞ, which have previously been calculated in [23].
From these mass profiles, we fit an interpolating function,
and for each value of the impact parameter, u, we solve the
microlensing equation (4) to obtain the total magnification to
the light curve, (6).
The observed impact parameters are closely related to

the cadence of a survey. For a lens with a characteristic
timescale defined by the crossing of the Einstein radius
tE≡RE=v and a minimum impact parameter u0 producing
a magnification peak occurring at t0, the values of the
observed impact parameters are

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ

�
t − t0
tE

�
2

s
; ð9Þ

where t is the survey time. Therefore, the cadence at which
the survey collects observational data will have a signifi-
cant impact in the observed light curve. For this study, we
considered two possible cases for the data collection time
stamps. In the first case we used OGLE-II time stamps (but
not the light curves nor their errors), which are input into
MicroLIA and randomly sampled when simulating indi-
vidual light curves. We note that the regularity of the
cadence in OGLE-II is not significantly different from
other iterations of the survey. In the second case we
considered a perfectly regular daily cadence, where time
stamps are all equally spaced by the same interval. As we
will see below, this case demonstrates some identification
opportunities that are obscured by irregular cadences, such
as the case with OGLE-II time stamps. We will refer to
these to cases as OGLE-II Time stamps and Regular Daily
Cadence, respectively.
Both datasets were generated by simulating 100 000

light curves for each of the six classes: cataclysmic
variables (CVs), RR Lyrae and Cepheid Variables
(VARIABLE), Mira long-period variables (LPV), point-
like microlensing (ML), BS, and NFW subhalos. The CV,
VARIABLE, LPV, and ML light curves were generated
using MicroLIA’s simulation, and BS and NFW were
generated using our own simulation. We applied the same
selection criteria for the three microlensing source events
(ML, BS, NFW). The criteria are the same as MicroLIA’s,
but we further demanded that the observed magnification
be at least 1.34, a common criterion imposed by micro-
lensing surveys. The light curves were simulated with a
minimum magnitude of 15, a maximum magnitude of 20,
and with Gaussian noise.
The extended microlensing sources, BS and NFW, have

mass profiles which depend on the parameter τm, which
follows some distribution depending on the prevalence of
such objects. For this study, we sampled τm ∼ Uð0.5; 5Þ

logarithmically, since, as discussed in the previous section,
this distribution is strongly peaked at the τm reached at
x ¼ 0.5, and the largest deviations in the light curves are
expected for τm ∼ 1. Finally, we sampled the minimal
impact parameter, u0, differently for each of the three
microlensing sources

u0 ∼

8>><
>>:

Uð0; 1Þ for ML

Uð0; 1.5Þ for BS

Uð0; 1.1Þ for NFW;

ð10Þ

where we emphasize that these are used during the
simulation step, i.e. before the selection criteria, including
μ ≥ 1.34, are imposed.
In total, we generated 600 000 curves, of which only a few

Oð0.1%Þ with missing values for some of the features were
dropped. The dataset was then split into train, validation, and
test subsets with proportions 0.5:0.25:0.25, respectively
corresponding to around 300 000, 150 000, and 150 000
light curves, with the six classes being equally represented in
each of the sets. For each light curve, we computed 74
features using the light curve time series, in addition to the
same 74 using the derivative of the light curve time series, to
a total of 148 features. The computed features relate to
statistics of the time series of the light curve, as well as other
time series quantities. See Ref. [29] and MicroLIA’s API
reference for the full description and reference of each
feature.1 The training set was used to conduct exploratory
data analysis and to train machine learning models. The
validation set was used for model selection and comparison,
and to produce preliminary analysis plots and statistics. The
test set was used to produce the final analysis plots and
statistics, presented in the next section. The full dataset can
be downloaded here [30].
For the multiclassification task, we trained a histogram-

based gradient boosted classifier, which is a member of the
broader machine learning algorithm family of gradient
boosting machines (GBMs). Like random forests (RFs),
implemented inMicroLIA, GBMs are ensemble models that
leverage the power of multiple weaker estimators, usually
small trees, to produce a strong estimator. In RFs the trees
are independent of each other and the final prediction is
obtained by the ensemble average over all the predictions
from the trees in the forest. In GBM the trees are not
independent but sequentially trained as to improve on the
previous iteration. Schematically, consider FðXÞ to be the
output of the GBM as a function of the data, X. In the first
iteration, we want to train a simpler estimator, F1ðXÞ, to
match a target label, y. Since the estimator is simple, it will
not be very accurate and the prediction will have a certain

1https://microlia.readthedocs.io/en/latest/autoapi/MicroLIA/
features/.
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residual error, y − F1ðXÞ. In the second iteration, we train
another weak estimator, h1ðXÞ not on the desired output, but
on residual error of the previous step to create a new,
improved, estimator F2ðXÞ ¼ F1ðXÞ þ h1ðXÞ, since in the
ideal case h1ðXÞ ¼ y − F1ðXÞ and we would have the
desired prediction. However, each step, i, will have a
residual error y − FiðXÞ, and so the process can be repeated
until the desired accuracy (or maximum number of iter-
ations) is reached. The final GBM output will then be a
function of all the steps, FðXÞ ¼ FmðXÞ ¼ Fm−1ðXÞþ
hm−1ðXÞ, where m is the total number of steps. This
presentation is schematic and can be generalized to any
problem with a differentiable loss function.2 GBM have
been known in the literature to be powerful estimators for
tabular data, which we explore in this work. The usual
implementation of GBM uses simple trees at each step.
However, this requires sorting the data at each iteration,
making tree-based GBM computationally heavy for data-
sets larger than a few tens of thousands examples, which is
our case. To mitigate this, a histogram-based variant has
been developed that sorts and binarizes (i.e., assign each
data point to the bins of the histogram) the data once,
producing orders of magnitude speed improvements in
training and prediction. In this work, we used the histo-
gram-based GBM implemented by scikit-learn’s
HistGradientBoostingClassifier (HGBC).
In a preliminary study, we compared HGBC against

other GBM implementations and scikit-learn’s RF, observ-
ing all GBM to outperform the RF when computing the
area under the curve (AUC) of the receiver operating
characteristic (ROC) evaluated on the validation set. We
then tuned the hyperparameters of the HGBC, observing
minimal improvements of its discriminating performance,
for which reason we decided to keep the default hyper-
parameters for the rest of the study presented herein.3

IV. ANALYSIS

In this section, we present the multiclassification analy-
sis on the two generated sets: the first generated with the
OGLE-II time stamps, and the second generated with ideal
regular daily cadence. The purpose of performing two
analyses is to assess whether and how the discrimination
power is affected by the cadence.

A. OGLE-II time stamps

In Fig. 3 we present the confusion matrix of the six-way
(All vs All) multiclassification performed by the HGBC.
We observe that the nonmicrolensing events—CV, LPV,
VARIABLE—have minimal to nonexisting overlap with
any class. Conversely, the HGBC prediction for the micro-
lensing events—ML, BS, and NFW—has significant over-
lap. However, we observe that BSs suffer from considerable
less contamination from ML and NFW events than these
two do of each other. This suggests that BS events are the
easiest to isolate, and therefore to detect, of the three
microlensing cases.
Since Fig. 3 suggests that BS events are easy to isolate, it

is important to understand the nature of the BS we identify.
All BSs follow the same mass profile, mðtÞ, which can be
wider or narrower, depending on the parameter τm, asso-
ciated with the radius of the BS. In Fig. 4 we show how the
probability of a BS being identified as such by the HGBC
depends on τm. We find that there is a sweet spot at τm ≃ 2
to maximize the correct identification of BSs, with some
BS light curves being classified with high confidence, i.e.
with Pðy ¼ BSjXÞ ≃ 1. This also motivates a posterior to
our choice of interval 0.8 < τm < 3 in Fig. 2. In Fig. 1 we
present the 10 BS light curves with the highest value of
Pðy ¼ BSjXÞ, and we observe that they all exhibit the three
peak magnification profile produced by caustics that one
expects from BS sources.
Our analysis so far has shown that the discrimination

between microlensing sources (ML, BS, NFW) and other
sources of light curves (CV, LPV, VARIABLE) is a
relatively easy task when OGLE-II cadence is observed,

FIG. 3. Confusion matrix for the six-way All vs All multi-
classification performed by the HGBC using the dataset gen-
erated with OGLE-II time stamps. The entries are rounded to
three significant digits.

2The term boosting arises from iteratively boosting the
performance using the output of another weak learner. The term
gradient comes from the observation that fitting successive weak
estimators on the residuals of the previous iteration is equivalent
to a gradient descent step in a function space spanned by the weak
learners.

3The performance improvements only impacted at most the
third significant digit of the validation ROC AUC, which is
arguably at the level of statistical fluctuation of the dataset itself,
and therefore meaningless.
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with almost nonexisting overlap between these two broad
classes. As such, we now focus on the difficult three-way
classification focused on discriminating between the three
microlensing sources. In Fig. 5 we present the ROC and the
AUC of each class (vs the other two) for a HGBC trained on
this three-way multiclassification problem.4 The advantage
of analyzing a ROC curve, and its area, over a classification
matrix is that the ROC curve captures the classification
performance over all possible output threshold cuts, while
the confusion matrix only shows the true and false positives
of the assigned predicted class as the one that has maximal
probability. For example, in Fig. 5 we can see that BS light
curves can be isolated with high purity (i.e. with false
positive rate around 0.0), while that is not possible for
neither ML nor NFW light curves, again reinforcing that
BS light curves are easier to identify than the remaining
microlensing sources due to their unique three-peak profile.
Furthermore, Fig. 5 suggests that pointlike microlensing
light curves are only slightly easier to identify than NFW
ones, since their ROC curve has a true positive rate greater
than that of the NFW for all values of the false positive
rates. This is also evidenced by the ML AUC, 0.65, which
is greater than that of the NFW, 0.62.
Having been able to isolate the BS light curves from

other microlensing sources, we now turn to interpreting our
results. Unfortunately, although HBGCs are incredibly
powerful estimators they do no provide a clear way of
interpreting their prediction, a common challenge when
using machine learning in highly dimensional multivariate
analyses. In this study, we implemented a backward
sequential feature selection (SFS) loop to assess which
of the 148 features are relevant for this classification task.
The backward SFS loop starts by fitting an HGBC using all

148 features and evaluating its performance on the vali-
dation set. Then we train 148 HGBCs on all the possible
148 subsets comprised of 147 features (i.e., with one
feature removed) and evaluate their performance on the
validation set. Keeping only the best set of 147 features, the
same step can be done for the 146 subsets and so one, for a
total of 148 iterations totaling 11026 HGBCs, trained on
11026 subset of features, which is a feasible study given the
increased training speed offered by the HGBC.5 In Fig. 6

FIG. 4. Probability of a BS light curve being correctly identified
as one by the HGBC vs the boson star τm parameter, using the
dataset generated with OGLE-II time stamps.

FIG. 5. ROC curves and their areas obtained from a HGBC
trained on the three-way multiclassification task using the dataset
generated with OGLE-II time stamps.

FIG. 6. Backward SFS (features reduced from right to left) for a
HGBC trained on the three-way multiclassification task using the
dataset generated with OGLE-II time stamps.

4The AUC of a ROC curve can then be seen as an average
performance over all possible thresholds set on the predicted
probability used to predict the class.

5Noting that a set of 148 elements has 2148 − 1 nonempty
subsets, 11026 is far fewer than the total possible combinations of
features.
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we show the performance of the HGBC on the three-way
microlensing focused multiclassification for each of the
possible sources and their geometric mean. We see that
only around 25 features derived from the light curve time
series and its derivatives, out of the 148, are relevant for this
task.6 We also note that the discrimination performance
degrades for all the three classes at the same stage,
suggesting that the final 25 features are relevant for all
three classes. The list of the final 25 features by survival
ranking is presented in Table I.
For the dataset using OGLE-II time stamps, which is the

subject of the analysis in this section, we find that the
complexity of the time series is the most important feature
to separate the light curves from the three microlensing
sources, surviving the whole backward selection loop until
there is only one. In Fig. 7 we show the distribution of the
time series complexity for BS against the τm, where we
witness a boost in the time series complexity for τm ≃ 2, the
same sweet spot identified above in Fig. 4, suggesting that
the complexity of the time series of a BS light curve is a
driving feature for it to be correctly identified as a BS. The
same is not observed for the NFWevents, which we do not
show for the sake of presentation tidiness.
In Fig. 1 we show the 10 most distinctive BS light

curves, i.e. the 10 BS light curves with highest Pðy ¼
BSjXÞ as identified by the HGBC trained on the three-way
multiclassification task on the OGLE-II dataset. These light
curves all exhibit very clear three magnitude peaks, a
hallmark feature arising from the caustics produced by the
extended nature of the lens.

B. Regular daily cadence time stamps

So far our analysis has focused on light curves simulated
using OGLE-II time stamps. This reflects well the sensi-
tivity to extended objects in a realistic microlensing survey,
with its given observational constraints. However, one
might wonder to what extent the conclusions previously
drawn are sensitive to the observation cadence details,
especially its irregularity. To address this, we conduct the
analysis with light curves simulated with regular daily
cadence, i.e. where observations are taken exactly
24 hours apart.
We begin with the six-way All vs All multiclassification

task. In Fig. 8 we show the confusion matrix obtained
using the HGBC. Although similar to its counterpart with
OGLE-II time stamps, Fig. 3, it has some noticeable
differences. First, we notice that the contamination in BS
positive predictions has decreased from Oð10%Þ down to
Oð1%Þ, suggesting an improved capacity of the HGBC in
producing a pure sample of BS light curves. Secondly, we
notice that the cross misclassification between NFW and
ML light curves has also decreased, improving upon the
OGLE-II time stamps case.
In Fig. 9 we revisit the probability of a BS light curve

being classified as such vs the BS τm, but this time for the
regular cadence case. We see that the previously identified
sweet spot at τm ≃ 2 has now almost no misclassifications
into other classes, showing how a regular cadence can lead
to an even better identification of BS light curves; this is
due to a better resolution of the light curve being able to
capture the three magnification peaks.

FIG. 7. Complexity vs τm scatter for BS events with OGLE-II
time stamps.

FIG. 8. Confusion matrix for the six-way All vs All multi-
classification performed by the HGBC using the dataset gen-
erated with regular daily cadence time stamps. The entries are
rounded to three significant digits.

6It is important to point out that while this methodology is
aimed at removing uninformative features, it will also remove
redundant, i.e. highly correlated, features. Therefore, the final set
of features is only unique up to fluctuations of the data and the
stochastic initialization of the HGBC. To mitigate this, we fixed
the seed of the run, but modifications of the training and
validation set could still hold a different set of features.
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As before, we now focus on the three-way multiclassi-
fication problem focused on the three microlensing sources.
The ROC curves for each of the three classes and their
respective AUC can be seen in Fig. 10. Again, we see that
there are some noticeable differences to the OGLE-II case
shown in Fig. 5. The first thing to notice is that all AUC
have increased compared to the OGLE-II time stamps case,
indicating an easier discrimination when using regular daily
cadence time stamps. Next, we see how the ROC curve for
the BS is significantly more peaked for small false positive
rate, providing further evidence that the BS light curves are
better classified with regular daily cadence. More interest-
ingly, however, is how the ML and NFW ROC curves no

longer follow the same trend as in the OGLE-II case. More
precisely, we can observe that they cross, as before they did
not. This happens halfway through the curve, with the
NFW ROC curve having the upper hand over the ML ROC
curve for lower values of the false positive rate, with an
added feature that the ROC curve for the NFW can have
nonvanishing true positive rate at low false positive rate
values. This implies that with regular daily cadence it is
possible to isolate NFW light curves with little to no
contamination of any other class, something that was
impossible to achieve using the OGLE-II cadence.
The previous result points at the possibility in principle of

completely isolating NFW light curves. It is then important
to understand the nature of the NFW light curves that we
can isolate. In Fig. 11 we show how the probability for an
NFW light curve to be correctly identified as such can vary
with the NFW τm parameter. Although less noticeable than
what we saw before for the BS light curves, we can observe
a sweet spot for correct classification at 1≲ τm ≲ 2, with
some light curves being assigned Pðy ¼ NFWjXÞ ≃ 1. We
notice that the equivalent scatter for the OGLE-II time
stamps, not shown here to declutter the presentation, does
not exhibit this pattern, suggesting that there is important
information in the light curve that can only be obtained with
regular cadence.
Contrary to BS light curves, NFW light curves do not

have a clear visual profile compared to pointlike micro-
lensing sources. In Fig. 12 we compare the 100 most
easily identifiable pointlike microlensing curves, i.e. those
with the highest Pðy ¼ MLjXÞ, against the 100 most
easily identifiable NFW curves, i.e. those with the highest
Pðy ¼ NFWjXÞ, where the probabilities are obtained from
the HGBC trained on the three-way multiclass classifi-
cation on the regular cadence time stamps dataset. We
normalized the magnitudes by min-maxing their values to
fall under the [0, 1] interval to aid visual comparison.

FIG. 9. Probability of a BS light curve being correctly identified
as one by the HGBC vs the boson star τm parameter, using the
dataset generated with regular cadence timestamps.

FIG. 10. ROC curves and their areas obtained from a HGBC
trained on the three-way multiclassification task using the dataset
generated with regular daily cadence time stamps.

FIG. 11. Probability of a NFW light curve being correctly
identified as one by the HGBC vs the NFW τm parameter, using
the dataset generated with regular daily cadence time stamps.
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Although the difference is very nuanced, the NFW curves
tend to be narrower than the ML curves. This subtlety
explains why regular cadence is so important for identi-
fying NFW light curves, as one needs a better resolution
of the light curve profile to be able to identify this nuance,
which proved impossible when using the OGLE-II time
stamps.
Finally, we perform a backward SFS for the regular daily

cadence dataset using a three-way HGBC focused on the
microlensing classes. The discrimination performance vs
the number of features is shown in Fig. 13, where we
observe a similar trend than that already discussed for the
OGLE-II time stamps dataset with the ROC AUC degrading
significantly below 25 features. However, it is worth noting

that the performance degrades first for the NFW and ML
cases, with the ROC AUC associated with the classification
of the BS light curves staying at its maximum value until
around 15. This suggests that there are less relevant features
to distinguish BS light curves from the other classes than
there are to correctly identify the others. In Table I we
present the top 25 features, and we observe considerable
overlap with the OGLE-II study. Perhaps curiously, we
count 10 of the features to have been computed on the
derivative of the time series, whereas for the OGLE-II
the number is six, possibly hinting at the importance of the
derivative of the time series in identifying the nuanced
differences in shape between the ML and the NFW light
curve magnification peak.

V. DISCUSSION

In this work we have studied the observation of micro-
lensing signatures due to extended dark objects in time
series data, and its distinction from other signals, most
importantly pointlike lenses. We have focused on two lens
profiles, each exemplifying a class of objects: the profile
of a NFW subhalo is more peaked, whereas boson stars
have a more diffuse profile. As expected, the boson stars
can be confidently distinguished from pointlike lenses, for
0.8≲ τmð¼ rlens=rEÞ≲ 3. This is owed to the characteristic
caustics in the light curves for these objects.
As an exercise, we studied how the regularity of the time

series cadence affects the confidence of the detections.
Interestingly, for regular daily cadence we also find con-
fident detections of NFW subhalos. These detections occur
for 0.9≲ τm ≲ 4, despite the fact that no caustics are
observed in the light curves. Though the regularity of
(daily) observations is dependent on many conditions that
are beyond the observer’s control, this is an interesting
observation which warrants investigation for other micro-
lensing scenarios and targets.
Stellar binaries or exoplanets orbiting a lensing body may

give rise to perturbations and caustics in the light curve.
Unlike for extended dark objects, these are asymmetric or
one-sided features (see e.g. [31]). Microlensing has allowed
for the discovery of over 100 exoplanets, particularly of
near-terrestrial size [32]. In this work, we have not con-
sidered these signatures, which may give rise to confusion
with boson star identifications with low significance. We
will leave such an analysis for future work.
We performed the analysis in this work by extending the

MicroLIA algorithm, which utilizes 148 features derived
from the light curves in a single band to distinguish
between objects. Our SFS analysis showed that of these,
only 25 were needed for the optimal classification. For our
regular cadence analysis, further features could help dis-
tinguish between NFW subhalos and pointlike lenses. In
future work, we will study the potential benefits of learning
directly on the light curves.

FIG. 13. Backward SFS (features reduced from right to left) for
a HGBC trained on the three-way multiclassification task using
the dataset generated with regular daily cadence time stamps.

FIG. 12. Comparison between the 100 most easily identifiable
ML curves and the 100 most easily identifiable NFW curves.
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We note that in our analysis we have assumed a Gaussian
noise model, which may not be realistic. In future work
towards the application of our methodology, further noise
models should be considered. These could lead to larger
misclassification between classes of events.
Microlensing surveys typically only release data on

candidate events, which have passed through a strict
selection in which our extended dark object light
curves were likely cut. Exceptions include the UKIRT
Microlensing Survey [33,34] and the VISTA Variables in
the Via Lactea Survey [35], which we plan to analyze in
future work. Upcoming microlensing opportunities
include the launch of infrared astronomy experiments in
the mid 2020s. In particular, the Nancy Grace Roman
Space Telescope (previously WFIRST; a space mission by
NASA) has as a key objective to discover exoplanets
through the microlensing technique [36], but will also
probe primordial black holes [37] and extended dark
objects [38].
Finally, for some surveys, the finite extent of the source

becomes important. This is the case, for example, for the
Subaru-hsc survey of M31 [39]: because of its sensitivity to
small transit times (and hence small Einstein radii), the
angular extent of source stars corresponds to a distance at
the lens larger than the Einstein radius, suppressing the
magnification relative to pointlike sources [16,40–42]. We
leave an analysis of the magnification curves with finite
source effects for future work.

VI. SOFTWARE

For the computation of the mass profile of the
extended sources and the sensitivity estimation, we used
Mathematica version 12.
The dataset generation, machine learning training, and

the final analysis were performed in PYTHON 3.9.18, making
use of several packages, of which we make especial note:

(i) Light curve simulation and time series feature
extraction was performed using MicroLIA. We used
the code directly from the MicroLIA github reposi-
tory, as it includes considerable changes to the code
provided with the packaged version 2.6.0. More

precisely, the version used makes proper use of the
derivative time series, as well as its errors as
statistical weights. These two fixes were contribu-
tions of this work.

(ii) scikit-learn 1.3.2 for HGBC implemen-
tation.

(iii) mlxtend 0.23.0 for the backwards SFS.
(iv) SciencePlots 2.1.1 for plotting.
The full list of packages and their versions can be found

in the requirements.txt file included in the code
repository hosting the code used in this work.7
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APPENDIX: BACKWARD SEQUENTIAL
FEATURE SELECTION RESULTS

In Table I we collect the top 25 features obtained by the
backward SFS, for both the OGLE-II and the regular daily
cadence time stamps datasets. The details of the features
can be seen in [29] and in MicrioLIA’s code. The feature
rank is associated with how long it survived the SFS loop.
For example, a rank 1 means that the feature is present in all
subsets down to the last subset of a single feature, whereas a
rank n means that the feature is present up until the subset
of size n, but is then removed and is not present in smaller
subsets. This set of features is only unique up to fluctua-
tions of the data and the stochastic variability associated to
HGBC training. In principle, any feature presented in this
table could be replaced by a highly correlated counterpart,
and as such the list presented herein should be interpreted
as the maximal set of mutually uninformative features
obtained using our training and validation sets.

7https://gitlab.com/miguel.romao/microlensing-extended-objects-
machine-learning.
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