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A B S T R A C T   

Background: This study examines longitudinal associations of air pollution and green space with cardiometabolic 
risk among children in the Netherlands. 
Methods: Three Dutch prospective cohorts with a total of 13,822 participants aged 5 to 17 years were included: 
(1) the Amsterdam Born Children and their Development (ABCD) study from Amsterdam (n = 2,547), (2) the 
Generation R study from Rotterdam (n = 5,431), and (3) the Lifelines study from northern Netherlands (n =
5,844). Air pollution (PM2.5, PM10, NO2, and elemental carbon (EC)) and green space exposures (density in 
multiple Euclidean buffer sizes) from 2006 to 2017 at home address level were used. Cardiometabolic risk factor 
clustering was assessed by a MetScore, which was derived from a confirmatory factor analysis of six car
diometabolic risk factors to assess the overall risk. Linear regression models with change in Metscore as the 
dependent variable, adjusted for multiple confounders, were conducted for each cohort separately. Meta- 
analyses were used to pool cohort-specific estimates. 
Results: Exposure to higher levels of NO2 and EC was significantly associated with increases in MetScore in 
Lifelines (per SD higher exposure: βNO2 = 0.006, 95 % CI = 0.001 to 0.010; βEC = 0.008, 95 % CI = 0.002 to 
0.014). In the other two cohort studies, these associations were in the same direction but these were not sig
nificant. Higher green space density in 500-meter buffer zones around participants’ residential addresses was not 
significantly associated with decreases of MetScore in all three cohorts. Higher green space density in 2000-meter 
buffer zones was significantly associated with decreases of MetScore in ABCD and Lifelines (per SD higher green 
space density: βABCD = -0.008, 95 % CI = -0.013 to − 0.003; βLifelines = -0.002, 95 % CI = -0.003 to − 0.00003). 
The pooled estimates were βNO2 = 0.003 (95 % CI = -0.001 to 0.006) for NO2, βEC = 0.003 (95 % CI = -0.001, 
0.007) for EC, and β500m buffer = -0.0014 (95 % CI = -0.0026 to − 0.0001) for green space. 
Conclusions: More green space exposure at residence was associated with decreased cardiometabolic risk in 
children. Exposure to more NO2 and EC was also associated with increased cardiometabolic risk.   

1. Introduction 

Cardiometabolic risk factors are the largest contributors to the global 
disease burden (GBD 2017 Risk Factor Collaborators, 2018). In terms of 

disability-adjusted life-years, high systolic blood pressure (SBP), high 
fasting plasma glucose, high Body Mass Index (BMI), and high low- 
density lipoprotein cholesterol (LDL-C) were among the top 10 risk 
factors in 2017 (GBD 2017 Risk Factor Collaborators, 2018). Although 
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cardiometabolic diseases (CMDs) occur most frequently among middle- 
aged and older adults, cardiometabolic risk factor clustering has been 
shown to be stable from childhood into adulthood (Camhi and Katz
marzyk, 2010), which emphasizes that risk factors in early life have later 
life consequences (Hoffman et al., 2017). 

Exposure to environmental characteristics, such as air pollution and 
green space, may be important factors of cardiometabolic alterations 
among children (Araujo, 2011; Giorgini et al., 2016; Kuo, 2015; Mar
kevych et al., 2017a). Exposure to higher levels of air pollution may 
negatively impact cardiometabolic health through autonomic nervous 
system imbalance, pulmonary and systemic inflammation, and oxidative 
stress (Araujo, 2011; Giorgini et al., 2016). Children are suggested to be 
more vulnerable to the harmful effects of air pollutants than adults, 
because their immune system is still evolving and because they inhale a 
higher volume of air pollutants per body weight than adults (Salvi, 
2007). On the contrary, green space may improve cardiometabolic 
health by its restoration and building capacities (Kuo, 2015; Markevych 
et al., 2017a). For restoration, green space relieves psychological stress 
(Kuo, 2015), which is associated with cardiometabolic diseases (Turner 
et al., 2020). For building, green space releases certain chemical agents 
with cardiometabolic health implications (e.g., phytoncides) (Kuo, 
2015). It also has an indirect effect on cardiometabolic health. Specif
ically, green space can reduce harm from exposure to air pollution, heat, 
and noise, and can encourage healthy lifestyle like outdoor physical 
activity (Markevych et al., 2017a). 

Previous evidence on the associations of air pollution and green 
space with cardiometabolic risk among children is limited and incon
sistent. A nationwide school-based study in Iran investigated the asso
ciation between air quality and individual cardiometabolic risk factors, 
and found significant positive associations for SBP, total cholesterol, and 
triglycerides (TG) (Poursafa et al., 2014). A study in Spain showed that 
the distance from home to green spaces was not significantly associated 
with cardiometabolic risk in primary students (Gutiérrez-Zornoza et al., 
2015). Another study did not provide evidence for beneficial effects of 
green space or adverse effects of air pollution on cardiometabolic health 
in Dutch adolescents (Bloemsma et al., 2019). These three studies are all 
based on cross-sectional designs, thus a longitudinal study to provide 
evidence of a temporal relationship is merited. 

Previous studies focused on individual cardiometabolic risk factors 
or sum of standardized scores (z-scores) (Bloemsma et al., 2019; 
Gutiérrez-Zornoza et al., 2015; Poursafa et al., 2014), which are not 
ideal indicators of overall cardiometabolic risk (Magge et al., 2017). An 
alternative indicator is metabolic syndrome (MetS), which is a standard 
measure in adults referring to the presence of at least three of the 
following five conditions: abdominal obesity, high blood pressure (BP), 
high blood glucose, high serum TG, and low serum high-density lipo
protein (HDL-C) (Kaur, 2014). More than 40 unique definitions of MetS 
have been identified in literature (Ford and Li, 2008). However, to date, 
there is no consensus on whether MetS should be defined in pediatric 
populations and, if defined, which definition to use (Magge et al., 2017). 
Furthermore, studies found that the diagnosis of MetS is highly unstable 
and fluctuates throughout childhood (Goodman et al., 2007; Stanley 
et al., 2014). Thus its predictive value of future risk is unclear (Magge 
et al., 2017). 

To address these issues, it has been recommended to focus on car
diometabolic risk clustering, and to use a continuous latent variable of 
cardiometabolic risk score, such as MetScore (Magge et al., 2017). The 
MetScore as a continuum has been demonstrated to better predict adult 
risk from early adolescence as compared to MetS or summed z-scores 
(Camhi and Katzmarzyk, 2010; Kelly et al., 2011; Magge et al., 2017). To 
our knowledge, this new approach has not been previously used to 
analyse the association of air pollution and green space with car
diometabolic risk. The current study aimed to examine the prospective 
associations of air pollution and green space density with car
diometabolic risk factor clustering among children in the Netherlands. It 
was hypothesized that higher exposure levels of air pollution and green 

space are associated with a higher and lower MetScore among children 
in the Netherlands, respectively. 

2. Methods 

2.1. Study populations 

Data were derived from three Dutch population-based prospective 
cohort studies: Amsterdam Born Children and their Development 
(ABCD) study, Generation R study, and Lifelines. All three cohort studies 
have been described in detail previously (Kooijman et al., 2016; Schol
tens et al., 2015; Van Eijsden et al., 2011). The three cohort studies were 
approved by the Ethical Review Boards of the respective institutions, 
and written informed consent from participants were obtained by each 
cohort study. 

The ABCD study is a prospective cohort study with the aim to 
examine the associations of maternal and early-life conditions with 
children’s health (Van Eijsden et al., 2011). In brief, between January 
2003 and March 2004, all pregnant women (n = 12,373) in Amsterdam 
attending their first prenatal visit were invited to participate in the 
study. Mothers of singleton infants were contacted for follow-up mea
surements. The current study included data from two follow-up waves 
when children from this pregnancy were about five (2009) and eleven 
(2015–2016) years old, respectively. 

The Generation R study is a population-based prospective cohort 
study from early pregnancy onwards in Rotterdam, aiming to identify 
early environmental and genetic determinants of growth, development 
and health from foetal life until young adulthood. (Kooijman et al., 
2016). All pregnant women living in the study area with a delivery date 
between April 2002 and January 2006 were invited to participate, 
resulting in 9,778 mothers and their children enrolled in the study. The 
current study included data from two follow-up waves when children 
were about five (2007–2011) and nine (2011–2015) years old, 
respectively. 

The Lifelines study is a multi-disciplinary prospective cohort study 
examining in a unique three-generation design the health and health- 
related behaviours of 167,729 persons living in three northern prov
inces of the Netherlands (Groningen, Friesland and Drenthe) (Scholtens 
et al., 2015). It employs a broad range of investigative procedures in 
assessing the biomedical, socio-demographic, behavioural, physical, and 
psychological factors which contribute to the health and disease of the 
general population, with a special focus on multi-morbidity and complex 
genetics. The current study included data from baseline (2007–2013) – 
with children aged 8 to 17 years – and the first follow-up wave 
(2014–2017). 

Combining the three cohorts resulted in a study sample size of 
14,097 (ABCD: 2,811; Generation R: 5,431; and Lifelines: 5,855) chil
dren aged 5 to 17 years who attended both surveys. Of those partici
pants, 18 (ABCD: 7; and Lifelines: 11) participants were excluded 
because they had a history of diabetes, hypertension, stroke, heart dis
ease, or disease precocious puberty, and 257 (ABCD: 257) participants 
were excluded because they used certain medication that may influence 
the cardiometabolic risk factor levels (medication with ATC codes (ATC 
Code, 2023): B01, C01, H01, H02, J01, D06, H03, and M01). The 
analytical sample included 13,822 participants (ABCD: 2,547; Genera
tion R: 5,431; and Lifelines: 5,844). 

2.2. Exposure assessment 

Data on air pollution and green space were obtained from the Geo
science and Health Cohort Consortium (GECCO) (Lakerveld et al., 2020; 
Timmermans et al., 2018). The environmental exposure data at the 
home address-level were linked to participants. 

Data on annual average outdoor concentrations of particulate matter 
with diameters < 2.5 µm (PM2.5) and < 10.0 µm (PM10), nitrogen di
oxide (NO2), and elemental carbon (EC) were modeled by the Institute 
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for Public Health and the Environment (Velders et al., 2011; Wesseling 
et al., 2015). These data were based on a combination of dispersion and 
chemical transport model calculations and measurements from National 
Air Quality monitoring locations. Data were available on 1 × 1 km 
resolution from 2006 to 2017 annually, and on 25 × 25 m resolution 
from 2013 to 2017 annually. The data in 1 × 1 km resolution were used 
to back-extrapolate data in 25 × 25 m resolution for years before 2013 
(Chen et al., 2010). We scaled 25 × 25 m map in 2013 by ratio of the 1 ×
1 km map of the years prior to 2013 to the 1 × 1 km map in 2013, and 
assumed this to be applicable to all 25*25 m grids in a 1*1 km grid. 

Residential green space exposure was assessed by green space den
sity. This refers to the percentage of area devoted to green space (i.e., 
parks, public gardens, forests, graveyards, and agriculture) within a 
Euclidean buffer (radii of 150, 250, 350, 500, 750, 1000, 1650, and 
2000 m) around residential addresses. These data were based on the 
land area coverage statistics from Statistics Netherlands (Statistics 
Netherlands, 2024), and were available for 2006, 2008, 2010, 2012, and 
2015. Applying situational interpretation on all available sources, a 
minimum lower limit of 1 ha was used for green space (Statistics 
Netherlands, 2024). Both air pollution and green space data were used 
by averaging over the study period corresponding to each cohort. 

2.3. Assessment of cardiometabolic risk factors 

Assessed cardiometabolic risk factors for deriving the MetScore 
consisted of total cholesterol, HDL-C, TG, BMI, SBP, and diastolic blood 
pressure (DBP) (Fig. 1). The measurement methods for each cohort are 
described in Appendix 1. 

2.4. Calculation of MetScore 

A consistent confirmatory factor analysis (CFA) was conducted in a 
pooled dataset to derive the MetScore across all cohorts. CFA allows for 
the testing of hypotheses or theories about the relationships between 
observed variables and their underlying latent constructs (Harrington, 
2009). In the current study, it was used to validate the MetScore, 
ensuring that MetScore adequately represents the six component car
diometabolic risk factors (Harrington, 2009). BMI was standardized by 
age and sex using LMS tables (Lambda for the skew, Mu for the median, 
and Sigma for the generalized coefficient of variation (Cole, 1990)) from 
a Dutch nationwide growth study (Schönbeck et al., 2011) and a German 
cohort study (Rönnecke et al., 2019), respectively. The SBP and DBP 
were standardized by age and sex using LMS tables from a reference for 
Caucasian children (Wühl et al., 2002). TG was log-transformed because 
its distribution was skewed. The reciprocal of HDL-C was used when 
standardizing so that the interpretation of higher factor loading scores is 
the same with other measures. Subsequently, the z-scores for all CFA 
components were created. 

The goodness of fit indices included the Comparative Fit Index (good 
fit: CFI, ≥0.90), the Tucker-Lewis Index (good fit: TLI, ≥0.90), the Root 
Mean Square Error of Approximation (good fit: RMSEA, ≤0.06), and the 
Standardized Root Mean Square Residual (good fit: SRMR, <0.08) (Hu 
and Bentler, 1999). The standardized factor loadings were used to 
calculate the factor score of MetScore for each participant, separately. 
This score can be interpreted as a z-score, the value is positively corre
lated with cardiometabolic risk and where zero indicates the population 
mean. 

Fig. 1. Factor loadings for cardiometabolic risk factor clustering (MetScore), combing data from the first waves of three cohorts: ABCD, Generation R and Lifelines. 
All components are standardized into z-scores. Abbreviations: CFI = Comparative Fit Index, TLI = Tucker-Lewis Index, RMSEA = Root Mean Square Error of 
Approximation, SRMR = Standardized Root Mean Square Residual. 
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2.5. Covariates 

Based on confounders used in previous studies (Bloemsma et al., 
2019; Poursafa et al., 2014; Shenassa and Williams, 2020), a directed 
acyclic graph was created to choose confounders (Appendix Figure S1). 
At two surveys of each cohort, participants’ parents provided informa
tion about age, sex (male, female), ethnicity (Dutch, Non-western other, 
Western other), parental education level (low to low-intermediate, high- 
intermediate, high), maternal smoking during pregnancy (no, <1 a day, 
≥1 a day), child screen time (<1 h a day, 1 to 2 h a day, >2 h a day), 
child leisure time physical activity (<1 h a week, 1 to 2 h a week, 2 to 4 h 
a week, >4 h a week), parental marital status (married / live together, 
divorced / don’t live together), and year of birth. The duration between 
these two surveys was also obtained. Urbanization degree within a 
Euclidean buffer of 1 km around each address was obtained from GECCO 
(Lakerveld et al., 2020; Timmermans et al., 2018). Objectively measured 
neighborhood socioeconomic status (SES) scores were obtained from the 
Netherlands Institute for Social Research (Netherlands Institute for So
cial Research, 2023). These scores are based on the average income, the 
percentage of residents with a low income, the percentage of residents 
with a low level of education, and the percentage of unemployed resi
dents in the neighborhood (Netherlands Institute for Social Research, 
2023). Higher scores indicate higher area-level SES. 

2.6. Statistical analysis 

Characteristics of the study sample and the area-level exposure 
measures were presented using descriptive statistics for each cohort, 
separately. The relative variability between exposures was compared by 
coefficient of variation, which is calculated by dividing the standard 
deviation by the mean and then multiplying by 100. The average of 
environmental exposures across years (air pollution with 25 × 25 m 
resolution and green space density in 500 m, 1000 m, and 2000 m 
buffers) were calculated and used in longitudinal analyses. Since all 
three cohorts have two waves of measurements, the change of MetScore 
between the two waves was used as dependent variable. Linear regres
sion models were conducted for the association between average envi
ronmental exposure over time and change of MetScore over time. 
Models were adjusted for age, sex, ethnicity, baseline MetScore, highest 
parental education level, maternal smoking during pregnancy, screen 
time, leisure time physical activity, parental marital status, year of birth, 
duration between two surveys, neighborhood SES score, and urbaniza
tion degree. For sensitivity analyses, mutual confounding between air 
pollution and green space exposure was further considered in models by 
adjusting for each other. Air pollution with 1 × 1 km resolution across 
all years and green space density in other Euclidean buffer sizes (radii of 
150, 250, 350, 750, and 1650 m) were also modelled in sensitivity an
alyses. In all analyses, unit of air pollution and green space were per 
standard deviation (SD). 

Within each cohort, multiple imputation was conducted to deal with 
missing data. For each variable with missing values, the specified 
imputation model replaced missing values with values randomly drawn 
from the predictive distribution of the variable conditional on other 
observed data. This process created multiple imputed datasets with no 
missing values that reflected the uncertainty of missing data. All vari
ables in the analytical model were included in the imputation model. We 
generated twenty imputed datasets that were analysed separately and 
pooled the estimates based on Rubin’s rules (Van Buuren, 2018). Lastly, 
random-effect meta-analyses were conducted to synthesize the results 
from the three cohorts. The I2 statistic was obtained as a measure of 
heterogeneity across cohorts. All analyses were performed using R 
software (Liu et al., 2021). Statistical significance was defined as P <
0.05 (2-sided). 

3. Results 

The characteristics at baseline of the study sample and the area-level 
exposure measures for each cohort are presented in Table 1. The mean 
ages at baseline were 5.5 ± 0.5 years for ABCD, 6.1 ± 0.5 years for 
Generation R, and 9.5 ± 2.7 years for Lifelines, respectively. The per
centages of male participants were 50.4 % for ABCD, 49.9 % for Gen
eration R, and 48.6 % for Lifelines. Participants in Lifelines were mostly 
ethnically Dutch (96.6 %), while Generation R had more ethnical di
versity (Dutch: 58.0 %). Participants in ABCD had more children with 
high parental education level (75.9 %) and more parents divorced or not 
living together (17.4 %). Participants in Generation R had more events 
of maternal smoking during pregnancy. Children in Lifelines had more 
screen time and underwent more physical activities during leisure time. 
Participants in ABCD had higher neighborhood SES score. Participants 
in ABCD and Generation R mostly lived in urban areas while participants 
in Lifelines mostly lived in rural areas. Participants in Lifelines were 
generally exposed to less air pollution and more green space at resi
dence. The coefficient of variations ranged from 5.5 % to 8.2 % for 
particulate matter, and ranged from 13.9 % to 20 % for NO2 and EC. 
Appendix Figure S1 shows the Spearman correlations between green 
space and air pollutants in the three cohorts, respectively. Green space 
density was moderately, negatively correlated with air pollutants (r =
-0.39 to − 0.62), expect for particulate matter in Lifelines (r = -0.10 to 
− 0.12). 

Fig. 1 presents the model fit indices and factor loadings of the CFA 
model of MetScore. The model fit indices overally showed good fit. All 
components were significantly contributing to the MetScore. The vari
ance in MetScore was mostly explained by BMI z score (46.9 %, the 
square of the standardized factor loadings). The associations of air 
pollution and green space exposure with change of MetScore for each 
separate cohort are shown in Table 2. There is no multicollinearity 
problem in the models. After adjusting for multiple confounders, expo
sures to higher levels of NO2 and EC were significantly associated with 
increases of MetScore in Lifelines (per SD higher exposure: βNO2 = 0.006, 
95 % CI = 0.001 to 0.010; βEC = 0.008, 95 % CI = 0.002 to 0.014). In 
ABCD and Generation R, these associations were in the same direction, 
but these were not statistically significant. The associations of PM2.5 and 
PM10 with change of MetScore were not significant in all three cohorts. 
Higher green space density in 500-meter buffer zones around partici
pants’ residential address was significantly associated with decreases of 
MetScore in ABCD and Lifelines (per SD higher green space: βABCD =

-0.003, 95 % CI = -0.011 to 0.005; βLifelines = -0.001, 95 % CI = -0.003 to 
0.00004). All observed associations were not significant in Generation 
R. In sensitivity analyses, after considering mutual confounding between 
air pollution and green space, or modeling in another resolution (i.e., 1 
× 1 km) and other buffer sizes (i.e., 150, 250, 350, 750, and 1650 m), 
models showed similar results (Appendix Table S1-S3). 

Fig. 2 presents the meta-analyses of results from three cohorts. The 
pooled estimates were 0.003 (95 % CI = -0.001 to 0.006; P = 0.13) for 
NO2, 0.003 (95 % CI = -0.001, 0.007; P = 0.13) for EC, and − 0.0014 (95 
% CI = -0.0026 to − 0.0001; P = 0.03) for green space in 500-meter 
buffer zones. The pooled estimates were marginally significant for 
green space in other buffer zones, but were not significant for particulate 
matter. 

4. Discussion 

More green space exposure at residence was associated with 
decreased cardiometabolic risk as measured by MetScore over time 
among children. Results for air pollution were inconsistent among 
pollution indicators. Higher concentrations of NO2 and EC were asso
ciated with increased cardiometabolic risk in Lifelines. The pooled es
timates were marginally significant for NO2 and EC. There was no 
statistical evidence found for the association of PM2.5 and PM10 with 
cardiometabolic risk. Results are robust after considering mutual 
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confounding between air pollution and green space, or modeling in 
other resolution and buffer sizes. 

The current results strengthen the evidence of a protective effect of 
green space exposure against cardiometabolic risk among children. 
Several previous studies reported associations between green space 
exposure and individual cardiometabolic risk factors among children, 
like lower BMI (Bell et al., 2008; Wolch et al., 2011) and lower BP (Zhao 
et al., 2022). However, to the best of our knowledge, this is the first 
study that found a significant association for overall cardiometabolic 
risk. A previous study in The Netherlands did not find an association 
between green space and overall cardiometabolic risk at ages 12 and 16 
years, respectively (Bloemsma et al., 2019). Neither a Spanish study in 
rural areas found an association between distance from children’s home 
to green space and overall risk (Gutiérrez-Zornoza et al., 2015). Both 
studies applied a cross-sectional design, and both studies measured the 
overall risk by summing the z-scores of individual risk factors, which 
gives equal weight to components. Instead, the current study used a 
prospective design and derived a MetScore by a CFA of component risk 
factors, which takes the weight of separate components into account, as 
recommended (Magge et al., 2017). Therefore, the present study ex
pands the current literature and strengthens the evidence base on the 
association between green space and cardiometabolic risk among 
children. 

For air pollution, there was large heterogeneity among the current 
study and previous ones. A study in the Netherlands investigated the 
associations of PM2.5, PM10, and NO2 at residence with overall car
diometabolic risk (summed z-scores), and found no significant results 
(Bloemsma et al., 2019). A national study in the US used residential 
concentrations of volatile organic compounds as indicator of air pollu
tion and found an elevated overall risk (summed z-scores) (Shenassa and 
Williams, 2020). A study in China investigated the PM2.5 constituents at 
school in relation to MetS and indicated a robust association for EC (Li 
et al., 2023). All of them were cross-sectional studies among children. 
The current prospective study found evidence for NO2 and EC, but not 
for particulate matter. 

Even when using the same exposure and overall risk measures in the 
current study, there was large heterogeneity among the three cohorts 
(Table 1). For example, Generation R was more ethnically diverse while 
Lifelines is predominantly Dutch. Children in Generation R were more 
predisposed to cardiometabolic risk because more mothers smoked 
during pregnancy. Children in ABCD lived in neighborhoods charac
terized by a substantially higher SES. Children in Lifelines mostly lived 
in rural areas, while children in ABCD and Generation R mostly lived in 
strong urban areas. However, this heterogeneity cannot be addressed by 
meta-regression since there is a small number of studies. The credibility 
of the current results from meta-analysis is low. We therefore emphasize 
to interpret the results of the meta-analyses with caution. 

Literature has proposed several mechanisms that green space expo
sure may decrease cardiometabolic risk. As discussed earlier, green 
space can release certain chemical agents like phytoncides that directly 
inhibit inflammation (Day, 2012), which is associated with car
diometabolic health in the long term. Apart from direct effect, green 
space may indirectly benefit cardiometabolic health by releasing stress, 
encouraging physical activity and depositing air pollution (Markevych 

Table 1 
Characteristics of participants by cohorts.  

Variables1 Cohorts 

ABCD 
2009–2016 

Generation R 
2007–2015 

Lifelines 
2007–2017 

N 2,547 5,431 5,844 
Age at baseline (year) 5.5 ± 0.5 6.1 ± 0.5 9.5 ± 2.7 
Male (%) 50.4 49.9 48.6 
Ethnicity (%) 

Dutch 73.7 58.0 96.6 
Non-western other 13.0 15.2 2.0 
Western other 13.4 26.8 1.4 

Highest parental education level (%) 
Low to Low-intermediate 7.7 15.2 8.4 
High-intermediate 16.5 26.8 41.7 
High 75.9 58.1 49.9 

Maternal smoking during pregnancy (%) 
No 93.0 73.2 90.4  
< 1 a day 2.3 4.5 0.9  
≥ 1 a day 4.7 22.4 8.7 

Child Screen time (%)  
< 1 h a day 38.1 42.7 15.8 

1 to 2 h a day 46.2 40.1 36.8  
> 2 h a day 15.7 17.3 47.5 

Child Leisure time physical activity (%)  
< 1 h a week 10.5 5.3 2.5 

1 to 2 h a week 19.4 27.7 3.5 
2 to 4 h a week 33.1 44.1 60.2  
> 4 h a week 37.0 22.8 33.9 

Parental marital status (%) 
Married / live together 82.6 88.9 93.7 
Divorced / don’t live 
together 

17.4 11.1 6.3 

Neighborhood socio- 
economic status score2 

0.6 (− 0.5, 
1.3) 

− 0.4 (− 1.3, 
1.2) 

− 0.5 (− 1.4, 
0.2) 

Residence density 
(addresses per km2) 

2,529 (1,566, 
5,698) 

2,629 (1,604, 
4,605) 

449 (171, 
913) 

Urbanicity degree (%) 
Non-urban (<500 
addresses per km2) 

4.5 2.8 53.6 

Limited urban (500–1000 
addresses per km2) 

7.7 7.9 25.4 

Moderately urban 
(1000–1500 addresses per 
km2) 

10.4 11.5 12.4 

Strong urban (1500–2500 
addresses per km2) 

26.8 25.0 6.2 

Very strong urban (≥2500 
addresses per km2) 

50.7 52.8 2.5 

Duration between two 
surveys (years) 

6.1 ± 0.5 3.7 ± 0.5 2.9 ± 0.8 

Average PM2.5 

concentration (μg/m3) 
15.1 ± 1.2 15.8 ± 1.3 9.5 ± 0.7 

Average PM10 concentration 
(μg/m3) 

23.4 ± 1.7 24.3 ± 1.7 16.3 ± 0.9 

Average NO2 concentration 
(μg/m3) 

25.5 ± 4.5 31.2 ± 4.5 12.2 ± 1.7 

Average elemental carbon 
concentration (μg/m3) 

1.1 ± 0.2 1.3 ± 0.2 0.5 ± 0.1 

Average Green space density 
in 1 km buffer 
(percentage)3 

18.8 ± 15.9 16.5 ± 13.7 54.1 ± 26.8 

Average Agriculture density 
in 1 km buffer 
(percentage) 

8.7 ± 16.0 7.4 ± 12.9 46.9 ± 29.2 

Baseline MetScore4 − 0.03 ± 0.06 0.01 ± 0.06 − 0.01 ± 0.07 
Total cholesterol (mmol/ 
L) 

4.0 ± 0.7 4.2 ± 0.6 4.1 ± 0.7 

High-density lipoprotein 
(mmol/L) 

1.3 ± 0.3 1.4 ± 0.3 1.6 ± 0.3 

Triglyceride (mmol/L) 0.7 ± 0.3 1.0 ± 0.5 0.7 ± 0.4 
Body mass index (kg/m2) 15.5 ± 1.4 16.2 ± 1.9 18.7 ± 3.2 
Systolic blood pressure 
(mmHg) 

98.4 ± 8.5 103.3 ± 8.0 106.4 ± 10.8 

Diastolic blood pressure 
(mmHg) 

59.1 ± 8.2 61.4 ± 6.7 59.5 ± 6.3 

Change of MetScore 0.01 ± 0.06 − 0.01 ± 0.05 0.01 ± 0.05  

1 Values are mean ± SD or median (first quartile, third quartile) for contin
uous variables and % for categorical variables. The values for environmental 
exposures have been averaged over the study period corresponding to each 
cohort. 

2 This score is based on the average income, the percentage of residents with a 
low income, the percentage of residents with a low level of education, and the 
percentage of unemployed residents in the neighborhood. 

3 Green space are aggregates of parks, public gardens, forests, graveyards, and 
agriculture. 

4 Cardiometabolic risk factor clustering, derived from a factor analysis of six 
components: total cholesterol, HDL-C, TG, BMI, SBP, and DBP. All in z-scores. 
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et al., 2017b). Therefore, air pollution may play a role as a mediator in 
the association between green space and cardiometabolic risk. It has 
been recommended in a recent review that primary study should 
consider interrelationships between these built environment aspects in 
relation to cardiometabolic risk (Liu et al., 2023). The current study 
included mutual confounding of air pollution and green space in models 
and found their independent associations with cardiometabolic risk. 
However, simply adjusting for each other does not address the interre
lationship since there could partially be a mediation effect, a moderation 
effect, or both. Future studies should investigate the mediation and 
moderation effects, while taking into account the types of green space, 
because vegetation of different heights may interact with air pollution 
differently (Jim and Chen, 2008). 

The current study found an increasing risk for NO2 and EC, but not 
for PM2.5 and PM10. Statistic description showed that particulate matter 
exposures had small variation within cohorts while NO2 and EC expo
sures had larger variation. This small variation within cohorts could 
impede the finding of significant associations. Another potential expla
nation is that particulate matter comprises a wide range of particles. 
Some particles may be less associated with cardiometabolic health, but 
may be more related to allergy and respiratory issues, like pollen and 
spores (Idrose et al., 2022; Tham et al., 2014). Other particles, such as 
EC, are more strongly associated with cardiometabolic risk (Song et al., 
2022). Both NO2 and EC are primarily produced by combustion pro
cesses, particularly in vehicles, power plants, and industrial facilities. EC 
is generated by the incomplete combustion of carbon-based fuels (Nir
anjan and Thakur, 2017). In the context of the Netherlands, NO2 and EC 
are mostly traffic-related diesel exhaust. Randomized trials showed that 
their exposures are associated with acute endothelial dysfunction and 
vasoconstriction in vivo (Mills et al., 2005; Peretz et al., 2008), which in 
turn can increase cardiometabolic risk. 

4.1. Strengths and limitations 

The current study has several strengths, including a relatively large 
sample size as compared to previous studies, use of a longitudinal design 
and applying a recommended MetScore to assess overall car
diometabolic risk among children. There are also several limitations to 
consider when interpreting the results. First, there was little variability 
in the environmental exposures which impede the finding of signifi
cance. Second, the exposures were only measured at residence in the 
current study. The mobility of individuals should be considered in future 
study including exposures at school and commute (Ntarladima et al., 
2019). Third, due to data availability across three cohorts, the MetScore 
was constructed based on an incomplete list of components. Future 
study should add other components like fasting glucose and HbA1c. 
Lastly, due to the small number of studies included, heterogeneity 
cannot be addressed via a meta-regression. 

5. Conclusion 

Among children, more green space exposure at residence was asso
ciated with decreased cardiometabolic risk over time. Some evidence 
was found for the association between air pollution and increased car
diometabolic risk. Exposure to higher concentrations of NO2 and EC was 
associated with increased cardiometabolic risk in the Lifelines cohort. 
No evidence was found for PM2.5 and PM10, probably due to the small 
variations in exposures. More research is needed to investigate the 
longitudinal effect of air pollution and green space on cardiometabolic 
risk among children; this should involve application of the MetScore and 
consideration of the interrelationship between exposure measures. 
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Table 2 
Linear relation between air pollution, green space exposure and change of cardiometabolic risk factor clustering (MetScore)1,2.  

Exposure Change of MetScore in ABCD, n = 2,547 Change of MetScore in Generation R, n = 5,431 Change of MetScore in Lifelines, n = 5,844 

β (95 % CI) P β (95 % CI) P β (95 % CI) P 

PM2.5 concentration 0.0001 (− 0.006, 0.006)  0.98 0.001 (− 0.001, 0.004)  0.25 − 0.0003 (− 0.004, 0.003)  0.86 
PM10 concentration 0.0005 (− 0.005, 0.006)  0.86 0.001 (− 0.001, 0.003)  0.31 − 0.001 (− 0.005, 0.002)  0.50 
NO2 concentration 0.003 (− 0.003, 0.009)  0.39 0.001 (− 0.001, 0.003)  0.43 0.006 (0.001, 0.010)*  0.02 
Elemental carbon concentration 0.003 (− 0.004, 0.009)  0.42 0.001 (− 0.002, 0.004)  0.48 0.008 (0.002, 0.014)*  0.01 
Green space density in 500 m buffer − 0.003 (− 0.011, 0.005)  0.46 − 0.001 (− 0.004, 0.002)  0.46 − 0.001 (− 0.003, 0.00004)  0.06 
Green space density in 1000 m buffer ¡0.007 (¡0.013, ¡0.0005)*  0.04 − 0.001 (− 0.004, 0.003)  0.64 − 0.001 (− 0.003, 0.0002)  0.08 
Green space density in 2000 m buffer ¡0.008 (¡0.013, ¡0.003)**  0.003 − 0.001 (− 0.004, 0.002)  0.45 ¡0.002 (¡0.003, ¡0.00003)*  0.048  

1 Unit of air pollution is per standard deviation (SD) based on data of a resolution of 25 × 25 m raster. Unit of green space is per SD. The SDs were 1.1, 1.4, 3.6, 0.2, 
21.1, 20.6, and 19.0 for PM2.5, PM10, NO2, elemental carbon, and green space in 500 m buffer, 1000 m buffer, and 2000 m buffer, respectively. 

2 Models adjusted for age, sex, ethnicity, baseline MetScore, highest parental education level, maternal smoking during pregnancy, screen time, leisure time physical 
activity, parental marital status, year of birth, duration between two surveys, neighborhood socioeconomic status score, and residence density. 

* P < 0.05, **P < 0.01, ***P < 0.001. 
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