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A B S T R A C T   

Background and purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. We compared 
fractionated stereotactic radiotherapy (SRT) with proton therapy, including toxicity risks for UM patients. 
Materials and methods: For a total of 66 UM patients from a single center, SRT dose distributions were compared 
to protons using the same planning CT. Fourteen dose-volume parameters were compared in 2-Gy equivalent 
dose per fraction (EQD2). Four toxicity profiles were evaluated: maculopathy, optic-neuropathy, visual acuity 
impairment (Profile I); neovascular glaucoma (Profile II); radiation-induced retinopathy (Profile III); and dry-eye 
syndrome (Profile IV). For Profile III, retina Mercator maps were generated to visualize the geographical location 
of dose differences. 
Results: In 9/66 cases, (14 %) proton plans were superior for all dose-volume parameters. Higher T stages 
benefited more from protons in Profile I, especially tumors located within 3 mm or less from the optic nerve. In 
Profile II, only 9/66 cases resulted in a better proton plan. In Profile III, better retina volume sparing was always 
achievable with protons, with a larger gain for T3 tumors. In Profile IV, protons always reduced the risk of 
toxicity with a median RBE-weighted EQD2 reduction of 15.3 Gy. 
Conclusions: This study reports the first side-by-side imaging-based planning comparison between protons and 
SRT for UM patients. Globally, while protons appear almost always better regarding the risk of optic-neuropathy, 
retinopathy and dry-eye syndrome, for other toxicity like neovascular glaucoma, a plan comparison is warranted. 
Choice would depend on the prioritization of risks.   

1. Introduction 

Uveal melanoma (UM) patients are commonly treated with either 
surgery, photon-based stereotactic radiotherapy (SRT) [1–11], plaque 
brachytherapy, or proton therapy. UM is a standard indication for pro-
ton therapy [12] with a 5-year local control rate of more than 90 % 
worldwide [13–17]. Brachytherapy [18–21] and SRT [2,5,7,10,22,23] 
result in 5-year local control of 75–95 %. The selection among those 
techniques is based on the availability of a specific treatment modality, 
the ocular team experience, patient’s preferences, and/or 

reimbursements. Differences in outcomes are still debated [24,25] and 
up to 70 % of adverse events have been reported after any radiotherapy 
[26]. As more centers treat UM with photon-based SRT and the number 
of proton centers worldwide increases, the patient selection based on the 
potential trade-off in toxicities needs to be addressed. The choice of the 
optimal technique should account for both the risk of post-treatment 
complications [26] and quality-of-life [27]. However, direct photon- 
proton plan comparison studies are not possible due to differences in 
treatment planning. Proton planning is historically based on a generic 
geometrical model [28], while SRT utilizes a CT-based planning 
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approach. 
This study aimed to evaluate the differences in dose-volume metrics 

between SRT and proton therapy for UM patients using a CT-based in- 
silico planning comparative study. Four toxicity-specific profiles, rep-
resenting the most clinically relevant complications, were compared to 
evaluate the potential benefit of each treatment option. 

2. Materials and methods 

2.1. Study population 

Clinical baseline characteristics and treatment details of 66 UM pa-
tients (40 left, 26 right eyes) treated between 2016 and 2021 at Erasmus 
Medical Center (Rotterdam, The Netherlands) with SRT using a robotic 
CyberKnife M6 (Accuray, Sunnyvale, CA, USA) are summarized in 
Table 1. The local Ethics Committee approved the study (MEC-2021- 

0454). Tumors were classified using the American Joint Committee on 
Cancer (AJCC) staging [29]: 15 T1, 25 T2 and 26 T3. The median tumor 
apical height was 5.5 mm (range: 1.8–12.8 mm) and median volume was 
0.4 cm3 (range: 0.1–1.7 cm3). Tumor apical height and largest basal 
diameter were retrieved from B-scan ultrasonography before irradia-
tion. A planning CT was acquired at straight gazing angle with a voxel 
resolution of (0.59x0.59x1) mm3. Anterior segment, retina (1-mm inset 
from the external eye globe until ora serrata), eye globe, vitreous body, 
optic nerve, optic disc, and lacrimal gland were manually contoured. As 
the macula was not discernible on CT or MRI, it was geometrically 
reconstructed based on fundus photography. For patients suffering from 
vitreous hemorrhage, the macula was defined at the intersection be-
tween the optical axis and retina. Registered MRI was used for delin-
eation of the Gross Tumor Volume (GTV) when available. 

2.2. Stereotactic radiotherapy 

The relative biological effectiveness (RBE)-weighted dose of 50 Gy 
[23] (5x10 Gy) was prescribed to the 80 % isodose encompassing the 
Planning Target Volume (PTV) according to the International Commis-
sion of Radiation Units and Measurements (ICRU) Report 91 guidelines 
[30]. PTV included GTV with a 2-mm isotropic margin derived upon a 
multidisciplinary local consensus based on the assessment of un-
certainties. At least 98 % of PTV received 95 % of the prescribed dose, 
resulting in a PTV near-maximum dose of 62.5 Gy (RBE-weighted =
1.0). Dose was calculated in Accuray Multiplan™ (Accuray, Sunnyvale, 
CA, USA) and delivered with a robotic CyberKnife M6 using either an iris 
collimator (range: 7.5 to 20 mm) or a multi-leaf collimator. To 
compensate for intrafraction patient motion, the 6D skull tracking 
method was used with tight rotational and translational boundaries. To 
mitigate eye setup errors, gating using a modified version of the Rot-
terdam Gill-Thomas-Cosman frame [31] with the camera and LED 
placed on an arch attached to a double-shell mask was employed. 

2.3. Simulation of proton therapy 

The prescription dose for proton therapy was 60 Gy (4x15 Gy, RBE- 
weighted = 1.1) within the treatment field where 100 % of dose was 
defined from the average dose within this treatment field according to 
ICRU Report 78 [32], resulting in at least 95 % of GTV receiving 90 % of 
the prescribed dose. Following an international consensus in ocular 
proton therapy [13,14,33–37], a 2.5-mm expansion was applied proxi-
mally and distally along the beam central axis to define the Spread-Out 
Bragg Peak. Laterally, a collimator encompassing the GTV with 2.5-mm 
margin was used, enabling at least 50 % of dose within the aperture. An 
optimal gazing angle to minimize organs-at-risk exposure and maximize 
treatment conformity was selected. Since the CTs were not performed at 
the optimal gazing angle, a composite transformation overlaid the 
simulated proton dose onto the planning CTs. The detailed description of 
the in-house dose algorithm used in this study is reported elsewhere 
[38,39]. 

2.4. Plan comparison and statistical analysis 

Analysis accounted for the AJCC T staging, toxicity-specific profiles, 
and distance to the optic nerve. Four post-treatment complications 
profiles and relevant dose-volume parameters were evaluated 
[16,40–42]:  

• Profile I) Maculopathy, optic-neuropathy, and visual acuity 
impairment: D2%, Dmean and V30Gy to the optic nerve, Dmean to the 
optic disc, and D2% to the macula;  

• Profile II) Neovascular glaucoma: D2% and Dmean received by the 
anterior segment, and the D2% to the optic nerve;  

• Profile III) Radiation-induced retinopathy: D20% dose and V5Gy, 
V10Gy, V20Gy, V30Gy volumes to the retina; 

Table 1 
Baseline patient characteristics and treatment details.  

Study population      
Age at diagnosis (mean ± SD, in years)   67.3 ± 13.2 
Gender (n(%)) Female    27 (41 %)   

Male    39 (59 %)  
Eye (n(%))  OS   40 (60.6 %)   

OD   26 (39.4 %)  

Tumor characteristics      
LBD (median [range], in mm), (on US)    11.42 [4.34; 16.84] 
Apical height (median [range], in 

mm), (on US)    
5.51 [1.84; 12.80] 

Tumor size classification AJCC T (n(%))      
T1    15 (22.7 %)   
T2    25 (37.9 %)   
T3    26 (39.4 %)  

Size of GTV (median [range], in cm3)a   0.36 [0.07; 1.65] 
Minimum distance tumor edge to organs-at-risk (median [range], in mm)  

Fovea (on US)    2.00 [0.00; 12.00]  
Optic nerve a    2.59 [0.00; 18.84]  
Optic disc a    1.79 [0.00; 17.74]  
Anterior segment a    5.67 [0.00; 13.98]  
Lacrimal gland a    4.06 [0.00; 20.03]  

Treatment details      
Fractionated stereotactic radiotherapy (SRT)   

Prescription dose (RBE- 
weighted, in Gy)  

50   

No. of fractions    5   
No. of beams (mean ± SD)   62.86 ± 21.66  
Iris collimator   59/66 cases (sizes: 7.5, 

10, 12.5, 15 and/or 20 
mm)  

Multileaf collimator   7/66 cases  
Beam-on time b (mean ± SD, in 
min)  

21.65 ± 3.62   

Gazing angle  Straight c   

Monitor Units (delivered plans, 
mean ± SD)  

2951.83 ± 964.81  

Proton therapy       
Prescription dose (RBE- 
weighted, in Gy)  

60   

No. of fractions    4   
No. of beams    1   
Beam-on time    ~ 1 min   
Ocular motility limits (gazing angle) [− 30; 30] degrees  
Monitor Units NA d 

a CT-based measurements; b Including a 5 min patient setup; c Fixation light 
usually placed at the center of the pupil of the treated or healthy eye; d Cannot be 
determined from the clinical TPS, within current clinical practice in ocular 
proton therapy using a dedicated eyeline. 
Abbreviations: SD = Standard Deviation; LBD = largest basal diameter; US =
ultrasound; AJCC = American Joint Committee on Cancer staging consensus 
[30]. SRT = fractionated stereotactic radiotherapy; GTV = gross tumor volume; 
TPS = treatment planning system. 
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• Profile IV) Dry-eye syndrome: D2% and Dmean to the lacrimal gland. 

For Profile I, all patients were categorized based on the distance from 
the tumor edge to the optic nerve, using a 3-mm threshold corre-
sponding to a standard value globally reported for lateral and distal 
penumbrae with ocular beamlines [43–45]. The complications severity 
ranking followed our institutional multidisciplinary consensus. 

A radiobiological equivalent dose of 2-Gy fractions (EQD2) with a 10 
Gy α/β ratio for UM was calculated: RBE-weighted EQD2 prescribed 
dose was 83 Gy for SRT and 125 Gy for protons. D2%, D20% and Dmean 
were also converted to RBE-weighted EQD2 using α/β of 2 Gy for the 
optic nerve, optic disc, macula, retina, anterior segment, and 3 Gy for 
the lacrimal gland. These values were based on the values reported by 
Joiner et al [46] and determined through a multidisciplinary consensus 
at HollandPTC (Delft, The Netherlands) to be used clinically. Dose- 
volume calculations for SRT and protons were performed with the in- 
house software Mattherhorn to avoid bias. Differences in RBE- 
weighted EQD2 dose between SRT and protons were calculated for 
every patient of the present cohort; and the EQD2-median of those dif-
ferences used for comparison. This study followed the RATING guide-
lines [47]. 

3D retina dose surface maps, incorporating real retinal CT-based 
imaging, were created to enable a quantitative anatomical comparison 
in terms of exposed area. Additionally, 2D planar maps for surface dose 
were generated following the method described by Hoogeman et al [48]. 
Mercator dose projections of the retina surface were made from the 
centroid of each plane in the vitreous body with the outer retina 
perimeter of each plane segmented using a fixed number of 360 points 
evenly spaced. The 2D maps were expressed in RBE-weighted dose and 
RBE-weighted EQD2 dose. 

Two-sided Wilcoxon signed-rank tests were used to evaluate the 
statistical significance of observed differences. Because of multiple tests, 
the significance was defined as p < 0.01. Analyses were performed using 
Python v3.7 and the SciPy package. 

3. Results 

All plans for both modalities achieved adequate target coverage. For 
all patients, 98 % of PTV received at least 95 % of the SRT dose. With 
protons, GTV received at least 90 % of the prescribed dose. Median RBE- 
weighted GTV Dmean was 59.6 Gy (range: 57.0–61.3 Gy) for SRT and 
59.0 Gy (range: 57.6–59.6 Gy) for protons (Table 1). Average RATING 
score calculated by two authors (P.T, E.F.) was 82 %. 

Patient examples and the associated comparisons are presented in 
Fig. 1 and Fig. 2. Comparative evaluation of dose-volume parameters is 
reported in Table 2 and Figure S1 in Supplementary Material, and 
graphically shown in Fig. 3 using AJCC-specific population-averaged 
spider maps. Superior proton plans for all 14 dose-volume metrics were 
in 9/66 patients. In 57/66 patients, some dose-volume parameters were 
favorable to SRT and some to protons, depending on the evaluated dose- 
volume metric. 

For Profile I, EQD2-median differences between both modalities 
were all statistically significant in favor of protons, except for the 
maculopathy (Table 2). In 36/66 patients, the tumor border was located 
within 3-mm distance from the optic nerve, with a median minimum 
distance of 1.2 mm. All dose differences were favorable to protons: 
EQD2-median reduction of 44.1, 6.1 and 30.5 Gy for optic disc Dmean, 
optic nerve Dmean and optic nerve D2%, respectively (Tables S2). The 
higher AJCC T staging, the larger the dosimetric gain, with a maximum 
EQD2-median Dmean to the optic disc of 41.2 Gy for T1 and 72.0 Gy for 
T3 tumors. For the other 30/66 patients, the median minimum distance 
to the tumor edge was 5.6 mm and the proton EQD2-median optic nerve 
D2% reduction was 17.8 Gy (Tables S2). Regarding AJCC T staging, 
EQD2-median macula D2% was reduced with protons by 7.0 Gy for T1 
tumors, 11.1 Gy for T2 tumors, and 19.9 Gy for T3 tumors. Independent 
of tumor location, there was no median optic nerve V30Gy difference 
observed between protons and SRT. 

For Profile II, an EQD2-median anterior segment D2% and Dmean 
reduction of 114.5 Gy (p < 0.01) and 9.0 Gy (p < 0.013), respectively, 
was achievable with SRT over all patients (Table 2). Protons decreased 

Fig. 1. Case example of an 80-year-old female patient diagnosed with an AJCC T1-staged choroidal melanoma in her right eye. A, B, C) Ophthalmic images at 
diagnosis. The orange-shaded arrow indicates the lesion. A: Fundus photography. B: Fluorescent angiography. C: B-scan ultrasound. Dimensions on ultrasound were 
of 7.2 mm for largest basal diameter and of 2.1 mm for tumor apical height. D, E) Axial dose distributions shown on the planning CT in respect to the gazing angle 
hold by the patient during the scan. For proton simulation, a gazing angle [Ψ = 30 degrees; ɸ=30 degrees] was considered. Ψ represented any elevation/depression of 
the eye, whereas ɸ represented any ab-/adduction. F) DVH results for both modalities, stereotactic radiotherapy (SRT) in solid line and proton in dashed line. Results 
are presented for a total treatment dose, in RBE-weighted dose (in Gy), or percentage of irradiated volume (%-point). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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the optic nerve D2% by an EQD2-median of 18.0 Gy (p < 0.01) compared 
to SRT. At patient’s level, 9/66 cases had better dose distribution with 
protons based on the optic nerve D2%, and the anterior segment D2% and 
Dmean. A minimum tumor edge to optic nerve distance was > 3-mm in 8/ 
9 cases with variability in tumor patterns. 

For Profile III, large variations were observed across all patients, with 
retina D20% sometimes favorable to SRT and sometimes to protons, but 
not statistically significant due to interpatient variability (Figure S2). 
Importantly, retina D20% was linked to AJCC staging, suggesting an 
advantage with protons for small T1 tumors with an EQD2-median dose 
reduction of 14.2 Gy, but a median increase of 42.0 Gy for T3 tumors. 
There was a tendency of a more pronounced retina volume sparing for 
T3 tumors compared to T1-T2 tumors with protons. Since dose-volume- 
histograms lose geographical information, Mercator projections enabled 
visualizing the differences between modalities at a patient’s basis. Fig. 4 
shows local EQD2 differences between blue zones, in favor of SRT, and 
red zones, in favor of protons. For the two patients represented, the blue 
zone appears similar to the red zone, despite lower retina V5Gy to V20Gy 
with protons (Figs. 1, 2, 3). 

For Profile IV, an EQD2-median lacrimal gland Dmean reduction of 
15.3 Gy was observed with protons (p < 0.01) for all patients. AJCC 
staging had no impact. As expected, larger dose differences were 
observed for the 42 temporal tumors (Table S3 & Figure S4). For this 
subgroup, the proton Dmean EQD2-median reduction was 22.8 Gy. At 
individual level, 36/42 patients presented a dosimetric gain with pro-
tons. For the 24 nasal tumors, the proton Dmean EQD2-median reduction 
was 5.5 Gy. At individual level, all 24 patients presented a dosimetric 
gain with protons. Interestingly, lacrimal gland D2% showed large 
interpatient variability with no significant differences at Wilcoxon test 
(Figure S3). 

4. Discussion 

This study evaluated the differences in dose-volume metrics between 
protons and CyberKnife-based SRT for the same cohort of UM patients. 

Such comparison is a priori difficult because of differences in imaging for 
planning (ultrasound for protons vs. CT for SRT) [28,49–51] and in 
underlying technologies. Moreover, treatment fractionation, dose pre-
scription and RBE also differ, making direct comparison challenging. 
Therefore, an isoeffective CT-based planning process with both specific 
GTVs receiving an RBE-weighted Dmean of 60 Gy was implemented to 
ensure an objective comparison. In general, GTV coverage with both 
protons and SRT was 100 %, except for a few proton cases where 
coverage was marginally less than 100 %, attributed to uncertainties in 
calculating the minimum dose due to the finite voxel size. The RBE- 
weighted EQD2-median dose were much higher for protons. Further 
discussions on prescription protocols for imaging-based planning in 
ocular proton therapy are needed to address these differences. 

A correlation between radiation-related complications, the size of 
the tumor, and its proximity to sensitive ocular structures like the optic 
nerve or the macula/fovea was previously reported [52]. The vision 
(Profile I) might be irreversibly compromised after radiation-induced 
maculopathy and optic-neuropathy [53]. In our data, proton plans 
were dosimetrically superior to SRT in parameters related to vision 
impairment [50] with a benefit more pronounced for T3 tumors than T1- 
2 and less pronounced for tumors located adjacent to the optic nerve/ 
disc, similar to other studies [17,54]. In a retrospective, non-randomized 
study comparing radiosurgery with protons, Sikuade et al reported on 
better visual acuity preservation with proton compared to radiosurgery 
[55]. Interestingly, while it is well-established that doses above 50 Gy 
lead to optic neuropathy [53], the optic nerve continues to be delineated 
as a straight tube of a few millimeters in diameter for proton planning. 
This segment of the optic nerve is particularly vulnerable to radiation 
damage, owing to its lack of myelin sheathing [56]. In our study, 
imaging-based planning was used for both treatment modalities, more 
precise evaluation of the dose distribution along the entire length of the 
optic nerve was possible. Such an accuracy in dose assessment during 
treatment planning could potentially contribute to the preservation of 
some visual function [26,57]. Additionally, biomechanical modelling 
could improve accuracy of gazing-angle specific optical nerve shape and 

Fig. 2. Case example of a 21-year-old female patient diagnosed with an AJCC T2-staged choroidal melanoma in her right eye. A, B) Ophthalmic images at diagnosis. 
The orange-shaded arrow indicates the lesion. A: Fundus photography. B: B-scan ultrasound. Dimensions on ultrasound were of 8.4 mm for largest basal diameter and 
of 5.3 mm for tumor apical height. C, D) Axial dose distributions shown on the planning CT in respect to the gazing angle hold by the patient during the scan. For 
proton simulation, a straight gazing angle [Ψ = 0 degrees; ɸ=0 degrees] was considered. Ψ represented any elevation/depression of the eye, whereas ɸ represented 
any ab-/adduction. E) DVH results for both modalities, stereotactic radiotherapy (SRT) in solid line and proton in dashed line. Results are presented for a total 
treatment dose, in RBE-weighted dose (in Gy), or percentage of irradiated volume (%-point). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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position. A physical wedge and/or combined with the use of a bolus can 
also reduce dose in specific cases [56,58]. 

Neovascular glaucoma may lead to enucleation after radiotherapy, 
generally triggered following local recurrence, tumor necrosis followed 
by toxic tumor syndrome, and/or painful neovascular glaucoma 
[37,59,60], all caused by radiation damages to the anterior chamber, 
but also to the posterior chamber [16,59,61,62]. Overall, RBE-weighted 
EQD2-median D2% and Dmean values to the anterior segment were al-
ways better in SRT. Looking at both segments, protons demonstrated 
dosimetric advantage in 9/66 patients, with 8 patients having tumors 
located further than 3-mm from the optic nerve, similar to literature 
[60]. Both distances to organs-at-risk and dose-volume parameters 
should be considered for the best treatment option selection regarding 
the risk of neovascular glaucoma. Additionally, employing multiple 
beams with protons instead of a single one, as recently suggested [39], 
might be a promising approach for improved sparing of the anterior 
region. 

For radiation-induced retinopathy (Profile III), our data revealed 
better retina volume sparing with protons, especially for higher tumor 
stages (Fig. 3). Retinopathy has high incidence rates after any 

radiotherapy [22,63], depending on the total dose, fractionation, tumor 
diameter, and retina dose [40,64–66]. The tumor diameter may be an 
indirect indicator of the amount of retina surface irradiated. Mercator 
dose projection maps were used to better understand the geographical 
location of the dose. The concept is similar to the retinal diagram orig-
inally proposed for episcleral brachytherapy where a rasterized polar 
retina map is displayed along with the isodoses [67] and in conjunction 
with fundus image it can better identify the retina area at risk of damage 
[68]. The retinal diagram represents a 2D surface mapping of a sphere, 
applicable for geometrical model-based ocular treatment. Retina con-
toured on CT images is, however, irregular. Unfolding an irregularly 
shaped 3D retina into a 2D surface map is not a trivial task. Mercator 
maps enable patient-specific evaluation and therefore may be more ac-
curate for dose-toxicity relationship studies for radiation-induced reti-
nopathy than retinal diagrams. 

Eye dryness (Profile IV) is mainly due to radiation damage of the 
lacrimal gland. For protons, due to the sharpness of the penumbrae, 
reducing the lacrimal gland dose was achievable compared to the SRT 
doses. It is note-worthy that additional research could enhance lacrimal 
gland and eyelid dose sparing during proton therapy. For instance, the 

Table 2 
Dosimetric findings (RBE-weighted dose or RBE-weighted EQD2 dose, or anatomical irradiated volume) across the cohort of patients. All values are expressed for a 
total treatment dose.     

Median RBE-weighted dose [range] RBE-weighted EQD2-median dose [range] RBE-weighted 
EQD2-median 
difference [IQR] 

RBE-weighted 
EQD2-Comparison    

SRT Protons SRT Protons Δ (Protons − SRT)* Wilcoxon test for 
paired samples 

GTV Dmean [Gy] 59.6 [57.0; 
61.3] 

59.0 [57.6; 
59.6] 

109.0 [101.6; 
113.6] 

121.7 [116.9; 
123.7] 

12.9 [10.9; 
14.1] 

p = ns  

V54Gy [%] 100.0 [100.0; 
100.0] 

99.9 [98.5; 
100.0] 

100.0 [100.0; 
100.0] 

99.9 [98.5; 
100.0] 

¡0.1 [− 0.3; 0.0] p < 0.01  

Macula D2% [Gy] 44.1 [5.7; 62.0] 42.3 [0.0; 
61.1] 

119.1 [4.5; 
222.9] 

133.2 [0.0; 
263.8] 

¡5.5 [− 25.8; 
45.3] 

p ¼ 0.04  

Optic nerve D2% [Gy] 20.6 [1.3; 56.2] 0.0 [0.0; 
61.1] 

31.5 [0.7; 
186.1] 

0.0 [0.0; 
264.0] 

¡18.0 [− 31.8; 
− 4.6] 

p < 0.01  

Dmean [Gy] 6.4 [0.5; 21.6] 0.0 [0.0; 
21.6] 

5.2 [0.3; 34.2] 0.0 [0.0; 40.0] ¡4.6 [− 7.5; 
− 2.7] 

p < 0.01  

V30Gy [%] 0.0 [0.0; 34.1] 0.0 [0.0; 
37.0] 

0.1 [0.0; 34.1] 0.0 [0.0; 37.0] 0 [− 2.9; 0.0] p < 0.01  

Optic disc Dmean [Gy] 20.5 [1.4; 59.5] 0.7 [0.0; 
59.6] 

31.3 [0.8; 
206.9] 

0.4 [0.0; 
251.6] 

¡21.4 [− 45.7; 
− 12.9] 

p < 0.01  

Anterior 
segment 

D2% [Gy] 17.3 [5.1; 60.8] 46.7 [0.0; 
59.7] 

23.6 [3.9; 
215.6] 

157.3 [0.0; 
252.3] 

114.5 [48.4; 
140.6] 

p < 0.01  

Dmean [Gy] 8.1 [1.3; 41.3] 14.5 [0.0; 
49.1] 

7.3 [0.7; 
105.7] 

20.4 [0.0; 
175.5] 

9.0 [− 4.8; 
43.0] 

p < 0.01  

Retina D20% [Gy] 43.5 [17.5; 
56.4] 

41.5 [0.0; 
57.6] 

116.3 [24.1; 
187.2] 

125.8 [0.0; 
236.1] 

16.0 [− 27.5; 
51.0] 

p = ns  

V5Gy [%] 87.3 [55.1; 
100.0] 

28.6 [8.3; 
53.6] 

87.3 [55.1; 
100.0] 

28.6 [8.3; 53.6] ¡53.7 [− 62.5; 
− 46.3] 

p < 0.01  

V10Gy [%] 60.9 [34.0; 
100.0] 

28.2 [8.1; 
51.6] 

60.9 [34.0; 
100.0] 

28.2 [8.1; 51.6] ¡32.7 [− 39.1; 
− 26.4] 

p < 0.01  

V20Gy [%] 39.3 [17.1; 
85.7] 

27.7 [7.8; 
50.3] 

39.3 [17.1; 
85.7] 

27.7 [7.8; 50.3] ¡13.5 [− 16.7; 
− 9.5] 

p < 0.01  

V30Gy [%] 30.1 [11.2; 
54.3] 

25.5 [7.3; 
48.6] 

30.1 [11.2; 
54.3] 

25.5 [7.3; 48.6] ¡4.9 [− 8.0; 
− 1.9] 

p < 0.01  

Lacrimal 
gland 

D2% [Gy] 29.2 [1.9; 58.1] 0.0 [0.0; 
61.0] 

51.6 [1.3; 
169.8] 

0.1 [0.1; 
222.6] 

¡9.1 [− 32.2; 
21.1] 

p = ns  

Dmean [Gy] 16.7 [0.6; 45.9] 0.0 [0.0; 
56.6] 

21.2 [0.4; 
111.6] 

0.0 [0.0; 
194.1] 

¡15.3 [− 27.7; 
− 4.0] 

p < 0.01 

* In respect to the organs-at-risk, negative values are favorable to proton therapy. 
Abbreviations: SRT = fractionated stereotactic radiotherapy; GTV = gross tumor volume; ns = non-significant; IQR = Interquartile range. 
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head tilt might be incorporated into the simulation process and be 
beneficial in some selected cases. 

The study has several limitations. Firstly, as UM is a rare disease, a 
small number of patients was available, limiting generalization of 
conclusion. Similar comparisons with even smaller number of patients 
were performed previously by Höcht et al [50] (ten patients) and Weber 
et al [49] (one simulated patient). Secondly, the patient selection (single- 
institute SRT) may introduce bias. Inclusion of other treatment modal-
ities, such as brachytherapy, may alter the conclusions, especially for 
small tumors where brachytherapy is generally the treatment-of-choice. 
Thirdly, the selection of constraints was based on literature [16,40–42] 
due to the lack of solid knowledge on dose-volume effects for ocular 
radiotherapy. Many established dose-volume tolerance levels included 
in various guidelines, e.g. QUANTEC [53,69] or RTOG [70–72], cannot 
be applied for hypo-fractionated regimen. Only one normal tissue 
complication probability model for choroidal melanoma post-proton 
therapy exits [42]. Additionally, there are significant uncertainties 
regarding the α/β-ratios for various ocular structures and their 
radiation-induced effects. A broad spectrum of α/β-values is reported 
[73], varying from 2.6 and 12.1 Gy across different UM cell lines, thus 
potentially leading to significant differences in the prescribed RBE- 
weighted EQDx doses in current clinical radiotherapy. It is important 
to further explore tissue response data for hypo-fractionated treatments, 
specifically UM cell lines, concerning different high-dose fractionation 
schemes with SRT and proton therapy. The investigation of radiation 
dose achieving the best treatment outcomes in respect to local tumor 
control or ocular morbidity was beyond the scope of this study. Lastly, 
the findings of this research were specifically based on the beam prop-
erties of the HollandPTC eyeline [44]. It is important to emphasize that 
variations in beam quality across eyelines, especially in terms of lateral 
and distal penumbrae, might impact the conclusions of this research 
[58,74]. Unlike proton eyelines, the beam properties of CyberKnife 
systems are consistent across different centers [75]. 

In conclusion, this study represents the first imaging-based com-
parison for real-life UM patients between SRT and protons. Looking at 
the population as a whole, protons offer dosimetric advantages over 
fractionated stereotactic treatments, however there may be individual 
patients for whom this is not the case. This research supports the ne-
cessity for a plan comparison strategy to address differences in toxicities 
and help ocular oncology teams decide the appropriate treatment choice 

together with the patient when both options are available. 
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