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How Numerical Cognition Explains Ambiguity Aversion 

ABSTRACT 

Consumers generally prefer precise probabilities or outcomes over imprecise ranges with the same 

expected value, a bias known as ‘ambiguity aversion.’ We argue that two elementary principles of 

numerical cognition explain great heterogeneity in this bias, affecting consumer choices in many 

domains where options are characterized by varying levels of uncertainty (e.g., lotteries, discounts, 

investment products, vaccines, etc.). The first principle, the ‘compression effect,’ stipulates that 

consumers’ mental number lines are increasingly compressed at greater number magnitudes. This 

alone suffices to predict ambiguity aversion as it causes a midpoint (e.g., $40) to be perceived as 

closer to the upper bound of a range (e.g., $60) compared to its lower bound (e.g., $20). 

Furthermore, as the compression effect distorts the mental number line especially at lower 

numbers, it follows that ambiguity aversion should decrease around greater numbers. The second 

principle, the ‘left-digit effect’ causes a range’s relative attractiveness to decrease (increase) 

disproportionately with every left-digit transition in its lower (upper) bound, thus increasing 

(decreasing) ambiguity aversion. Due to the overall compression effect, the impact of the left-digit 

effect increases at greater numbers. We present 34 experiments (N = 10634) to support the theory’s 

predictions and wide applicability. 

KEYWORDS: ambiguity aversion, risk, uncertainty, decision-making, numerical cognition 

 

  



 

 

How Numerical Cognition Explains Ambiguity Aversion 

 

Consumers often encounter numeric information (e.g., in prices, product features, 

probabilities, discount levels etc.) which can vary in its degree of specificity or ambiguity. In 

department stores, for example, discounts may be specified precisely, as in ‘60% off,’ or with 

more uncertainty, such as ‘50–70% off’ (Dhar, González-Vallejo, and Soman 1999; Fan, Li, and 

Jiang 2019). Similarly, the pricing of secondhand goods may be listed as a precise amount—

‘$15k for a used car’—or as a range—‘$10k-$20k for a used car’ (Ames and Mason 2015), while 

a product’s expected lifespan might be advertised as ‘4 years’ or ‘3-5 years,’ vaccine 

effectiveness could be communicated as ‘94% effective’ or ‘90-98% effective,’ and potential 

investment returns might be stated as ‘an average 7.5% annual return’ or ‘returns between 5-10% 

annually’ (Du and Budescu 2005). Although the use of ranges is a popular marketing tactic (Fan 

et al. 2019), studies from various fields suggest that consumers exhibit ‘ambiguity aversion,’ 

preferring precise probabilities (e.g., a 60% probability) and outcomes (e.g., a $50 gain) over 

their imprecise equivalents (Curley and Yates 1985; Du and Budescu 2005; Ellsberg 1961). This 

raises the question whether and when marketers’ range-based communications might be 

misaligned with consumer preferences. 

Although ambiguity aversion is a well-established phenomenon, it is also characterized 

by ‘massive heterogeneity’ (in the words of l’Haridon et al. 2018; see also Trautmann and Van 

De Kuilen 2015). For instance, sometimes the typical response of ambiguity aversion disappears 

(Abdellaoui et al. 2011; Curley and Yates 1985; Du and Budescu 2005; Sarin and Weber 1993) 

and other times, it even reverses into ‘ambiguity seeking’ behavior (Abdellaoui, Vossmann, and 

Weber 2005; Khan and Sarin 1988). It’s important to note that the specific conditions under 



 

 

which ambiguity attitudes change remain unclear because, more than six decades after its 

introduction, ambiguity aversion is still in search of a psychological theory able to explain both 

the basic emergence of the phenomenon and, more challenging, a great amount of its 

heterogeneity (Trautmann and Van De Kuilen 2015). 

In the current paper, we draw on two well-established principles from the numerical 

cognition literature to provide an account of why and when ambiguity aversion can emerge in the 

first place, while, crucially, predicting the types of ranges and numerical magnitudes for which 

ambiguity aversion will be most pronounced, will be attenuated, or can even switch into ambiguity 

seeking behavior. The first principle is the ‘compression effect,’ stipulating that consumers’ mental 

number lines (i.e., their psychological representations of numbers) are increasingly compressed 

with greater number magnitudes (Dehaene 2011). As we outline below, this alone suffices to 

predict the basic emergence of ambiguity aversion as well as an attenuation of the effect when 

ranges are centered around greater numbers. The second principle is the ‘left-digit effect,’ which 

elongates the mental number line at left-digit changes (Thomas and Morwitz 2005). This causes 

the relative attractiveness of a range of outcomes or probabilities to decrease (increase) 

disproportionally with every left-digit transition in the range’s lower (upper) bound. Thus, when 

upper bound transitions outnumber lower bound transitions, ambiguity aversion is attenuated or 

turns into ambiguity seeking. In this paper and its accompanying web appendix, we report seven 

studies, comprising 34 experiments (N = 10634), that support our theory’s predictions and illustrate 

its wide applicability. 

By outlining the circumstances under which consumers prefer offers featuring certain 

outcomes (or probabilities) over uncertain ones (and vice versa), we offer an important 

contribution to the uncertainty and range marketing literatures (Alavi, Bornemann, and Wieseke 



 

 

2015; Ames and Mason 2015; André, Reinholtz, and De Langhe 2022; Buechel and Li 2023; Fan 

et al. 2019; Janiszewski and Lichtenstein 1999; Kovacheva and Nikolova 2024), as well as 

medical (Berger, Bleichrodt, and Eeckhoudt 2013), and financial (Epstein and Schneider 2010) 

decision-making literatures. In addition, the theory proposed in this paper offers an important 

contribution to the literature on judgment and decision making, where ambiguity aversion has 

been a central concept since its original demonstration caused a paradigm shift (see Theoretical 

Background). As we will argue and show, the theory explains an unprecedented amount of 

heterogeneity in ambiguity aversion, testifying to its explanatory breadth, while being solidly 

grounded in well-established principles from cognitive psychology.  

 

THEORETICAL BACKGROUND 

 

Precise versus Imprecise Marketing Offers 

 

An early study by Mobley, Bearden, and Teel (1988) found that imprecise offers tend to 

be heavily discounted by consumers, due to their aversion to ambiguity. Thus, they urged 

marketers to use precise messages in advertising when possible. However, later work found that 

attitudes toward imprecise marketing offers are more nuanced and there can be many 

circumstances where consumers appreciate some uncertainty. For example, range offers—those 

with a span of possible discounts — can be more enticing than precise offers under certain 

conditions. Specifically, they are more effective when the stock on sale is limited, creating a 

perception of scarcity and exclusivity (Dhar et al. 1999). Furthermore, research by Fan and 

colleagues (2019) found that in situations of resource scarcity, people preferred range to precise 



 

 

offers. Range offers have also been studied in the context of trust. For instance, Ames and Mason 

(2015) found that range offers signal politeness and foster trust in social exchanges, with the 

potential to improve deals. Furthermore, consumers in communal relationships with brands 

exhibit a lower degree of ambiguity aversion as they trust the brand more (Liu and Chang 2017). 

Most recently, Buechel and Li (2023) showed that when options are horizontally differentiated, 

consumers can appreciate uncertainty more as it adds a level of ‘mystique’ with the potential to 

surprise consumers. 

These findings from the range marketing literature indicate that the perceived advantages 

of range offers are subject to a variety of influences, such as the consumer’s relationship with the 

brand, their level of trust, and the context in which the offer is made. Range marketing offers in 

pricing may have an additional advantage over fixed price discounts since those may lead to 

negative repercussions—where customers come to expect a fixed discount level in the future and 

adopt it as their benchmark reference price (Alavi et al. 2015). These examples illustrate the need 

for marketers to understand when imprecise offers can be effectively employed while mitigating 

the effects of ambiguity aversion. Therefore, it is important to understand the main causes of 

ambiguity aversion and the circumstances under which it will be most pronounced.  

 

Ambiguity Aversion 

 

Ambiguity aversion has been a cornerstone concept in decision-making under uncertainty 

since Ellsberg’s (1961) seminal paper challenged the then-prevalent Subjective Expected Utility 

(SEU) theory (Savage 1954). In one prototypical variation of Ellsberg’s experiments, 

participants would repeatedly bet on drawing a red or a black ball and could choose between two 



 

 

urns to draw from. The first urn had a precisely defined distribution of 50 red and 50 black balls, 

while the second urn had an unknown distribution of 100 red or black balls (in total). Regardless 

of whether participants were betting on drawing a red or a black ball, they consistently favored 

the urn with the known distribution. This would imply, according to Subjective Expected Utility 

(SEU), that participants estimate the probability of drawing a specific color from the unknown 

urn to be less than 50% for either color, violating a core principle of SEU where event 

probabilities need to be additive. Becker and Brownson (1964) later broadened the domain of 

ambiguity aversion by introducing the concept of ranges to operationalize ambiguity, proposing 

that consumers prefer precise probabilities and that an increase in range width heightens 

ambiguity aversion. Du and Budescu (2005) demonstrated that ambiguity aversion also applies 

to outcomes. When given a choice between a range of outcomes versus a certain equivalent 

(CE), individuals display aversion to range outcomes even when the probabilities are precise. 

While ambiguity aversion is robustly documented, it exhibits significant heterogeneity 

(l’Haridon et al. 2018; Trautmann and Van De Kuilen 2015). Some researchers found that 

consumers are ambiguity averse for events with moderate- to high-likelihood yet remain 

ambiguity neutral for those with low likelihood (Abdellaoui et al. 2011; Curley and Yates 1985; 

Sarin and Weber 1993). Conversely, other studies suggest that individuals seek ambiguity in the 

context of low likelihood events (Curley and Yates 1989; Khan and Sarin 1988). Losses are 

similarly heterogeneous, with some research indicating ambiguity seeking (Abdellaoui et al. 

2005), while others reveal a tendency towards ambiguity neutrality (Du and Budescu 2005). No 

theory to date offers a comprehensive account for the heterogeneity in ambiguity attitudes across 

likelihood ranges or domains. Furthermore, it is worth noting that most of the psychological 

explanations proposed to account for ambiguity aversion to date predict ambiguity aversion in 



 

 

both the gains and loss domains. Examples include theories based on the assumption that people 

would feel a need to justify their decisions to others (Curley, Yates, and Abrams 1986; Keren 

and Gerritsen 1999; Muthukrishnan, Wathieu, and Xu 2009), that people expect that 

experimenters, deal brokers or market actors want to ‘cheat’ them into a bad outcome (Curley et 

al. 1986) or that people expect worse outcomes because they feel comparatively ignorant in a 

domain (Fox and Tversky 1995). Yet, in the loss domain, it is predominantly observed that 

consumers are ambiguity seeking (Trautmann and Van De Kuilen 2015). 

 

Numerical Cognition: The Compressive Mental Number Line and the Left-Digit Effect 

 

Numerical cognition, a subfield of cognitive psychology, focuses on the mental processes 

behind the representation and manipulation of numbers and numerical information (Dehaene 

2011). Numerical cognition has been applied to the study of consumer behavior and decision-

making in various contexts, such as sales promotions and pricing (Laurent and Vanhuele 2023; 

Lembregts and Pandelaere 2013; Monnier and Thomas 2022; Thomas and Morwitz 2005). 

Additionally, numerical cognition has been shown to play a crucial role in shaping our 

perception of probabilities and prospects (Schley and Peters 2014). Surprisingly, the relevance of 

numerical cognition for decision making under ambiguity, where ranges of possible outcomes or 

probabilities are present, has not been investigated.  

Our theory is grounded in two of numerical cognition’s most well-established principles. 

The first principle is the continuous compression of the mental number line, which suggests that 

as numbers increase, their mental representations become progressively more compressed. This 

compression implies that as numbers get larger, our ability to differentiate between them 



 

 

decreases. For instance, the difference between 1 and 2 seems larger than the difference between 

8 and 9, which still seems larger than the difference between 22 and 23, despite all pairs having 

the same objective difference (Dehaene 2003; Holloway and Ansari 2009). As we will argue 

below, this continuous compression principle will greatly affect ambiguity aversion, predicting 

its occurrence in regions lower on the mental number line as well as its gradual disappearance 

higher up. The second principle is the effect of left-digit transitions, which lead to discontinuities 

or elongations of the mental number line. For example, the distance between 89 and 90 is 

perceived as larger than the distance between 90 and 91 (Dehaene 2003; Sokolova, Seenivasan, 

and Thomas 2020; Thomas and Morwitz 2005). As we will argue and show below, these left-

digit transitions also impact ambiguity aversion, being able to accentuate, cancel or even inverse 

the phenomenon (i.e., reversing into ambiguity seeking behavior under the right conditions).  

 

Effects of Mental Number Line Compression on Ambiguity Aversion 

 

A first and fundamental insight from the numerical cognition literature is the compression 

effect, according to which the psychological representations of numbers on our internal ‘mental 

number line’ are increasingly compressed as number size increases (Dehaene 2011; Thomas and 

Kyung 2019; Vanhuele, Laurent, and Dreze 2006). Recent integrations of empirical evidence in 

this domain have proposed that the mental number line’s shape is in line with a power function 

(Izard and Dehaene 2008), as illustrated in figure 1. There, we also illustrate the most basic 

insight provided in the current paper: the compressive nature of the mental number line is, by 

itself, sufficient to explain the emergence of ambiguity aversion.  



 

 

Consider what happens when a consumer compares an uncertain range of outcomes (or 

probabilities) of, say US $10–90 (or %) with a Certain Equivalent (CE) of US $50 (or %). While 

50 is, not accidentally, the objective midpoint of the 10-90 range, this might not be immediately 

or explicitly obvious to the consumer. In fact, we propose that consumers will compare the CE 

and range on an implicit scale, rather than an objective one (De Langhe et al. 2011; Donnelly, 

Compiani, and Evers 2022; Sokolova 2023). Crucially, we expect that the shape of the scale on 

which consumers implicitly compare the CE with the range must abide to the principles of their 

mental number line. On that scale, 50 does not lie in the center, but is perceptually closer to the 

upper bound (90) than the lower bound (10) of the range. For the development of our hypotheses, 

we assume simply that the closer the certain comparison point (CE) is perceived to the upper 

bound relative to the lower bound of the uncertain range, the greater its desirability relative to 

the range will be. After all, the closer a CE appears to the upper bound of the range, the less 

upward potential the range appears to have over the CE; concurrently, the further a CE appears 

from the lower bound of the range, the greater the range’s downward potential appears to be. 

Hence, it follows that a consumer who compares these options on a mental number line, should 

prefer the certain option.  

 

FIGURE 1 

COMPARING A POINT WITH A RANGE ON A COMPRESSIVE MENTAL NUMBER LINE  

 



 

 

NOTE- The figure represents a comparison of an imprecise range of 10 – 90 with its certain equivalent 

(CE) of 50. Due to continuous compression of the mental number line, 50 appears closer to the upper bound of the 

range (90) than the lower bound (10).  

 

Importantly, we note that this basic insight does not just suffice to explain the emergence 

of ambiguity aversion in the first place, it is also consistent with one of its earliest known 

moderators: ambiguity aversion increases as the width of the range increases (Becker and 

Brownson 1964). Indeed, if the consumer had compared the CE of 50 with a (smaller) range of, 

say 40 – 60, the disparity in distance perceptions to the range’s upper and lower bounds wouldn’t 

have been nearly as pronounced. This is because as ranges extend in width, their downward 

elongation will (implicitly and perceptually) increasingly outpace their upward elongation on the 

mental number line, due to its increasing compression (see figure 1). Hence, the wider the range 

extends, the more ambiguity aversion should be increased.  

Yet, how else could we test whether ambiguity aversion can (at least partially) be 

explained by the progressively compressed shape of the mental number line? Interestingly, the 

compression effect is not expected to operate equally strongly across the mental number line. In 

particular, and as illustrated in figure 2, its effect on ambiguity aversion would be expected to 

decrease when ranges get centered around higher CEs. This is because, as numbers get 

increasingly compressed further up the mental number line, for any range with a fixed width (60 

in the figure’s example), the disparity in distance perceptions between the CE and the range’s 

upper- versus lower bounds decreases as the magnitude of the CE increases.   

 

FIGURE 2 

RANGE COMPARISONS AS COMPARISON POINTS GET LARGER 



 

 

 

NOTE- The figure represents a comparison of imprecise ranges with a fixed width of 60, centered around 

progressively increasing midpoints or CEs (30, 40, 50, 60, 70). Due to increasing compression of the number line, 

the CE always appears closer to the upper bound of the range than its lower bound, but the size of this discrepancy 

reduces as CE magnitude increases. 

 

Hence, numerical cognition’s compression principle does not just suffice to explain the 

basic emergence of ambiguity aversion (and at least one known moderator), it also leads to a 

unique prediction. If consumers compare uncertain ranges with CEs along a mental number line, 

it follows that (for ranges with a fixed width and in the gains domain): 

 

H1: Ambiguity aversion decreases as the magnitude of the CE increases. 

 

Left-Digit Effects of Mental Number Line Elongations on Ambiguity Aversion 

 

In the previous section, we argued that due to the compression effect, a CE will generally 

be perceived as closer to the upper bound than the lower bound of a range. In the current section, 

we argue that a second principle from numerical cognition – the left-digit effect – has the 

potential to significantly moderate this basic tendency. Previous research has shown that 

consumers elongate the psychological distance between numbers whose left-most digit changes. 

For example, the difference between $2.99 and $3.00 feels larger than between $2.98 and $2.99 

(Manning and Sprott 2009; Thomas and Morwitz 2005). Similarly, in the domain of 



 

 

probabilities, a difference between 58% and 62% feels larger than between 54% and 58% 

(Schley et al. 2021). While the left-digit effect for point versus point comparisons has been 

extensively documented in both outcomes and probabilities, we propose that this effect is also 

crucial in point versus range comparisons.  

Consider the range 71-81 and its CE of 76. The left-digit difference between the lower 

bound and the CE is zero, while the difference between the upper bound and the CE is one. We 

refer to such ranges as upwards-elongated because the left-digit difference between the CE and 

the range’s upper bound is larger than that between the CE and the lower bound. Contrast this 

with a situation where the CE is just two units lower, for example, a CE of 74, and the range 

maintains an equal width, that is 69-79. Here, the left-digit difference between the lower bound 

and the CE is one, and between the upper bound and the CE is zero. We call this type of range 

downwards-elongated. As illustrated in figure 3, the CE appears closer to the upper bound in 

downwards-elongated ranges. Conversely, in upwards-elongated ranges, it appears closer to the 

lower bound. Based on this, if consumers compare imprecise ranges with CEs along a mental 

number line, we predict the following for ranges of fixed width and in the gains domain: 

 

H2: Ambiguity aversion is amplified (versus attenuated) when a range is downwards-

elongated relative to the CE (versus upwards-elongated).  

 

FIGURE 3 

DOWNWARDS-VERSUS UPWARDS-ELONGATED RANGES 

 



 

 

 

NOTE- A downwards-elongated range has more left-digit changes compared with the CE on its lower-

bound (e.g., 69 vs 74) than on its upper-bound (e.g., 79 vs. 74). An upwards-elongated range has more left-digit 

changes in its upper-bound compared with the CE (e.g., 81 vs. 76) than on its lower-bound (e.g., 71 vs. 76). With 

downward-elongated ranges (vs. upward-elongated ranges), the CE appears closer to the upper (vs. lower) bound of 

the range, so people will be more (vs. less) inclined to prefer the CE and display ambiguity aversion. 

 

 

It is important to note that upwards-elongated ranges are not limited to those where the 

difference between the CE and the lower bound is zero and the difference between the upper 

bound and the CE is one. They include any range where the left-digit difference between the CE 

and the upper bound is greater than that between the CE and the lower bound (e.g., 40-70 vs. a 

CE of 55). Similarly, downwards-elongated ranges are not confined to those where the left-digit 

difference between the lower bound and the CE is one and between the upper bound and the CE 

is zero. They encompass any range where the left-digit difference between the CE and the lower 

bound is greater than that between the CE and the upper bound (e.g., 39-69 vs. a CE of 54). 

We proposed that ambiguity aversion should decrease as numerical magnitude increases 

because the perceived difference between the range’s upside and downside region becomes 

progressively smaller, due to the increasing compression of the mental number line (H1). What 

about the effect of range elongation, caused by left-digit differences (H2)? How would this effect 

be modified across the mental number line? We argue that this effect intensifies at higher 

magnitudes due to the difficulty of distinguishing larger numbers where compression is at its 

peak (Thomas and Morwitz 2005). In high magnitude comparisons (e.g., when comparing the 



 

 

range 81-91 versus a CE of 86), numbers without left-digit changes become increasingly 

undifferentiated due to the high level of compression (e.g., all numbers between 81-89 feel 

subjectively very close or similar), lending a disproportionate influence to the effect of a left-

digit change (e.g., the shift to 90 has a strong impact). In contrast, for smaller magnitudes (e.g., 

when comparing the range of 11-21 versus a CE of 16), all numbers are still individually 

discriminable, whether or not there is a left-digit change. A left-digit change will, of course, still 

be a source of additional differentiation (and subjective elongation of the mental number line), 

but it is no longer the only source of differentiation. Therefore, we suggest that consumers may 

be more influenced by the left-digit change in the range of 81-91 than they would be in the range 

of 11-21, in comparison with the point estimate. Formally, we hypothesize that, for ranges of 

fixed width and in the gains domain:  

 

H3: The effect of upwards- versus downwards-elongated ranges (stipulated in H2) 

increases at higher CE magnitudes.  

 

It is worth noting that we do not argue that people would perceive a left-digit change 

between higher numbers (e.g., from 8 to 9) as larger than a left-digit change between lower 

numbers (e.g., from 1 to 2). Due to the mental number line’s increasing compression, likely the 

opposite is true. Instead, our argument pertains to the effect left-digit changes in range 

boundaries have on the comparison process between a CE and a range. There we argue that this 

effect of left-digit changes will become more impactful when other sources of discriminability 

between the numbers are low (i.e., when numbers become increasingly compressed), in line with 

established knowledge about the operation of left-digit effects (cf. H3 in Thomas and Morwitz 



 

 

2005).  

Process Evidence and Boundary Conditions 

The majority of research documenting ambiguity aversion did so in the domain of gains, 

while in the domain of losses, findings are decidedly more mixed (Trautmann and Van De 

Kuilen 2015). This is also the reason why in the current paper, we are predominantly focused on 

gains. As we noted above, most of the psychological theories that have been proposed to explain 

ambiguity aversion, would predict ambiguity aversion also in the loss domain (Curley et al. 

1986; Trautmann and Van De Kuilen 2015). Interestingly, our explanation based on the 

principles of numerical cognition predicts an opposite pattern. After all, our core assumption that 

the closer the CE is perceived to the upper bound of the range, the greater its attractiveness 

relative to the range, would only be true when consumers aim to maximize the outcome (or 

probability) they will obtain. When their goal is to minimize this outcome (or probability), as in 

the case of losses, this choice pattern should reverse. We test one straightforward prediction 

explicitly in the domain of losses, namely a reversal of the effect stipulated in H2. 

 

H4: In the domain of losses, ambiguity aversion is amplified (versus attenuated) when a 

range is upwards-elongated relative to the CE (versus downwards-elongated).  

 

Finally, we include one study where we attempt to manipulate the psychological process 

directly. Central in our theorizing is that ambiguity aversion is strongly impacted by systematic 

misperceptions of CE’s position on the mental representation of the range, due to numeric 

compression and left-digit effects. It follows that a simple explanation of where the CE really 



 

 

(objectively) falls on the range (i.e., directly in the middle), should significantly reduce these 

biases. We will test this idea directly in the context of the effects of left-digit elongations on 

ambiguity aversion: 

 

H5: Highlighting that the CE is the objective midpoint of the range, should reduce the 

difference in ambiguity aversion between downwards- and upwards-elongated ranges.  

 

OVERVIEW OF STUDIES 

 

In the main manuscript, we present six studies testing our theory (more are presented in 

the Web Appendix, see below). In study 1, participants are presented with a choice between a 

precise (CE) and an imprecise (range) outcome lottery, featuring increasing CE magnitudes but a 

fixed range width, to test H1. Next, we demonstrate the impact of left-digit effects and range 

elongations on ambiguity aversion (H2). Study 2 tests H2 in six consumer domains (choosing 

between vaccines, store discounts, investment returns, sales agents, product lifespans and 

product ratings) while study 3 applies this test in the classic ambiguity paradigm conceived by 

Ellsberg (1961). In study 4, across 16 experiments, we examine whether the effect of range 

elongations (caused by left-digit asymmetries) varies across the mental number line as stipulated 

in H3 (the study also finds additional support for H1). Finally, studies 5 and 6 provide process 

evidence and boundary conditions. In study 5, we test whether the effects of range elongations 

indeed reverse in the loss domain (H4). Study 6 tests whether highlighting the CE as the 

midpoint of the range attenuates the impact of range elongations on ambiguity aversion (H5).  



 

 

Supplemental experiments C1-3 (Web Appendix C) test H2 and H3 in a consumer 

context. Supplemental experiments E1-3 (Web Appendix E) were conducted independently by a 

reviewer to test H1, H2 and H3 in consumer contexts. Finally, we conducted preliminary 

experiments F1-2 (Web Appendix F) to test extensions of our theory to larger numbers (i.e., > 

100, experiment F1) and to middle digits (experiment F2). Studies 1, 2, 3, 4 (the outcome 

experiments), 5, 6 and C2-3 were pre-registered. In line with the pre-registration, we did not 

exclude any participants from these or other studies. The data sets, study materials, and analysis 

codes of all our experiments can be accessed in the following OSF repository: 

https://tinyurl.com/ambiguity-aversion 

 

STUDY 1: THE INFLUENCE OF CE MAGNITUDE ON AMBIGUITY AVERSION 

 

In study 1, we explore our first proposition: as the magnitude of the CE increases, 

ambiguity aversion diminishes (H1). We test this by making participants choose between a CE 

and a range in a lottery setup. We vary CE magnitude but hold range width constant.  

Method  

 



 

 

Participants and design. 1003 participants1 were recruited via Prolific from the US and 

UK (540 females, Mage= 38). Participants were randomly assigned to one of five CE magnitude 

conditions: 30, 40, 50, 60, 70. Consistent with our pre-registration, we did not exclude any of the 

participants in this study (or any of the subsequent ones).  

Procedure. We informed all participants that they would be choosing between two 

hypothetical lottery options. Participants were then presented with a choice between a precise 

(CE) and an imprecise (range) lottery outcome, featuring between-subjects variation in CE 

magnitude. In all five CE conditions, the options constituted a lottery win of either the [CE] or a 

range of [CE - 30, CE + 30].  For example, in the CE 40 condition participants had to choose 

between the following two options: 50% probability of winning $40 versus 50% probability of 

winning $10-$70.  

In study 1, we did not provide participants with any information on interpreting the 

imprecise (range) option or its distribution, thus preserving the ambiguity of the option. The 

order in which the precise (CE) and imprecise (range) options appeared – as the first versus 

second option – was counterbalanced.  

In this study, and in all other studies presented in this paper, we gathered demographic 

data, including gender and age, prior to starting the experiment. Then, following the experiment, 

all participants were asked in which country they reside and were invited to provide feedback on 

 

1 As detailed in the preregistration, we initially targeted a sample size of 500 participants (100 per cell of the 

experimental design). However, after collecting the initial data, the results were directionally but not statistically 

significant (the key test for H1 came out as β = 0.01, SE = 0.006, z = 1.56, p = 0.11). We decided to collect 

additional data, doubling the sample size. While our test of H1 on this enlarged sample came out as highly 

significant (see below), it has to be recognized that the overall (experiment-wise) type I error rate has been inflated 

from alpha = .05 to .0831 due to our initial ‘peek’ at the results (André and Reinholtz 2023; Simmons, Nelson, and 

Simonsohn 2011). 



 

 

the survey or to explain the reasoning behind their choice. As we restricted participants from 

revisiting the lottery question during the feedback phase, their reflections could not affect their 

original decisions. 

Results 

To explore the impact of CE magnitude on participants’ choice between the precise (CE) 

and ambiguous (range) lottery outcomes, we ran a logistic regression analysis. In support of H1, 

we found that ambiguity aversion, defined as the preference for the precise (CE) lottery outcome, 

diminished as CE magnitude increased (β = -0.015, SE = 0.004, z = -3.336, p < .001). For details 

on the proportion of participants choosing the precise outcome by CE magnitude level (and the 

corresponding logistic regression predictions), refer to figure 4. 

Additionally, we conducted a chi-square test for each CE magnitude condition to test for 

ambiguity aversion in that condition (i.e., a significant departure from a 50/50 selection of the 

precise (CE) versus the imprecise (range) lottery option). The chi-square tests revealed 

ambiguity aversion in the 30 (χ2(1) = 8.3, p  = .003), 40 (χ2(1) = 6.4, p = .01), and 50 (χ2(1) = 

11.9, p < .001) CE conditions, but ambiguity neutrality (i.e., a lack of significant departure from 

a 50/50 selection) in the 60 (χ2(1) = 0.4, p = .52) and 70 (χ2(1) = 2, p = .15) CE conditions.  

 

FIGURE 4 

CHOICE OF PRECISE LOTTERY OUTCOME BY CE MAGNITUDE  



 

 

 

NOTE- The gray bars show the proportion of participants who preferred the precise (CE) over the 

ambiguous (range) outcome in each condition. The black line represents the logistic regression predictions at each 

CE magnitude. The dotted line at 50% represents ambiguity neutrality (indifference between the precise (CE) and 

imprecise (range) options). When the proportion of participants choosing the precise option is above 50%, this 

reflects an overall propensity for ambiguity aversion. In contrast, when the proportion of participants choosing the 

precise option is below 50%, this reflects an overall propensity for ambiguity seeking. The grey error bars represent 

the 95% confidence interval for each condition. 

Discussion  

In H1, we proposed that ambiguity aversion should decrease as the magnitude of the CE 

increases. Study 1 found clear support for this prediction. A logistic regression demonstrates that 

ambiguity aversion decreases when CE magnitude increases and chi square tests confirm that 

ambiguity aversion is present at lower CE levels, namely 30, 40, and 50, but ambiguity neutrality 

emerges at the higher CE levels of 60 and 70. This transition, from ambiguity aversion to 

neutrality, points to CE magnitude as a previously unexplored moderator of ambiguity aversion 

and is consistent with the presumed role of the mental number line’s progressive compression in 

generating ambiguity aversion.  

Despite the broadly consistent pattern of our results, a small deviation appeared to 

emerge at the CE value of 50, where the preference for the precise (CE) option is most 

pronounced, defying the overall declining trend. One apparently plausible explanation could lie 



 

 

in the distinct appeal of gaining US $ 50,-. Unique in being the only CE with its own banknote 

representation among the CEs that were tested (the 30-70 range), the prospect of gaining $ 50,- 

might hold a specific allure to participants due to the denomination effect (Raghubir and 

Srivastava 2009). However, this interpretation is post hoc and does not detract from the overall 

significance of the pattern as hypothesized in H1 in our final sample, though it may have 

contributed to the lack of significance of this test when we conducted it on the first 500 data 

points collected (footnote 1). Finally, we note that further support for H1 is presented in study 4 

and in data collected independently from the authors, by a reviewer who tested the effect in more 

consumer-centric domains (Web Appendix E).     

STUDY 2: IMPACT OF RANGE ELONGATION ON AMBIGUITY AVERSION 

IN CONSUMER CHOICE  

While study 1 tests our first proposition on the impact of the compression effect on 

ambiguity aversion, study 2 focuses on our second proposition — the effect of range elongations 

caused by left-digit asymmetries on ambiguity aversion. We test the effect of these range 

elongations on consumers’ preferences for precise versus uncertain options in six consumer 

context experiments: vaccine effectiveness, discount offers, used car sales, investment returns, 

product lifespan, and product ratings. 

Method 

Participants and design. We tested the effect of left-digit range elongations in six 

experiments with varying CE magnitudes. A total of 1,208 participants were recruited via Prolific 



 

 

(681 females, Mage= 39). Each participant took part in one of the 6 experiments, five of which 

were conducted in one session, and one was conducted independently on a different day. In each 

experiment, participants were randomly assigned to one of two range conditions: upwards-

elongated or downwards-elongated.  

Procedure. In each of the six experiments, participants were asked to imagine choosing 

between two options, one communicated precisely and the other imprecisely. In each 

experiment, we had two conditions: downwards-elongated and upwards-elongated range. For 

example, in the discount offer experiment, participants in the downwards-elongated range 

condition had to choose between a store with a 74% fixed discount and another store with 

uncertain (range) discounts of 69% - 79%, while participants in the upwards-elongated condition 

chose between a store with a 76% fixed discount and one with uncertain (range) discounts 

between 71% - 81%. Two of the experiments were designed to test whether the range elongation 

effect also occurs in decimal numbers smaller than 10, where every integer transition entails a 

left-digit change. We did not provide participants with more information on interpreting the 

imprecise (range) option or its distribution, thus preserving the ambiguity of the option. The 

order in which the precise (CE) and imprecise (range) options appeared—as first versus second 

item—was counterbalanced. Details of the six experiments, including the choices participants 

had to make in each condition, can be found in table 1.  

TABLE 1 

CONSUMER CONTEXT EXPERIMENTS (STUDY 2)  

Context Condition* Description Choice to make 



 

 

Vaccine 

Effectiveness 

DE: X = 74, Y = 69, Z = 79 

UE: X = 76, Y = 71, Z = 81 

Please choose which of 

these two vaccines you 

would prefer. Imagine 

everything is equivalent 

except the effectiveness 

information.  

Vaccine A: X% effective 

Vaccine B: Y-Z% effective  

Discount Offers DE: X = 74, Y = 69, Z = 79 

UE: X = 76, Y = 71, Z = 81 

Imagine it is Black 

Friday and you are 

shopping. Please 

indicate your preference 

of store based on the 

information below, 

assuming all other 

factors are equal. 

Store A: Discount of X% 

Store B: Discount of Y-Z% 

Used Car Sales DE: X = 74k, Y = 69k, Z = 79k 

UE: X = 76k, Y = 71k, Z = 81k 

Imagine you are selling 

your expensive car. 

Please indicate your 

preference of 

salesperson, assuming 

all other factors are 

equal.   

Person A: Offers to sell your car for $X 

Person B: Offers to sell your car for $Y-

$Z 

Investment 

Returns 

DE: X = 74, Y = 69, Z = 79 

UE: X = 76, Y = 71, Z = 81 

Imagine you have a 

chance to invest $1,000. 

You are now deciding 

between two investment 

options. Please indicate 

your preference based 

on the information 

below, assuming all 

other factors are equal.  

Investment A: After one year your 

expected return would be $X 

Investment B: After one year, your 

expected return would be $Y-$Z 

Product 

Lifespans 

DE: X = 7.4, Y = 6.9, Z = 7.9 

UE: X = 7.6, Y = 7.1, Z = 8.1 

Imagine you are 

deciding between two 

products. Which do you 

prefer, assuming all 

other factors are equal.   

Product A: Has a lifespan of X years 

Product B: Has a lifespan of Y-Z years 



 

 

Product Ratings DE: X = 7.4, Y = 6.9, Z = 7.9 

UE: X = 7.6, Y = 7.1, Z = 8.1 

Imagine you are 

deciding between two 

products. Which do you 

prefer, assuming all 

other factors are equal.  

Product A: Has a rating of X out of 10 

Product B: Has a rating of Y-Z out of 10 

Note - *DE = downwards-elongated range condition, UE = upwards-elongated range condition 

 

Results 

 

The results of the downwards- and upwards-elongated conditions of the individual 

experiments are visualized in figure 5 (the exact choice proportions and corresponding chi-

square tests can be found in table A1 in Web Appendix A). 

  

FIGURE 5 

CHOICE OF PRECISE OPTION (CE) BY RANGE ELONGATION CONDITION (STUDY 2) 

 

NOTE- The dotted line at 50% represents ambiguity neutrality (indifference between the CE and range 

options). The error bars show the 95% confidence intervals for each condition. 

 



 

 

Here, we report an aggregated analysis on the impact of range elongation in the various 

consumer contexts. We use the ‘meta’ package (Balduzzi, Rücker, and Schwarzer 2019) in R to 

conduct a single-study meta-analysis of the six experiments (McShane and Böckenholt 2017). 

We compute the effect size and its 95% confidence interval for the effect of range elongation 

(number of studies k = 6) in the individual experiments by a generalized linear model (GLM) 

expressed in log odds ratio (logOR) units. The upwards-elongated condition was coded as the 

‘experimental’ group and the downwards-elongated one as the ‘control.’ Hence, a negative effect 

size confirms the direction of our predicted effect, whereby we expect that participants would be 

less likely to choose the certain option (i.e., be less ambiguity averse) in the upwards-elongated 

range condition.  

First, we checked the effect of counterbalancing the choice order and found that 

counterbalancing had no significant main effect (p = .54) or interaction effects with the range 

elongation condition (p = .25). Therefore, this factor was dropped. We employed a random 

effects model, as the studies displayed variations in context and numerical format (Borenstein et 

al. 2009), but the results of a fixed-effects model were analogous. We find a statistically 

significant overall effect size for the effect of range elongations across six studies (overall log 

odds ratio: -0.78, 95% CI: -1.10 to -0.46, z = -4.80, p < .001). The negative effect size confirms 

that individuals are less likely to choose the precise option in the upwards-elongated compared to 

the downwards-elongated condition. See figure 6 for a Forest Plot of the effect sizes and 

confidence intervals across studies. We report further information on the heterogeneity of effect 

sizes across contexts in Web Appendix A.  

FIGURE 6 

FOREST PLOT OF THE RANGE ELONGATION EFFECT (STUDY 2) 



 

 

 

NOTE- Forest plot and summary statistics for the range elongation effect. Effect sizes (in log odds ratio) 

and 95% confidence intervals for the individual studies (gray boxes and black lines) and overall estimate (gray 

diamond). Negative effect sizes indicate that the odds of choosing the precise option are lower in the upwards-

elongated condition than the downwards-elongated condition. 

Discussion  

In H2, we propose that ambiguity aversion is accentuated (versus attenuated) when 

numerical ranges are downwards- (versus upwards-) elongated. Study 2 provides evidence 

supporting this effect across six consumer context studies. In all contexts, the highest (vs. lowest) 

level of ambiguity aversion is observed when the range is downwards- (vs. upwards) elongated.  

Upwards-elongated ranges are characterized by significantly lower levels of ambiguity aversion. 

As can be seen in figure 5, in three of the choice contexts (discount offers, investment returns 

and product lifespans), ambiguity aversion disappeared altogether for upwards-elongated ranges 

as there was no significant preference anymore for the certain option (p = .58; p = .54 and p = .37 

respectively). In the vaccine efficiency scenario, people even seemed to prefer the upward-

elongated range (59%) over the CE (41%), thus demonstrating ambiguity-seeking behavior. 

However, the p value of this test is only marginally significant (p = .058) and the results stand 

out as unusually strong compared with the other conditions, so interpretations should be made 

with caution (this was also the sole experiment that was run on another day). It’s also worth 



 

 

noting that the range elongation effect generalizes to contexts where people compare decimal 

numbers smaller than 10 (in the product lifespan and ratings studies). Hence, range elongations 

caused by left-digit asymmetries can significantly mitigate and potentially even reverse 

ambiguity aversion. 

STUDY 3: IMPACT OF RANGE ELONGATION ON AMBIGUITY 

AVERSION IN ELLSBERG’S PARADIGM 

In study 3 we test the proposed impact of upwards- vs. downwards range elongations 

caused by left-digit asymmetries in the Ellsberg’s (1961) ambiguity paradigm. While Ellsberg’s 

original experiment gave participants the choice between a precise urn (CE) with 50 winning 

balls and an ambiguous (range) urn with any number between 0 and 100 winning balls, we 

manipulate the CE and range in our experiment to test for the impact of range elongation on 

ambiguity aversion. Participants are asked to choose between urns containing a precise (CE) 

versus an imprecise (range) number of winning balls. We manipulate the range elongation 

condition between subjects, while maintaining a constant range width. While in study 2 we used 

downwards- and upwards- elongated conditions, in study 3 we expand the design and also use a 

non-elongated baseline condition (where the number of left-digit changes between the CE and 

the range’s lower bound is the same as between the CE and upper bound). We expect to see the 

greatest (vs. lowest) proportion of participants choose the precise urn in the downwards-

elongated condition (vs. upwards-elongated), with the baseline condition in between. 



 

 

Method  

Participants and design. A total of 1,357 participants from the US and UK (666 females, 

Mage = 39) were recruited via Prolific. Participants were randomly assigned to one of three 

between subjects conditions: downwards-elongated, non-elongated, or upwards-elongated. The 

sample size was determined by a power analysis following an initial exploratory experiment with 

300 participants, during which we assessed the presence and magnitude of the effect. Based on 

the effect size from this exploratory study, we determined the necessary sample size to achieve 

80% power. Apart from the sample size, this (unreported) exploratory study did not differ from 

the main experiment in any way. 

Procedure. Participants were asked to imagine participating in a lottery where they had to 

choose between two urns, each filled with red and black balls. Each urn had 100 total balls. If a 

red ball was selected, they would win $ 20,-. In each condition—downwards-elongated, non-

elongated, and upwards-elongated—participants were asked to choose between an urn with a 

precise (CE) number of red balls (63, 65, and 67, respectively) and an urn with an imprecise 

(range) number of red balls (47 - 79, 49 - 81, and 51 - 83, respectively). The range width was 

uniformly set at [CE - 16, CE + 16] across all conditions. For example, in the downwards-

elongated condition participants had to choose between the following two options:  

 

Urn A: Has 63 red balls. The rest of the balls are black. If a red ball is drawn from this 

urn, you will win $20.  

Urn B: Has 47-79 red balls. The rest of the balls are black. If a red ball is drawn from 

this urn, you will win $20.  



 

 

 

In study 3, like in studies 1 and 2, we did not provide participants with any information 

on interpreting the imprecise (range) option or its distribution, thus preserving the ambiguity of 

the option. The order in which the precise (CE) and imprecise (range) urns appeared – as first 

versus second item – was counterbalanced.  

Results 

First, we checked the effect of counterbalancing the choice order and found that 

counterbalancing had no significant main effect (p = .35) or interaction effects with any of the 

range elongation conditions (all p > .19). Therefore, this factor was dropped. 

We performed a chi-square analysis to explore whether there is a significant difference in 

the choice of the precise urn in the three conditions. In support of H2, the difference between 

conditions is statistically significant (χ2(2) = 69.12, p < .001) — 73% of participants chose the 

precise urn in the downwards-elongated condition, 57% in the non-elongated condition, and 50% 

in the upwards-elongated condition (see figure 7). Next, we performed chi-square tests to 

compare conditions. The chi-square tests revealed a significant difference between the 

downwards-elongated and non-elongated condition (χ2(1) = 23.94, p < .001), and between the 

non-elongated and upwards-elongated condition (χ2(1) = 4.66, p = .03). 

Finally, we conducted chi-square tests to check for ambiguity aversion or ambiguity 

seeking in each of the three conditions (i.e., a significant departure from a 50/50 selection of the 

precise (CE) versus the imprecise (range) urn option). The chi-square tests revealed ambiguity 

aversion in the downwards-elongated (χ2(1) = 93.88, p < .001), and non-elongated (χ2(1) = 9.02, 

p = .002) conditions, but ambiguity neutrality (i.e., a lack of significant departure from a 50/50 



 

 

selection of the precise (CE) versus the imprecise (range) lottery option) in the upwards-

elongated condition (χ2(1) = 0.01, p = .88). 

 

FIGURE 7 

CHOICE OF PRECISE URN BY RANGE-ELONGATION CONDITION (STUDY 3) 

 

NOTE- The dotted line at 50% represents ambiguity neutrality (indifference between the precise (CE) and 

imprecise (range) options). The grey error bars represent the 95% confidence interval for each condition. 

Discussion  

In H2, we propose that ambiguity aversion is amplified (vs. attenuated) when ranges are 

downwards- (vs. upwards-) elongated. In study 3, we find evidence supporting this effect in the 

Ellsberg urn paradigm. The highest level of ambiguity aversion is observed in the downwards-

elongated condition, where the range’s lower bound has a greater left-digit difference with the 

CE than its upper bound. In contrast, we do not detect any ambiguity aversion in the upwards-

elongated condition, where the range’s upper bound has a greater left-digit difference with the 

CE than its lower bound. In this study, we use a non-elongated control condition as a baseline to 

identify the basic level of ambiguity aversion in the Ellsberg paradigm at this zone of the mental 



 

 

number line, thus any deviations in ambiguity aversion from the levels observed in this condition 

could reasonably be attributed to the upwards- and downwards-elongation effects. 

STUDY 4: INTERACTION OF RANGE ELONGATION AND 

NUMERICAL MAGNITUDE 

Study 4 comprises 16 experiments. The initial experiments were conducted to test the 

range elongation effect (H2) at different magnitudes of the CE. Upon formulating H3—which 

posits that the strength of H2 amplifies as the magnitude of the CE increases—we carried out 

additional experiments. Combined, the 16 experiments cover most of the mental number line 

from 0-100, in both outcomes and probabilities. In each experiment, participants are asked to 

choose between precise (CE) and imprecise (range) outcomes or probabilities of winning a 

lottery. In the probability experiments (7 in total), varying CE magnitudes in the 0-100% 

probability space are utilized. For instance, in one experiment participants are asked to choose 

between a 74% and a 69%-79% chance of winning a lottery (downwards-elongated condition). 

In the outcome experiments (9 in total), varying CE magnitudes in the €0-€100 outcome space 

were used. For example, in one experiment participants are asked to choose between a €74 and a 

€69-€79 lottery outcome (downwards-elongated condition).  

Method 

Participants and design. We tested the effect of left-digit elongations in 16 experiments 

with varying CE magnitudes. A total of 3,027 participants were recruited via Prolific and the 

student panel of our university (2048 females, Mage = 34). Each participant took part in one of the 



 

 

16 experiments, which were conducted independently on different days. In each experiment, 

participants were randomly assigned to one of two range conditions: upwards-elongated or 

downwards-elongated. Details of the 16 experiments, including the choices participants had to 

make in each condition, can be found in table B1 of Web Appendix B.  

Procedure. In each experiment, we informed participants that they would be choosing 

between two hypothetical lottery options. Participants were then presented with a choice between 

a precise (CE) and an imprecise (range) lottery probability or outcome, with between subjects 

variation in CE magnitude and downwards-versus upwards-elongation of the range option. We 

informed participants that, for the range (imprecise) option, the exact amount they would win 

would be randomly selected from the range provided.2 In the probability experiments (7 total), 

participants made a choice between a precise (CE) and imprecise (range) probability of winning 

a lottery. For example, in experiment 14 (see table B1 of the web appendix), participants in the 

downwards-elongated condition would choose between a 74% probability of winning €20 versus 

a 69-79% probability of winning €20, while participants in the upwards-elongated condition 

would choose between a 76% probability of winning €20 versus a 71-81% probability of 

winning €20 (in counterbalanced order).  

Analysis Overview and Meta-Analytic Approach  

For study 4, we conduct a single-study meta-analysis (McShane and Böckenholt 2017) 

since the 16 experiments were executed on separate occasions but share high similarity—only 

 
2  In contrast to prior studies where the distribution of the range was not specified, in this experiment, participants 

were explicitly informed of a uniform distribution (i.e., every range value having the same probability to be chosen).  



 

 

differing in CE magnitude and numerical format (outcomes, probabilities). First, an unmoderated 

meta-analysis of all experiments is presented, showcasing the impact of range elongation over 

different magnitudes on the mental number line. Next, we include the CE value magnitude as a 

moderator, testing whether the effect of H2 intensifies with higher magnitudes (H3).  

We used the ‘meta’ package (Balduzzi, Rücker, and Schwarzer 2019) in R for our single-

study meta-analysis of the 16 experiments. We computed the effect size and its 95% confidence 

interval for the effect of range elongations (number of studies k = 16) in the individual 

experiments by a generalized linear model (GLM) expressed in log odds ratio (logOR) units. The 

upwards-elongated condition was coded as the ‘experimental’ group and the downwards-

elongated as the ‘control.’ Hence, a negative effect size confirms the direction of our predicted 

effect, whereby we expect that participants would be more likely to choose the precise option in 

the downwards-elongated compared to the upwards-elongated condition.  

In addition to providing insights on the size of the range elongation effect, we explored 

whether the effects are moderated by CE magnitude (H3). To this end we coded the CE’s left 

digit in each experiment from 0-9 and conducted a meta-regression to test the moderating role of 

left-digit magnitude. Additionally, we separated the dataset into two: outcome experiments and 

probability experiments and ran a logistic regression on each dataset using left digit magnitude as 

the moderator, to probe the moderation direction for outcomes and probabilities separately. 

Results 

First, we checked the effect of counterbalancing the choice order and found it had no 

significant main (lowest p = .32) or interaction effects with the range elongation condition 

(lowest p = .14). Therefore, this factor was dropped. 



 

 

We divide the analysis into two sections. The first set of tests was conducted to examine 

the basic range elongation effect (H2). Here, we expect consumers to exhibit more ambiguity 

aversion in the downwards-elongation condition than in the upwards-elongation condition. 

Secondly, we test whether the range-elongation effect becomes stronger with increasing 

magnitude of the CE (H3).  

Range elongation effect (H2). In our meta-analysis, we employed a random effects 

model, which revealed a statistically significant overall effect size for the effect of range 

elongations across 16 studies (overall log odds ratio: -0.72, 95% CI: -0.88 to -0.56, z = -8.91, p < 

.001). We report the results of a random effects model, as the studies displayed variations in 

tens-digit magnitude, numerical format, and population types (Borenstein et al. 2021), but the 

results of a fixed-effects model were analogous. See figure 8 for a Forest Plot of the effect sizes 

(log ORs) and confidence intervals of the studies. We report further information on the 

heterogeneity of effect sizes in Web Appendix B. 

 

FIGURE 8 

FOREST PLOT OF RANGE ELONGATION EFFECT IN 16 EXPERIMENTS (STUDY 4) 

 



 

 

NOTE- Forest plot and summary statistics for the range elongation effect. Effect sizes (in log odds ratio) 

and 95% confidence intervals for the individual studies (gray boxes and black lines) and overall estimate (gray 

diamond). Negative effect sizes indicate that the odds of choosing the precise option are lower in the upwards-

elongated condition than the downwards-elongated condition. 

 

Strength of range elongation effect with increasing CE magnitudes (H3). We proceeded 

to examine the moderating effect of CE magnitude, operationalized by coding its tens-digit and 

treating it as a continuous variable. The moderation test is conducted using a mixed-effects meta-

regression. Of primary interest, the test of the tens-digit as a moderator is significant (QM(1) = 

19.61, p < .001). This reveals that the influence of range elongation on choice varies depending 

on the CE’s tens-digit magnitude. 

To further understand the moderating direction of the CE magnitude on the range 

elongation effect, we split all the outcome experiments (1-9) and all the probability experiments 

(10-16) into two datasets. We then performed hierarchical logistic regression for outcomes and 

probabilities separately using the ‘glmer’ function from the ‘lme4’ package in R (Bates et al. 

2009). As the experiments were run on separate occasions, we opted for a random intercept and 

random slope model to account for baseline choice differences and differences between 

elongation conditions across studies. For robustness, we also tested a fixed intercept model; 

however, the choice of model neither altered the significance nor the direction of the results. 

For the nine outcome experiments, consistent with the results of the combined meta-

regression, the interaction between the CE magnitude (tens-digit value) and the range elongation 

condition is significant (β = -0.10, SE = 0.03756, z = -2.72, p = .006).  To understand the 

direction of the interaction, we examined the impact of CE magnitude on each range elongation 

condition separately. The choice of precise option decreases with increasing CE magnitude in the 

upwards-elongated condition (β = -0.11, SE = 0.02704, z = -4.23, p <.001), but there is no effect 

of increasing CE magnitude in the downwards-elongated condition (β = -0.01, SE = 0.02, z = 



 

 

0.45, p = .64). In other words, preferences remain stable in the downwards-elongated condition 

as CE magnitude increases. However, in the upwards-elongated condition, there is a trend toward 

greater ambiguity-seeking as CE magnitude increases, see figure 9. 

 

FIGURE 9 

CHOICE OF PRECISE OUTCOME BY RANGE ELONGATION CONDITION (STUDY 4) 

 

NOTE- The solid black and gray lines in the figure represent the logistic regression predictions of choosing 

the precise outcome by range elongation condition and number magnitude. The white and gray bars show the 

proportion of participants who choose the precise outcome. The dotted line at 50% represents ambiguity neutrality.  

 

Similarly, for the seven probability experiments, the interaction between the CE 

magnitude (coded tens-digit value) and the range elongation condition is significant (β = -0.11, 

SE = 0.04, z = -2.32, p = .02). The choice of the precise probability option decreases with 

increasing CE magnitude in the upwards-elongated range condition (β = -0.09, SE = 0.03, z = -

2.986, p = .002), but there is no effect of increasing CE magnitude in the downwards-elongated 

range condition (β = 0.014, SE = 0.03, z = -0.41, p = .67). As the pattern of results in the 



 

 

probability experiments is analogous to that in the outcome experiments, we report its 

visualization in Web Appendix B (figure B1).  

Discussion 

In study 4, we found additional evidence in support of H2, indicating that ambiguity 

aversion is heightened when ranges are downwards-elongated versus upwards-elongated. 

Additionally, the study provides evidence that the effect of downwards- versus upwards-range 

elongation becomes larger as the CE’s numerical magnitude increases (H3). Interestingly, while 

H3 was confirmed, at first sight the results appear entirely driven by the increasingly reduced 

ambiguity aversion in upwards-elongated ranges around higher CE’s (see figures 9 and B1). 

Why might this be the case? In other words, why did we not also observe increased ambiguity 

aversion in downwards-elongated ranges as the numerical values increased? We believe the 

answer lies in the interplay between H3 and another hypothesis, H1. H1’s effect offsets the 

anticipated outcome from H3 in the context of downwards-elongated ranges. In contrast, it 

amplifies the effect seen in upwards-elongated ranges. Although it was not the primary focus of 

study 4, we tested H1 on the overall data set (outcomes and probabilities) using a hierarchical 

logistic regression and there was indeed an overall decline of ambiguity aversion with increasing 

tens-digit magnitude (β = -0.05, SE = 0.018, z = -2.788, p = .005). Figure 10 depicts this 

interdependency, highlighting how the combined effects of H1 and H3 produce the observed 

pattern in study 4.  

 

FIGURE 10 



 

 

COMBINED EFFECT OF H3 + H1 

 NOTE- H3 predicts that the difference in ambiguity aversion between downwards-versus upwards-

elongated ranges should increase as CE numeric magnitude increases, which in its basic form would result in a 

pattern as displayed in the left panel. However, H1 predicts that overall ambiguity aversion should decrease with 

increasing numeric magnitude, as displayed in the middle panel. The sum of these effects is displayed in the right 

panel. 

 

Finally, it is worth noting that while study 4 obtains strong evidence for H3, it does so in 

the relatively decontextualized and abstract setting of hypothetical lotteries. In supplemental 

experiments C1-3, we find that the effect of H3 might be weaker in more contextualized 

consumer choice settings such as when consumers choose between discounts on vouchers or 

store offers (Web Appendix C).  

STUDY 5: RANGE ELONGATIONS IN THE LOSS DOMAIN 

Extant explanations of ambiguity aversion incorporate various psychological processes, 

such as consumers’ belief that choosing a precise option over an imprecise one will lead others to 

judge them more favorably (Curley et al. 1986; Keren and Gerritsen 1999; Muthukrishnan et al. 

2009), expectations that the experimenter might deceive them into a poor outcome if they choose 

the imprecise option (Curley et al. 1986), or the belief that they will get poor outcomes from 

ambiguous options as people feel comparatively ignorant in the decision domain (Fox and 



 

 

Tversky 1995). Such theories typically converge in predicting ambiguity aversion for both gains 

and losses, because they identify reasons why people believe that choosing the CE would lead to 

a better outcome in general. However, in the loss domain, the predominant finding is ambiguity 

seeking behavior, rather than ambiguity aversion (Trautmann and Van De Kuilen 2015).  

Our theory deviates from extant approaches in a subtle way. Rather than identifying 

reasons why people think choosing the CE would be better, we identify reasons why they think 

the CE would often be higher than the outcome they expect from the ambiguous (range) option. 

This naturally leads to a divergent prediction in gains versus losses, as in the loss domain, people 

would prefer the lowest expected outcome. Thus, it follows that if consumers perceive the CE as 

closer to the upper bound than the lower bound of a range, they should prefer the CE in the gain 

domain where the goal is to maximize gains. In contrast, they should prefer the range in the loss 

domain, where the goal is to minimize losses.  

In study 5, we test this prediction by giving participants a choice between a CE and a 

range centered around the CE in a loss context. We employ a between subjects design, 

manipulating the downwards-versus upwards-elongated nature of the range, while maintaining a 

constant range width. Contrary to H2 and the findings in Studies 2, 3, and 4, we expect that, in 

this loss context, ambiguity aversion will be accentuated (vs. attenuated) when ranges are 

upwards- (vs. downwards-) elongated. 

Method 

Participants and design. A total of 199 participants were recruited via Prolific. 

Participants were based in the US and UK (142 females, Mage= 38) and randomly assigned to one 

of two range conditions: upwards-elongated or downwards-elongated.  



 

 

Procedure. We informed all participants that they would be choosing between two 

hypothetical loss scenarios. Participants were then presented with a choice between a precise 

(CE) and an imprecise (range) probability of losing €20. The choice was as follows: 

Downwards-elongated condition: 81% probability of losing €20 or 76-86% probability 

of losing €20.  

Upwards-elongated condition: 79% probability of losing €20 or 74-84% probability of 

losing €20.  

 

Like in studies 1, 2, and 3, we did not provide participants with any information on 

interpreting the imprecise (range) option or its distribution, thus preserving the ambiguity of the 

option. The order in which the precise and imprecise options appeared was counterbalanced.  

Results 

First, we checked the effect of counterbalancing the choice order (i.e., whether the 

precise option (CE) or the imprecise option (range) appeared first on the list) both as a main 

effect and as an interaction with the range elongation condition. We found that counterbalancing 

had no significant main effect (p = .11) or interaction effects with the range elongation condition 

(p = .57). Therefore, this factor was dropped. 

In the downwards-elongated range condition, 31% of participants chose the precise 

option, while in the upwards-elongated range condition, 56% of participants chose the precise 

option (figure 11). A chi-square analysis indicated that this difference was statistically significant 

(χ2(1) = 11.71, p < .001).  Additionally, we conducted a chi-square test for each individual 



 

 

condition to determine whether there is a significant departure from a 50/50 selection of the 

precise (CE) versus the imprecise (range) loss option. These tests revealed ambiguity seeking in 

the downwards-elongated condition (χ2(1) = 14.44, p < .001), but ambiguity neutrality in the 

upwards-elongated condition (χ2 (1) = 1.44, p = .23). 

FIGURE 11 

CHOICE OF PRECISE OPTION BY RANGE ELONGATION CONDITION IN THE 

CONTEXT OF LOSSES (STUDY 5)  

 

Note- The dotted line at 50% represents ambiguity neutrality (indifference between the precise (CE) and 

imprecise (range) options).  

 

Discussion 

Study 5 extends our theory into the loss domain, demonstrating a pattern that is opposite 

to that observed in the gain domain in previous studies. In the downwards-elongated range 

condition, most participants chose the imprecise (range) option, while in the upwards-elongated 

range condition, the majority preferred the precise (CE) option. This study therefore provides 

additional process evidence that consumers compare the location of the CE relative to the 



 

 

ambiguous range option on their mental number line to determine which option would likely 

result in a higher outcome. Previously proposed explanations for ambiguity aversion typically 

provide reasons why people prefer certainty over uncertainty in general (Curley et al. 1986; Fox 

and Tversky 1995; Keren and Gerritsen 1999; Muthukrishnan et al. 2009). 

Thus, study 5 not only extends the relevance of our theory across both gain and loss 

domains, but it also addresses a discrepancy between prior theories and empirical evidence on 

ambiguity aversion in the loss domain. Specifically, no prior theory would predict the divergent 

pattern in the gain and loss domains that is commonly observed in empirical work. Hence, our 

findings provide an important explanation for the heterogeneity observed across these domains. 

While study 5 provides indirect process evidence supporting our theory, study 6 more directly 

manipulates the perception of the CE relative to the range option.  

STUDY 6: MIDPOINT DISCLOSURES MODERATE THE RANGE 

ELONGATION EFFECT 

Our theoretical framework outlines how basic principles of numeric cognition lead to 

systematic biases in the perceived position of a CE relative to a range of possible outcomes 

centered around it. We have argued and shown how these misperceptions lead to predictable 

variation in consumers’ aversion to uncertain ranges of outcomes (i.e., ambiguity aversion). If a 

misperception of the CE’s position relative to the range lies at the root of this variation in 

ambiguity aversion, it follows that a simple, yet effective counter biasing technique could consist 

of a straightforward explanation of the CE’s objective position relative to the range. In study 6, 

we therefore test whether clarifying that the CE is the midpoint of the uncertain range, will be 

enough to significantly reduce the range elongation effect stipulated in H2.  



 

 

Method 

Participants and design. A total of 400 participants were recruited via Prolific. 

Participants were based in the US and UK (273 females, Mage = 38). Participants were randomly 

assigned to one of two range elongation conditions (downwards-elongated or upwards-

elongated) and one of two midpoint disclosure conditions (explicit disclosure or no disclosure). 

Procedure. We informed all participants that they would be choosing between two 

hypothetical lottery scenarios. Participants were then presented with a choice between a precise 

(CE) and an imprecise (range) probability of winning €20, with between subjects range 

elongation conditions (upwards-elongated or downwards-elongated) and midpoint disclosure 

conditions (explicit disclosure or no disclosure). The explicit disclosure conditions were identical 

to the no disclosure conditions, except that they additionally mentioned that [CE] is the midpoint 

of [range]. The specific choices made available to participants can be found in table 2. Like in 

study 4, we informed participants that for the imprecise option, the exact amount they would win 

would be randomly selected from the range provided. The order in which the precise (CE) and 

imprecise (range) options appeared was counterbalanced.  

TABLE 2 

CONDITIONS IN STUDY 6 (MIDPOINT DISCLOSURE x RANGE ELONGATION)  

 Downwards-elongated Upwards-elongated 

No disclosure 50% probability of winning €74  

or 

50% probability of winning €69 - €79.  

50% probability of winning €76  

or 

50% probability of winning €71 - €81.  



 

 

Explicit disclosure 50% probability of winning €74  

or 

50% probability of winning €69 - €79 (€74 is the 

midpoint of €69 - €79).  

50% probability of winning €76  

or 

50% probability of winning €71 - €81 (€76 is 

the midpoint of €71 - €81). 

Results 

First, we checked the effect of counterbalancing the choice order. We found that 

counterbalancing had no significant main (p = .49) or interaction effects with any of the 

conditions (lowest p value = .14). Therefore, this factor was dropped. 

A logistic regression analysis revealed a significant interaction between range elongation 

and the midpoint disclosure condition on participants’ choice between the precise and imprecise 

lottery options (β = -1.18, SE = 0.42, z = -2.82, p = .004). In line with our expectations, in the ‘no 

disclosure’ condition, there was a significant difference in preference for the precise option 

between the downwards-and upwards-elongated range conditions (β = 1.58, SE = 0.30, z = 5.13, 

p < .001). However, this preference did not differ significantly in the ‘explicit disclosure’ 

condition (β = 0.40, SE = 0.28, z = 1.41, p = .15, see figure 12). Additionally, a chi-square test 

showed that the majority of participants in the ‘no disclosure, downwards-elongated’ condition 

displayed ambiguity aversion (χ2(1) = 5.7, p = .01). Conversely, those in the ‘no disclosure, 

upwards-elongated’ condition exhibited ambiguity seeking (χ2(1) = 25, p < .001). In the ‘explicit 

disclosure’ condition, participants in both the downwards-elongated (χ2(1) = 1.44, p = .23) and 

upwards-elongated (χ2(1) = 0.64, p = .42) conditions demonstrated ambiguity neutrality. 



 

 

FIGURE 12 

CHOICE OF PRECISE OPTION BY RANGE ELONGATION AND MIDPOINT 

DISCLOSURE CONDITION (STUDY 6)  

 

NOTE- The dotted line at 50% represents ambiguity neutrality (indifference between the precise (CE) and 

imprecise (range) options).  

Discussion  

As predicted, participants’ choices in the ‘no disclosure’ condition were more impacted 

by range elongation than those in the ‘explicit disclosure’ condition. Specifically, in the ‘no 

disclosure’ condition, when the range was downwards-elongated, participants showed a strong 

propensity towards ambiguity aversion. In contrast, when the range was upwards-elongated, 

participants showed a propensity for ambiguity seeking. This aligns with our findings in studies 

2-4 and reaffirms the robustness of the range elongation effect. However, when participants were 

informed that the CE is the midpoint of the range, the effects of range elongation were 

attenuated. Therefore, the findings are in line with the idea that range elongation effects on 



 

 

ambiguity aversion stem from biased perceptions of the location of the CE relative to the range 

on the mental number line.  

GENERAL DISCUSSION 

Extant research on ‘ambiguity aversion’ has often shown that consumers are averse to the 

uncertainty inherent in ranges, particularly when more unambiguous and precise options are 

available (Fox and Tversky 1995). Yet, no existing theory, to date, has been able to explain both 

the basic emergence of ambiguity aversion and its extensive heterogeneity across contexts and 

domains (Trautmann and Van De Kuilen 2015). Our research sought to address this gap by 

identifying basic numeric cognition principles that might underlie this core phenomenon in 

human judgment and decision making: the ‘compression effect’ and the ‘left-digit effect.’ We 

report 26 experiments (N = 7194; grouped into 6 studies) in the main body of this paper and 8 

more (N = 3440) in the Web Appendix to test our theoretical framework. The results provide 

strong evidence of the influence of numerical cognition principles on consumer preferences 

between precise (CE) and imprecise (range) outcomes and probabilities. 

The first numeric cognition principle we invoke – the ‘compression effect’ – provides a 

new and straightforward explanation for the fact that people generally prefer certain options over 

their uncertain counterparts, that is, the basic phenomenon of ambiguity aversion. Due to the 

increasing compression of numbers as represented on an internal mental number line, consumers 

generally perceive a certain equivalent (e.g., $40) as closer to a symmetric range’s upper bound 

(e.g., $60) than its lower bound (e.g., $20). Consequently, people generally perceive a greater 

potential downside than upside in a range when compared to a CE. Moreover, due to the rapidly 

increasing rate of compression of the mental number line at higher numbers, we argued that this 



 

 

discrepancy between range upside and downside perceptions will diminish around larger 

numbers. Hence, the theory allowed for a first new prediction: ambiguity aversion should 

decrease when ranges are centered around higher numbers or CEs. 

The second numeric cognition principle we invoke is the left-digit effect, a cognitive bias 

where the left-most digits in a number have a disproportionate influence on numerical valuation 

(Thomas and Morwitz 2005). This bias distorts and extends the mental number line at points 

where there are left-digit transitions, thus altering the perceived appeal of a range. We proposed 

and found that ambiguity aversion intensifies when the lower bound of a range is further 

removed in left digits from the CE than the upper bound. Conversely, when the range’s upper 

bound is further removed in left digits from the CE than its lower bound, ambiguity aversion 

decreases, or even reverses (as seen in studies 2, 4 and 6). We predicted and found a greater 

influence of these range elongations when ranges are centered around larger CEs (study 4 and 

Web Appendix C) because as magnitudes increase, the mental number line is more compressed, 

making the leftmost digit the primary distinguishing factor.  

Importantly, and uniquely consistent with our theory, we also predicted and found a 

reversal of the effect of left digit range asymmetries in the domain of losses (study 5). This 

diverges from current theories on ambiguity aversion, which generally predict ambiguity 

aversion across both the gain and loss domains. Our findings align with and explain previously 

puzzling empirical evidence showing attenuated or reversed ambiguity aversion in the loss 

domain (see also the implications for theory below). Finally, in study 6 we offered a simple and 

straightforward process test. If systematic misperceptions of the CE’s position relative to the 

range on an implicitly constructed scale indeed underlie ambiguity aversion, making explicit that 

the CE is the midpoint of the given range should reduce these biases.  



 

 

Implications for Theory 

Incorporating these two basic principles of numerical cognition into our understanding of 

ambiguity aversion leads to novel predictions and addresses several inconsistencies in the 

existing literature. For instance, most psychological theories proposed to explain ambiguity 

aversion would predict ambiguity aversion also in the loss domain (Curley et al. 1986; 

Trautmann and Van De Kuilen 2015). Yet, a common empirical observation is a reversal of 

preferences in the loss domain (Trautmann and Van De Kuilen 2015). Our theory predicts this 

divergent pattern. Our core assumption that the closer the CE is perceived to the upper bound of 

the range, the greater its relative desirability to the range, would only be true when consumers 

aim to maximize the outcome or probability they will obtain. When their goal is to minimize this 

outcome or probability, as in the case of losses, this choice pattern should reverse.  

Moreover, the results contribute to the longstanding debate regarding the interplay 

between range width and ambiguity aversion. Currently, some studies identify an amplification 

of ambiguity aversion with increasing range width (Becker and Brownson 1964; Viscusi and 

Magat 1992) while others do not find such a trend (Curley and Yates 1985; Yates and Zukowski 

1976). Our findings suggest a potential interaction between range width and numerical 

magnitude, which could explain these mixed results. The compression effect indicates that the 

importance of range width increases with higher CE magnitude. Smaller range widths at lower 

CEs are sufficient to induce ambiguity aversion, but at higher CEs, larger ranges are necessary to 

produce a similar effect. Consistent with this observation, studies that found ambiguity aversion 

with increasing range width reported higher CE numbers, such as 50% (Becker and Brownson 

1964) and 150 (value of environmental risk; Viscusi and Magat 1992) compared to the studies 

that did not observe such effects, which had CEs starting as low as 10% (Curley and Yates 1985)  



 

 

and 5 (out of 10 chips; Yates and Zukowski 1976). Additionally, we showed that under the right 

circumstances, expanding the range might, paradoxically, diminish ambiguity aversion if it 

changes the range from non-elongated (or downwards-elongated) to an upwards-elongated range. 

An established moderator that is seemingly inconsistent with our theory is that 

individuals are ambiguity seeking for very low likelihood events (Trautmann and Van De Kuilen 

2015). At first glance, this seems to contradict H1, which suggests that ambiguity aversion is 

most pronounced when the certainty equivalent (CE) magnitudes are low. However, the “low 

likelihood” events referenced in existing literature typically involve decimal probabilities below 

1% (for example, 0.01). Studies on how decimals are represented indicate that they are processed 

differently from whole numbers, being represented by individual integer components rather than 

holistically (Bonato et al. 2007; Cohen 2010; Cohen, Ferrell, and Johnson 2002). Therefore, if 

the mental number line representation is primarily used for numbers greater than 1, it would be 

expected that very low-likelihood events, being processed differently, yield distinct outcomes. 

There are other findings in the ambiguity aversion literature that can be explained with 

the numerical cognition account proposed here. For example, Budescu, Weinberg and Wallsten 

(1988) predicted that people should be more averse to bets when their probability of winning is 

expressed in non-numeric formats (e.g., graphically or verbally) as the information conveyed in 

these formats should be more ambiguous than in a straight numeric presentation (e.g., a verbal 

description of a probability as ‘very unlikely’ is more ambiguous than a precise, low probability 

number). They found no support for this prediction, which at the time raised question marks 

around the generality of ambiguity aversion as a phenomenon. If, as we maintain, comparison 

processes between numbers on a mental number line play a central role in the phenomenon of 



 

 

ambiguity aversion, the fact that ambiguity aversion does not emerge in comparisons between 

numeric and non-numeric information, appears as a logical boundary condition.  

Importantly, some previous research provided process evidence for theories of ambiguity 

aversion by means of moderators which are correlated with numeric magnitude. In such cases, 

the principles of numeric cognition could provide an alternative explanation for parts of their 

results. In Web Appendix D, we discuss, for example, how empirical evidence for the 

“competency hypothesis” could be impacted by our theory (Heath and Tversky 1991). More 

generally, our research highlights the importance of disaggregating analyses for comparisons of 

CEs and ranges when they occur on different regions of the mental number line. Extant research 

often failed to do so, causing unexplained heterogeneity in the results (Du and Budescu 2005). 

It’s important to underscore that our perspective does not diminish the significance of 

prior theories on ambiguity aversion. These psychological explanations each likely contribute to 

the phenomenon in distinct ways. As such, our findings provide a new perspective to 

contextualize the large heterogeneity of ambiguity aversion in the literature and can help explain 

the recurring deviations from standard ambiguity aversion predictions in the loss domain. Yet, 

we explicitly do not want to claim that in the loss domain, only ambiguity seeking would be 

observed or that all sources of ambiguity aversion can be reduced to the properties of the mental 

number line. To the contrary, the interaction of the processes described in the current paper with 

those outlined in previous theories are expected to lead to a complex picture, especially in the 

domain of losses. Furthermore, the less-than-straightforward results of the supplementary studies 

described in Web Appendix C and E, reveal that in many situations (e.g., in daily life or in 

concrete consumer contexts), additional inferences will play a role which can significantly 

influence people’s levels of ambiguity aversion. Thus, the two principles of numerical cognition 



 

 

we identified as important to understand ambiguity aversion merely pave the way for deeper 

exploration and understanding of the multifaceted nuances in the ambiguity aversion literature, 

across various CE magnitudes, left-digit asymmetries, domains, and range widths. 

Implications for Practice 

Our research provides guidance for marketers, policymakers, and professionals who need 

to communicate numerical information effectively. We provide new insights into the conditions 

under which a range of values can be as appealing—or even more so—to consumers than a 

single point estimate, thereby challenging the commonly-held view that ambiguity aversion 

typically makes precise estimates more attractive. To illustrate this, we presented choices 

between precise and imprecise options in six consumer contexts: vaccines, discounts, used car 

sales, investment products, product lifespans, and product ratings. When the uncertain option 

was upwards-elongated relative to the certain equivalent (i.e., when the range’s upper bound was 

more left-digits removed from the CE than its lower bound), consumers ceased to be ambiguity 

averse in three out of six contexts and came close to ambiguity seeking in one. This shift in 

preferences signals that ambiguity aversion can be mitigated or even reversed, when giving 

proper attention to the width of the range of uncertainty and its relation to the CE’s magnitude in 

the communication or presentation of the options.  

In addition to the six contexts presented, these insights may also apply to various other 

sectors where managers can choose to communicate using ranges versus point estimates. This 

approach can help foster trust and establish more realistic expectations among consumers 

(Gaertig and Simmons 2023). For instance, utility companies could employ range estimates to 

provide more nuanced predictions of monthly energy bills. Manufacturing companies 



 

 

specializing in durable goods, such as electronics or home appliances, might opt for range 

estimates to indicate the product’s lifespan. Educational institutions could use range estimates to 

depict test score improvements or job placement rates, thus setting more realistic expectations 

among students and parents.  

The numerical cognition principles we highlight can inform marketers and 

communication professionals for which ranges and point estimates consumers are most likely to 

react positively to uncertainty. This knowledge, combined with understanding situations where 

consumers are generally open to ambiguity—such as perceived scarcity or exclusivity (Fan et al. 

2019), negotiable pricing (Ames and Mason 2015), or when there is mutual trust between the 

company and consumer (Liu and Chang 2017)—paves the way for the most effective 

communication strategies. However, future work needs to more comprehensively understand 

how these effects play out in the real world, depending on contextual factors and other important 

moderators. 



 

 

Limitations and Future Research 

Future research is necessary to validate our findings in more externally valid settings 

(e.g., field data). The consumer-relevant studies in this paper (e.g., Study 2) still utilized 

somewhat abstract stimuli and studies in consumer contexts sometimes showed weaker effects 

(e.g. experiments C2-3 and E1) than studies in more abstract settings. Hence, there may be 

significant practical boundary conditions to the effects. Furthermore, our paper’s predominant 

focus lay in the domain of gains while the domain of losses requires further exploration. 

Additionally, investigating how consumers' number reading and encoding behaviors influence 

ambiguity attitudes could be a fruitful avenue for understanding differences in behavior when 

ambiguity information is presented in different formats, verbally or in writing (Laurent and 

Vanhuele 2023). 

Conclusion  

Our research is the first to identify two principles in numerical cognition which appear to 

underlie and drive significant heterogeneity in ambiguity attitudes. We show how these two 

principles, ‘the compression effect’ and the ‘left-digit effect’ influence the perceived upside vs. 

downside of a range relative to a CE across various contexts (lotteries, vaccines, product 

reviews, lifespans, investment products etc.), domains (gains, losses), and numerical formats 

(probabilities, outcomes). Across 34 experiments with over 10,000 participants, our findings 

consistently substantiated these effects, illustrating their robustness. These discoveries have 

broad applicability, offering valuable insights for academics studying choice behavior under risk 

and uncertainty and to professionals aiming to communicate numerical data effectively. 
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WEB APPENDIX A 

Study 2 Additional Information and Results  

TABLE A1 

RESULTS FOR EXPERIMENTS IN STUDY 2 

 Experiment Condition* 
  

Precise (CE) 
choice 

Imprecise (Range) 
choice 

% Choose 
precise (CE) 
option 

Sample 
size 

χ2  p  

Vaccine 
Effectiveness 

DE 
UE 

74% 
76% 
 

69-79% 
71-81% 
 

75% 
40% 

202 23.48 <.001 

Discount 
Offers 

DE 
UE 

74% 
76% 
 

69-79% 
71-81% 
 

67% 
55% 

200 2.91 .08 

Used Car 
Sales 

DE 
UE 

$74k 
$76k 
 

$69-$79k 
$71-$81k 
 

80% 
74% 

202 .70 .40 

Investment 
Returns 

DE 
UE 

$74 
$76 
 

$69-$79 
$71-$81 
 

74% 
53% 

201 8.92 .002 

Product 
Lifespans 

DE 
UE 

7.4 years 
7.6 years 

6.9-7.9 years 
7.1-8.1 years 
 

72% 
54% 

202 6.16 .01 

Product 
Ratings 

DE 
UE 

7.4 (out of 10) 
7.6 (out of 10) 

6.9 – 7.9 (out of 10) 
7.1-8.1 (out of 10) 

74% 
62% 

201 2.93 .08 

NOTE- * DE = downwards-elongated condition, UE = upwards-elongated condition 

 

Heterogeneity of Effects in the Internal Meta-Analysis 

 



 

 

We assessed the heterogeneity of the effect sizes across studies using the Q, I^2, and τ^2 

statistics. The Q-statistic tests the null hypothesis that all studies in the meta-analysis share a 

common effect size. Under this null hypothesis, when considering only the main effect, the 

expected value of Q would be equal to its degrees of freedom (or less). In this analysis, which 

includes 6 studies and accounts for the main effect, the degrees of freedom are 5. The observed 

Q-value of 8.5, with a p value of .13, shows some evidence of heterogeneity across contexts due 

to the higher Q than degrees of freedom, but with a p value of .13, conclusions about 

heterogeneity should be drawn with caution. The observed I^2 of 41%, indicates that 41% of the 

observed variability can be attributed true variation (rather than sampling error) and the τ^2, 

which quantifies the variance of true effects across studies, is 0.06. Taken together, the three 

statistics suggest there is some evidence for heterogeneity in the range elongation effect across 

contexts.  

WEB APPENDIX B 

Study 4 Additional Information and Results 

 

TABLE B1 

RESULTS FOR THE INDIVIDUAL EXPERIMENTS IN STUDY 4 

 Experiment Condition* 
  

Tens-
digit 
coding** 

Precise 
(CE) 
choice 

Imprecise 
(Range) 
choice 

% Choose 
precise (CE) 
option 

Sampl
e size 

χ2  p  Data 
source 

1 DE 
UE 

1 
0 

€11 
€9 
 

€6-16 
€4-14 
 

64% 
55% 

202 
  

1.3 .25 Prolific 



 

 

2 DE 
UE 

2 
1 

€21 
€19 
 

€16-26 
€14-24 
 

58% 
45% 

200 2.8 .08 Prolific 

3 DE 
UE 

3 
2 

€31 
€29 
 

€26-36 
€24-34 
 

57% 
38% 

202 7.1 .007 Prolific 

4 DE 
UE 

4 
3 

€41 
€39 

€36-46 
€34-44 

56% 
35% 

200 8.0 .004 Prolific 

5 DE 
UE 

5 
4 

€51 
€49 

€46-56 
€44-54 

52% 
42% 

202 1.9 .15 Prolific 

6 DE 
UE 

6 
5 

€61 
€59 

€56-66 
€54-64 

54% 
38% 

200 4.5 .03 Prolific 

7 DE 
UE 

7 
6 

€71 
€69 

€66-76 
€64-74 

54% 
33% 
 

200 8.1 .004 Prolific 

8 DE 
UE 

8 
7 

€81 
€79 

€76-86 
€74-84 

61% 
33% 

203 13.5 <.001 Prolific 

9 DE 
UE 

9 
8 

€91 
€89 

€86-96 
€84-94 

60% 
26% 

201 22.2 <.001 Prolific 

10 DE 
UE 

2 
1 

21% 
19% 

16 - 26% 
14 - 24% 

71% 
69% 

168 0.02 .86 Prolific 

11 DE 
UE 

2 
2 

24% 
26% 

19 - 29% 
21 - 31% 

63% 
56% 

171 0.47 .49 Student 
panel 

12 DE 
UE 

4 
4 

44% 
46% 

39 - 49% 
41 - 51% 

69% 
54% 

168 3.05 .008 Prolific 



 

 

13 DE 
UE 

5 
4 

51% 
49% 

46 - 56% 
44 - 54% 

64% 
47% 

172 4.60 .03 Student 
panel 

14 DE 
UE 

7 
7 

74% 
76% 

69 - 79% 
71 - 81% 

68% 
47% 
 

173 7.17 .007 Student 
panel 

15 DE 
UE 

8 
7 

81% 
79% 

76 - 86% 
74 - 84% 

69% 
49% 
 

167 5.88 .015 Prolific 

16 DE 
UE 

8 
8 

84% 
86% 

79 - 89% 
81 - 91% 

70% 
48% 

200 9.23 .002 Prolific 

NOTE- The first 9 experiments are precise vs. imprecise outcomes and experiments 10-16 are precise vs. 

imprecise probabilities. * DE = downwards-elongated condition, UE = upwards-elongated condition ** The tens digit 

coding is the coding used for the moderating effect of tens-digit on the effect of range elongation. 

 

FIGURE B1 

CHOICE OF PRECISE PROBABILITY (CE) BY RANGE ELONGATION CONDITION 

(STUDY 4) 



 

 

 
 

NOTE- Experiments with the same tens-digit coding were combined in this graph.  

The solid black and gray lines in the figure represent the logistic regression predictions of choosing the precise 

probability by range elongation condition and number magnitude. The white and gray bars show the proportion of 

participants who choose the precise probability in each condition. The dotted line at 50% represents ambiguity 

neutrality (indifference between the precise (CE) and imprecise (range) options). When the proportion of 

participants choosing the precise option is above 50%, this reflects an overall propensity for ambiguity aversion. The 

grey error bars represent the 95% confidence interval for each condition. 

 

 

 

Heterogeneity of Effects in the Internal Meta-Analysis 

 

We assessed the heterogeneity of the range elongation effect across studies using the Q, 

I^2, and τ^2 statistics. These statistics reflect the variation among study effects that isn’t 

explained by the tens-digit moderator. The Q-statistic tests the null hypothesis that all studies in 

the meta-analysis share a common effect size. Under this null hypothesis, when considering one 

moderator and the main effect in the meta-regression, the expected value of Q would be equal to 

its degrees of freedom (or less). In this analysis, which includes 16 studies and accounts for both 



 

 

the main effect and the moderator, the degrees of freedom are 14. The observed Q-value of 6.82, 

with a p-value of 0.94, allows us to retain the null hypothesis, suggesting that the true effect size 

of range elongation is the same across studies, after accounting the CE magnitude moderator. In 

line, the observed I^2 of 0%, indicates that all observed variability can be attributed to sampling 

error (rather than true variation) and the τ^2, which quantifies the variance of true effects across 

studies, is also 0. Taken together, the three statistics suggest consistent and stable effects for the 

range-elongation effect after accounting for CE magnitude.  

 

WEB APPENDIX C 

Supplemental Experiments C1-3: Interaction of Range Elongation Effect 

and CE Magnitude in Discount Offers  

Here we report three additional experiments that test H2 & H3 in the consumer context of 

discount offers. The three experiments feature an identical design but variations in wording. The 

experiments aimed to test H3, like study 4 in the main paper, but in a consumer domain context. 

Table C1 shows scenarios for each of the three experiments as well as the choices participants 

had to make. The first experiment differed from the second and third only in asking people to 

select between coupons rather than stores, see table C1. Everything else was identical across the 

experiments except for sample size.  



 

 

Method  

Participants and design. The first (non-preregistered) experiment had 257 participants 

(149 females, Mage= 39). The second and third experiments were pre-registered and had 521 (286 

females, Mage= 39) and 1,559 (864 females, Mage= 39) participants respectively. Participants for 

all experiments were recruited via Prolific and were based in the UK and US. Participants were 

randomly assigned to one of two range elongation conditions (downwards-elongated or upwards-

elongated) and one of two CE magnitude conditions (low or high). 

Procedure. In experiment C1, we informed participants that they would be choosing 

between two hypothetical coupons. In experiments C2 and C3, participants were told that their 

choice would be between two hypothetical stores. They were then presented with a choice 

between two coupons in experiment C1 and two stores in experiments C2 and C3. One option 

offered a precise (CE) discount, while the other offered an imprecise (range) discount. Variations 

in range elongation and CE magnitude were introduced between subjects. Table C1 presents the 

four conditions in the 2 (range elongation) x 2 (CE magnitude) design and their corresponding 

choices. 

 In all three experiments, we did not provide participants with any information on 

interpreting the imprecise (range) option or its distribution, thereby preserving the ambiguity of 

the option. Participants were informed that they would learn the value of the discount prior to 

shopping. The order in which the precise (CE) and imprecise (range) options appeared—first 

versus second—was counterbalanced. 



 

 

Results 

We conducted a logistic regression analysis to test the interaction of range-elongation and 

CE magnitude (H3) in each of the three experiments. Additionally, we also applied this test to 

the combined data from all three experiments. In the first experiment, we found a significant 

interaction between CE magnitude and range elongation (β = 1.47, SE = 0.5, z = 2.78, p = .005). 

The other two experiments had the predicted directional pattern of results but not a significant 

interaction, see table C1 and figure C1. When aggregated, the three experiments revealed a 

marginally significant interaction between CE magnitude and range elongation (β = 0.31, SE = 

0.17, z = 1.83, p = .06). 

TABLE C1 

CONSUMER CONTEXT EXPERMENTS C1-3  

Experiment Pre-

registered 

Sample 

size  

Condition* Description Choice to make Test for H3 

C1 No 257 DE_low: X = 34, Y = 29, 
Z = 39 
 
UE_low: X = 36, Y = 31, 
Z = 41 
 
DE_high: X = 74, Y = 69, 
Z = 79 
 
UE_high: X = 76, Y = 71, 
Z = 81 

Imagine your 

favorite store is 

handing out 

coupons to loyal 

customers. 

Which of these 

coupons would 

you prefer.  

Discount of X%. 

Discount of Y-Z%. 

You will know the 

exact value prior 

to shopping 

β = 1.47, SE = 

0.5, z = 2.78, p 

= .005 

C2 Yes 521 Same as 1 Imagine your 

favorite stores 

are handing out 

coupons to loyal 

customers. 

Which of these 

stores would you 

prefer. 

Store A: Discount 

of X%. 

Store B: Discount 

of Y-Z%. You will 

know the exact 

value prior to 

shopping. 

β = 0.36, SE = 

0.36, z = 

0.991, p = .32 



 

 

C3 Yes 1559 Same as 1  Same as 2 Same as 2 β = 0.11, SE = 

0.20, z = 0.57, 

p = .56 

Note -DE_low = downwards-elongated, low CE magnitude, UE_low = upwards-elongated, low CE 

magnitude, DE_high = downwards-elongated, high CE magnitude, UE_high = upwards-elongated, high CE 

magnitude.  

 

 

FIGURE C1 

CHOICE OF STORE BY DISCOUNT MAGNITUDE AND RANGE ELONGATION 

 

                                EXPERIMENT C1    EXPERIMENT C2 

 

                              EXPERIMENT C3    COMBINED 

 

NOTE- The gray bars show the proportion of participants who preferred the precise (CE) over the 

ambiguous (range) outcome in each condition. The dotted line at 50% represents ambiguity neutrality (indifference 

between the precise (CE) and imprecise (range) options). When the proportion of participants choosing the precise 

option is above 50%, this reflects an overall propensity for ambiguity aversion. The grey error bars represent the 

95% confidence interval for each condition. 



 

 

 

Discussion  

Despite the non-significant results for H3 in experiments C2 and C3, we consider the 

three experiments collectively insightful. Across the three, the interaction was significant in 

some cases (experiment C1) but only directional (experiment C2 and C3) or marginally 

significant (combined data) in other. This could imply that the moderation of the range 

elongation effect by numeric magnitude (H3) might be weaker in more concrete consumer 

contexts than in the more abstract context of hypothetical lotteries (study 4). Why would this be 

the case?  

Qualitative feedback suggests that in a retail context, consumers’ assumptions about 

discounts are shaped by prior experiences. For instance, one participant favored a specific 

discount (74%) over a range (69-79%), citing distrust in business practices: “In my mind, it is 

clear and set...I therefore prefer the 74% one. No nonsense, no trickery, what you see is what you 

get.” Another noted a preference for guaranteed discounts due to past experiences of often 

receiving the minimum discount. This indicates that individuals may interpret ambiguous 

scenarios based on past experiences rather than solely on the presented data. This link between 

data specificity and prior experience is important. Extant research indicates that while numerical 

data always impacts consumer choices, its influence varies with experience (Hsee et al. 2009). 

For example, a job applicant frequently receiving offers at the lower end of salary ranges might 

expect similar outcomes in the future, affecting their perception of ambiguity. In such cases, 

direct experiences play a significant role alongside provided data, complicating the identification 

of more complex effects, like interactions, in a consumer context compared to lottery scenarios. 



 

 

This interpretation, while speculative, highlights the importance of considering the broader 

context in which numerical cognition and ambiguity aversion operate. As discussed in our main 

manuscript, companies must understand the circumstances under which consumers are receptive 

to range offers. For instance, this receptiveness could be influenced by factors such as the level 

of mutual trust between company and consumer (Liu and Chang 2017).  

 

WEB APPENDIX D 

Additional Implications for Theory 

 

A prominent theory of ambiguity aversion, which might be influenced by our account of 

numeric cognition, posits that people are especially ambiguity-averse when they feel relatively 

incompetent or less knowledgeable in a domain (Heath and Tversky 1991). In a prototypical 

paradigm supporting this inference, participants are asked to assign a confidence value to a 

belief, such as estimating the likelihood of rain tomorrow. If an individual is 50% confident in 

their belief, they are offered a choice: a clear-cut lottery with a 50% chance of winning (the 

precise option), or they can bet on their own belief and see how it plays out. The latter is 

considered ambiguous because a subjective belief is assumed to have a certain degree of 

vagueness, unlike the lottery, which is based on a specific probability. Thus, participants who 

estimated it would rain with 50% probability tomorrow, would choose between the following 

two bets: 

• Specific lottery bet: Enter a lottery with a precise 50% chance of winning. 

• Ambiguous (belief) bet: Win if it rains tomorrow (which is assumed to have an inherent 

degree of vagueness, e.g., between 40-60%). 



 

 

Heath and Tversky (1991) demonstrated in multiple experiments that as the degree of 

belief (i.e., the judged probability of the event) increases, people are more inclined to wager on 

their ambiguous beliefs compared to a specific lottery equivalent. Interestingly, this prediction 

would also have been made from the current theory, as ambiguity aversion for both outcomes 

and probabilities is predicted to decrease at higher numerical magnitudes (H1). It is of course 

entirely possible that competence perceptions have an additional, independent effect from 

numeric magnitude, and several findings in their experiments are in line with this idea (e.g., 

Heath and Tversky repeatedly show that ambiguity aversion is also attenuated in judgment areas 

where people rate their knowledge as higher).  

The main point we wish to make here is that future research and theory formation on 

ambiguity aversion should account for the idea that points are compared with ranges on an 

implicit scale which obeys the principles of the mental number line (Dehaene 2003). As we 

argue more generally in the “Implications for Theory” section of this paper, this has explanatory 

value for many empirical findings, seeming inconsistencies and theoretical inferences in this 

literature. 

 

WEB APPENDIX E 

Supplemental Experiments E1-3 Conducted by Reviewer 

 

We are deeply grateful to the entire editorial review team for their highly constructive 

approach in guiding this article. We would like to acknowledge our gratitude to one anonymous 

reviewer in particular who went beyond the call of duty and collected additional data testing 

predictions of our theory in consumer relevant contexts. The reviewer conducted three 



 

 

experiments and posted the complete datasets, stimuli, and results in the following repository: 

https://osf.io/k4f7c/?view_only=8a1d0c01146e4b31b5b7943c0f546990. The reviewer 

labeled their studies A, B and C, to which we will refer as experiments E1, E2 and E3 

respectively. Experiments E1 and E2 were designed to test H1 in consumer contexts. As they 

shared a common design, we will comment on them together below. Experiment E3 was meant 

to test H3 in a consumer context, but was mis-specified in its design (see below). 

 

Experiments E1-2: Testing H1 in Consumer Relevant Contexts 

 We present a summary of these studies in Table E1. Their complete datasets, stimuli and 

results can be found as studies A and B in the OSF link mentioned above. We conducted a 

logistic regression analysis on the reviewer’s data to test H1 (see ‘Test for H1’ in the table).  

TABLE E1 

2 TESTS OF H1 IN CONSUMER CONTEXTS (EXPERMENTS E1-2)  

Experiment Sample 

size  

Condition* Description Choice to make Percent 

choosing CE 

Test for H1 

E1 

(Reviewer 

Study A) 

300 CE30: X = 30 , Y = 
20, Z = 40 
 
 
CE50: X = 50, Y = 
40, Z = 60 
 
CE70: X = 70, Y = 
60, Z = 80 

Please choose 
which of these 
two vaccines you 
would prefer. 
Imagine 
everything is 
equivalent except 
for effectiveness 
information.  

Vaccine A: X% 

effective. 

Vaccine B: Y-Z% 

effective.  

CE30: 68% 

CE50: 66% 

CE70: 66% 

 

 

β = 0.06, SE = 

0.15, z = 0.4, p 

= .68 

E2 

(Reviewer 

Study B) 

301 CE20: X = 20, Y = 
10, Z = 30 
 
 
CE50: X = 50, Y = 
40, Z = 60 
 

Imagine it is 
Black Friday and 
you are shopping. 
Please indicate 
your preference 
of store based on 
the information 
below, assuming 

Store A: Discount 

of X%. 

Store B: Discount 

of Y-Z%.  

CE20: 63% 

CE50: 53% 

CE80: 37% 

β = 0.54, SE = 

0.14, z = 3.69, 

p < 0.001. 



 

 

CE80: X = 80, Y = 
70, Z = 90 
 

all other factors 
are equal.  

 

Discussion  

The two experiments provide an interesting pattern of results. While there was strong 

support for H1 in experiment 2 featuring store discounts, there was no support for H1 in the 

vaccine setting. Why might this be the case? We can only speculate but note that in our own 

experiments, we deliberately refrained from testing ambiguity in a vaccine setting at low CE 

magnitudes, even though the vaccine setting proved conducive to range elongation effects at 

higher CE magnitudes (see study 2). The reason was that we feared that the vaccine setting 

would lack consumer relevance at lower CE magnitudes. After all, vaccines with low 

effectiveness rates would be (rightfully) distrusted by consumers who, as we feared, would 

object to having to choose between a vaccine with an effectiveness rate of 30% or one with 

effectiveness between 20 and 40%. We also note that a vaccine needs an effectiveness rate of at 

least 50% to be approved by the WHO.3 Hence, the lower CE magnitude conditions in 

experiment E1 should not be choices consumers can actually face. Admittedly, this rationale is 

post hoc and experiment E1 demonstrates that there may be many factors which influence 

ambiguity attitudes that are unrelated to numerical cognition.  

In sum, we are grateful to the reviewer for the additional data they provided, which 

provide additional support for our thesis that ambiguity aversion decreases at higher values of 

outcomes (H1) in the consumer relevant context of store discounts (experiment E2). They also 

 
3 https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection 



 

 

demonstrate that consumer preferences for ambiguity in other contexts might be influenced by 

idiosyncratic context-related factors other than numeric cognition principles (experiment E1). 

 

Experiment E3: Testing H2 and H3 in Product Lifespan Decisions 

 

The reviewer conducted a three-cell between subject experimental design that was meant 

to test H2 and H3 in the consumer relevant context of product lifespan decisions. The stimuli and 

results are represented in table E2: 

 

TABLE E2 

DESIGN AND RESULTS OF EXPERIMENT E3 (REVIEWER STUDY C) 

Condition Sample 
size  

Description Choice to make4 Percent choosing CE Chi Square test against 
indifference between the 
options (50%  choice) 
 

1 100 Imagine you are 
deciding between two 
products. Which do you 
prefer, assuming all 
other factors are equal.  

Store A:  Has a 
lifespan of 18-24 
months.  
Store B:  Has a 
lifespan of 21 
months. 
 

CE21: 58% 
 

 χ2(1) = 2.56, p = 0.11 

2 100  Store A:  Has a 
lifespan of 24-30 
months. 
Store B:  Has a 
lifespan of 27 
months. 
 

CE27: 54% 
 

χ2(1) = 0.64, p = 0.42 

3 101  Store A:  Has a 
lifespan of 78-84 
months. 
Store B:  Has a 
lifespan of 81 
months. 
 

CE81: 67% χ2(1) = 12.13, p < .001 

 
4 Note that the stimuli (somewhat confusingly) indicate ‘store A vs store B’ while the choice participants 
are asked to make is one between products, not stores. Here, we simply display the materials provided 
by the anonymous reviewer. This oversight might have occurred either in the experimental stimuli (i.e., as 
presented to participants) or merely in the description of the study. 
 



 

 

 

Discussion 

The reviewer interpreted these results as follows: “My third study was a test of H2 and 

H3. H2 says a downward elongation (relative to upward elongation) of the range should amplify 

ambiguity aversion. Condition 1 has the downward elongation. The CE choice share is 58%. 

Condition 2 has upward elongation. The choice share is 54%. The z-test is .57. H3 says the 

downward elongation test should get stronger at higher CE magnitudes. Comparing condition 1 

(58%) to condition 3 (67.3%) is not significant (z = 1.37). The data do not support H2 or H3.”  

We are highly grateful to the reviewer for providing these data. We have a different 

interpretation, however, about the extent to which they support our theoretical predictions, 

arguing they are quite in line with our expectations. To aid our interpretation, we believe it useful 

to compare in figure E1 the reviewer’s pattern of results with our predictions resulting from the 

sum of H1 and H3 (as visualized in figure 10 and observed in study 4; see also figures 9 and B1).  

  



 

 

FIGURE E1 

CONDITIONS OF EXPERIMENT E3 RELATIVE TO THE COMBINED PREDICTIONS OF 

H1 AND H3 (SEE ALSO FIGURES 9, 10 AND B1)  

 

NOTE- The figure presents the three conditions of experiment E3 (study C conducted by the 
reviewer) on a conceptual figure representing the summed impact of H1 and H3. Condition 1 features a 
downwards-elongated range versus a CE at a lower region of the mental number line. Condition 2 
features an upwards-elongated range versus a CE at a lower region of the mental number line. Condition 
3 features a downwards-elongated range versus a CE at a higher region of the mental number line. 

 

The reviewer is right to argue that the comparison of conditions 1 and 2 represents a test 

of H2. While directionally in line with predictions, this test was not significant. We note, 

however, that there are a few additional considerations that could explain why this test was not 

significant. First, this test of H2 was conducted at a low region of the mental number line, where 

the effect of H2 is predicted to be the weakest (per H3). Second, it is possible that participants 

were puzzled by the wording in the study which confused stores with products (see footnote 2).  

The reviewer also argues that the comparison of conditions 1 (featuring a downwards-

elongated range low on the mental number line) and 3 (featuring a downwards-elongated range 
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higher up the mental number line) represents a test of H3. This is incorrect. H3 stipulates that the 

effect of downwards- versus upwards-elongated ranges (i.e., H2) increases higher up the mental 

number line. To run the test of H3, the reviewer’s study is missing a 4th condition (i.e., an 

upwards-elongated range higher up the mental number line). They should then test whether the 

difference between conditions 1 and 2 is smaller than the difference between conditions 3 and 4. 

When comparing only downwards-elongated ranges at lower versus higher regions of the mental 

number line, as one does by comparing conditions 1 and 3, no differences are expected to 

emerge, as the effects of H1 and H3 cancel each other out on downwards-elongated ranges (see 

figures 9, 10, B1 and E1). 

 

WEB APPENDIX F 

Supplemental Experiments F1-2 (Numbers Over 100 and Middle Digits) 

During the review process, one reviewer posed intriguing follow-up questions to our 

theory: “What happens at values beyond 100(%)? And does the effect manifest with middle 

digits (e.g., 169% - 179% vs. 171% - 181%)?” We found these questions relevant and conducted 

two exploratory studies. Due to space constraints in the manuscript, we did not include this in the 

paper but wish to provide a brief overview for anyone wishing to further investigate this question 

for theoretical or practical purposes. The stimuli and complete datasets of these stimuli can be 

found in our OSF directory 

https://osf.io/vcneh/?view_only=043a1f801d804308bbc0e7b00da9872f 



 

 

STUDY F1: NUMBERS OVER 100 

In line with the reviewer’s recommendation, we focused on a downwards-elongated and 

non-elongated condition. Participants were asked to imagine investing $1,000 and choose 

between two investment options. In the downwards-elongated condition, the options were 

Investment A with an expected one-year return of $204, and Investment B with a return of $199-

$209. In the non-elongated condition, the options were Investment A with a return of $206, and 

Investment B with a return of $201-$211 (we don’t call this condition upwards-elongated as 

there is only a digit change in the middle digits). We recruited 100 participants through Prolific 

for this study. In the downwards-elongated condition, 74% preferred the precise option, while in 

the non-elongated condition, only 40% did (χ2(1) = 22.22, p < 0.001). These findings suggest 

that our theory is applicable for numbers greater than 100. 

STUDY F2: MIDDLE DIGITS 

We conducted a similar study focusing on middle digits, testing (awaiting better terms) 

middle-downwards-elongated and middle-upwards-elongated conditions. Participants chose 

between Investment A (with an expected return of $174) and Investment B ($169-$179 return) in 

the middle-downwards-elongated condition, and between Investment A ($176 return) and 

Investment B ($171-$181 return) in the middle-upwards-elongated condition. This study 

involved 101 participants from Prolific. In the middle-downwards-elongated condition, 71% 

chose the precise option, while in the middle-upwards-elongated condition, 62% did (χ2(1) = 

1.43, p = 0.23).  

While these results are directionally in line with the range elongation effect (H2), they are 

not significant. They suggest that if changes in middle digits (i.e., tens digits in this case) 



 

 

influence choices in the same way, their influence is smaller than the effects of left-most digit 

changes, in line with established knowledge about the effects of left(most) digits changes more 

generally (Williams et al. 2023).  
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