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Abstract

IMPORTANCE Quality improvement programs for colorectal cancer surgery have been introduced
with benchmarking based on quality indicators, such as mortality. Detailed (pre)operative
characteristics may offer relevant information for proper case-mix correction.

OBJECTIVE To investigate the added value of machine learning to predict quality indicators for
colorectal cancer surgery and identify previously unrecognized predictors of 30-day mortality
based on a large, nationwide colorectal cancer registry that collected extensive data on
comorbidities.

DESIGN, SETTING, AND PARTICIPANTS All patients who underwent resection for primary
colorectal cancer registered in the Dutch ColoRectal Audit between January 1, 2011, and December
31, 2016, were included. Multiple machine learning models (multivariable logistic regression, elastic
net regression, support vector machine, random forest, and gradient boosting) were made to predict
quality indicators. Model performance was compared with conventionally used scores. Risk factors
were identified by logistic regression analyses and Shapley additive explanations (ie, SHAP values).
Statistical analysis was performed between March 1 and September 30, 2020.

MAIN OUTCOMES AND MEASURES The primary outcome of this cohort study was 30-day
mortality. Prediction models were trained on a training set by performing 5-fold cross-validation, and
outcomes were measured by the area under the receiver operating characteristic curve on the test
set. Machine learning was further used to identify risk factors, measured by odds ratios and
SHAP values.

RESULTS This cohort study included 62 501 records, most patients were male (35 116 [56.2%]),
were aged 61 to 80 years (41 560 [66.5%]), and had an American Society of Anesthesiology score of
II (35 679 [57.1%]). A 30-day mortality rate of 2.7% (n = 1693) was found. The area under the curve
of the best machine learning model for 30-day mortality (0.82; 95% CI, 0.79-0.85) was significantly
higher than the American Society of Anesthesiology score (0.74; 95% CI, 0.71-0.77; P < .001),
Charlson Comorbidity Index (0.66; 95% CI, 0.63-0.70; P < .001), and preoperative score to predict
postoperative mortality (0.73; 95% CI, 0.70-0.77; P < .001). Hypertension, myocardial infarction,
chronic obstructive pulmonary disease, and asthma were comorbidities with a high risk for increased
mortality. Machine learning identified specific risk factors for a complicated course, intensive care
unit admission, prolonged hospital stay, and readmission. Laparoscopic surgery was associated with
a decreased risk for all adverse outcomes.

CONCLUSIONS AND RELEVANCE This study found that machine learning methods outperformed
conventional scores to predict 30-day mortality after colorectal cancer surgery, identified specific
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Abstract (continued)

patient groups at risk for adverse outcomes, and provided directions to optimize benchmarking in
clinical audits.
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Introduction

Resection of colorectal cancer is a frequently performed surgical procedure with a generally reported
incidence of complications of more than 30%,1 and these complications are associated with patient
burden and increased health care use.2,3 A European study showed that nearly one-third of hospital
budgets are spent on treating complications of colorectal cancer surgery.4 Identifying patients at risk
for complications is thus of significant importance. Previously identified risk factors for postoperative
complications are advanced age, higher American Society of Anesthesiology (ASA) score, emergency
surgery, comorbidities, and advanced tumor stage.1,5-11

Worldwide, several nationwide registries have been set up to improve health care for specific
diseases.12-14 Providing feedback on hospital performance is a key principle of clinical auditing.
However, patient populations might differ between hospitals, which requires case-mix correction for
reliable benchmarking.15-17 Detailed registration of patient characteristics is essential for optimizing
case-mix correction but increases registration burden.

The Dutch ColoRectal Audit (DCRA) was initiated in 2009 to improve the quality of surgical care
for patients in the Netherlands with colorectal cancer. Nationwide coverage of the DCRA is more than
95%, with high validity of the data.18 This audit differs from other registries in the large number of
captured comorbidities. Previous studies on the DCRA data mainly used common predictors, such as
the ASA score and Charlson Comorbidity Index (CCI),15,18,19 leaving the added value of extensive
registration of comorbidities largely unexplored.

Machine learning (ML) tools can be used to interrogate large clinical data sets with the goal of
improving patient care. For colorectal cancer surgery, ML algorithms have been published for the
prediction of postoperative complications with C statistics (a measure of concordance between
model-based risk estimates and observed events) ranging from 0.65 to 0.98.20,21 Machine learning
has further been used to diagnose early-stage colorectal cancer,22 predict the waiting time for
colorectal cancer surgery,23 and predict the prognosis of patients with colorectal cancer.24 The aim
of this study was to make prediction models for quality indicators, including 30-day mortality, and to
identify potentially unrecognized relevant predictors for outcomes after surgery for primary
colorectal cancer using ML methods on the extensive DCRA data set.

Methods

Study Population
Data of all patients undergoing colorectal cancer surgery between January 1, 2011, and December 31,
2016, were extracted from the DCRA. Patients who received a watch-and-wait strategy without
subsequent surgical treatment were excluded. Informed consent for data collection and ethical
approval were not required according to Dutch law.25,26 This cohort study follows the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for
observational studies.27

Outcome Parameters
The primary outcome was 30-day mortality. Secondary outcomes included a complicated course
(complication resulting in a hospital stay of >14 days, surgical complication requiring a reintervention,
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or death within 30 days after surgery or while in the hospital), intensive care unit (ICU) admission,
prolonged length of stay (LOS; >21 days), and readmission within 30 days.

Predictive Variables
All 103 available patient, tumor, and preoperatively known variables in the DCRA data set were
considered potential predictors (eTable 1 in the Supplement). For the prediction of LOS of more than
21 days and readmission, 14 intraoperative predictors were added (ie, intraoperative complications,
additional resections, and laparoscopic conversion).

Statistical Analysis
Statistical analyses were performed between March 1 and September 30, 2020. Trivial imputation
was performed for DCRA case-mix variables (unlikely to be underreported by hospitals), for specific
comorbidities if their overlapping variable was set to “none” or if another comorbidity in the same
group was registered, and for logically deducible values by combining variables (M stage, tumor
location, and conversion) or based on date of introduction (screening). For nontrivial missing data,
values were assumed to be missing at random, and the k-nearest neighbor imputation with N = 3 was
used, which has been shown to introduce minimal bias compared with using complete
observations.28 Continuous variables were converted to categorical variables as is done in standard
DCRA case mixing: age (<60, 60-69, 70-79, and �80 years) and body mass index (calculated as
weight in kilograms divided by height in meters squared; <18.5, 18.5-25, >25-30, and >30).

Prediction models were created by splitting the data set chronologically into a test set
containing 19% of the patients (2016) and a training set containing 81% (2011-2015). Logistic
regression (LR), elastic net regression,29 random forest,30 and gradient boosting method31 models
were trained by performing 5-fold cross-validation on the training set using stratified splitting in
equally sized groups. For mortality, a support vector machine32,33 model was also trained. For all
models, different methods of handling data were tested: balancing of response variables and adding
of missing flags for data that were imputed, creating 4 possible models for each method and
response (support vector machine was trained only with balancing). The predictive strength of the
models was measured by the area under the receiver operating characteristic curve (AUC) on the test
set after performing hyperparameter training on the training set. Pairwise comparisons of AUCs were
performed by the test of DeLong et al.34

The impact of risk factors was predicted by odds ratios (ORs) or regression coefficients (β) with
95% CIs. P values (2-sided Wald test) were reported for the unbalanced LR model without missing
flags of each outcome parameter. No prior significance was assumed. Model assumptions were
checked using variance inflation factors to measure collinearity among variables,35,36 with variance
inflation factors greater than 5 used as a cutoff for potential multicollinearity.37 Likelihood ratio tests
and the Akaike Information Criterion were used to validate the use of the full variable set by
comparing against nested models.

Shapley additive explanations (ie, SHAP values)38 were calculated for the unbalanced gradient
boosting method model without missing flags to further analyze the association of patient
characteristics. SHAP values quantify the association of a variable with the outcome of a single
patient, and the mean absolute SHAP value across all patients is reported as the SHAP value of a
variable.

For mortality, AUCs of ML models were compared with the AUC of the preoperative score to
predict postoperative mortality (POSPOM), CCI, and ASA score. The AUCs were also compared with
LR applied to the DCRA case-mix data set. The DCRA case-mix data set contains the currently used
DCRA case-mix variables: sex, body mass index, age, CCI, ASA score, preoperative tumor
complications, urgency of the resection, additional resection due to metastasis or tumor ingrowth, T
stage, and M stage.

All analyses were performed using R, version 3.6.1 and RStudiod version 1.2.1335 software (R
Project for Statistical Computing). Pipelining and data splitting were performed using the Caret

JAMA Network Open | Surgery Predictors of 30-Day Mortality After Colorectal Cancer Surgery

JAMA Network Open. 2021;4(4):e217737. doi:10.1001/jamanetworkopen.2021.7737 (Reprinted) April 26, 2021 3/14

Downloaded from jamanetwork.com by guest on 07/12/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.7737&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.7737


package, version 6.0-86, in RStudio. Modeling was performed using the randomForest, version
4.6-14; xgboost, version 1.2.0.1; and kernlab, version 0.9-29 packages in RStudio. Receiver operating
characteristic curves and AUC scores were generated using the pROC, version 1.16.2 package in
RStudio. The SHAP values were calculated using the SHAPforxgboost, version 0.0.4 package in
RStudio. P < .05 was considered significant.

Results

Study Population
A total of 62 925 records of patients with primary colorectal cancer were included in the DCRA
between January 1, 2011, and December 31, 2016. After excluding 424 records of patients who
followed a watch-and-wait strategy, 62 501 records of 62 151 (99.4%) unique, surgically treated
patients were included in the final data set (Figure 1). A total of 0.6% of values were missing among
the 103 variables (0.65 missing per patient; 46 474 [74.4%] complete cases), and 0.7% of values
were missing among the 117 variables in the preoperative data set (0.80 missing per patient; 43 588
[69.7%] complete cases). The chronologically split training set and test set are shown in eTable 1 in
the Supplement.

The overall study population consisted predominantly of male patients (35 116 [56.2%])
(eTable 1 in the Supplement). Most patients were aged between 61 and 80 years (41 460 [66.5%])
and had an ASA score of II (35 679 [57.1%]). The most common comorbidities were hypertension
(36.1%), type 2 diabetes (11.6%), chronic obstructive pulmonary disease (COPD) and asthma (10.9%),
atrial fibrillation or flutter (8.3%), and a history of myocardial infarction (6.2%) (eTable 1 in the
Supplement).

A total of 21 748 patients (34.8%) presented with tumor-related complications, mostly
obstruction (10.9%) or blood loss or anemia (17.2%). Most patients underwent a laparoscopic
resection (59.1%), which was converted to open surgery for 7.1% of patients.

A total of 20 363 (32.6%) patients experienced at least 1 complication, and 1693 patients (2.7%)
died within 30 days after surgery. A total of 11 443 patients (18.3%) fulfilled the criteria of a
complicated course, 11 931 (19.1%) were admitted to the ICU, 4874 (7.8%) had an LOS greater than 21
days, and 4496 (7.2%) were readmitted.

30-Day Mortality
The AUC of the best ML model (elastic net regression) for 30-day mortality was 0.82 (95% CI,
0.79-0.85), with no significantly different AUCs among the best ML models (eFigure 1 and eTable 2
in the Supplement). The best ML model performed significantly better than the ASA score (AUC,
0.74; 95% CI, 0.71-0.77; P < .001), POSPOM (AUC, 0.73; 95% CI, 0.70-0.77; P < .001), CCI (AUC,
0.66; 95% CI, 0.63-0.70; P < .001), and DCRA case-mix regression model (AUC, 0.81; 95% CI, 0.78-
0.84; P = .01) (Table34 and Figure 2 and eTable 2 in the Supplement).

Multicollinearity (variance inflation factor >5) was found in levels of 6 (0.4%) categorical
variables, which indicates low multicollinearity among different variables (eTable 3 in the
Supplement) and validates the regression assumptions. The goodness of fit was better for the LR
model than for nested models, as shown by a lower Akaike Information Criterion of the LR model

Figure 1. Patient Inclusion Criteria

424 Excluded owing to watch-and-wait strategy

62 925 Records of patients with primary colorectal cancer

62 501 Patients with primary colorectal cancer 
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than of nested models and by the likelihood ratio test (eTable 4 in the Supplement). This goodness-
of-fit analysis showed that feature selection before risk analysis to avoid overfitting is not necessary.

The ORs of all significant variables for 30-day mortality are shown in Figure 3, and all regression
coefficients are shown in eTable 5 in the Supplement. Patient characteristics with the highest
increase in risk were being older than 80 years (OR, 3.45; 95% CI, 2.93-4.05; P < .001), body mass
index less than 18.5 (OR, 1.56; 95% CI, 1.18-2.05; P < .001), and ASA scores of III (OR, 3.88; 95% CI,
2.92-5.16; P < .001), IV (OR, 8.99; 95% CI, 6.44-12.53; P < .001), and V (OR, 24.02; 95% CI,
9.36-61.67; P < .001). The comorbidities with the highest significant risks for 30-day mortality were
liver failure (OR, 2.56; 95% CI, 1.72-3.80; P < .001), medical history of lung surgery or transplant (OR,
2.42; 95% CI, 1.46-3.99; P < .001), and history of other types of cancer (OR, 2.22; 95% CI, 1.28-3.83;
P = .004). Fecal peritonitis (OR, 2.50; 95% CI, 1.90-3.30; P < .001) and bone metastasis (OR, 5.42;
95% CI, 1.95-15.02; P = .001) at presentation also increased the risk of mortality. Surgical procedures
associated with high risk were panproctocolectomy (OR, 3.58; 95% CI, 1.70-7.56; P < .001), resection
for multiple tumors with at least 1 rectal procedure (OR, 3.41; 95% CI, 1.40-8.32; P = .001), and
subtotal colectomy (OR, 2.38; 95% CI, 1.71-3.33; P < .001).

Figure 4 shows the top 30 variables with the highest SHAP values of the gradient boosting
method model for 30-day mortality. The most important factors associated with the predictive
power of the model were age, ASA score, and laparoscopic surgery. The comorbidities with the most
predictive power were hypertension, myocardial infarction, and COPD and asthma.

Table. AUC Scores for All Outcome Measures

Outcome measure
Best machine
learning model

DCRA case-mix
regression model ASA score POSPOM CCI

Mortality 0.82
(0.79-0.85)

0.81
(0.78-0.84)

0.74
(0.71-0.77)

0.73
(0.70-0.77)

0.66
(0.63-0.70)

P valuea NA .01 1.1 × 10−10 1.4 × 10−10 6.0 × 10−17

Complicated course 0.68
(0.67-0.69)

NA NA NA NA

Prolonged length of stay 0.71
(0.69-0.73)

NA NA NA NA

Readmission 0.63
(0.61-0.65)

NA NA NA NA

ICU admission 0.74
(0.72-0.75)

NA NA NA NA

Abbreviations: ASA, American Society of
Anesthesiology; AUC, area under the receiver
operating characteristic curve; CCI, Charlson
Comorbidity Index; DCRA, Dutch ColoRectal Audit;
ICU, intensive care unit; NA, not applicable; POSPOM,
preoperative score to predict postoperative mortality.
a Reported P values are in comparison with the best

machine learning model and were calculated using
the test of DeLong et al.34

Figure 2. Receiver Operating Characteristic Plot for 30-Day Mortality

1.0

0.8

0.6

0.4

0.2

0
0 1.00.8

Tr
ue

-p
os

iti
ve

 ra
te

False-positive rate
0.60.40.2

Best ML model
Case-mix LR model
POSPOM score
ASA score
CCI

Accuracy of 30-day mortality prediction for the best
performing machine learning (ML) model (elastic net
regression), case-mix logistic regression (LR) model,
the preoperative score to predict postoperative
mortality (POSPOM), American Society of
Anesthesiology (ASA) score, and Charlson Comorbidity
Index (CCI).

JAMA Network Open | Surgery Predictors of 30-Day Mortality After Colorectal Cancer Surgery

JAMA Network Open. 2021;4(4):e217737. doi:10.1001/jamanetworkopen.2021.7737 (Reprinted) April 26, 2021 5/14

Downloaded from jamanetwork.com by guest on 07/12/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.7737&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.7737
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.7737&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.7737


Figure 3. Significant Predictors of 30-Day Mortality

P
value

Does not
favor mortality

Favors
mortality

0.1 100101
Odds ratio (95% CI)

Covariate
Sex

Odds ratio
(95% CI)

2.81 × 10–3Female 0.83 (0.74-0.94)
Age, ya

5.72 × 10–3<60 0.69 (0.54-0.90)
1.92 × 10–1470-80 1.80 (1.55-2.10)
2.31 × 10–52≥80 3.45 (2.93-4.05)

ASA scorec

5.12 × 10–7II 2.00 (1.52-2.63)
3.44 × 10–21III 3.88 (2.92-5.16)
3.84 × 10–39IV 8.99 (6.44-12.53)

BMIb

1.38 × 10–3<18.5 1.56 (1.18-2.05)
4.04 × 10–2>25-30 0.88 (0.78-0.99)

2.43 × 10–11V 24.02 (9.36-61.67)
Comorbidities

1.67 × 10–2Angina pectoris 1.25 (1.04-1.52)
9.93 × 10–3Myocardial infarction 1.24 (1.05-1.48)
3.32 × 10–3Atrial fibrillation or atrial flutter 1.23 (1.07-1.42)

Metastases
1.02 × 10–3Bone metastasis 5.42 (1.95-15.02)

Tumor complications
3.85 × 10–11Fecal peritonitis due to preoperative colorectal perforation 2.50 (1.90-3.30)

4.30 × 10–2Congestive heart failure 1.24 (1.00-1.55)
1.43 × 10–4Peripheral vascular disease 1.48 (1.21-1.82)
1.82 × 10–2Type 1 diabetes 1.30 (1.04-1.63)

1.84 × 10–9COPD or asthma 1.48 (1.30-1.69)
4.86 × 10–4History of lung surgery or transplantation 2.42 (1.46-3.99)
4.31 × 10–2Transient ischemic attack 1.22 (1.00-1.49)
7.90 × 10–3Cerebrovascular attack 1.28 (1.06-1.55)
2.18 × 10–5Parkinson disease or dementia 1.75 (1.34-2.27)
7.47 × 10–3Schizophrenia, major depressive disorder, or psychosis 1.57 (1.12-2.21)
2.45 × 10–6Liver disease or failure (cirrhosis or hepatitis) 2.56 (1.72-3.80)
4.79 × 10–4Chronic kidney disease (creatinine >110 μmol/L) 1.44 (1.17-1.77)
3.23 × 10–4Current untreated malignant neoplasm 1.57 (1.22-2.02)
3.68 × 10–3Other types of cancer 2.22 (1.28-3.83)

Past surgical history
3.53 × 10–2History of bladder, prostate, uterine, or ovarian surgery 0.83 (0.70-0.98)

M stage
3.09 × 10–9M1 1.67 (1.41-1.99)

Settingd

1.38 × 10–4Urgent 1.51 (1.22-1.87)
4.29 × 10–7Emergency, direct procedure 1.83 (1.44-2.33)

Surgical procedure preresection
2.65 × 10–2Metastasectomy 0.26 (0.08-0.86)

Approache

4.13 × 10–17Laparoscopic 0.59 (0.52-0.67)

6.29 × 10–3Transversectomy 1.54 (1.12- 2.12)
4.01 × 10–3Left hemicolectomy (extended) 1.33 (1.09-1.63)
2.22 × 10–7Subtotal colectomy 2.38 (1.71-3.33)
6.92 × 10–4Panproctocolectomy 3.58 (1.70-7.56)
6.25 × 10–32 Different procedures, of which at least 1 procedure for rectal cancer 3.41 (1.40-8.32)
4.93 × 10–22 Different colon procedures 2.07 (0.99-4.33)

Surgical proceduref

5.21× 10–3Right hemicolectomy (extended) 1.22 (1.06-1.40)

Patient
characteristics
Medical history
Tumor
characteristics
Preoperative
treatment
Surgical
characteristics

Logistic regression model of 30-day mortality for 62 501 patients. All regression coefficients with P < .05 are translated to odds ratios. For categorical variables, references are shown on the
right axis. To convert creatinine to mg/dL, divide by 88.4. BMI indicates body mass index (calculated as weight in kilograms divide by height in meters squared); COPD, chronic obstructive
pulmonary disease. aReference, 60-70 years. bReference, 18.5-25. cReference, American Society of Anesthesiology (ASA) score I. dReference, elective setting. eReference, open approach.
fReference, low anterior resection or sigmoid resection.
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Secondary Outcomes
The highest AUCs of ML models for secondary outcomes were 0.68 (95% CI, 0.67-0.69) for
complicated course, 0.74 (95% CI, 0.72-0.75) for ICU admission, 0.71 (95% CI, 0.69-0.73) for LOS
greater than 21 days, and 0.63 (95% CI, 0.61-0.65) for readmission. Overall, the random forest model
performed significantly worse for predicting complicated course and ICU admission compared with
LR and elastic net regression (eTable 2 and eFigure 1 in the Supplement). There was no best method
for data handling because balancing of the data significantly increased the AUC for 12 models and
decreased the AUC for 6 models, and adding missing flags significantly increased the AUC for 6
models and decreased the AUC for 2 models.

The regression coefficients for complicated course, ICU admission, LOS greater than 21 days,
and readmission are shown in eFigures 2 to 5 and eTables 6 to 9 in the Supplement. Comorbidities
associated with an increased risk of a complicated course were pulmonary fibrosis (OR, 1.84; 95% CI,
1.14-2.98; P = .01), cardiac valve replacement (OR, 1.43; 95% CI, 1.20-1.71; P < .001), and liver disease

Figure 4. Variables That Demonstrated the Greatest Association With Prediction of 30-Day Mortality
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Myocardial infarction

ASA score: IV

M-stage: 1

COPD or asthma

Cerebrovascular attack

Setting: urgent

Female

Neoadjuvant radiotherapy: chemoradiotherapy

Atrial fibrillation and atrial flutter

BMI:  ≥30

Peripheral vascular disease

Fecal peritonitis due to preoperative
colorectal perforation

Parkinson disease or dementia

Procedure: (extended) right hemicolectomy

BMI: 25-30

Preoperative bowel obstruction or ileus owing
to malignant neoplasm

Liver disease or failure (cirrhosis or hepatitis)

Patient received neoadjuvant chemotherapy

Neoadjuvant radiotherapy: short course

Valvular heart disease

History of bladder, prostate, uterine,
or ovarian surgery

SHAP value

Patients positive for a variable

Patients negative for a variable
 

Top 30 Shapley additive explanation (SHAP) feature
values of the gradient-boosting model for prediction of
30-day mortality. SHAP values were calculated per
variable for all patients in the test set. Distributions of
SHAP values for patients are shown in blue (patients
who are positive for a variable) and orange (patients
who are negative for a variable). SHAP values were
ranked by the mean of the absolute value across all
patients in the test set. ASA indicates American Society
of Anesthesiology; BMI, body mass index (calculated
as weight in kilograms divided by height in meters
squared); COPD, chronic obstructive pulmonary
disease; and MDT, multidisciplinary team.
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or failure (OR, 1.46; 95% CI, 1.17-1.82; P < .001). Relevant comorbidities for ICU admission were
dialysis-dependent kidney failure (OR, 2.27; 95% CI, 1.32-3.91; P = .003), history of lung surgery or
transplant (OR, 2.01; 95% CI, 1.49-2.71; P < .001), and hemiplegia or paraplegia (OR, 1.90; 95% CI,
1.26-2.88; P < .001). An increased risk of readmission was found for hypoparathyroidism and
hyperparathyroidism (OR, 1.58; 95% CI, 1.01-2.47; P = .04), inflammatory bowel disease (OR, 1.34;
95% CI, 1.01-1.79; P = .04), and cardiovascular comorbidities (eg, atrial fibrillation or flutter [OR, 1.14;
95% CI, 1.02-1.28; P = .02], aortic aneurysm [OR, 1.29; 95% CI, 1.06-1.58; P = .001], cerebrovascular
attack [OR, 1.22; 95% CI, 1.05-1.41; P = .006], and pulmonary embolism [OR, 1.38; 95% CI, 1.09-1.75;
P = .001]). Laparoscopy was associated with a decreased risk for all postoperative outcomes
(complicated course: OR, 0.69; 95% CI, 0.65-0.72; P < .001; ICU admission: OR, 0.56; 95% CI, 0.53-
0.58; P < .001; LOS >21 days: OR, 0.62; 95% CI, 0.57-0.67; P < .001) except for readmission (OR, 1.13;
95% CI, 1.05-1.22; P = .001). Subtotal colectomy was the surgical procedure associated with the
highest increase in risk for complicated course (OR, 2.98; 95% CI, 2.52-3.52; P < .001) and ICU
admission (OR, 2.02; 95% CI, 1.69-2.41; P < .001).

The SHAP values for the secondary outcomes (eFigures 6-9 in the Supplement) showed that
age, sex, ASA score, laparoscopy, T4 stage, and emergency surgery were important predictors for
complicated course, ICU admission, and LOS greater than 21 days. Rectal cancer, loop ileostomy, and
ASA score were important predictors for readmission.

Discussion

This study explored the added value of applying ML methods to a large, nationwide clinical audit for
identifying new risk factors and predicting adverse outcomes after colorectal cancer surgery.
Machine learning models based on a colorectal cancer registry including 103 preoperative variables
showed better performance (AUC = 0.82) for predicting 30-day mortality than the ASA score, CCI,
and POSPOM. Machine learning models for predicting a complicated course, ICU admission, LOS
greater than 21 days, and readmission showed AUCs between 0.63 and 0.74. The models provided
valuable information on the importance of both well-known risk factors as well as new risk factors for
various postoperative outcome parameters for patients undergoing colorectal cancer surgery.

Important predictive information for mortality is lost owing to the limited number of variables
in the ASA score (n = 1), CCI (n = 16), and POSPOM score (n = 17). This finding is in line with the
results of a systematic review by Goldstein et al,39 which demonstrated that predictive models based
on electronic healthcare records use a median of 27 variables. Although not based on electronic
healthcare records, the case-mix regression model of the DCRA uses 26 variables (including 16
variables in the CCI). The predictive value of the best ML model with more than 100 variables was
only slightly better compared with the DCRA case-mix regression model using 26 variables, although
the difference was statistically significant. Moreover, the assessment of different methods of data
handling showed no single best method for all outcomes, indicating that the limiting factor for
predicting quality indicators is associated with the variables in the data set rather than the
methods used.

The LR and SHAP analyses identified several known risk factors,1,5-11 each with varying
importance for the different outcomes. The LR analysis reveals some rare but high-impact
comorbidities, such as pulmonary fibrosis, lung surgery or transplant, cardiac valve replacement, and
liver failure, which are important to consider for clinical decision-making on an individual basis in daily
practice. Our SHAP analyses revealed that the ASA score and the specific comorbidities of COPD and
asthma, hypertension, and myocardial infarction are important variables for predicting postoperative
mortality.

Notably, the risk for 30-day mortality is increased most by liver failure in the LR model, followed
by a medical history of lung surgery or transplant. However, the SHAP analysis showed that COPD
and asthma have the highest predictive value for 30-day mortality and that liver disease had a much
lower predictive value. The discrepancy between regression coefficients and SHAP values can be
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explained by the prevalence of a variable. Odds ratios are calculated only for patients with whom that
variable is associated, whereas mean SHAP values are calculated across all patients. Hence, a variable
with low impact and high prevalence will have a low OR but a high SHAP value.

Laparoscopic surgery showed a decreased risk and a high predictive value for 30-day mortality,
complicated course, ICU admission, and LOS greater than 21 days. Nevertheless, this parameter
should probably not be used as a case-mix factor because there might be specific reasons to still
perform open surgery. However, this finding stresses the importance of implementing minimally
invasive surgery for colorectal cancer surgery in any center worldwide. Laparoscopic colorectal
surgery was studied in multiple trials (COREAN [Comparison of Open Versus Laparoscopic Surgery
for Mid or Low Rectal Cancer After Neoadjuvant Chemoradiotherapy], COLOR [Colon Carcinoma
Laparoscopic or Open Resection], CLASICC [Capecitabine and Oxaliplatin Adjuvant Study in Stomach
Cancer] trial, ACOSOG [American College of Surgeons Oncology Group] Z6051, and ALaCaRT
[Australasian Laparoscopic Cancer of the Rectum])40-47 but often failed to demonstrate clear
benefits associated with its use. In contrast, large population-based studies demonstrated a lower
risk of postoperative mortality and cardiopulmonary complications.48-52 The present analyses
confirm these findings together with seldom-reported benefits associated with the reduction in LOS
greater than 21 days and ICU admission.

For complicated course, our results showed that several specific comorbidities, such as COPD
and asthma, atrial fibrillation or flutter, and previous types of cancer, had a high predictive value.
Previous studies demonstrated that comorbidities, in general, did not increase the risk of
postoperative complications but that COPD and asthma1,53 and cardiovascular complications54 did
increase this risk. In contrast with our results, diabetes decreased the risk of complications,1 and
neurologic comorbidities were independently associated with complications.53 Furthermore, we
found that younger age was associated with high risk for readmission. This finding is in line with a
study by Berry et al55 that evaluated 30-day readmission for 31 729 762 US patients and concluded
that younger patients were more likely to be readmitted. Berry et al55 suggested that the relatively
high readmission rates of young patients can be explained by the competing risk of
postdischarge death.

Our results have important implications for clinical audits and case-mix corrections that may be
relevant to other registries and countries. First, we found that, for each outcome, different risk
factors are important, suggesting that a different set of variables should be used for the case-mix
correction for different outcomes. Currently, at least in the DCRA, 1 set of case-mix variables is used
for all outcomes. Second, we found a minimal, although significant, increase in predictive value when
ML models were applied to the full data set, including 103 variables compared with the reduced data
set of 26 variables. Hence, we conclude that the registration burden in audits can be considerably
reduced without much loss of predictive value.

Limitations
This study has some limitations. Errors and changes in data collection, such as incomplete
registration and changing registration policies, may have affected both performance and
generalizability.56,57 Furthermore, biases in data collection undermine the assumption of the values
missing at random used for imputation, reducing the strength of imputation methods. Selection bias
should be acknowledged as a limiting factor for the prediction models because the decision to
perform a resection is made by the surgeon and patient before registration in the DCRA. Given the
large number of patients (n = 62 501) and the high data validity and completeness of the DCRA,18

further increasing the sample size to improve the models is not likely to be of additional value.
Further research could thus better focus on data sets containing more biological information (eg,
blood test values, imaging, and genomic data), more “live” patient data (eg, current medication use,
blood pressure, and heart rates), or a combination of biological and clinical data. Ultimately,
combined longitudinal information could be collected through various systems, such as the
electronic healthcare record, genomic databases, and wearable devices.58
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Conclusions

Prediction models based on a clinical audit consisting of 103 preoperative variables of 62 501
surgically treated colorectal tumors performed better at predicting 30-day mortality than the
POSPOM, ASA score, and CCI as well as the case-mix regression model, but the AUCs of the
prediction models are too low for direct clinical implementation. However, we demonstrated that the
ML models are able to identify factors associated with postoperative quality of care outcomes. It was
found that minimally invasive surgery is associated with increased quality of care as assessed by
several outcomes. This study also demonstrated that variables are not equally predictive for all
outcomes, suggesting that applying different case-mix models in clinical auditing improves the
reliability of benchmarking.
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