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Abstract

Equilibrium molecular dynamics (MD) simulations are used to investigate the liquid/vapor interface where particle
exchange between the liquid and vapor phase is quantified in terms of the evaporation and condensation coefficient.
The coefficients are extracted from MD simulations via a particle counting procedure. This requires defining a
vapor boundary position for which we introduce an accurate and robust method and present a comparative study
with existing methods from the literature. This novel method relies on the behavior of the flux coefficient within
the interphase region by scanning the position of a particle sink boundary from the liquid towards the vapor
phase. We find a distinct local maxima is attained on the vapor side of the interphase that is identified as the
vapor boundary position based on an interpretation of transmission probability theory and the Kullback-Leibler
divergence. The ratio of the evaporation flux to the outgoing flux at this location is defined as the evaporation
coefficient. This method retains the simplicity of existing methods but eliminates several disadvantages. We apply
this method to MD simulations of monatomic fluids neon, argon, krypton and xenon. We observe a correlation
between the molecular transport parameter appearing in transmission probability theory and the characteristic
interface fluctuation length scale from capillary wave theory. This gives an expression for the evaporation coefficient
that agrees well with values extracted from MD using the particle counting procedure. Compared to existing
methods, the evaporation/condensation coefficient is determined more accurately for temperatures between the
triple and critical points.

1 Introduction

Phase change at the liquid/vapor interface, i.e., evaporation and condensation, is a ubiquitous process with many
applications in different fields including biology, astronomy, physics, chemistry and engineering(1). Accurate models
and boundary conditions to describe the transfer of mass and energy across the liquid/vapor interface have become
increasingly important in recent years(2). Understanding the process of evaporation and condensation is challenging,
but in principle molecular dynamics (MD) can describe this precisely. However, due to the large computational cost
of MD, practical modeling typically consists of a multiscale approach in which continuum models, e.g. Navier-Stokes,
and gas kinetics models(3), e.g. BGK scheme(4), S-model(5; 6) and DSMC(7; 8), are used to capture heat/mass
transfer in the bulk. MD can be used to study the liquid/vapor interface on the molecular scale to obtain the pa-
rameters appearing in the kinetic boundary condition (KBC) for the vapor phase. In particular, accurate calculation
of evaporation/condensation coefficients (αe/c) and liquid temperature (TL) appearing in the KBC as a function of
system operating conditions are of particular interest in order to refine predictive models. Different techniques have
been demonstrated in the literature to calculate these coefficients and liquid temperatures (9; 10; 11).

However, the wide range of evaporation coefficients found in the literature (9; 12; 13; 14; 15) makes it difficult to define
a unique coefficient for each operating condition. A typical model that shows sensitive agreement to MD depending
on αe, αc and TL is the S-model (16; 17). Discrepancies up to 10% in the energy flux were obtained corresponding
to ±0.1 variation in evaporation coefficient or ±1K variation in liquid temperature. This was traced back to the
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precise location of the so-called liquid and vapor boundaries which are used to extract the evaporation/condensation
coefficients from the MD simulations.

1.1 Evaporation coefficient and existing methods

The evaporation coefficient αe is defined as the fraction of evaporated particles to the total outgoing particles from
the condensed phase(9). Similarly, the condensation coefficient αc is the fraction of particles which condense to the
total colliding particles on the condensed phase. For the case of zero net mass flux in the system, the evaporation
and condensation coefficient are equal(11), i.e., αe = αc. The part (1 − αc) or (1 − αe) represents the fraction of
particles which reflect back into the vapor or condensed phase, respectively. At the molecular level, these coefficients
are defined as,

αe =
⟨Jevap⟩

⟨Jevap⟩ + ⟨Jref ⟩
=

⟨Jevap⟩
⟨Jout⟩

, αc =
⟨Jcond⟩

⟨Jcond⟩ + ⟨Jref ⟩
=

⟨Jcond⟩
⟨Jcoll⟩

(1)

where ⟨J...⟩ is the time-averaged mass fluxes of the evaporating, condensing, outgoing, colliding and reflecting parti-
cles (10). To properly account for these fluxes in MD simulations, it becomes necessary to define liquid and vapor
boundaries in the interphase region (see Fig.1). Here, the liquid boundary is considered as the end of the liquid phase
and the vapor boundary as the beginning of the vapor phase. Between these boundaries, in a region of rapidly varying
mean density, the interphase is defined.

Figure 1: Schematic of the liquid/vapor interphase and corresponding mass fluxes adapted from Kobayashi(10).
Reproduced with permission from Heat Mass Transfer 52, 1851 (2016). Copyright 2016 Springer.

While the defintion of the evaporation coefficient is straightforward, the difficulty lies in precisely defining the end
of the liquid phase and the beginning of the vapor phase. Below we summarize several methods found in the literature
to determine the equilibrium evaporation coefficient that attempt to address this issue or avoid it entirely.

Meland(11) and co-workers used a geometrical definition to locate the liquid boundary. They defined the liquid
boundary as the position where a tangent line at (ρ∞ + ρmax

liq )/2 in the mean mass density profile intersects the line
given by ρmax

liq . Here, ρ∞ is the equilibrium vapor density far from the interphase and ρmax
liq is the maximum density

attained in the liquid phase. To obtain the mass density profile in the liquid/vapor interphase region, a hyperbolic
tangent function (18) was fitted,

ρ(z) =
ρv + ρl

2
+

ρv − ρl
2

tanh

[

2(z − zm)

wt

]

(2)

with ρl,v the corresponding mass densities, zm the equimolar dividing surface(18) and wt is the characteristic length
over which the density varies. The vapor boundary position was defined using the Soave-Redlich-Kwong (SRK)
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equation of state(19),

PSRK =
RT

v − b
− a

v(v + b)
(3)

where P is the absolute pressure, T the absolute temperature, v the molar volume, R the universal gas constant and
a, b are two fluid dependent parameters. The location of the vapor boundary was defined as the position near the
interphase where pressure difference |PMD −PSRK | becomes greater than the largest pressure fluctuation in the vapor
phase, i.e. max|PMD − PSRK |. Here PMD is the vapor pressure obtained from MD simulations.

The advantage of this method is the simplicity of the respective macroscopic definitions for which no additional
MD simulations are required. Its disadvantage is the somewhat ad-hoc definition for the liquid boundary and lack of
physical interpretation. Furthermore, at low reduced temperatures the statistical fluctuations of the vapor pressure
increases which makes accurate determination of the vapor boundary difficult.

Gu(9) and co-workers focused on a new procedure to address the difficulty encountered in the method of Meland.
The method uses a microscopic approach in which the location of the liquid and vapor boundary are based on the
mean number of interaction partners N ′

k(t) per particle in a bin k. Two criteria values, Cv and Cl, are set as the

limit on N ′
k(t) to consider the fluid to be in the vapor or liquid phase. The criteria values equal the mean number of

interaction partners per particle N ′
k(t) in their respective phases and were obtained from separate MD simulations of

pure liquid and pure vapor for which the density correspond to the saturated density at the temperature of interest.
When moving from the liquid to the vapor phase, the first bin for which N ′

k(t) < Cl is recorded as the bin in which

the liquid boundary is located. Similarly, the vapor boundary is located in the first bin for which N ′
k(t) > Cv when

moving from the vapor to the liquid phase.

In contrast to the method of Meland, there exists a physical interpretation for the definitions of the liquid and
vapor boundaries based on the molecular structure of the liquid and vapor phase. However, the drawback is that two
additional MD simulations were required to obtain the criteria values Cl and Cv. Furthermore, no accuracy regarding
the values of Cl and Cv were given for the values determined by Gu(9). We have observed that the assessment of Cv

becomes increasingly uncertain at low reduced temperatures due to poor statistics, i.e., low vapor number density. As
shown in appendix A, for low reduced temperatures, T/TC ≲ 0.6, the standard deviation is similar to the Cv value,
making the accuracy of the identified vapor boundary location questionable.

In contrast to Meland and Gu, Ishiyama(12) implemented a method that avoids the definition of the liquid and
vapor boundaries. In this case, the equilibrium evaporation coefficient was defined by introducing the concept of the
spontaneously evaporating mass flux ⟨Jsp

evap⟩. Spontaneous evaporation is defined as the evaporation of particles that
occurs independently of the incident vapor particles and its mass flux is obtained from MD simulations of evaporation
into vacuum. Hence, the coefficient is defined as,

αe = αc =
⟨Jsp

evap⟩
⟨Jout⟩e

(4)

where ⟨Jout⟩e = ρv
√

RspTL/2π is the outgoing mass flux at equilibrium state with ρv the vapor density, TL the liquid
temperature and Rsp the specific gas constant.

The advantage is that both liquid and vapor boundary locations do not have to be defined. At low temperatures,
the vapor behaves as an almost ideal gas due to the small potential energy compared to its kinetic energy. Thus, the
assumption of evaporation taking place independently of the incident particles is a reasonably good approximation.
However, at higher temperatures the contribution of the potential energy in the vapor phase increases making this
simplification questionable. Spontaneously evaporating particles should exhibit more resistance because of their inter-
action with incident particles from the vapor phase. It is expected then that ⟨Jsp

evap⟩ will overestimate the evaporating
mass flux from equilibrium MD simulations and will affect the accurate determination of the evaporation coefficient
at higher temperatures.

Generally, uncertainties in the position of the phase boundaries affect the evaporation coefficient obtained. This
can be especially pronounced at low temperatures where statistical fluctuations in the vapor can be significant such
that the vapor boundary position can have a large standard deviation. The sensitivity of the coefficient on the defined
boundary positions has not been explicitely discussed, as far as we know.
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The goal of present paper is to introduce a revised definition of the vapor boundary position that addresses the
aforementioned challenges. We present a comparative study of the behavior of the evaporation coefficient when using
different monatomic fluids and liquid/vapor boundary positions including the existing methods of Meland and Gu.

Here, all MD simulations are performed under equilibrium conditions (i.e. zero net mass flux). Monatomic flu-
ids, namely neon, argon, krypton and xenon modelled as a truncated shifted Lennard-Jones fluid are used to reduce
the complexity of the system.

To avoid confusion, the ratio of the evaporating/condensation flux to the outgoing/colliding particle mass flux (Eq.(1))
is termed the flux ratio α = J(evap/cond)/J(out/coll). Once the liquid and vapor boundary are identified, the flux ratio
is equated to the evaporation/condensation coefficient, i.e. α = αe/c.

This paper is structured as follows. The properties of the equilibrium molecular dynamics simulations are given
in section 2. Section 3 introduce the procedure of the alternative method afterwhich results regarding the interphase
thickness, the transmission probabilities, and evaporation/condensation coefficients are given. Finally, conclusions are
provided in section 4.

2 Molecular Dynamics simulation details

As described above, for all methods molecular dynamics simulations are required to study the behaviour of the
liquid/vapor interface properties such as density, pressure, temperature, mass and energy fluxes. Software package
LAMMPS(20) is used to perform the MD simulations. A new LAMMPS function was written to calculate the mass
fluxes appearing in Eq.(1). This function calculates the number of particles passing through the area ∆x∆y, at
position z, every Nτ time periods. For all fluids, the intermolecular forces between the particles are calculated using
the truncated and shifted 12-6 Lennard-Jones potential,

U(r) = 4ϵ
[(σ

r

)12

−
(σ

r

)6]

− 4ϵ
[( σ

rcut

)12

−
( σ

rcut

)6]

, r < rcut; U(r) = 0 for r ≥ rcut (5)

where σ is the molecular diameter and ϵ the interaction energy. Its values for the monatomic fluids are given in table
1, the cutoff distance rcut = 2.5σ(21).

Table 1: Lennard-Jones parameters for MD simulations and liquid properties, κb is the Boltzmann constant, Tt the
tripe point temperature and TC the critical temperature.

σ [Å](21) ϵ/κb [K](21) Mass Tt [K](22) TC [K](22) TC [K] TC [K](23; 24)

[g/mol](22) from NIST from NIST from MD TCkb/ϵ = 1.085

Neon 2.8000 39.83 20.18 24.56 44.49 43.10 43.22

Argon 3.3916 137.90 39.95 83.81 150.70 150.10 149.62

Krypton 3.6233 191.52 83.80 115.78 209.48 209.08 207.80

Xenon 3.9450a 265.78a 131.29 161.41 289.73 289.41 288.37

afor xenon, large deviations (> 10%) in macroscopic properties were observed compared to NIST-REFPROP(22) when using
the values provided by ref.(21), therefore ref.(25) was used for σ and ϵ.

The equilibrium simulations consists of a vapor confined between its condensed phase as shown in Fig.2. The
temperature is controlled using a Nosé-Hoover thermostat(26; 27) with a damping constant of 100fs applied to a
narrow slab on both liquid regions. Periodic boundary conditions are imposed in all three directions. Newton’s equa-
tion of motions are solved with a time step of ∆t = 4fs and the mass fluxes are calculated every Nτ = 100 time periods.

Steady-state is obtained by shifting all particles along the z-coordinate such that there is an equal number of particles
in both liquid slabs. Measuring the difference in particle number ∆N between the liquid slabs, the particles are shifted
over a distance ∆z determined by (11),

∆N

2
= nliqA∆z (6)

with A the cross section parallel to the interface and nliq the particle density in the liquid phase. At different time steps
during the simulation, the density profile along the z-coordinate is determined. To verify steady-state, the z-position
of the mean density, i.e (ρl + ρv)/2, within both interphases should remain constant. This also ensures that averaging
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over multiple time steps does not broaden the interphase width.

The dimension of the simulation domain Lx × Ly × Lz is important to avoid system size effects. According to
Sides et al.(28), Lx > 12.8σ and Braga et al.(29) Lx > 10σ. Furthermore, Watanabe et al.(30) mentioned that size
effects can be ignored if Lx is sufficiently larger than the interphase thickness. To fulfill these requirements, the di-
mensions parallel to the interface are Lx = Ly = 200Å (50.7σ − 71.4σ, depending on the fluid) and orthogonal to the
interface is Lz = 440Å (111.5σ− 157.1σ) for all temperatures and fluids. This also ensures that there is no unphysical
interaction between the interfaces. The size of the thermostat regions is 20Å (5.07σ−7.13σ) and the distance between
the thermostat and the interfaces is larger than 5σ to avoid any direct influence.

Initially, the liquid particles are randomly distributed in regions of size ∆z = 70Å (17.7σ − 25σ) at the left and
right side of the domain and the vapor particles in between with a density similar to the saturated liquid and vapor
density at liquid temperature TL. The number of particles varies between N = 100, 000 − 200, 000 which is larger
than the minimum value of N = 1000 recommended by Trokhymchuk et al.(31). The liquid temperature range for
all fluids varies between its triple temperature Tt and critical temperature TC , except for argon, where three liquid
temperatures below its triple point, 70K, 75K and 80K, are added.

To obtain equilibrium, the simulations are performed using three runs. The first run consists of thermalization using
106 steps. A Berendsen thermostat(32) with a small damping constant is applied to the liquid and vapor regions to
allow the system to quickly reach the desired temperature. In the second run, the Nosé-Hoover thermostat is applied
to the liquid regions shown in Fig.2. This ensures the correct simulation of a canonical ensemble (NVT), i.e. fixed
number of particles, volume and temperature. In this run, another 106 steps are performed to ensure that the system
has reached an equilibrium state. Equilibrium is verified by observing a constant potential energy as its relaxation
time is slower than that of the system temperature (30). The third run of 5 × 106 steps calculates the mass fluxes of
Eq.(1). In this run, particle information is stored every 200 steps. To calculate macroscopic properties, the domain is
divided into bins of size 0.5σ (i.e. between 224− 315 bins) along the z-coordinate and time-averaging over the output
data.

Figure 2: Schematic of the MD simulation domain. Here, z
L/R
m is the equimolar dividing surface at the left and right

interphase, z
L/R
th defines the position where the thermostat ends in the liquid phase.

The liquid/vapor equilibrium MD simulations for neon, argon, krypton and xenon, are performed at different
temperatures with its macroscopic properties such as liquid and vapor density, temperature, pressure and enthalpy
change reported in appendix A. The critical temperature TC for each fluid is obtained by a using the scaling law(18; 9),

ρl − ρv = ρ0

(

TC − T

TC

)β

(7)

where β = 0.325 is the universal critical exponent characterizing the density variation at the critical point. The
unknown parameters ρ0 and TC were found by fitting the above equation to the density ρ and temperature T results of
the equilibrium MD simulations. The critical temperatures are reported in the 7th column of Table 1. Its dimensionless
critical temperature TCkb/ϵ for neon, argon, krypton and xenon are 1.0821, 1.0885, 1.0917 and 1.0889, respectively.
This is in close agreement with previous work(23; 24) which reported a critical temperature of TCkb/ϵ = 1.085 using
a truncated and shifted LJ potential with cut-off distance rc = 2.5σ. It is important to scale the temperature by its
correct critical temperature, i.e. obtained from MD simulations, in order to make reliable comparison between results.
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3 Results

3.1 Vapor phase

The vapor boundary identifies the separation between the interphase region and vapor region. A large mass density
change and capillary waves(33; 34; 35; 36) are features of the interphase region whereas the behavior of the vapor
region is isotropic at equilibrium. First, the transport behavior of argon vapor is discussed to support and comple-
ment our method to identify the vapor boundary introduced in the next section. Similar results are obtained for other
monatomic fluids, i.e. neon, krypton and xenon.

Particle diffusion arising from particle random walk behavior (37) has been investigated for pure vapor using equilib-
rium and steady-state MD simulations. Two boundaries are used to distuingish between the ”source” region defined
before the first boundary and ”sink” region after the second boundary. Diffusion particle density ρD and outgoing
velocities UD are calculated at the second boundary for different distances δ between the boundaries. The diffusion
flux is defined as JD = ρDUD. Similarly, the outgoing mass flux for all vapor particles is defined as Jout = ρvUv

with Uv =
∫∞

0
vzfM (v)dv =

√

RT/(2π) where fM is the Maxwellian velocity distribution. The ratios of the density
ρD/ρv and velocity UD/Uv are shown as a function of dimensionless distance δ/λ in Fig.3. Here, the mean free path
is defined as λ = µ/ρv

√

(π/(2RT )) with µ the vapor viscosity calculated using the expression given by Galliero et
al.(38). Data points are obtained using different distances δ and argon vapor temperatures: Tv = 70, 90, 110, 130K
(thereby changing λ). When the distance between the boundaries is small, almost all of the particles leaving the first
boundary diffuse to the second boundary. Hence, the density ratio is 0.5 and the outgoing velocity of diffusion particles
is twice Uv. For increasing distance δ, the probability for particles to diffuse between the boundaries decreases. As
a consequence, the density ratio converges to zero and the velocity ratio converges to a value of approximately 2.55.
Furthermore, for δ/λ = 1 the density ratio equals 0.25 whereas the velocity ratio is approximately 2.47 which is close
to its final value (100 × 0.47/0.55 ≈ 85%). When δ/λ > 1, particles will have at least one collision on average which
has negligible effect on the diffusion velocity UD. The behavior of the density ratio ρD/ρv and velocity ratio UD/Uv

are both well fit by a logistic curve.
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Figure 3: Argon density ratio ρD/ρv and velocity ratio
UD/Uv as function of δ/λ. Dashed lines corresponds to
the fitted logistic functions.
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Figure 4: Argon flux ratio αV = (ρDUD)/(ρvUv) as
function of δ/λ. Dashed line corresponds to the fitted
logistic function. Transmission probability αT of Eq.(8)
is shown as red solid line.

Essentially, the flux ratio αV = JD/Jout for the pure vapor phase defines the probability particles will diffuse
over a distance δ, i.e. transmission probability. As shown in Fig.4, its behavior is also well described by a logistic
curve. In the past, theories for the molecular flow transmission probability through circular cylindrical tubes have
been developed by several investigators (39; 40; 41; 42; 43). These theories were developed for steady-state molecular
flow for which the mean free path of the vapor is larger than the dimensions of the tube. This is generaly the case for
highly rarefied gases and evaporation at low pressures. Although the present MD simulations of pure vapor do not
immediately appear to satisfy molecular flow conditions, the transmission probability theory is capable of describing
the flux ratio αV very well as observed in Fig.4. Here, the expression of Berman(44; 41) is used for the transmission
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probability,

αT =

[

1 +
F 2

4
− F (F 2 + 4)1/2

4

]

− [(8 − F 2)(F 2 + 4)1/2 + F 3 − 16]2

72F (F 2 + 4)1/2 − 288 ln[F + (F 2 + 4)1/2] + 288 ln(2)
(8)

where F = L/R with L and R the length and radius of the concerned tube. By considering a particle with an average
distance proportional to λ from the remaining vapor particles and travelling a distance δ, it will mimic molecular flow
conditions through a circular cylindrical tube of radius R and length L. For the transmission probability theory the
walls of the tube are considered to be solid implying their particles are at rest with respect to the laboratory reference
frame. The average distance λrest a particle travels before colliding with the solid wall is proprotional to the inverse
of the average number density and scattering cross sectional area (45). In our case, the particles of the wall consists
of the remaining vapor particles having an average velocity equal to the thermal velocity. Taking into account the
relative velocity between the ”wall” and vapor particles the average distance before colliding with wall is equal to the
mean free path λ = λrest/

√
2 (46). Hence, to describe the flux ratio αV using the Berman expression Eq.(8) the tube

radius R =
√

2λ. The length of the tube is defined as the distance between the boundaries L = δ.

3.2 Alternative method for determining the vapor boundary location

To accurately determine the vapor boundary position, we introduce an alternative method (Wolf) which relies on
scanning the position of the particle sink boundary from the liquid boundary (particle source) towards the vapor
phase in the direction perpendicular to the liquid/vapor interface. The liquid boundary position is determined using
the method of either Meland or Gu. At each position of the particle sink boundary, the flux ratio αLV is calculated
as shown in Fig.5. When the position of the liquid zLb

and particle sink boundary zVb
overlap, i.e. zLb

= zVb
the flux

ratio equals unity. The flux ratio, αLV , attains a minimum approximately halfway through the mean density profile
and increases until the end of the interphase region where a local maximum in the vapor phase is consistently obtained.

Scanning the position of the particle sink from the liquid boundary towards the vapor phase, the mass flux components
are obtained as shown in Fig.6. The outgoing mass flux shows similar behaviour as the mean density profile and remain
constant in the liquid and vapor phase as expected. For the evaporating mass flux, a rapid decrease is seen after which
a slow decrease follows. On the contrary, the reflecting mass flux has a rapid increase until the liquid density starts
to decrease. It then reaches a minimum at the same location as the local maximum of αLV before slowly increasing
as the particle sink location moves further into the vapor phase.

We propose here that the local maximum in αLVαLVαLV represents the actual location of the vapor boundary. We
observe that its position is in very close agreement with the location at which the outgoing mass flux ⟨Jout⟩ becomes
constant (see Fig.6), which is indicative of transport in a homogenous phase at equilibrium.
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Figure 5: Profile of flux ratio αLV by scanning the po-
sition the particle sink boundary in z-direction zVb

from
an arbitrarily chosen liquid boundary (at a fixed posi-
tion zLb

) towards the vapor phase. Results correspond
to argon at T/TC = 0.67.
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10
-2

10
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10
0

Figure 6: The evaporating, outgoing, reflecting mass
fluxes J and flux ratio αLV as function of position for an
arbitrarily chosen liquid boundary position zLb

≈ zm −
6σ. Results correspond to argon at T/TC = 0.67.

In Fig.7, the normalized evaporating particle density (ρevap/ρ) is plotted through the liquid/vapor interphase for
different particle sink positions zVb

. Here, the evaporating particles are the ones that are initially located before the
liquid boundary zLb

and diffuse over time towards the vapor region. For a constant mass density ρ the evaporating
particle density is observed to decrease in an approximately linear fashion [−9 < (z − zm)/σ < −2]. A slight
change in slope is observed when moving through the rapid decaying mass density profile [−2 < (z − zm)/σ < 1.5].
Afterwhich a strong attenuation of the density of evaporating particles is observed near the end of the interphase region
[1.5 < (z − zm)/σ < 4]. Finally, a linear decay is again observed when entering the vapor region [4 < (z − zm)/σ].
Once an evaporating particle enters the vapor region, its behavior should be independent of its position within the
vapor phase. The average density of the evaporating particles in the vapor region depends on the random walk (47)
behavior of the particles and is described by the diffusion equation. Its steady-state solution is a linear function of
position. Because the results are time independent, the linear decay of the evaporating particle density in both the
homogenous liquid and vapor phases coincide with the behavior of the steady-state diffusion equation solution. The
beginning of this linear decay of evaporating particle densities are within close proximity of the local maximum of
αLV .

When evaporating particles diffuse further into the vapor phase, their velocity distribution changes. Its mean velocity
Uevap will increase since only the more energetic particles will have a higher probability to travel further into the vapor.
This was also observed for the particle diffusion velocity UD in pure vapor as shown in Fig.3. The average velocity
distribution of all particle remains a Maxwellian distribution(49; 50). How the velocity distribution of evaporating
particles differs from the Maxwellian through the interphase and vapor phase which can be quantified using the
Kullback-Leibler divergence (48). For discrete probability distributions P and Q it is defined as

DKL(P ||Q) =
∑

v∈V

P (v)log

(

P (v)

Q(v)

)

(9)

Here, V is the velocity space, P equals the Maxwellian distribution and act as a reference whereas Q is the velocity
distribution of evaporating particles. Fig.8 depicts the Kullback-Leibler divergence as function of distance as well as
the evaporating velocity Uevap scaled by the outgoing velocity Uv. In the liquid phase, DKL is relative small implying
both distributions P and Q are similar. Within the interphase region, DKL changes more than 3 orders of magnitude
afterwhich a slower increase follows. A similar behavior is observed for the velocity ratio Uevap/Uv. Particles leaving
the potential well of the liquid phase are very likely to increase the mean velocity of the evaporating particles very
rapidly. As a consequence, Uevap primarily dictates the behavior of DKL since Uv is constant. Again, the position at
which the rapid increase of DKL and velocity ratio Uevap/Uv changes to a slower increase is in close agreement with
the position of the local maximum of αLV . It marks the beginning of a different region, hence the start of the vapor
phase.
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Figure 7: Normalized evaporating particle density pro-
file (ρevap/ρ) and flux ratio αLV for a arbitrarily chosen
liquid boundary position at zLb

≈ zm − 9σ and multiple
particle sink positions zVb

for argon at T/TC = 0.67.
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Figure 8: Argon at T/TC = 0.67, Kullback-Leibler
divergence DKL (48) calculated using the Maxwellian
velocity distribution and evaporating velocity distribu-
tion. Dashed vertical lines indicate the liquid bound-
ary of Gu at zLb

= zm − 3.4σ and local maximum at
zmax = zm + 3.7σ.

3.3 Interphase thickness

Before we investigate the interphase in terms of transmission probability theory, we must first define the interphase
thickness. Figure 9 depicts the positions of the liquid boundary for the methods of Meland and Gu and the vapor
boundary for Meland, Gu and the alternative method (Wolf). Positions of the liquid and vapor boundaries are similar
for all fluids. The liquid boundary determined by the method of Meland is located closer to the interphase than Gu for
all temperatures. For the vapor boundary, the results of the alternative method (Wolf) are similar to Gu, but differ
substantially from Meland especially at high reduced temperatures. Thermal fluctuations broaden the interphase at
higher reduced temperatures and therefore increase the distance of the liquid and vapor boundary position from the
equimolar dividing surface zm (51). Furthermore, the vapor boundary of Gu and Wolf are located at a similar distance
from zm as the liquid boundary of Gu.

In the mean-field theory, the density profile along the liquid/vapor interface is described by the tangent hyperbolic
function of Eq.(2). Using capillary wave theory, the density profile is described using an error function in which the
term tanh[2(z−zm)/wt] in eq.(2) is replaced by erf[

√
2(z−zm)/we] (28; 52). The error function predicts an interphase

width we ∼ 6.5% larger than wt for temperatures between the triple and critical point consistently. In Fig.10, the
interphase thickness (zVb

− zLb
) is plotted as function of wt. The symbols represent the MD results and the dashed

lines a linear fit. It is observed that for each combination, the interphase thickness versus wt is similar for all fluids.
The thickness using Gu for the liquid boundary are generally larger than the method of Meland which is expected from
Fig.9. Also, all four results of the thickness can be fitted very well by a linear relationship. The highest R-squared
value is obtained using the method of Wolf for the vapor boundary position and the lowest when using the method
of Meland. As discussed by Weeks(53), the interface thickness is linearly related to wt with a constant depending on
only the dimensions parallel to the interface. When the constant is unity, the interface thickness equals wt. Because
the dimensions parallel to the interface are equal for all temperatures and fluids, the method of Wolf (Vb : Wolf) will
provide the most accurate definition of the interphase thickness according to Weeks(53). However, an almost equal
accuracy is be obtained for Lb : Gu−Vb : Gu and a little less for the method of Meland (Lb : Meland−Vb : Meland).
The inset in Fig.10 depict the thickness wt as function of reduced temperature which is fitted by the scaling law(9),

d = d0

(

TC − T

TC

)−η

(10)

with parameters d0 = 1.29σ and η = 0.65. The scaling law describe the behavior near critical temperature and is
therefore fitted to thickness corresponding to T/TC > 0.8. Values of η = 0.63−0.65 are reported in literature (30; 23).
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Vapor boundary positions

Liquid boundary positions

Figure 9: Liquid and vapor boundary positions as func-
tion of reduced temperature for all fluids. zm is the
equimolar dividing surface.
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Figure 10: Interface thickness (zVb
−zLb

) as function of
wt from Eq.(2) for all fluids. For clarity we have plotted
the data using a semi-log scale. Lines represent a linear
fit with its R2 value included in the legend. Inset: wt as
function of reduced temperature fitted by Eq.(10).

3.4 Transmission probabilities and the interphase

In the previous section 3.1, the behavior of the vapor phase was investigated by looking at the particle diffusion be-
havior. Quantified by the flux ratio αV , good agreement with the transmission probability expression of Berman(44)
Eq.(8) was shown in Fig.4 for all vapor temperatures and distances δ. In this context, if the local maximum in the
flux ratio αLV (see Fig.5) corresponds to the vapor boundary, we expect Eq.(8) to well fit the behaviour of αLV from
its local maximum into the vapor phase. This is confirmed in Fig.11, where we show the fit for different argon liquid
temperatures TL = 70− 130K. It is observed that αLV and Eq.(8) fit every well over the entire vapor region but start
to deviate rapidly when crossing the local maximum (black dot). The starting location of the fitted Eq.(8) (i.e. when
α = 1) is labelled as the z0 position. Hence, an excess length is defined δ0 = zloc.max. − z0 which represents the tube
length L used in Eq.(8) to approximate the flux ratio at the local maxmimum. It accounts for a changing particle
scattering behavior through the liquid/vapor interphase subjected to a rapid change in mean free path proportional
to the inverse of the mass density. By shifting and scaling each flux ratio αLV by its z0 and λ, the behavior after the
local maximum should collapse for all temperatures. This is shown in Fig.12 and demonstrates good agreement with
Eq.(8), coinciding with the results of pure vapor shown in Fig.4.

Due to the excess length δ0 > δ a slight deviation between the evaporation coefficient and flux ratio in pure va-
por is shown in Fig.13. Here, δ represents the interphase thickness for the liquid/vapor simulations (i.e. δ = zVb

−zLb
)

and the diffusion length for the case of pure vapor simulations (sec. 3.1). At low reduced temperatures, the interphase
thickness δ is small and the mean free path λ large i.e. δ/λ << 1. A ballistic transport of particles is obtained
between the liquid and vapor boundary with an evaporation coefficient close to unity. When δ/λ >> 1, particles are
subjected to an increasing number of collisions within the interphase. The probability of a particle crossing the liquid
and vapor boundary decreases, resulting in a decreasing evaporation/condensation coefficient. In Fig.14, the density
ratio ρD/ρv and velocity ratio UD/Uv are depicted. Both density ratios ρD/ρv are very similar but the velocity ratio
UD/Uv results for the liquid/vapor simulations are shifted one order of magnitude to the right relative to the results
of pure vapor.
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Figure 11: Argon flux ratio αLV for different tempera-
tures (70−130K, with increments of 10K). Transmission
probability αT of Eq.(8) (solid red lines) fitted to flux ra-
tio in vapor region. Local maxima of flux ratios indicated
by black dots.
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Figure 12: Argon flux ratio αLV for different temper-
atures (70 − 130K, with increments of 10K) shifted by
z0. Transmission probability αT of Eq.(8) shown as solid
red line. Local maxima of flux ratios indicated by black
dots.
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Figure 13: Evaporation/condensation coefficient αe/c

(for Ne,Ar,Kr,Xe) and flux ratio αV (only argon) as func-
tion of reduced interphase thickness. Dashed lines corre-
sponds to logistic functions.
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Figure 14: Argon density ratio ρD/ρv and velocity ratio
UD/Uv as function of δ/λ. Dashed lines corresponds to
the fitted logistic functions. Black color: results pure
vapor simulations (sec.3.1). Magenta color: results of
liquid/vapor simulation with Lb : Gu− Vb : Wolf .

Finally, the position of the vapor boundary should be independent of the choice of the position of the liquid boundary.
Moving the liquid boundary closer to the interphase region, i.e. zLb

≈ zm − 6σ to zLb
≈ zm − 3σ as shown in Fig.15,

increases the value of the local maximum, which can be explained by the fact that when the liquid boundary zLb
moves

towards the vapor phase, more particles are considered to be in the liquid phase, i.e. particles for which z ≤ zLb
. Since

the liquid particles are closer to the sink boundary, a particle has a higher probability to travel from the liquid to the
sink boundary and vice versa (see Fig.1). Hence, this increases the mass flux of evaporating particles and reflects back
into an increase of the flux ratio. The position of the local maximum remains similar, moving the liquid boundary
over a distance of 6σ changes the location of the local maximum less than 0.5σ. Also this shows the strengths of our
approach to define the vapor boundary position by looking at the position of the local maximum of αLV .
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Figure 15: Influence of arbitrarily chosen liquid boundary positions zLb
≈ zm − 6σ and zLb

≈ zm − 3σ on the
behaviour of the flux ratio αLV for argon at T/TC = 0.67. Black dots indicate the maximum value attained in the
vapor phase.

3.5 Evaporation & Condensation coefficients

The evaporation/condensation coefficient describes the probability of a particle to travel from the liquid phase to the
vapor phase (and vice versa) across the interphase region. As the temperature increases, the interphase thickness
increases as shown in Fig.9, and the vapor mean free path decreases. Therefore, the probability of a particle to travel
across the interphase region decreases when approaching the critical temperature. Hence, the evaporation coefficient
approaches zero when the interphase thickness diverges (i.e. T/TC → 1).

Figure 16 depicts the evaporation coefficient as function of reduced temperature. A clear distinction is observed
when using the vapor boundary of Wolf instead of Meland or Gu. The former provide a monotonic decay of the
coefficients over the entire temperature range whereas the latter only after T/TC > 0.6. Liquid and vapor bound-
ary positions of Meland are located closer to the interphase, particles have a higher probability to travel across the
interphase and thus provide a higher coefficient for most temperatures. The results of Meland are similar to Gu
(Lb : Gu− Vb : Gu) but shifted approximately 0.1 upwards.

At lower reduced temperatures the results of Vb : Gu start to deviate significantly from Vb : Wolf . This can be
related to the low accuracy of the criterium value Cv as shown in the tables of appendix A and thus a less accu-
rate position of the vapor boundary. Furthermore, the coefficient increases more rapidly between its minimum at
(z − zm)/σ ≈ 0 and maximum at (z − zm)/σ ≈ 3 value in Fig.15 for low reduced temperatures compared to higher
ones. This results in a substantial decrease of the coefficient for Vb : Gu at lower reduced temperatures although the
vapor boundary is located only 1σ closer to the interphase compared to Vb : Wolf . A similar conclusion holds for
the coefficients of Meland at low reduced temperatures. Due to rarefied vapor conditions at low temperatures, the
determination of the vapor boundary of Meland using the vapor pressure becomes less accurate. Hence, the vapor
boundary method is responsible for the anomalous behaviour of the coefficients at low reduced temperatures given the
fact that the method of Wolf is be able to provide the expected monotonic decay using the liquid boundary method
of Gu.

In Fig.17, the log of the quantity δ0/λ for the transmission expression αT (Eq.(8)) and the log of the dimension-
less capillary wave length scale

√

kbT/(γλ2)(54; 55; 56) can be related as shown in the figure. This holds for all
monatomic fluids in this study (i.e. Ne,Ar,Kr,Xe) and provides a suprisingly simple approximation for δ0/λ in terms
of measurable parameters.
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Figure 16: Evaporation/condensation coefficient as
function of reduced temperature using the method of Me-
land, Gu and Wolf.
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Figure 17: Dimensionless excess length δ0/λ as function
dimensionless capillary wave length scale

√

kbT/γλ2.

A comparison with Gu(9) and Ishiyama(12) is shown in Fig.18. At low reduced temperatures the coefficients
coincide with the results of Ishiyama(12) but start to deviate towards higher reduced temperatures. Coefficients de-
fined by Ishiyama are used in kinetic models which assume that the vapor behaves like an ideal gas. This is a good
approximation for the behavior of the vapor at low reduced temperatures. When moving towards higher reduced
temperatures, the behaviour of the vapor becomes less ideal. Evaporating particles will exhibit more resistance from
the incident particles. It is therefore expected that ⟨Jsp

evap⟩ as defined by Ishiyama will overestimate the evaporating
mass flux from equilibrium MD simulations. As a consequence, higher coefficients are predicted at higher reduced
temperatures.

The results for Gu deviate at low reduced temperatures and have insignificant difference at higher temperatures.
A similar behavior was observed in Fig.16 and discussed above. A low accuracy of the criteria value Cv and a rapid
change of the coefficient in the interphase region at low reduced temperatures are responsible to the decrease of the
evaporation coefficient. For higher reduced temperatures, the coefficients are less sensitive to the position of the vapor
boundary due to the less rapid change of the coefficient in the interphase region. Hence, results of Gu and Wolf
converge although the vapor boundary positions differentiate between 1σ − 2.5σ.

The transmission probability αT in Fig.18 is obtained using Eq.(8) and equation Y = 5.43X0.85 shown in Fig.17.
Here, X =

√

kbT/γλ2 is dimensionless capillary wave length scale and Y = δ0/λ excess length. At lower reduced tem-
peratures, this equation underestimates the excess length δ0 resulting in a higher evaporation/condesation coefficient.

It is concluded that the method of Wolf provides the expected monotonic decay of the evaporation/condensation
coefficient for temperatures between its triple and critical point. At low temperatures, it is less sensitive to statistical
fluctuations in the vapor phase compared to the methods of Meland and Gu. Thereby avoiding any anomalous be-
haviour of the coefficients. It coincides with the accurate results of Ishiyama at low reduced temperatures and Gu at
higher reduced temperatures which confirms the robustness and accuracy of the alternative method (Wolf).

4 Conclusions

First, the transport behavior of argon vapor was discussed by investigating the particle diffusion in pure vapor. De-
pending on the particle random walk behavior, the probability of particles to diffuse over a distance δ can be quantified
by the flux ratio αLV . This ratio as function of δ/λ is well described by a logistic curve. Similarly, the density ratio
ρD/ρv and velocity ratio UD/Uv maintain the same logistic behavior. For small distance (i.e. δ/λ << 1), the density
ratio equals half the vapor density whereas the velocity ratio is twice the average outgoing velocity Uv. When the
distance increases, the density ratio converges to zero and the velocity ratio to approximately 2.55. Transmission
probability theory is capable of describing the flux ratio very well by considering particle diffusion at dimensions of
the mean free path.
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Figure 18: Evaporation/condensation coefficient using Lb : Gu − Vb : Wolf as function of reduced temperature
compared to Gu(9), Ishiyama(12) and transmission probability αT of Eq.(8).

The alternative method (Wolf) for determining the vapor boundary position introduced in this study is based on
the behavior of the flux ratio αLV within the interphase region. By scanning the position of the sink boundary in the
direction orthogonal to the liquid/vapor interface from the liquid boundary towards the vapor phase, a local maximum
of the flux ratio is obtained in the vapor phase. It has been shown that the location of this local maximum represents
the transition from the interphase to the vapor phase. It is in close agreement with the start of a constant outgoing
mass flux Jout as well as the beginning of the linear decay of the evaporating particle density ρevap which is the
expected behavior of the vapor phase. Furthermore, the Kullback-Leibler (KL) divergence quantifies the difference
of the velocity distribution of evaporating particles from the Maxwellian velocity distribution. Within the interphase
region, the KL-divergence changed three orders of magnitude and changed to a gradual increase afterwards at the
location of the local maximum. Finally, Berman’s expression of transmission probability theory fitted very well to the
results of the flux ratio αLV in the vapor region and showed a rapid deviation when crossing the local maximum. All
of these observations and its independency of the liquid boundary position clearly illustrates the significance of the
location of the local maximum. It is therefore considered to be the correct physical location of the vapor boundary
and defines the beginning of the vapor phase.

The alternative method shares the advantages of the existing methods such as simplicity but eliminate their dis-
advantages such as additional MD simulations or the use of an equation of state.

Due to the somewhat ad-hoc definition for the liquid boundary of Meland, the current study focussed on apply-
ing the alternative method (Wolf) using the liquid boundary obtained by Gu. It is shown in Fig.10 that the best linear
fit between the interphase thickness (zVb

−zLb
) and wt (Eq.(2)) is obtained for the combination of Lb : Gu−Vb : Wolf

which according to Weeks(53) provide the most accuate definition of the interphase thickness.

All monatomic fluids in the present study have similar evaporation/condensation coefficients as function of the reduced
temperature. Despite significant difference in mass and interaction energy between the fluids, it is concluded that the
static molecular properties do not play an important role in the evaporation process. The small difference between
the results of the flux ratio αLV and evaporation/condensation coefficient αe/c in Fig.13 suggests that the probability
of particles to evaporate is mainly influenced by the diffusion behavior in the vapor phase.

At low reduced temperatures, the vapor boundary positions of Meland and Gu become less accurate due to the
rarefied vapor conditions. As a consequence, the evaporation/condensation coefficients show anomalous behaviour
near low reduced temperatures whereas the alternative method (Wolf) provides a monotonic decay over the entire
temperature range. Berman’s expression of transmission probability theory gives accurate approximations of the co-
efficients over a large temperature range.
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The ideal gas assumption made by Ishiyama are only valid at low reduced temperatures. This causes the evaporation
mass flux to be overestimated at higher reduced temperatures, hence higher evaporation/condensation coefficients are
predicted. As mentioned above, the results of Gu are less accurate at low reduced temperatures because of the large
statistical flunctuations in the vapor phase. The alternative method (Wolf) coincides with the accurate results of
Ishiyama at low reduced temperatures and Gu and higher reduced temperatures which confirms its robustness and
accuracy.

Finally, the alternative method has been applied to non-equilibrium simulations(57; 58) and its evaporation and
condensation coefficients used as input for the S-model kinetic equation(5). The results show good agreement for
vapor density, pressure, temperature, evaporation velocity and heat flux. This confirms that the alternative method is
suited for extracting the evaporation/condensation coefficient but moreover provides the correct coefficient to be used
in kinetic models such as S-model kinetic equation.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sk lodowska-Curie grant agreement No. 643095.

Conflict of Interest Statement

The author (authors) has (have) no conflicts to disclose.

Data Availability Statement

The data that support the findings of this study are available within the article.

15

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
7
4
4



A Fluid properties

A.1 Neon

Notation: first value is the mean value followed by its standard deviation.

Table 2: Neon liquid-vapor equilibrium properties

T/TC T ρv ρl PV ∆H Cl Cv d/σ λ(38)

K kg/m3 kg/m3 106N/m2 kJ/kg (Eq.(2)) Å

0.65 27.94 ±
0.27

11.79 ±
0.27

1199.15 ±
1.51

0.13 ±
0.00*

89.41 ±
0.72

2.87 ±
0.01

0.04 ±
0.00*

2.38 ±
0.04

42.84

0.74 32.00 ±
0.15

31.40 ±
0.41

1112.61 ±
1.74

0.36 ±
0.01

81.10 ±
0.55

2.66 ±
0.01

0.10 ±
0.00*

3.04 ±
0.06

17.88

0.84 35.99 ±
0.12

71.74 ±
0.75

1009.29 ±
2.34

0.81 ±
0.02

69.14 ±
0.54

2.40 ±
0.01

0.22 ±
0.00*

4.19 ±
0.10

8.89

0.93 40.05 ±
0.10

155.84 ±
1.26

866.23 ±
3.57

1.58 ±
0.04

50.59 ±
0.56

2.07 ±
0.01

0.46 ±
0.01

7.15 ±
0.19

4.93

∗ standard deviation is less than 0.005

Table 3: Neon liquid-vapor boundary properties using the method of Meland for the liquid boundary

Lb : Meland Vb : Wolf Vb : Meland Vb : Gu

T/TC zLb
/σ zVb

/σ d
∗∗
/σ αe αc zVb

/σ d
∗∗
/σ αe αc zVb

/σ d
∗∗
/σ αe αc

0.65 -1.20 ±
0.01

3.52 ±
0.18

4.71 ±
0.18

0.82 ±
0.01

0.82 ±
0.01

3.32 ±
0.18

4.52 ±
0.18

0.82 ±
0.01

0.82 ±
0.01

3.21 ±
0.05

4.41 ±
0.05

0.82 ±
0.01

0.82 ±
0.01

0.74 -1.53 ±
0.01

3.83 ±
0.29

5.36 ±
0.29

0.66 ±
0.01

0.66 ±
0.01

3.57 ±
0.14

5.10 ±
0.14

0.65 ±
0.01

0.65 ±
0.01

3.92 ±
0.08

5.45 ±
0.08

0.66 ±
0.01

0.66 ±
0.01

0.84 -2.10 ±
0.02

4.35 ±
0.37

6.44 ±
0.36

0.46 ±
0.00*

0.46 ±
0.01

3.77 ±
0.06

5.87 ±
0.06

0.45 ±
0.01

0.45 ±
0.01

4.90 ±
0.13

7.00 ±
0.13

0.46 ±
0.00*

0.46 ±
0.00*

0.93 -3.58 ±
0.07

5.20 ±
0.49

8.76 ±
0.56

0.24 ±
0.00*

0.24 ±
0.00*

3.49 ±
0.07

7.07 ±
0.10

0.23 ±
0.00*

0.23 ±
0.00*

7.19 ±
0.12

10.77 ±
0.16

0.23 ±
0.00*

0.23 ±
0.00*

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb

Table 4: Neon liquid-vapor boundary properties using the method of Gu for the liquid boundary

Lb : Gu Vb : Wolf Vb : Meland Vb : Gu

T/TC zLb
/σ zVb

/σ d
∗∗
/σ αe αc zVb

/σ d
∗∗
/σ αe αc zVb

/σ d
∗∗
/σ αe αc

0.65 -3.14 ±
0.03

3.62 ±
0.19

6.76 ±
0.20

0.75 ±
0.02

0.75 ±
0.02

3.32 ±
0.18

6.45 ±
0.18

0.74 ±
0.02

0.74 ±
0.02

3.21 ±
0.05

6.35 ±
0.07

0.74 ±
0.02

0.74 ±
0.02

0.74 -3.64 ±
0.03

3.96 ±
0.31

7.60 ±
0.31

0.57 ±
0.01

0.57 ±
0.01

3.57 ±
0.14

7.21 ±
0.15

0.56 ±
0.01

0.56 ±
0.01

3.92 ±
0.08

7.56 ±
0.11

0.57 ±
0.01

0.57 ±
0.01

0.84 -4.45 ±
0.07

4.68 ±
0.39

9.13 ±
0.42

0.38 ±
0.01

0.38 ±
0.01

3.77 ±
0.06

8.22 ±
0.09

0.36 ±
0.01

0.36 ±
0.01

4.90 ±
0.13

9.35 ±
0.18

0.37 ±
0.01

0.37 ±
0.01

0.93 -6.32 ±
0.16

5.92 ±
0.49

12.24 ±
0.54

0.19 ±
0.01

0.19 ±
0.01

3.49 ±
0.07

9.81 ±
0.16

0.18 ±
0.00*

0.18 ±
0.00*

7.19 ±
0.12

13.51 ±
0.25

0.19 ±
0.00*

0.19 ±
0.00*

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb
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A.2 Argon

Notation: first value is the mean value followed by its standard deviation.

Table 5: Argon liquid-vapor equilibrium properties

T/TC T ρv ρl PV ∆H Cl Cv d/σ λ(38)

K kg/m3 kg/m3 106N/m2 kJ/kg (Eq.(2)) Å

0.47 69.41 ±
2.54

0.60 ±
0.05

1498.43 ±
1.20

0.011 ±
0.001

176.21 ±
2.98

3.21 ±
0.010

0.002 ±
0.004

1.63 ±
0.03

935.67

0.50 74.97 ±
2.20

1.28 ±
0.07

1471.07 ±
1.25

0.021 ±
0.002

173.60 ±
2.45

3.15 ±
0.009

0.004 ±
0.004

1.76 ±
0.02

456.27

0.53 80.00 ±
2.41

2.50 ±
0.18

1440.88 ±
1.90

0.044 ±
0.004

170.08 ±
2.98

3.09 ±
0.009

0.008 ±
0.006

1.83 ±
0.04

241.86

0.57 84.99 ±
1.96

4.40 ±
0.22

1411.31 ±
2.01

0.08 ±
0.01

166.58 ±
2.42

3.03 ±
0.01

0.01 ±
0.01

1.93 ±
0.02

142.31

0.60 90.02 ±
1.53

7.23 ±
0.31

1380.60 ±
2.06

0.13 ±
0.01

162.55 ±
1.98

2.96 ±
0.01

0.02 ±
0.01

2.10 ±
0.03

89.76

0.63 95.14 ±
1.30

11.22 ±
0.38

1349.16 ±
2.19

0.21 ±
0.01

158.53 ±
1.78

2.90 ±
0.01

0.03 ±
0.01

2.26 ±
0.04

59.88

0.67 99.72 ±
1.03

16.74 ±
0.44

1316.00 ±
2.35

0.32 ±
0.01

153.35 ±
1.52

2.82 ±
0.01

0.05 ±
0.01

2.47 ±
0.03

41.66

0.70 105.02 ±
0.95

23.82 ±
0.57

1281.94 ±
2.46

0.47 ±
0.02

148.58 ±
1.51

2.75 ±
0.01

0.07 ±
0.01

2.68 ±
0.05

30.27

0.73 110.04 ±
0.80

33.21 ±
0.70

1246.01 ±
2.68

0.67 ±
0.02

142.89 ±
1.36

2.67 ±
0.01

0.09 ±
0.01

2.96 ±
0.07

22.66

0.77 114.87 ±
0.71

45.46 ±
0.81

1207.54 ±
2.82

0.91 ±
0.03

136.16 ±
1.34

2.59 ±
0.01

0.13 ±
0.01

3.26 ±
0.06

17.25

0.80 120.07 ±
0.65

61.08 ±
1.12

1166.54 ±
3.22

1.23 ±
0.04

129.13 ±
1.36

2.50 ±
0.01

0.17 ±
0.01

3.63 ±
0.06

13.44

0.83 125.24 ±
0.57

80.42 ±
1.25

1121.55 ±
3.61

1.61 ±
0.05

120.98 ±
1.34

2.40 ±
0.01

0.22 ±
0.01

4.11 ±
0.07

10.75

0.87 129.99 ±
0.52

106.84 ±
1.50

1071.49 ±
4.05

2.07 ±
0.06

110.62 ±
1.32

2.29 ±
0.01

0.29 ±
0.01

4.77 ±
0.11

8.53

0.90 134.95 ±
0.51

141.22 ±
2.33

1013.85 ±
4.56

2.62 ±
0.08

98.64 ±
1.44

2.17 ±
0.02

0.37 ±
0.01

5.76 ±
0.09

6.94

17

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
7
4
4



Table 6: Argon liquid-vapor boundary properties using the method of Meland for the liquid boundary

Lb : Meland Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.47 -0.82 ±
0.00*

3.46 ±
0.62

4.38 ±
0.60

0.97 ±
0.01

0.98 ±
0.01

2.17 ±
0.09

2.99 ±
0.09

0.76 ±
0.05

0.76 ±
0.04

2.11 ±
0.10

2.93 ±
0.10

0.74 ±
0.06

0.75 ±
0.05

0.50 -0.89 ±
0.01

3.46 ±
0.44

4.35 ±
0.35

0.96 ±
0.01

0.96 ±
0.01

2.47 ±
0.08

3.35 ±
0.08

0.81 ±
0.05

0.81 ±
0.05

2.38 ±
0.15

3.27 ±
0.15

0.80 ±
0.04

0.80 ±
0.05

0.53 -0.92 ±
0.04

3.43 ±
0.64

4.36 ±
0.45

0.94 ±
0.01

0.94 ±
0.01

2.32 ±
0.11

3.24 ±
0.11

0.79 ±
0.03

0.79 ±
0.03

2.38 ±
0.10

3.30 ±
0.09

0.84 ±
0.02

0.83 ±
0.02

0.57 -0.97 ±
0.01

3.30 ±
0.38

4.29 ±
0.33

0.91 ±
0.01

0.91 ±
0.01

3.23 ±
0.75

4.21 ±
0.74

0.86 ±
0.02

0.86 ±
0.03

2.38 ±
0.03

3.35 ±
0.04

0.81 ±
0.02

0.81 ±
0.02

0.60 -1.06 ±
0.00*

3.34 ±
0.28

4.42 ±
0.25

0.88 ±
0.01

0.88 ±
0.01

3.19 ±
0.12

4.25 ±
0.12

0.88 ±
0.01

0.88 ±
0.01

2.61 ±
0.03

3.67 ±
0.03

0.83 ±
0.01

0.83 ±
0.01

0.63 -1.14 ±
0.01

3.49 ±
0.21

4.61 ±
0.21

0.84 ±
0.00*

0.84 ±
0.00*

3.03 ±
0.16

4.16 ±
0.15

0.82 ±
0.01

0.82 ±
0.01

2.89 ±
0.05

4.03 ±
0.05

0.81 ±
0.01

0.81 ±
0.01

0.67 -1.24 ±
0.01

3.48 ±
0.22

4.73 ±
0.22

0.80 ±
0.01

0.80 ±
0.01

3.10 ±
0.03

4.35 ±
0.02

0.78 ±
0.01

0.78 ±
0.01

3.23 ±
0.05

4.47 ±
0.05

0.79 ±
0.01

0.79 ±
0.01

0.70 -1.34 ±
0.01

3.61 ±
0.15

4.95 ±
0.15

0.74 ±
0.01

0.74 ±
0.00*

3.53 ±
0.08

4.88 ±
0.08

0.74 ±
0.00*

0.74 ±
0.01

3.44 ±
0.06

4.78 ±
0.06

0.74 ±
0.01

0.74 ±
0.01

0.73 -1.48 ±
0.01

3.74 ±
0.24

5.20 ±
0.24

0.68 ±
0.01

0.68 ±
0.01

3.31 ±
0.13

4.79 ±
0.13

0.67 ±
0.01

0.67 ±
0.01

3.70 ±
0.08

5.18 ±
0.07

0.68 ±
0.01

0.68 ±
0.01

0.77 -1.64 ±
0.01

3.90 ±
0.23

5.54 ±
0.23

0.61 ±
0.00*

0.61 ±
0.00*

3.49 ±
0.06

5.13 ±
0.06

0.60 ±
0.01

0.60 ±
0.01

3.96 ±
0.07

5.60 ±
0.07

0.61 ±
0.01

0.61 ±
0.01

0.80 -1.81 ±
0.02

4.07 ±
0.20

5.89 ±
0.20

0.54 ±
0.00*

0.54 ±
0.01

3.46 ±
0.09

5.27 ±
0.08

0.53 ±
0.01

0.53 ±
0.01

4.28 ±
0.07

6.10 ±
0.08

0.54 ±
0.00*

0.54 ±
0.00*

0.83 -2.05 ±
0.02

4.19 ±
0.35

6.25 ±
0.35

0.47 ±
0.00*

0.47 ±
0.00*

3.36 ±
0.12

5.41 ±
0.11

0.45 ±
0.00*

0.45 ±
0.00*

4.70 ±
0.10

6.76 ±
0.10

0.46 ±
0.00*

0.46 ±
0.00*

0.87 -2.39 ±
0.04

4.54 ±
0.29

6.93 ±
0.29

0.39 ±
0.00*

0.39 ±
0.00*

3.57 ±
0.06

5.96 ±
0.03

0.37 ±
0.00*

0.37 ±
0.01

5.16 ±
0.15

7.55 ±
0.17

0.38 ±
0.00*

0.38 ±
0.00*

0.90 -2.89 ±
0.02

4.81 ±
0.42

7.68 ±
0.41

0.31 ±
0.00*

0.31 ±
0.00*

3.67 ±
0.10

6.55 ±
0.09

0.30 ±
0.00*

0.30 ±
0.00*

5.91 ±
0.08

8.80 ±
0.08

0.30 ±
0.00*

0.30 ±
0.00*

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb

18

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
7
4
4



Table 7: Argon liquid-vapor boundary properties using the method of Gu for the liquid boundary

Lb : Gu Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.47 -2.34 ±
0.23

3.37 ±
0.79

5.84 ±
0.75

0.95 ±
0.04

0.97 ±
0.05

2.17 ±
0.09

4.51 ±
0.21

0.73 ±
0.07

0.74 ±
0.07

2.11 ±
0.10

4.44 ±
0.27

0.71 ±
0.08

0.73 ±
0.08

0.53 -2.62 ±
0.09

3.43 ±
0.51

6.15 ±
0.37

0.93 ±
0.04

0.94 ±
0.05

2.47 ±
0.08

5.08 ±
0.17

0.77 ±
0.05

0.78 ±
0.06

2.38 ±
0.15

5.00 ±
0.16

0.76 ±
0.05

0.77 ±
0.06

0.53 -2.84 ±
0.20

3.39 ±
0.52

6.27 ±
0.55

0.91 ±
0.04

0.91 ±
0.04

2.32 ±
0.11

5.17 ±
0.18

0.74 ±
0.04

0.74 ±
0.05

2.38 ±
0.10

5.22 ±
0.24

0.79 ±
0.03

0.79 ±
0.05

0.57 -2.70 ±
0.02

3.28 ±
0.39

6.02 ±
0.28

0.87 ±
0.03

0.87 ±
0.03

3.23 ±
0.75

5.93 ±
0.77

0.82 ±
0.03

0.82 ±
0.04

2.38 ±
0.03

5.08 ±
0.04

0.75 ±
0.03

0.76 ±
0.03

0.60 -2.83 ±
0.03

3.37 ±
0.30

6.23 ±
0.25

0.83 ±
0.02

0.83 ±
0.03

3.19 ±
0.12

6.02 ±
0.12

0.82 ±
0.02

0.82 ±
0.03

2.61 ±
0.03

5.44 ±
0.06

0.77 ±
0.02

0.77 ±
0.02

0.63 -2.96 ±
0.04

3.58 ±
0.23

6.51 ±
0.24

0.78 ±
0.02

0.78 ±
0.02

3.03 ±
0.16

5.98 ±
0.14

0.75 ±
0.01

0.75 ±
0.02

2.89 ±
0.05

5.85 ±
0.08

0.75 ±
0.02

0.75 ±
0.02

0.67 -3.10 ±
0.05

3.58 ±
0.21

6.69 ±
0.20

0.72 ±
0.02

0.72 ±
0.02

3.10 ±
0.03

6.20 ±
0.03

0.70 ±
0.02

0.70 ±
0.02

3.23 ±
0.05

6.32 ±
0.08

0.71 ±
0.02

0.71 ±
0.02

0.70 -3.26 ±
0.04

3.73 ±
0.22

6.99 ±
0.22

0.66 ±
0.02

0.66 ±
0.01

3.53 ±
0.08

6.80 ±
0.09

0.65 ±
0.01

0.65 ±
0.01

3.44 ±
0.06

6.70 ±
0.09

0.65 ±
0.01

0.65 ±
0.01

0.73 -3.46 ±
0.04

3.87 ±
0.24

7.33 ±
0.26

0.59 ±
0.01

0.59 ±
0.01

3.31 ±
0.13

6.77 ±
0.15

0.57 ±
0.01

0.57 ±
0.01

3.70 ±
0.08

7.16 ±
0.11

0.59 ±
0.01

0.59 ±
0.01

0.77 -3.66 ±
0.06

4.12 ±
0.22

7.78 ±
0.24

0.52 ±
0.01

0.52 ±
0.01

3.49 ±
0.06

7.14 ±
0.07

0.51 ±
0.01

0.51 ±
0.01

3.96 ±
0.07

7.62 ±
0.11

0.52 ±
0.01

0.52 ±
0.01

0.80 -3.92 ±
0.06

4.32 ±
0.21

8.24 ±
0.23

0.45 ±
0.01

0.45 ±
0.01

3.46 ±
0.09

7.38 ±
0.10

0.43 ±
0.01

0.43 ±
0.01

4.28 ±
0.07

8.20 ±
0.11

0.45 ±
0.01

0.45 ±
0.01

0.83 -4.23 ±
0.07

4.48 ±
0.35

8.73 ±
0.34

0.39 ±
0.01

0.39 ±
0.01

3.36 ±
0.12

7.59 ±
0.14

0.36 ±
0.01

0.36 ±
0.01

4.70 ±
0.10

8.93 ±
0.14

0.38 ±
0.01

0.38 ±
0.01

0.87 -4.64 ±
0.09

4.87 ±
0.31

9.51 ±
0.31

0.32 ±
0.01

0.32 ±
0.01

3.57 ±
0.06

8.21 ±
0.09

0.30 ±
0.01

0.30 ±
0.01

5.16 ±
0.15

9.80 ±
0.19

0.32 ±
0.01

0.32 ±
0.01

0.90 -5.22 ±
0.06

5.25 ±
0.44

10.47 ±
0.44

0.25 ±
0.00*

0.25 ±
0.00*

3.67 ±
0.10

8.88 ±
0.11

0.23 ±
0.00*

0.23 ±
0.00*

5.91 ±
0.08

11.13 ±
0.11

0.25 ±
0.00*

0.25 ±
0.00*

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb
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A.3 Krypton

Notation: first value is the mean value followed by its standard deviation.

Table 8: Krypton liquid-vapor equilibrium properties

T/TC T ρv ρl PV ∆H Cl Cv d/σ λ(38)

K kg/m3 kg/m3 106N/m2 kJ/kg (Eq.(2)) Å

0.57 119.78 ±
2.61

8.80 ±
0.45

2412.32 ±
3.93

0.10 ±
0.01

109.48 ±
1.60

3.01 ±
0.01

0.02 ±
0.01

1.96 ±
0.04

132.03

0.67 139.67 ±
1.55

30.81 ±
0.89

2254.05 ±
4.55

0.39 ±
0.02

100.98 ±
1.13

2.81 ±
0.01

0.05 ±
0.01

2.48 ±
0.05

41.85

0.77 160.09 ±
1.18

79.07 ±
1.65

2073.78 ±
5.52

1.06 ±
0.04

90.13 ±
1.04

2.58 ±
0.01

0.13 ±
0.01

3.23 ±
0.07

18.27

0.86 179.90 ±
0.85

179.71 ±
2.92

1850.50 ±
7.35

2.31 ±
0.08

73.83 ±
0.97

2.30 ±
0.01

0.28 ±
0.01

4.68 ±
0.11

9.29

Table 9: Krypton liquid-vapor boundary properties using the method of Meland for the liquid boundary

Lb : Meland Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.57 -0.99 ±
0.01

3.31 ±
0.39

4.31 ±
0.38

0.91 ±
0.01

0.91 ±
0.01

2.52 ±
0.05

3.51 ±
0.05

0.83 ±
0.02

0.83 ±
0.02

2.38 ±
0.05

3.37 ±
0.05

0.80 ±
0.01

0.80 ±
0.01

0.67 -1.25 ±
0.01

3.49 ±
0.29

4.73 ±
0.30

0.79 ±
0.01

0.79 ±
0.01

3.07 ±
0.08

4.32 ±
0.09

0.76 ±
0.01

0.76 ±
0.01

3.20 ±
0.06

4.44 ±
0.06

0.77 ±
0.01

0.77 ±
0.01

0.77 -1.62 ±
0.02

3.82 ±
0.32

5.45 ±
0.32

0.61 ±
0.01

0.61 ±
0.01

3.35 ±
0.18

4.98 ±
0.18

0.60 ±
0.01

0.60 ±
0.01

3.91 ±
0.07

5.53 ±
0.07

0.61 ±
0.00*

0.61 ±
0.01

0.86 -2.34 ±
0.04

4.52 ±
0.38

6.86 ±
0.36

0.39 ±
0.01

0.39 ±
0.01

3.74 ±
0.42

6.08 ±
0.43

0.37 ±
0.01

0.37 ±
0.01

5.07 ±
0.13

7.41 ±
0.13

0.39 ±
0.00*

0.39 ±
0.01

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb

Table 10: Krypton liquid-vapor boundary properties using the method of Gu for the liquid boundary

Lb : Gu Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.57 -2.70 ±
0.03

3.33 ±
0.39

6.05 ±
0.36

0.86 ±
0.03

0.86 ±
0.03

2.52 ±
0.05

5.22 ±
0.07

0.78 ±
0.03

0.78 ±
0.03

2.38 ±
0.05

5.08 ±
0.07

0.75 ±
0.02

0.75 ±
0.02

0.67 -3.09 ±
0.04

3.58 ±
0.34

6.67 ±
0.33

0.71 ±
0.02

0.71 ±
0.02

3.07 ±
0.08

6.16 ±
0.09

0.68 ±
0.02

0.68 ±
0.02

3.20 ±
0.06

6.29 ±
0.09

0.70 ±
0.02

0.70 ±
0.02

0.77 -3.60 ±
0.06

4.01 ±
0.26

7.60 ±
0.28

0.52 ±
0.01

0.52 ±
0.01

3.35 ±
0.18

6.95 ±
0.20

0.50 ±
0.01

0.50 ±
0.01

3.91 ±
0.07

7.50 ±
0.11

0.52 ±
0.01

0.52 ±
0.01

0.86 -4.50 ±
0.08

4.95 ±
0.39

9.44 ±
0.40

0.32 ±
0.01

0.32 ±
0.01

3.74 ±
0.42

8.24 ±
0.42

0.30 ±
0.01

0.30 ±
0.01

5.07 ±
0.13

9.57 ±
0.17

0.32 ±
0.01

0.32 ±
0.01

∗∗ d is the time-averaged interphase thickness, i.e. zVb
− zLb
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A.4 Xenon

Notation: first value is the mean value followed by its standard deviation.

Table 11: Xenon liquid-vapor equilibrium properties

T/TC T ρv ρl PV ∆H Cl Cv d/σ λ(38)

K kg/m3 kg/m3 106N/m2 kJ/kg (Eq.(2)) Å

0.57 165.27 ±
4.32

10.02 ±
0.60

2936.28 ±
5.46

0.10 ±
0.01

97.43 ±
1.68

3.02 ±
0.01

0.01 ±
0.01

1.92 ±
0.03

152.42

0.67 195.01 ±
2.34

37.48 ±
1.29

2729.54 ±
6.45

0.43 ±
0.02

89.54 ±
1.15

2.81 ±
0.01

0.05 ±
0.01

2.45 ±
0.04

45.52

0.78 224.54 ±
1.72

104.55 ±
2.54

2490.48 ±
7.92

1.23 ±
0.05

78.49 ±
1.04

2.55 ±
0.01

0.14 ±
0.01

3.31 ±
0.05

18.49

0.88 255.26 ±
1.28

253.52 ±
3.81

2181.53 ±
11.47

2.84 ±
0.11

61.89 ±
1.00

2.24 ±
0.02

0.32 ±
0.01

5.13 ±
0.06

9.01

Table 12: Xenon liquid-vapor boundary properties using the method of Meland for the liquid boundary

Lb : Meland Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.57 -0.96 ±
0.00*

3.32 ±
0.44

4.31 ±
0.41

0.91 ±
0.01

0.91 ±
0.01

2.60 ±
0.00*

3.56 ±
0.00*

0.86 ±
0.02

0.86 ±
0.02

2.28 ±
0.03

3.24 ±
0.04

0.78 ±
0.02

0.78 ±
0.02

0.67 -1.23 ±
0.01

3.45 ±
0.23

4.68 ±
0.23

0.78 ±
0.01

0.78 ±
0.01

3.23 ±
0.15

4.46 ±
0.15

0.77 ±
0.01

0.77 ±
0.01

3.08 ±
0.05

4.32 ±
0.05

0.77 ±
0.01

0.77 ±
0.01

0.78 -1.66 ±
0.02

3.87 ±
0.33

5.53 ±
0.32

0.59 ±
0.01

0.59 ±
0.01

3.57 ±
0.41

5.23 ±
0.41

0.58 ±
0.01

0.58 ±
0.01

3.90 ±
0.08

5.55 ±
0.09

0.58 ±
0.01

0.58 ±
0.01

0.88 -2.58 ±
0.03

4.58 ±
0.33

7.16 ±
0.32

0.35 ±
0.00*

0.35 ±
0.00*

3.31 ±
0.08

5.89 ±
0.10

0.32 ±
0.00*

0.32 ±
0.01

5.29 ±
0.10

7.87 ±
0.11

0.34 ±
0.00*

0.34 ±
0.00*

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb

Table 13: Xenon liquid-vapor boundary properties using the method of Gu for the liquid boundary

Lb : Gu Vb : Wolf Vb : Meland Vb : Gu

T/TC zL/σ zV /σ d
∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc zV /σ d

∗∗
/σ αe αc

0.57 -2.63 ±
0.02

3.40 ±
0.38

6.03 ±
0.34

0.87 ±
0.04

0.87 ±
0.04

2.60 ±
0.00*

5.22 ±
0.02

0.81 ±
0.03

0.81 ±
0.04

2.28 ±
0.03

4.91 ±
0.05

0.72 ±
0.03

0.72 ±
0.03

0.67 -3.03 ±
0.03

3.55 ±
0.25

6.57 ±
0.24

0.71 ±
0.02

0.71 ±
0.02

3.23 ±
0.15

6.25 ±
0.16

0.69 ±
0.02

0.69 ±
0.02

3.08 ±
0.05

6.11 ±
0.07

0.69 ±
0.02

0.69 ±
0.02

0.78 -3.56 ±
0.05

4.05 ±
0.31

7.63 ±
0.32

0.50 ±
0.01

0.50 ±
0.01

3.57 ±
0.41

7.14 ±
0.40

0.49 ±
0.01

0.49 ±
0.01

3.90 ±
0.08

7.46 ±
0.10

0.50 ±
0.01

0.50 ±
0.01

0.88 -4.72 ±
0.08

4.95 ±
0.27

9.67 ±
0.32

0.28 ±
0.01

0.28 ±
0.01

3.31 ±
0.08

8.03 ±
0.09

0.26 ±
0.01

0.26 ±
0.01

5.29 ±
0.10

10.01 ±
0.09

0.28 ±
0.01

0.28 ±
0.01

∗ standard deviation is less than 0.005
∗∗ d is the time-averaged interphase thickness, i.e. zVb

− zLb
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