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Abstract: The detection of seismic activity precursors as part of an alarm system will provide
opportunities for minimization of the social and economic impact caused by earthquakes. It has long
been envisaged, and a growing body of empirical evidence suggests that the Earth’s electromagnetic
field could contain precursors to seismic events. The ability to capture and monitor electromagnetic
field activity has increased in the past years as more sensors and methodologies emerge. Missions such
as Swarm have enabled researchers to access near-continuous observations of electromagnetic activity
at second intervals, allowing for more detailed studies on weather and earthquakes. In this paper, we
present an approach designed to detect anomalies in electromagnetic field data from Swarm satellites.
This works towards developing a continuous and effective monitoring system of seismic activities
based on SWARM measurements. We develop an enhanced form of a probabilistic model based on
the Martingale theories that allow for testing the null hypothesis to indicate abnormal changes in
electromagnetic field activity. We evaluate this enhanced approach in two experiments. Firstly, we
perform a quantitative comparison on well-understood and popular benchmark datasets alongside
the conventional approach. We find that the enhanced version produces more accurate anomaly
detection overall. Secondly, we use three case studies of seismic activity (namely, earthquakes in
Mexico, Greece, and Croatia) to assess our approach and the results show that our method can detect
anomalous phenomena in the electromagnetic data.

Keywords: anomaly detection; Martingale theory; electromagnetic seismic precursors; Swarm
satellites; earthquake

1. Introduction

The history of seismic event detection spans millennia, with early records tracing
back to ancient China around 2000 years ago [1]. However, significant advancements in
seismological studies emerged predominantly in the mid 20th century, driven largely by
the interests of superpowers engaged in nuclear weapon testing [2]. Over recent years,
technological progress has led to the deployment of powerful sensors on both ground-based
stations and satellites orbiting the Earth [3–5]. This has contributed to a growing body of
evidence suggesting a connection between seismic activity and electromagnetic phenomena.
Notably, the Rikitake Law, discovered by Japanese physicist Rikitake, demonstrates a linear
relationship between the logarithm of electromagnetic precursor time and earthquake
magnitude [6].
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This paper focuses on detecting abnormalities in electromagnetic field behavior mea-
sured by satellites, with a specific interest in the Swarm constellation operated by the
European Space Agency (ESA) since 2013 [7]. Swarm, comprising three identical satellites
equipped with high-precision electromagnetic field sensors, was originally designed to
study ionosphere behavior for space physics research. However, it has also been utilized in
research examining electromagnetic field variations associated with seismic events.

The Swarm satellite constellation comprises three satellites: Alpha, Beta, and Charlie.
They are identical, differing only in altitude and orbit behavior. Alpha and Charlie orbit
roughly 450 km high, with a 100-km separation, while Beta orbits at around 510 km, nearly
perpendicular to Alpha and Charlie [7]. Originally, Beta was intended to orbit alongside
Alpha, but due to issues with Charlie, their altitudes were swapped, although this did
not affect the constellation functionality. Each satellite records electromagnetic activity
every second, along with corresponding geospatial coordinates (latitude and longitude).
Consequently, each satellite produces 86,400 observations per day, totaling 259,200 for all
satellites. This amounts to approximately 756,280,000 available records detailing electro-
magnetic field (EMF) behavior. From this extensive dataset, we focus on a subset within
specific geospatial bounds for our experiments.

This paper introduces an improved abnormal change detection algorithm based on
Martingale probability theory [8,9]. Unlike the original approach, which required a prede-
fined threshold, our method does not, reducing errors introduced during data aggregation.
We conduct two experiments: a quantitative analysis to evaluate our method performance
against benchmark data and a qualitative study using real Swarm data to investigate three
seismic events—the 2017 Mexican earthquake, the 2020 Greek earthquake, and the 2020
Croatian earthquake. Our results suggest that our approach can detect abnormal EMF
patterns preceding seismic events, sometimes months in advance. We believe these findings
provide a foundation for developing abnormal change detection algorithms for space-based
EMF time-series data.

Large-magnitude earthquakes, while rare, have significant societal impacts in terms of
loss of life and economic damage. They result from cumulative strain over time, culminat-
ing in lithospheric rupture and bedrock displacement [10]. Studies have shown seismic
anomalies occurring before earthquakes, termed precursors or abnormal signals, suggest-
ing an energy exchange between the lithosphere and the ionosphere—the ionized upper
atmosphere. Ground-based and space-borne measurements offer insights into precursor
signals. Space-borne measurements, like those from CHAMP, DEMETER, and Swarm
satellites, provide valuable data for studying ionospheric activity and its relation to seismic
events. Swarm data, in particular, have shown promise in detecting seismic event pre-
cursors through the analysis of EM variations [11–13]. This paper presents an enhanced
Martingale algorithm for detecting abnormal changes in EMF data. We focus on probabilis-
tic approaches for anomaly detection, as they do not require predefined thresholds, which is
advantageous given the difficulty in defining anomalies within the EMF domain. Building
on previous work, we propose a novel method utilizing Martingale probability theory,
offering a robust probabilistic model without the need for predefined thresholds [14,15].

2. Electromagnetic Anomaly Detection via Martingale Systems

Martingale probability theory models a fair system where, in gambling terms, only one
successful bet is needed to recover from previous losses. A sequence of random variables Vi,
where i ranges from some starting point to infinity, is considered a Martingale with respect
to another sequence of random variables Zi if certain conditions are met. Specifically, for all
i ≥ 0, Vi must be a measurable function of Z0, . . . , Zi, the expected absolute value of Vi must
be finite, and the conditional expectation of Vn+1 given Z1, . . . , Zn is equal to Vn, indicating
that V is expressible in terms of z with finite expectation. In simpler terms, a Martingale is
a sequence where each new value is, on average, equal to the previous value.

In our problem domain, we are interested in exchangeability testing using Martingale
theory [8,16]. Exchangeability refers to a property of the joint distribution of Zi, where
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for any subset of Zi the joint distribution remains the same under permutation. In other
words, the order of the sequence does not affect the probability distribution. To assess
exchangeability, we utilize a strangeness measure, as described in [9], which evaluates
how unusual a data point is compared to others in its set. Since anomaly detection is
typically unsupervised, we employ a cluster-based strangeness measure incorporating
distance metrics.

Seismic events, such as earthquakes, are often preceded by various precursor phe-
nomena, including changes in electromagnetic fields. These electromagnetic anomalies
arise due to the complex interactions between tectonic plates, stress accumulation, and the
release of energy along fault lines. As seismic activity generates stress within the Earth’s
crust, it can lead to the fracturing of rocks, which in turn produces electrical charges and
perturbations in the surrounding electromagnetic field.

Detecting electromagnetic anomalies as precursors to seismic events offers valuable
insights into the underlying processes leading to earthquakes. However, it is crucial to ad-
dress several key questions regarding this approach. Firstly, can electromagnetic anomalies
reliably serve as indicators of impending seismic activity? Research suggests that while elec-
tromagnetic precursors show promise, their predictive value may vary depending on factors
such as the proximity to the epicenter and the magnitude of the impending earthquake.

Furthermore, the use of satellite-based electromagnetic monitoring systems raises
questions about detection distances and false positives. Satellites equipped with electro-
magnetic sensors can capture data over large geographic areas, allowing for wide-scale
monitoring. However, it is essential to ensure that detected anomalies are genuinely related
to seismic activity and not incidental variations in the electromagnetic field.

To address these concerns, our approach incorporates rigorous statistical methods,
such as Martingale theory, to analyze electromagnetic data and identify anomalies in-
dicative of seismic precursors. By employing cluster-based strangeness measures and
considering spatial and temporal relationships, we aim to distinguish genuine anomalies
from background noise and incidental fluctuations. This rigorous approach enhances
the reliability of our anomaly detection system and contributes to the understanding of
electromagnetic precursors to seismic events.

For an unlabeled training set T = x1, . . . , xn, such as the EMF data from Swarm
satellites, the strangeness of xi is defined as s(T, xi) = ||xi − c||, where c is the centroid of
T and || · || denotes a distance metric. This strangeness measure represents the distance of
a data point from the centroid of its cluster, serving as a measure of its abnormality.

Using s(T, xi), we can compute the p̂-value for each data point using the follow-
ing formula:

p̂ =
#{j : sj > si}+ θi#{j : sj = si}

i
(1)

Here, θi is a random number from the interval [0, 1] (e.g., 0.5) at instance i = 1, 2, . . . , n,
and sj represents the strangeness measure for j = 1, . . . , i. The symbol “#” denotes the
cardinality of the dataset, counting the number of j for which sj > si.

Using these p̂-values, we construct a randomized power Martingale indexed at
ϵ ∈ [0, 1]:

Mϵ
n =

n

∏
i=1

(ϵpϵ−1
i ) (2)

Alternatively, as noted in [9], we observe that

Mϵ
n = ϵpϵ−1

i Mϵ
i−1 (3)

This formulation prevents redundant computations for consecutive p̂-values. We test
exchangeability by comparing the resulting Martingale Mϵ

n to a predefined threshold λ,
assuming a null hypothesis H0: “no change in the data”, against the alternative H1: “change
in the data”:

0 < Mϵ
n < λ (4)
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If Mϵ
n > λ, H0 is rejected.
In our novel approach, we enhance this process by first implementing the Gaussian

Moving Average Martingale (GAMAM). For the n-th set, GAMAM produces a Gaussian
kernel ψi:

ψi =
1

σ
√

2π
e−

1
2 (

Mϵ
n

σ )2
(5)

where, σ is the standard deviation of the distribution, assumed to have a mean of zero. We
then replace the Martingale point Mϵ

n with a smoothed value Gk using the Gaussian kernel:

Gk =
k

∑
i=0

ψi Mϵ
k−i (6)

This smoothing operation allows us to compute λ by calculating the z-score of each
Gk and determining the mean absolute deviation (MAD) of that point:

Jz =
Mm − µ

σ
(7)

where, z = 1, . . . , n and m = 1, . . . , n, respectively. If a point exceeds the MAD, it signifies
a change or anomaly in the data. Consequently, we express H0 as satisfied as long as
0 < Jz < λ, where λ = MAD. This approach, utilizing the z-score, eliminates the need
for a predefined λ, as it is calculated dynamically based on the characteristics of the
evolving dataset.

Algorithm 1 elucidates our proposed methodology, while Figure 1 visually depicts the
algorithm workflow through a detailed flowchart. This graphical representation offers a
clear and concise illustration of the sequential steps involved in our approach, enhancing
the understanding of our proposed method.

Algorithm 1 z-Martingale Algorithm

Require: T = ∅
Ensure: M0 = 1, i = 1

y← 1
X ← x
N ← n
loop

if T = ∅ then ▷ operate while xi is new
s(T, xi) = 0

else
Compute strangeness s(T, xi)

end if
Compute p̂i using (1)
Compute Mϵ

i using (3)
Compute Jz for n = 1, . . . , i using (7)
λ← MAD
if Mz > λ then ▷ If Mz exceeds λ then trigger alarm

Return true
end if
i← i + 1

end loop
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Start

Input: EMF data, Parameters

Preprocess data

Initialize z-Martingale

Loop through dataset

Extract window of data

Compute average intensity

Update z-Martingale

Exceeds threshold?

Mark anomaly

Output: Detected anomalies

End

Yes

Yes

No

Figure 1. A flowchart illustrating our z-Martingale algorithm for anomaly detection in EMF signals.

3. Experiments

We conduct two experiments to evaluate the performance of our novel approach, each
discussed sequentially.

The first experiment is quantitative and aims to provide accuracy and r-rank metrics.
Its primary objective is to facilitate comparative analysis between our novel approach and
the original changepoint detection framework upon which we build. For this experiment,
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we utilize five widely recognized benchmark datasets containing anomalies [17]. We assess
our algorithm’s ability to detect these anomalies without prior knowledge. Given the
probabilistic nature of our linear model, we anticipate that our algorithm should compete
directly with the original approach as it traverses the data over time. The second experi-
ment is qualitative and revolves around three case studies of real-world large magnitude
earthquakes: the 2017 Mexican earthquake, the 2020 Greek earthquake, and the 2020 Croat-
ian earthquake. For each experiment, we outline the parameters used when running our
algorithm over the data. Unless otherwise specified, these parameters remain constant
throughout the experiment. Additionally, we provide discussions on the results obtained
at the end of each experiment.

Quantitative Experiment

To analyze the developed approach, we devised two experiments. The first experiment
is geared towards obtaining quantitative metrics such as accuracy, precision, and r-rank for
both the original Martingale framework [9] and the novel approach presented in this work.
Standard statistical measures are employed to compute the evaluation metrics of accuracy
and precision.

Specifically, we define the real positives (P) and real negatives (N) of the data, creating
two groups. Following standard practice, data are split into true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN); these definitions form the
basis of precision and accuracy calculations. Precision reflects the number of correct
identifications within the positive (TP and FP) categories and is defined as

Precision =
TP

TP + FP
(8)

Accuracy reflects the correctness of the overall results, including both positive and
negative outcomes, and is defined as

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Accuracy measures the overall correctness of the results, considering both positive and
negative outcomes. It quantifies the proportion of correctly classified instances among all
instances, encompassing true positives (correctly identified anomalies) and true negatives
(correctly identified non-anomalies), over the total number of instances. Precision, on the
other hand, focuses specifically on the accuracy of the positive results. It quantifies the
proportion of correctly identified anomalies (true positives) among all instances classified
as anomalies, including both true positives and false positives (instances wrongly identified
as anomalies).

The r-rank, also known as the R-metric, is a metric [18] gaining popularity in contexts
similar to the problem areas addressed in this paper. It involves assessing the accuracy of
individual methods using a predefined length. The r-rank takes into account the localization
of anomalies by ranking them and serves as a measure of accuracy by comparing expected
anomalies with detected anomalies in terms of importance, typically using a ranked nearest
neighbor approach. Essentially, it evaluates how accurately the detected anomalies are
ranked compared to the true known anomalies, reflecting the method’s performance.

Our first experiment is aimed at assessing the efficacy of our algorithm in detecting
anomalies following a common experimental design in this scenario space [19]. We utilized
a prominent electrocardiogram (ECG) database known as the “BIDMC Congestive Heart
Failure Database” (CHFDB) [20–24], which is widely recognized for its well-documented
anomalies (via a trained autoencoder) and annotated time and position data. This database
comprises 15 recordings obtained from a diverse cohort of participants, including 11 men
and 4 women, who suffer from severe congestive heart failure. Each recording spans
approximately 20 h, with a sampling rate of 250 Hz and a 12-bit resolution. From the
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CHFDB, we utilize four datasets with known and understood anomalies [19]. Figure 2
shows a sample trace of the ECG used in this experiment.

Figure 2. A sample of an ECG plot produced from the BIDMC Congestive Heart Failure Database
data used in this project.

The CHFDB is a highly regarded resource in cardiology research, providing a compre-
hensive collection of ECG recordings from patients with congestive heart failure. These
recordings offer valuable insights into the electrical activity of the heart during various
stages of cardiac dysfunction, facilitating the development and validation of algorithms
for detecting abnormal cardiac rhythms and anomalies. The database includes detailed
annotations and metadata, enabling precise analysis and interpretation of the recorded ECG
signals. Extensive prior studies have demonstrated that ECG data share several similarities
with EMF data [25,26]. Additionally we include another EMF dataset, “Data4”, which was
collaboratively obtained [2].

Tables 1 and 2 showcase the outcomes of employing two distinct anomaly detection
methodologies: the original Martingale and the Z-score enhanced Martingale, on multiple
datasets. These methodologies were evaluated based on three key performance metrics:
accuracy, precision, and R-rank. The R-rank, also known as the Relative Rank, is a metric
used to evaluate the performance of a classification model. It represents the relative position
of the true positive rate (sensitivity) against the false positive rate (1 − specificity) on a
receiver operating characteristic (ROC) curve. To calculate R-rank, we take the area under
the ROC curve and divide by the total area of the ROC chart.

Regarding the original Martingale results (Table 1), diverse performance levels are
evident across different datasets. For instance, dataset Chfdb_chf01_275_f1 attained an
accuracy of 91% and a precision of 79%, signifying a relatively high accuracy in identifying
anomalies, albeit with some false positives. However, the R-rank for this dataset is notably
low at 26%, indicating that the detected anomalies may not consistently rank highly
in importance or severity. Conversely, dataset Chfdb_chf13_45590_f2 exhibited higher
precision (75%) and R-rank (28%) with a slightly improved accuracy of 94%, indicating
better performance in correctly identifying anomalies with higher importance.

Transitioning to the results of the Z-score enhanced Martingale (Table 2), a similar
trend in performance metrics is observed with some variations. For instance, in dataset
Chfdb_chf01_275_f1, the Z-score enhanced Martingale achieved the same accuracy (91%) as
the original Martingale but with a slightly lower precision (75%). However, the R-rank no-
tably increased to 62%, indicating that the detected anomalies are more likely to be of higher
importance or severity compared to the original Martingale results. Similarly, in dataset



Sensors 2024, 24, 3654 8 of 27

Chfdb_chf13_45590_f2, the Z-score enhanced Martingale demonstrated perfect precision
(100%) and a significantly higher R-rank (55%) compared to the original Martingale results,
suggesting a more effective prioritization of detected anomalies.

Overall, these results underscore the potential advantages of employing the Z-score
enhanced Martingale approach, particularly in enhancing the ranking of detected anomalies
based on their importance or severity. Nonetheless, further analysis and validation are
essential to comprehensively understand the implications of these performance disparities
and to evaluate the robustness of the Z-score enhanced Martingale approach across various
datasets and contexts.

Table 1. Results of original Martingale.

Dataset Accuracy (%) Precision (%) R-Rank (%)

Chfdb_chf01_275_f1 0.91 0.79 0.26
Chfdb_chf01_275_f2 0.87 0.74 0.80
Chfdb_chf13_45590_f1 0.91 0.55 0.26
Chfdb_chf13_45590_f2 0.94 0.75 0.28
Data4 0.96 0.93 0.17

Table 2. Results of Z-score enhanced Martingale.

Dataset Accuracy (%) Precision (%) R-Rank (%)

Chfdb_chf01_275_f1 0.91 0.75 0.62
Chfdb_chf01_275_f2 0.89 0.75 0.81
Chfdb_chf13_45590_f1 0.91 0.57 0.64
Chfdb_chf13_45590_f2 0.94 1.0 0.55
Data4 0.97 0.94 0.39

4. Quantitative Experiment

As discussed earlier, Swarm satellites generate a significant amount of data at second
intervals, accumulating a large dataset since project inception and the initial report obser-
vations. For our study, we have chosen to focus on a limited time frame—specifically, one
year prior to the seismic event—including the day of the seismic event itself and 3-month
aftershocks. However, in future studies, we may extend our observations further into the
past. Based on the success of our algorithm in the first experiment, we can assert that our
algorithm is capable of detecting anomalies with a high degree of accuracy and correctness,
with our hypothesis being that our algorithmic system is transferable into this problem
domain. Building upon this, we examine the EMF activity in relation to time preceding
the seismic event, such as three months, six months, and twelve months, as well as three
months post-seismic event. To refine our analysis, we narrow down the dataset by imposing
a geospatial constraint, meaning only data within predefined latitude and longitude grids
are considered for forming the time-series analyzed by our algorithm. Specifically, we
utilize two grids: a 1000 km× 800 km grid and a 500 km× 300 km grid, respectively.

The Swarm satellite constellation, comprising satellites Alpha, Beta, and Charlie [26],
operates with distinct orbits: A and C travel at an altitude of approximately 450 km in
parallel, while B orbits at around a 550 km altitude, perpendicular to Alpha and Charlie.
These satellites record Vector Field Magnetometer (VFM) readings, capturing three-axis
bounded values denoted as b2

x, b2
y, and b2

z . To simplify analysis, we reduce the data

dimensionality in a 1-dimensional intensity |−→B | value defined as

|−→B | =
√

b2
x + b2

y + b2
z (10)

This transformation enables a more streamlined approach to analyzing the magnetic
field data, facilitating subsequent interpretation for various applications, such as seismic
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event detection. Utilizing (10), we define the magnitude of the intensity values across a
single day of samples N as

B̃ =
N

∑
i=1
|−→B |i (11)

Taking (11), we can further define the average intensity value over multiple days
(complying with our algorithmic T) as

T =

{
1
Nj

B̃j | j = 1, 2, . . . , J

}
(12)

Our final time-series, per satellite, comprises data points representing the mean av-
erage across the orbits of a given day. It is important to note that non-orbit days are
excluded from the final time-series. This ensures that our analysis focuses on data captured
during satellite orbits, providing a more accurate representation of the electromagnetic
field activity.

Furthermore, by constraining our analysis to specific geospatial grids, we aim to
enhance the precision of our findings by focusing solely on regions of interest where seis-
mic activity is most likely to occur. This approach allows us to zoom in on areas with
higher seismic risk, potentially increasing the sensitivity of our anomaly detection algo-
rithm to relevant electromagnetic field fluctuations preceding seismic events. Additionally,
the aggregation of data points to form daily mean averages helps smooth out noise and
fluctuations, providing a clearer signal for anomaly detection. This preprocessing step
is essential for ensuring the robustness and reliability of our analysis, particularly when
dealing with high-frequency data generated by Swarm satellites.

By incorporating both temporal and spatial dimensions into our analysis, we can better
understand the relationship between electromagnetic field activity and seismic events. This
multidimensional approach enables us to uncover potential patterns and correlations that
may have previously gone unnoticed, ultimately contributing to our understanding of
seismic precursors and improving our ability to forecast and mitigate earthquake risks.

Our case studies focus on the earthquakes that occurred in Mexico (19 September 2017—
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/executive (accessed on
10 March 2021)), Greece (30 October 2020—https://earthquake.usgs.gov/earthquakes/even
tpage/us7000c7y0/executive (accessed on 10 March 2021)), and Croatia (29 December 2020—
https://earthquake.usgs.gov/earthquakes/eventpage/us6000d3zh/executive (accessed on
10 March 2021)).

The earthquake in Mexico occurred on 19 September 2017, with its epicenter—latitude
18.550◦ N and longitude 98.489◦ W—located near the town of Raboso in the state of Puebla,
approximately 120 km southeast of Mexico City. The earthquake, with a depth of 48 km,
had a magnitude of 7.1 and caused widespread devastation, resulting in hundreds of
fatalities and significant damage to buildings and infrastructure in Mexico City and the
surrounding areas.

The earthquake in Greece struck on 30 October 2020, with its epicenter—latitude
37.897◦ N and longitude 26.784◦ E—situated near the island of Samos in the eastern Aegean
Sea. The earthquake, with a depth of 21 km, had a magnitude of 7.0 and was felt across a
wide area, including parts of Greece and Turkey. It caused buildings to collapse, resulting in
casualties and injuries, particularly in the city of Izmir, Turkey, and on the island of Samos.

The earthquake in Croatia occurred on 29 December 2020, with its epicenter—latitude
45.424◦ N and longitude 16.257◦ E—located near the town of Petrinja in central Croatia.
The earthquake, with a depth of 10 km, had a magnitude of 6.4 and caused significant
damage to buildings and infrastructure in Petrinja and surrounding areas. It resulted in
several fatalities and numerous injuries, as well as widespread displacement of residents.

We present the outcomes of the case studies in a methodical, chronological order,
meticulously sorted by ascending grid size. Each geospatial boundary grid underwent a
thorough analysis, yielding three distinctive plots showcasing the original EMF data. These

https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us7000c7y0/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us7000c7y0/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us6000d3zh/executive
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plots include (1) the unaltered raw data, providing a baseline perspective; (2) the data
augmented with anomalies identified by the Martingale framework overlaid, highlighting
potential disruptions or irregularities; and (3) the anomalies identified by our innovative
framework overlaid, offering further insights into nuanced variations.

Within each plot, a comprehensive examination of observable EMF characteristics is
conducted. We meticulously document instances of positive and negative spikes, indi-
cating notable increases and decreases in intensity values, respectively. These spikes are
scrutinized to discern their significance within the broader context of the plot, considering
factors such as magnitude and duration. Additionally, the temporal proximity of each spike
to the seismic event is meticulously annotated, employing vertical reference lines to denote
specific time intervals (e.g., 3 months prior and 3 months post-event). This in-depth anno-
tation facilitates a detailed temporal analysis, allowing for the identification of potential
precursory EMF patterns preceding seismic events and their evolution over time.

The same method is applied in each instance. Using Equation (10), we form a sequence
of time-series data, wherein each data point is the mean of |−→B | values occurring over a
day’s orbit(s). From this, we form two time-series sequences by varying the geospatial
bound to 500× 300 km and 1000× 800 km. These are our ground truth data. The grid size
will contribute significantly to the calculated |−→B | values because of its size as it changes
the number of data points available over each day. We then examine the results of the
conventional Martingale approach and compare them with the results of the proposed
z-Martingale approach to determine which of the two methods is more accurate.

Within our case studies, the dataset T encompasses values spanning from one year
preceding the seismic event to three months following it. This extensive temporal scope
allows us to capture the dynamics of electromagnetic field (EMF) activity leading up to
and after the seismic event, providing a comprehensive understanding of the pre-seismic
and post-seismic EMF behavior. By including this wide range of temporal data, we aim to
analyze and identify any discernible patterns, anomalies, or fluctuations in EMF intensity
that may serve as potential precursors or indicators of seismic activity. This approach
enables us to explore not only the immediate events surrounding the seismic occurrence but
also the broader context and temporal evolution of EMF phenomena, thereby enhancing our
ability to detect and interpret anomalies in the EMF data with greater depth and accuracy.

Our overarching objective encompasses not only the detection of anomalies within the
data but also the assessment of their significance. As we progress through each case study,
we meticulously evaluate the anomalies detected by our algorithms, aiming to discern their
relevance and potential implications.

By scrutinizing the detected anomalies, we seek to identify those that exhibit notable
characteristics or patterns, indicating a departure from expected behavior. Our assessment
includes considerations such as the magnitude, frequency, and temporal distribution of
anomalies, as well as their spatial correlation with known seismic events or geological features.

Furthermore, we delve into the context surrounding each anomaly, exploring fac-
tors such as its proximity to seismic activity, its alignment with historical events, and its
correlation with environmental or anthropogenic factors. Through this comprehensive
analysis, we endeavor to distinguish between anomalies of genuine interest and those that
may arise from noise or artifacts in the data. Ultimately, our goal is to not only detect
anomalies but also to interpret their significance within the broader context of seismic
monitoring and environmental surveillance. By identifying and characterizing anomalies
of particular interest, we aim to advance our understanding of electromagnetic phenomena
and contribute valuable insights to the field of geoscience.

For brevity, we include the full results now for our case studies in Table 3. Table 3
provides a summary of the anomaly detection numbers for both the Martingale and Z-
Martingale methods across the various case studies and grid sizes. In the Mexico case
study (Section 4.1), using a grid size of 500× 300 km, the Martingale method detected three
anomalies while the Z-Martingale method detected four anomalies. When the grid size
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was increased to 1000× 800 km, the Martingale method detected five anomalies and the
Z-Martingale method detected five anomalies as well.

In the Greece case study (Section 4.2), with a grid size of 500× 300 km, the Martingale
method detected 21 anomalies while the Z-Martingale method detected 10 anomalies.
Similarly, with a grid size of 1000× 800 km, the methods detected twenty-one and nine
anomalies, respectively.

For the Croatia case study (Section 4.3), using a grid size of 500× 300 km, the Martin-
gale method detected 17 anomalies, and the Z-Martingale method detected 6 anomalies.
With a grid size of 1000× 800 km, the Martingale method detected 20 anomalies, while the
Z-Martingale method detected 10 anomalies.

Table 3. Anomaly detection numbers for Martingale and Z-Martingale methods.

Case Study Mexico
(500 × 300)

Mexico
(1000 × 800)

Greece
(500 × 300)

Greece
(1000 × 800)

Croatia
(500 × 300)

Croatia
(1000 × 800)

Martingale 3 5 21 21 17 20

Z-Martingale 4 5 10 9 6 10

4.1. Mexico 2017

The seismic activity of Mexico is deeply rooted in its geographical composition, being
located atop several intersecting tectonic plates. The convergence of the Cocos Plate and
North American Plate along the Pacific Coast, alongside activity along the edges of the
Rivera and Caribbean plates, generates approximately 40 earthquakes daily in the country.
The susceptibility of Mexico City to seismic events is exacerbated by its foundation on a
dry lake bed characterized by soft soil comprising sand and clay. This geological makeup
amplifies the destructive impact of major earthquakes, as loose sediments near the surface
slow down shock waves, increasing both their amplitude and duration.

On 19 September 2017, at approximately 6:15 p.m. local time, the Ayutla region in
Mexico, situated southeast of Mexico City, experienced a seismic event of considerable
magnitude. The impact of the earthquake was profound, resulting in widespread damage
categorized with a severity rating of VII (severe) intensity. The aftermath of the earthquake
left a lasting imprint on the region, with buildings damaged, infrastructure disrupted,
and communities in disarray. To visually contextualize the epicenter of the Mexico 2017
earthquake, a detailed plot of the 500× 300 km area of interest is provided in Figure 3.

Figure 3. A tilted plot of our 500× 300 km area of interest with the epicenter of the Mexico 2017
earthquake indicated with a pin.
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4.1.1. 500× 300 km

Figure 4 illustrates the EMF intensity activity leading up to and following the seismic
event. As described earlier, each data point represents the mean value aggregated across
daily recordings within a 500× 300 km grid, calculated according to Equation (11).

Figure 4. A plot of the original data occurring within the 500× 300 km grid obtained using the original
Swarm alongside Equation (10). The color coding is Alpha (red), Beta (green), and Charlie (blue).

In Figure 5a, we illustrate the outcomes obtained from applying the original Martingale
framework to the EMF data depicted in Figure 4. Despite the presence of approximately
15 significant anomalies in the ground truth data represented in Figure 4, the Martingale
framework identifies only one anomaly in the EMF signals leading up to the seismic event.
Remarkably, this sole anomaly is detected within the EMF data originating from the Alpha
satellite. Conversely, subsequent to the seismic event, the Martingale framework identifies
two anomalies. Intriguingly, both of these anomalies are observed within the EMF data
derived from the Beta satellite and coincide temporally with the anticipated aftershock
spikes, as depicted in Figure 4.

(a)

Figure 5. Cont.
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(b)
Figure 5. Comparison of Martingale and z-Martingale values within the 500× 300 km grid for the
Mexico case study. The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) Martingale
value data plotted within the 500× 300 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 500× 300 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a) method.

Figure 5b depicts the anomalies identified by our novel approach applied to the data
visualized in Figure 4. Notably, there is a discernible escalation in the number of detected
anomalies as the seismic event date approaches. Around nine months preceding the event,
aberrant patterns in the time-series of Charlie are detected, followed by anomalies in the
Beta time-series just under six months before. Subsequently, there is a surge in anomalies
detected in the Charlie time-series just under three months before the event, accompanied by
several anomalies in the Alpha time-series. Post the seismic event, anomalies are observed
in the Beta time-series.

In contrast to the original Martingale framework illustrated in Figure 5a, our approach
demonstrates a higher capability in detecting abnormalities across the time-series of all
three satellites. Intriguingly, some detected spikes originate from regions that exhibit no
apparent spikes or other anomalies in Figure 5. This observation suggests the presence of
underlying data behavior in those regions that contravene the null hypothesis, serving as
the triggering mechanism for an anomaly label.

4.1.2. 1000× 800 km

Figure 6 presents the EMF intensity activity over a larger area of 1000× 800 km, both
preceding and following the seismic event. Each data point in the graph represents the
mean intensity values calculated using Equation (10) for a single day. A distinct shift in
EMF behavior is observable compared to the 500× 300 km grid depicted in Figure 4. Across
all members of the satellite constellation—Alpha, Beta, and Charlie—more pronounced
waveform behavior shifts are evident leading up to and following the seismic event. This
divergence arises from the expanded coverage area of our geospatial boundary, resulting
in a greater number of data samples.

Figure 7a shows the results obtained using the original Martingale system with the
data plotted in Figure 6 for each of the satellite time-series. Starting with Alpha, we see a
number of anomalies detected up to 16 months prior to the seismic event data until roughly
5 months prior, followed by a period of no detection until 1 month post the event date;
it is noteworthy that Alpha exhibits a series of large spikes causing anomaly detection,
which are sustained for long periods of time. Beta begins to exhibit triggering behavior at
approximately 9 months prior to the event data, with strong spiking activity over a long
duration of time until 3 months prior to the event data; no further anomalies are detected
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afterwards. Charlie only exhibits anomalies approximately 1 year prior to the event data
and remains untriggered, with no anomalies detected for the remainder of the time-series.

Figure 6. A plot of the original data occurring within the 1000× 800 km grid obtained using the original
Swarm alongside Equation (10). The color coding is Alpha (red), Beta (green), and Charlie (blue).

We do note that, although no anomalies are detected near the event data, the time-
series themselves show some spiking activity with long durations just before and after the
event data for all three satellites when processed with z-Martingale.

Figure 7b depicts the outcomes derived from employing our z-Martingale system
with the data plotted in Figure 6 for each of the satellite time-series. In comparison to the
original Martingale system (Figure 7a), we observe fewer anomalies for Alpha, with none
detected approximately 1 year before the seismic event. Regarding Beta, the results closely
resemble those obtained in Figure 7a, albeit with the z-Martingale system producing fewer
anomalies but larger spikes in magnitude. Similarly, anomalies for Charlie appear similar
to those in Figure 7a, although the spikes exhibit greater power in terms of magnitude.
Additionally, the time-series produces anomalies just after the event date.

We do note that, as before, the time-series themselves show some spiking activity with
long durations just before and after the event data for all three satellites when processed
with z-Martingale.

(a)

Figure 7. Cont.
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(b)
Figure 7. Comparison of Martingale and z-Martingale values within the 1000× 800 km grid for the
Mexico case study. The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) Martingale
value data plotted within the 1000× 800 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 1000× 800 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a) method.

4.2. Greece 2020

On 30 October 2020, a seismic event with a moment magnitude of 7.0 occurred ap-
proximately 14 km northeast of the Greek island of Samos. While Samos was closest to
the epicenter, the Turkish city of İzmir, located 70 km northeast, bore the brunt of the
impact. Over 700 residential and commercial structures in İzmir were seriously damaged
or destroyed as a result. This earthquake, though not unprecedented in the region, had
significant consequences due to its intensity and proximity to populated areas. The seismic
activity served as a reminder of the vulnerability of communities situated along active
fault lines and highlighted the importance of preparedness and resilience in earthquake-
prone regions. In the aftermath, relief efforts focused on providing aid to affected areas
and implementing measures to mitigate the impact of future seismic events. The event
underscored the need for continued research and investment in earthquake monitoring and
early warning systems to enhance disaster response and minimize loss of life and property
in seismic zones.

Greece is located in a seismically active region characterized by frequent earthquakes.
The country is situated at the convergence of several tectonic plates, including the Eurasian
Plate, the African Plate, and the Anatolian Plate. These plates interact along the Hellenic
Arc, a major geologic feature that extends through Greece and neighboring countries. As a
result of this tectonic activity, Greece experiences a relatively high frequency of earthquakes
of varying magnitudes. Some regions in Greece, particularly those near fault lines and
plate boundaries, are considered to be at higher risk of seismic activity compared to
others. This high activity is evident in both our 500× 300 km and 1000× 800 km plots;
Figures 8a,b and 9a,b.
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(a)

(b)
Figure 8. Comparison of Martingale and z-Martingale values within the 500× 300 km grid for the
Greece case study. The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) Martingale
value data plotted within the 500× 300 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 500× 300 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a) method.

(a)

Figure 9. Cont.
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(b)
Figure 9. Comparison of Martingale and z-Martingale values within the 1000× 800 km grid for the
Greece case study. The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) Martingale
value data plotted within the 1000× 800 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 1000× 800 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a) method.

4.2.1. 500× 300 km

Figure 10 showcases the EMF intensity activity across a 500× 300 km area before
and after the seismic event. Each data point represents the mean intensity value per day,
calculated using Equation (10). The figure consists of two sub-figures: Figure 10a,b.

In Figure 10a, the unmodified time-series obtained from the 500× 300 km grid is
depicted. It is noticeable that approximately 1 year prior to the event date, the values
obtained for Beta exhibit errors, showing zero values for bx, by, and bz. To enhance visual
clarity, Figure 10b displays only the time-series of Alpha and Charlie. It is important to
highlight that although we modified the plot in Figure 10b to exclude Beta, we did not
exclude Beta from our analysis. We believe both the original Martingale and z-Martingale
systems to be robust enough to handle such errors appropriately.

Figure 8 shows the results from both the Martingale and z-Martingale systems op-
erating over the data shown in Figure 10a. Figure 8a shows the results obtained from
the original Martingale system, with only Beta and Charlie producing anomalies. Beta
produces roughly five anomaly detections just prior to the event date, while Charlie pro-
duces a number of anomalies through its time-series from roughly 10 months prior to
2 months post the seismic event with a large spike occurring near the same position as the
anomalies detected by Charlie. Interestingly, we can observe an unusual waveform in Beta
at the rough location of the erroneous data, the impact of which was minimized by the
Martingale process but suggests the potential exploration of shape-based encoding [19] for
future work.

Figure 8b shows the results of our z-Martingale, with all three satellites (Alpha, Beta,
and Charlie) exhibiting anomalies in their time-series. The Alpha time-series produces
anomalies at roughly 6 and 3 months prior to the seismic event; however, we note rapid
fluctuations in EMF intensity lasting for long periods of time. Beta produces anomalies
approximately 3 months post the event data, which is in contrast to Figure 8a where Beta
produces anomalies just before the event date; again, as in Figure 8a, we can observe an
unusual waveform pattern for Beta at the time of the erroneous data sampling. The time
series of Charlie appears to follow a similar pattern to Charlie of Figure 8a but with
fewer anomalies.



Sensors 2024, 24, 3654 18 of 27

(a)

(b)
Figure 10. Plots of the time-series produced from Alpha, Beta, and Charlie satellites with intensity
values obtained from a 500× 300 km grid centered on the epicenter of the 2020 Greek earthquake.
The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) An unmodified plot of the time-
series produced from Alpha, Beta, and Charlie over a 500× 300 km grid centered on the epicenter of
the 2020 Greek Earthquake. It is clear that the results of Beta inhibit our ability to visually explore the
plot with ease, so we provide (b) with Beta removed to highlight the behaviors of Alpha and Charlie.
(b) A modified plot of the time-series produced from Alpha and Charlie over a 500× 300 km grid
centered on the epicenter of the 2020 Greek Earthquake. Beta has been removed from the plot to
enhance our visual interpretations but is observable in (b).

4.2.2. 1000× 800 km

Figure 11 showcases the EMF intensity activity across a 1000× 800 km area before
and after the seismic event. Each data point represents the mean intensity value per day,
calculated using Equation (10). The figure consists of two sub-figures (as in Section 4.2.1):
Figure 11a,b.

In Figure 11a, the unmodified time-series obtained from the 1000× 800 km grid is
depicted. It is noticeable that approximately 1 year prior to the event date, the values
obtained for Beta exhibit errors, showing zero values for bx, by, and bz. To enhance visual
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clarity, Figure 11b displays only the time-series of Alpha and Charlie. It is important to
highlight that, as in Section 4.2.1, though we modified the plot in Figure 11b to exclude
Beta, we did not exclude Beta from our analysis.

(a)

(b)
Figure 11. Plots of the time-series produced from Alpha, Beta, and Charlie satellites with intensity
values obtained from a 1000× 800 km grid centered on the epicenter of the 2020 Greek earthquake.
The color coding is Alpha (red), Beta (green), and Charlie (blue). (a) An unmodified plot of the time-
series produced from Alpha, Beta, and Charlie over a 1000× 800 km grid centered on the epicenter of
the 2020 Greek Earthquake. It is clear that the results of Beta inhibit our ability to visually explore the
plot with ease, so we provide (b) with Beta removed to highlight the behaviors of Alpha and Charlie.
(b) A modified plot of the time-series produced from Alpha and Charlie over a 1000× 800 km grid
centered on the epicenter of the 2020 Greek Earthquake. Beta has been removed from the plot to
enhance our visual interpretations but is observable in (a).

Figure 9 shows the results from both the Martingale and z-Martingale systems oper-
ating over the data shown in Figure 11a. Figure 9a shows the results obtained from the
original Martingale system. Alpha, Beta, and Charlie allow the production of anomalies
within their respective time-series. Alpha exhibits a group of anomalies approximately
10 months prior to the seismic event date followed by anomalies immediately preceding
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and on the event date. Beta exhibits anomalies at approximately 9 months prior to the
event date with no further detection afterwards. Charlie’s time series results in several
anomalies between the 9 month and 6 month periods of time without any further reports.

Figure 9b shows the results obtained from processing the data of Alpha, Beta, and Char-
lie with our z-Martingale approach. Alpha follows a similar pattern of detected anomalies
as in Figure 9a, though with larger visible spikes. Beta exhibits a similar behavior as in
Figure 9a, though more anomalies are produced and several spikes show significant in-
creases in their magnitudes. Charlie follows the pattern exhibited by Figure 9a very closely,
with anomalies detected at approximately the same time; interestingly, as with Alpha
and Beta, we see distinctive change in the magnitude of spikes within Charlie. Across
all of the signals, it is noteworthy that the waveform through the experiment is different
when comparing Martingale and z-Martingale, indicating the potential for future research
utilizing waveform analytics and pattern recognition techniques.

4.3. Croatia 2020

On 29 December 2020, Croatia experienced a seismic event with significant implica-
tions for the region. The earthquake, with a magnitude of 6.4 and located within central
Croatia, underscored the country’s susceptibility to seismic activity despite not being as
seismically active as other Mediterranean regions. While the event’s magnitude may not
have been unprecedented, its impact on local communities and infrastructure was notable.
Croatia, situated in southeastern Europe, experiences seismic activity due to its location at
the boundary of the Eurasian Plate and the Adriatic microplate. While not as seismically
active as some other Mediterranean regions, Croatia still faces occasional earthquakes
resulting from the collision and subduction of these tectonic plates, along with the presence
of fault systems within the region. The seismicity in Croatia, though generally of lower
magnitude, poses risks to local communities and infrastructure. In this case study, we delve
into a specific earthquake event that occurred in Croatia on a particular date and location.
Our focus lies on analyzing the electromagnetic field (EMF) intensity data collected before
and after this seismic event.

Like our study in Section 4.2, the area of investigation time-series extracted for Beta
contains a zero error, with the values for bx, by, and bz equaling zero. This is a common
occurrence in long-form satellite telemetry and sensing.

4.3.1. 500× 300 km

Figure 12 showcases the EMF intensity activity across a 500× 300 km area before
and after the seismic event. Each data point represents the mean intensity value per day,
calculated using Equation (10). The figure consists of two sub-figures (as in Section 4.2.1):
Figure 13a,b. In Figure 13a, the unmodified time-series obtained from the 1000× 800 km
grid is depicted. It is noticeable that approximately 1 year prior to the event date, the values
obtained for Beta exhibit errors, showing zero values for bx, by, and bz. To enhance visual
clarity, Figure 13b displays only the time-series of Alpha and Charlie. It is important to
highlight that, as in Section 4.2.1, though we modified the plot in Figure 13b to exclude
Beta, we did not exclude Beta from our analysis.

Figure 12 shows the plots obtained from processing the data shown in Figure 13a
using the Martingale and z-Martingale systems for Alpha, Beta, and Charlie EMF time-
series produced over a 500× 300 km grid centered on the epicenter of the 2020 Croatian
earthquake. Figure 12a shows the results of using the Martingale system to detect anomalies
on the EMF data. It is observable that no anomalies are detected by the Martingale through
the entire time-series for Alpha; the Beta time-series produces anomalies at roughly 1 month
post the event date; and Charlie produces some anomalies roughly 4 months prior to the
event date. It is noteworthy to highlight the waveform variations that occur through
the plotting.
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(a)

(b)
Figure 12. Comparison of Martingale and z-Martingale values within the 500× 300 km grid for the
Croatia case study. The color coding is Alpha (red), Beta (blue), and Charlie (green). (a) Martingale
value data plotted within the 500× 300 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 500× 300 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a) method.

(a)
Figure 13. Cont.
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(b)
Figure 13. Plots of the time-series produced from Alpha, Beta, and Charlie satellites with intensity
values obtained from a 500× 300 km grid centered on the epicenter of the 2020 Croatia earthquake.
The color coding is Alpha (red), Beta (blue), and Charlie (green). (a) An unmodified plot of the
time-series produced from Alpha, Beta, and Charlie over a 500 × 300 km grid centered on the
epicenter of the 2020 Croatian Earthquake. It is clear that the results of Beta inhibit our ability to
visually explore the plot with ease, so we provide (b) with Beta removed to highlight the behaviors of
Alpha and Charlie. (b) A modified plot of the time-series produced from Alpha and Charlie over a
500× 300 km grid centered on the epicenter of the 2020 Croatian Earthquake. Beta has been removed
from the plot to enhance our visual interpretations but is observable in (a).

Figure 12b shows the anomalies detected using the z-Martingale system. Alpha
produces some anomalies ahead of the event date, in contrast with the plot in Figure 12a;
notably, anomalies are detected at roughly 1 year and 4 months prior to the event date. Beta
produces anomalies at 1 year and 5 months prior to the event date and 1 month following.
Charlie produces anomalies at roughly 1 year and four months.

4.3.2. 1000× 800 km

Figure 14 showcases the EMF intensity activity across a 1000× 800 km area before
and after the seismic event. Each data point represents the mean intensity value per day,
calculated using Equation (10). The figure consists of two sub-figures (as in Section 4.3.1):
Figure 14a,b. In Figure 14a, the unmodified time-series obtained from the 1000× 800 km
grid is depicted. It is noticeable that approximately 1 year prior to the event date, the val-
ues obtained for Beta exhibit errors, showing zero values for bx, by, and bz. To enhance
visual clarity, Figure 14b displays only the time-series of Alpha and Charlie. It is worth
emphasizing that, similar to Section 4.3.1, the plot in Figure 14b was adjusted to exclude
Beta. However, it is crucial to note that Beta was not excluded from our analysis.

Figure 15 shows the results from both the Martingale and z-Martingale systems oper-
ating over the Swarm constellation intensity data shown in Figure 14. Figure 15a shows the
results obtained from the Martingale system operating over the data. Figure 15b shows
the results obtained from operating with the z-Martingale system. For Figure 15a, taking
each satellite in turn, we observe the following: the Alpha time-series contains anomalies
detected at 1 year, 6 months, 3 months, and 2 months prior to the event date with no further
alarms; the Beta time-series contains anomalies detected at roughly 3 months post the
event date with no previous anomalies detected; the Charlie time-series contains anomalies
detected at over 1 year, 1 year, 8 months, and 2 months prior to the event date as well as
roughly 1 month following the event date. Consider the z-Martingale of Figure 15b where
we observe the following satellite time-series behaviors: the Alpha time-series contains
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anomalies at 6 months, 3 months, and 2 months prior to the event (similar to the observable
anomalies in Figure 15a; the Beta time-series contains anomalies detected at roughly 3
months post the event date with no previous anomalies detected; the Charlie time-series
contains many anomalies detected at over 1 year, 1 year, 8 months, and 2 months prior to
the event data as well as roughly 1 month following the event date.

(a)

(b)
Figure 14. Plots of the time-series produced from Alpha, Beta, and Charlie satellites with intensity
values obtained from a 1000× 800 km grid centered on the epicenter of the 2020 Croatia earthquake.
The color coding is Alpha (red), Beta (blue), and Charlie (green). (a) An unmodified plot of the
time-series produced from Alpha, Beta, and Charlie over a 1000× 800 km grid centered on the
epicenter of the 2020 Croatian Earthquake. It is clear that the results of Beta inhibit our ability to
visually explore the plot with ease, so we provide (b) with Beta removed to highlight the behaviors of
Alpha and Charlie. (b) A modified plot of the time-series produced from Alpha and Charlie over a
1000× 800 km grid centered on the epicenter of the 2020 Croatian Earthquake. Beta has been removed
from the plot to enhance our visual interpretations but is observable in (a).
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(a)

(b)
Figure 15. Comparison of Martingale and z-Martingale values within the 1000× 800 km grid for the
Greece case study. The color coding is Alpha (red), Beta (blue), and Charlie (green). (a) Martingale
value data plotted within the 1000× 800 km grid obtained using the original Swarm satellite data
alongside Equation (3). It is observable that this approach detects fewer anomalies compared to the
z-Martingale (b) method. (b) z-Martingale value data plotted within the 1000× 800 km grid obtained
using the original Swarm satellite data alongside Equation (7). It is observable that the z-Martingale
scores produce more anomaly detections than the regular Martingale method (a).

5. Discussion

The quantitative experiments reveal a notable performance enhancement of our novel
approach over the original Martingale framework, especially when considering the r-rank
metric. This signifies that our method effectively identifies anomalies of higher importance,
based on their rank, without the necessity of pre-defining a threshold. This flexibility
stands as a significant advantage over the original framework. Moreover, these results
instill confidence in our methodology, demonstrating its ability to enhance sensitivity to
complex temporal relationships without relying on a dynamic threshold.

In our qualitative assessment, we apply both our novel approach and the original
Martingale framework to real-world earthquake case studies in Mexico, Greece, and Croatia.
Overall, our framework tends to detect more anomalies across all case studies compared to
the original framework, particularly when considering data from the Beta satellites, which
were excluded from the graphical representation, on which our method does not perform
as well.

However, both methods show inadequacies when compared against manually identi-
fied anomalies from ground truth data as evident with Table 3, though the removal of the
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fixed thresholding is a clear advantage toward z-Martingale. This raises questions about
the reliability and robustness of the Martingale and z-Martingale methods, suggesting a
need for substantial improvement or a shift toward more dependable methodologies. It
is interesting that the z-Martingale is visibly more robust in the detection of anomalies as
well as emphasizing/retaining waveform sensitivity.

Despite the quantitative evidence indicating the capability of our approach in identify-
ing stronger anomalies, it raises concerns when considered alongside the claim that our
method is adept at detecting subtle changes. The discrepancy between detecting subtle
anomalies statistically while missing obvious ones prompts reflection on the reliability
of the hypothesis test method. Furthermore, the ambiguity surrounding the interpreta-
tion of these statistical anomalies as false positives underscores the need for a deeper
understanding of the physical implications of the detected anomalies.

6. Conclusions

This paper presents a novel probabilistic model based on Martingale theory, which
represents an advancement over previous methodologies by leveraging the z-space to elim-
inate the need for a predetermined threshold. Our primary objective is to detect anomalies
in EMF activity, potentially serving as precursors to seismic events. To comprehensively
assess our framework, we conducted two distinct experiments: a quantitative study facil-
itating rigorous statistical performance analysis and a qualitative investigation centered
around three prominent earthquake case studies. The results of our experiments reveal
a discernible improvement in performance compared to traditional approaches, under-
scoring our framework’s effectiveness in detecting early signs of abnormal EMF behavior
preceding seismic events.

Throughout our inquiry, we identified several noteworthy concerns and promising
avenues for future research. These include delving into the intricacies of electromagnetic
patterns to enhance the accuracy of seismic anomaly detection; scrutinizing the reliability
of the hypothesis test method; delving deeper into the nature of false positive results to
refine anomaly detection algorithms; investigating the disparate sensitivities of different
approaches to anomalies across various segments of time-series data; grid size analysis;
and integrating anomaly graphs with ground truth data to facilitate transparent analy-
sis, waveform analysis, shape encoding, and anomaly pattern recognition. Furthermore,
we propose extending our research endeavors by integrating advanced deep learning
techniques and further refining probabilistic models to scrutinize seismic event data for
nuanced abnormalities, thereby enhancing the robustness of our framework in seismic
precursor detection scenarios.
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