

Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing

Tsai, Y.-H., Tseng, C.-C., Lin, Y.-C., Nail, H. M., Chiu, K.-Y., Chang, Y.-H., Chang, M.-W., Lin, F.-H., & Wang, H.-M. D. (2024). Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing. *Biomedical journal*, 1-42. Article 100750. Advance online publication. https://doi.org/10.1016/j.bj.2024.100750

Link to publication record in Ulster University Research Portal

Published in: Biomedical journal

Publication Status: Published online: 03/06/2024

DOI: 10.1016/j.bj.2024.100750

Document Version

Version created as part of publication process; publisher's layout; not normally made publicly available

General rights

Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing

Yuan-Hsin Tsai, Chun-Chieh Tseng, Yun-Chan Lin, Howida M. Nail, Kuan-Yu Chiu, Yen-Hao Chang, Ming-Wei Chang, Feng-Huei Lin, Hui-Min David Wang

PII: S2319-4170(24)00053-2

DOI: https://doi.org/10.1016/j.bj.2024.100750

Reference: BJ 100750

To appear in: Biomedical Journal

Received Date: 31 March 2023

Revised Date: 22 March 2024

Accepted Date: 30 May 2024

Please cite this article as: Tsai Y-H, Tseng C-C, Lin Y-C, Nail HM, Chiu K-Y, Chang Y-H, Chang M-W, Lin F-H, Wang H-MD, Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing, *Biomedical Journal*, https://doi.org/10.1016/j.bj.2024.100750.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Authors. Published by Elsevier B.V. on behalf of Chang Gung University.

	111	n	D		n	ri		
	ULL.							

1	Novel artificial tricalcium phosphate and magnesium
2	composite graft facilitates angiogenesis in bone healing
3	
4	Yuan-Hsin Tsai ^{1,2} , Chun-Chieh Tseng ^{3,4} , Yun-Chan Lin ⁵ , Howida M. Nail ⁶ , Kuan-
5	Yu Chiu ^{3,4} , Yen-Hao Chang ^{3,4} , Ming-Wei Chang ⁷ , Feng-Huei Lin ^{8,9,10*} , and Hui-
6	Min David Wang ^{6,11,12*}
7	
8	Affiliations:
9	¹ Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing
10	University, Taichung 402, Taiwan, Republic of China
11	² Department of Orthopedic Surgery, Show-Chwan Memorial Hospital, Changhua 500,
12	Taiwan, Republic of China
13	³ Metal Industries Research & Development Centre, 1001 Kaonan Highway, Nanzi Dist.,
14	Kaohsiung 811, Taiwan, Republic of China
15	⁴ Combination Medical Device Technology Division, Medical Devices R&D Service
16	Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan,
17	Republic of China
18	⁵ Department of Food Science and Biotechnology, National Chung Hsing University,
19	Taichung 402, Taiwan, Republic of China
20	⁶ Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung
21	402, Taiwan, Republic of China

- ⁷Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT15
- 23 1AB, Northern Ireland, UK
- 24 ⁸Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing
- 25 University, Taichung 402, Taiwan, Republic of China
- ⁹Institute of Biomedical Engineering, College of Medicine and College of Engineering,
- 27 National Taiwan University, Taipei, Taiwan, Republic of China
- 28 ¹⁰ Institute of Biomedical Engineering and Nano-medicine, National Health Research
- 29 Institutes, Zhunan, Miaoli 350, Taiwan, Republic of China
- 30 ¹¹ Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University,
- 31 Kaohsiung 807, Taiwan, Republic of China
- 32 ¹² Department of Medical Laboratory Science and Biotechnology, China Medical University,
- 33 Taichung City 404, Taiwan, Republic of China
- 34

35 Corresponding Authors

- 36 Feng-Huei Lin, Ph.D
- 37 Professor, Institute of Biomedical Engineering, College of Medicine and College of
- 38 Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan,
- 39 Republic of China
- 40 Distinguished Investigator and Director, Division of Biomedical Engineering and
- 41 Nanomedicine Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan,
- 42 Miaoli County 35053, Taiwan, Republic of China
- 43 E-mail: double@ntu.edu.tw
- 44 Telephone: +886-2-2732-7474

- 46 Hui-Min David Wang, Ph.D. (H.-M. W.)
- 47 Professor, Graduate Institute of Biomedical Engineering, National Chung Hsing University,
- 48 Taichung 402, Taiwan, Republic of China
- 49 Address: No.145, Xingda Rd., South Dist., Taichung City 402, Taiwan, Republic of China
- 50 Mobil: 886-935753718
- 51 TEL: 886-4-2284-0733#651
- 52 Fax: 886-4-22852242
- 53 E-mail: <u>davidw@dragon.nchu.edu.tw</u>
- 54 ORCID: <u>https://orcid.org/0000-0002-4692-4917</u>
- 55 Website: https://sites.google.com/view/davidbiocosme/home?authuser=0
- 56

57 Abstract

58 Background: Bone grafting is the standard treatment for critical bone defects, but 59 autologous grafts have limitations like donor site morbidity and limited availability, while commercial artificial grafts may have poor integration with surrounding bone 60 61 tissue, leading to delayed healing. Magnesium deficiency negatively impacts angiogenesis and bone repair. Therefore, incorporating magnesium into a synthetic 62 63 biomaterial could provide an excellent bone substitute. This study aims to evaluate the morphological, mechanical, and biological properties of a calcium phosphate cement 64 (CPC) sponge composed of tetracalcium phosphate (TTCP) and monocalcium 65 phosphate monohydrate (MCPM), which could serve as an excellent bone substitute by 66 incorporating magnesium. 67

Methods: This study aims to develop biomedical materials composed mainly of TTCP and MCPM powder, magnesium powder, and collagen. The materials were prepared using a wet-stirred mill and freeze-dryer methods. The particle size, composition, and microstructure of the materials were investigated. Finally, the biological properties of these materials, including 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay for biocompatibility, effects on bone cell differentiation by alkaline phosphatase (ALP) activity assay and tartrate-resistant acid phosphatase

75 (TRAP) activity assay, and endothelial cell tube formation assay for angiogenesis, were
76 evaluated as well.

77	Results: The data showed that the sub-micron CPC powder, composed of TTCP/MCPM
78	in a 3.5:1 ratio, had a setting time shorter than 15 minutes and a compressive strength
79	of 4.39±0.96 MPa. This reveals that the sub-micron CPC powder had an adequate
80	setting time and mechanical strength. We found that the sub-micron CPC sponge
81	containing magnesium had better biocompatibility, including increased proliferation
82	and osteogenic induction effects without cytotoxicity. The CPC sponge containing
83	magnesium also promoted angiogenesis.
84	Conclusion: In summary, we introduced a novel CPC sponge, which had a similar
85	property to human bone promoted the biological functions of bone cells, and could
86	serve as a promising material used in bone regeneration for critical bone defects.
87	

Keywords: Critical bone defect, Magnesium, Tricalcium Phosphate, Bone graft

90 Introduction

91	Bone is a complex organ that has the ability for regeneration during development, or
92	remodeling in adult life, as well as fracture healing [1]. Bone defects are deficiencies
93	of bone where they should normally occur. The reasons for bone defects include trauma,
94	tumor, or infection (osteomyelitis) [2]. Bone defects commonly influence patients' life
95	quality, and the related medical treatment and costs are increasing. Currently, a major
96	research topic in bones is bone defect regeneration [3]. However, in some cases, bone
97	regeneration requires a large quantity for bone reconstruction with extreme bone defects,
98	such as trauma, infection, tumor resection, and skeletal abnormalities. Moreover, a bone
99	defect greater than 5 cm, known as a large-scale bone defect, impairs bone regeneration
100	and leads to poor bone healing [4].
101	The standard therapeutic regimen to enhance bone regeneration for defects smaller

101 The standard therapeutic regimen to enhance bone regeneration for defects smaller 102 than 5 cm is direct bone grafting [5, 6], which includes the use of various bone-grafting 103 methods, including autografts, allografts, and bone-graft substitutes that enhance bone 104 regeneration [7]. Vascularized bone grafts, harvesting cortico-cancellous graft with a 105 vascular pedicle, offer predictable incorporation for defects larger than 12 cm [8, 9]. 106 Defects larger than 12 cm are best treated using the distraction osteogenesis technique

107 [10] and induced membrane technique [11]. The induced membrane technique, also

108	named the Masquelet Technique, is the use of a transient cement spacer followed by a
109	staged large amount of bone grafting. To date, an autograft is still used as the most
110	favorable standard because the requirements for bone regeneration are satisfied, for
111	example, osteoinduction, osteoconduction, and osteogenesis [6, 12, 13]. However, the
112	limitation is the number of donor and donor site complications. In the USA, the allograft
113	is the second most popular bone graft, making up approximately 30% of all bone grafts
114	[14]. Nevertheless, compared with the autograft, poor healing has been identified, and
115	some adverse events such as disease transmission and other infectious pathogens have
116	been reported [15, 16].

In the past decades, bone-graft substitutes were introduced to solve these concerns, 117 with promising results. The bone substitutes should be architecturally like real bone and 118 119 have the ability to afford a scaffold for osteoconductivity and growth factors for osteoinductivity. These materials are composed of synthetic or natural biomaterial 120 121 scaffolds that promote the migration, proliferation, and differentiation of cells required 122 for bone regeneration. For example, collagen, hydroxyapatite (HA), β-tricalcium 123 phosphate (β-TCP), calcium-phosphate cement types, and glass ceramics are all 124 commonly used in clinical settings, either alone or in combination. Moreover, the 125 growth factors, including recombinant human bone morphological proteins (BMP-2

126	and BMP-7), necessary for bone regeneration, are provided in the scaffolds [17]. Since
127	the osteoinductive properties of BMPs promote fracture healing, the clinical
128	applications of BMPs are still limited due to the extremely high dosage, adverse effects,
129	and cost [18].
130	The bone is a rich mineral reservoir, storing about 60% of the body's magnesium.
131	Magnesium has a role in bone formation by inducing osteoblast proliferation and
132	increasing the solubility of minerals. To maintain extracellular physiological cation
133	concentrations at homeostasis, magnesium is released from the storage into the
134	bloodstream [19]. In addition to its role in the crystal structure, magnesium is important
135	for different physiological functions among living cells, such as those residents in bone.
136	Based on this conception, magnesium homeostasis is critical for bone health. Previous
137	reports have found that magnesium deficiency could induce osteoporosis in the rat and
138	an increased formation of osteoclasts [20]. Moreover, magnesium was found to enhance
139	osteogenesis in mesenchymal stem cells by the Notch signal pathway [21]. The
140	magnesium-containing scaffolds have been used to enhance bone regeneration in vivo
141	[22-25]. In this study, wet comminution in stirred media mills was used to produce sub-
142	micron material of calcium phosphate bone cement sponge (CPC sponge) from
143	tetracalcium phosphate/ monocalcium phosphate monohydrate (TTCP/MCPM)-based

- 144 calcium phosphate types of cement, followed by magnesium providing and collagen
- 145 covering. This study aims to analyze the *in vitro* morphological, mechanical, as well as

146 biological properties of the TTCP/MCPM nanoparticles.

147

148 Materials and methods

149 Preparation of sub-micron TTCP/MCPM

150	TTCP and MCPM were synthesized from calcium hydrogen phosphate and calcium
151	carbonate. TTCP was obtained by mixing calcium hydrogen phosphate and calcium
152	carbonate in a 1:1 molar ratio, followed by a high-temperature reaction at 1450°C to
153	1500°C for 6 hours and subsequent air cooling. MCPM was synthesized by slowly
154	mixing calcium carbonate into an acetone solution with phosphoric acid for 15 minutes.
155	The mixture solution was kept for 30 minutes and washed with deionized water to
156	remove unreacted phosphate ions. Finally, the MCPM powder was obtained after drying
157	for 24 hours.

The premix TTCP/MCPM was comminuted in a laboratory ball mill BLT-100 (JINBOMB ENTERPRISE CO., LTD.) containing an ethanol (>95.0%, VWR) suspension.
Milling beads with diameters of 10 mm and 5 mm were used in a 1:1.5 ratio by weight.

161 The rotating speed of the ball mill was 400~500 rpm for 24 hours. Powder recovery 162 was done by centrifugation and subsequent drying at 80°C for 24 hours in a muffle 163 furnace (Nabertherm). A schematic diagram of the sample preparation process is shown 164 in Fig. 1.

165 Preparation of TTCP/MCPM sponge

- 166 The different ratios (1:1, 1.1:1, 2:1, 3.5:1, 5:1, and 10:1) of TTCP and MCPM powders
- 167 were mixed with 0.1 wt% magnesium, then Type I Collagen solution (0.3 ug/ml) (Cat.
- 168 No. CLS354236; Corning, New York, U.S.A.) was employed as coating reagent. The
- 169 powder-to-collagen weight ratio was maintained at 1:3, and the mixture was subjected
- 170 to magnetic stirring.
- Subsequently, the TTCP/MCPM powder mixed with Collagen solution was poured into
 molding molds. The molds were then placed in a -20°C for 2 hours. After complete
 solidification of the composite block, it was transferred to a freeze-dryer for overnight
 freeze-drying, and a porous composite material (TTCP/MCPM/Collagen) was obtained.
- 175 Scanning electron microscopy (SEM)
- Particle size and degree of agglomeration were analyzed by scanning electron
 microscopy (Gemini Ultra 55, Carl Zeiss). The submicron particles were prepared by

- 178 embedding powders in a conductive paste. Secondary electrons were used for imaging
- 179 at an accelerating voltage of 2 kV [26].

180 Dynamic light scattering (DLS)

181	Size distributions of powders were determined by dynamic light scattering at a
182	wavelength of 632.8 nm (DLS, model DLS-700, Otsuka Electronics Co., Osaka, Japan).
183	Samples for the DLS measurements were prepared by dispersing small amounts of the
184	powder in ethanol (filtered using a 0.2 μ m filter), followed by treatment in an ultrasonic
185	bath for 10 min. After transferring to the sample holder, the suspensions were diluted
186	again using filtered ethanol and ultrasonicated for 3 min. The measurement conditions
187	included a sampling time of 80 μ s and 100 accumulations. A viscosity of 1.19 cP and a
188	refractive index of 1.36 was used for calculations [27].

- 189 X-ray diffraction spectroscopy (XRD)
- 190 XRD was conducted to examine the crystal phase composition of the samples. A 0.5mm 191 \times 0.5mm area of each sample was randomly selected, and the XRD spectra were 192 acquired at room temperature using an X-ray diffractor (D/max-II; RIGAKU, Japan) 193 with Cu K α radiation. The range was 10–90° with a 0.2° step and 1 s/step scan speed 194 (40 kV, 40 mA).

195 Cell culture

196	The murine osteoblast cell line MC3T3-E1, osteoclast precursor cell line RAW264.7,
197	and human umbilical vein endothelial cells (HUVEC) were obtained from the American
198	Type Culture Collection (ATCC; Manassas, VA, USA). The MC3T3-E1 and RAW264.7
199	cells were maintained in complete media including alpha-minimal essential medium (α -
200	MEM) supplemented with streptomycin (100 μ g/mL), penicillin (100 U/mL), and 10%
201	fetal bovine serum (FBS). The HUVEC cells were maintained in EBM-2 media (Lonza)
202	supplemented with streptomycin (100 µg/mL), penicillin (100 U/mL), and 20% FBS.
203	All cells were kept at 37 °C in an atmosphere of humidified air with 5% CO ₂ [28].

Cell proliferation 204

204	Cell proliferation
205	Cell proliferation was detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-
206	diphenyltetrazolium bromide (MTT) assay as previously described [29]. MC3T3-E1
207	and RAW264.7 cells seeded on different synthetic materials were kept in 96-well plates
208	for 1 or 3 days. The cells were rinsed with PBS, followed by incubation with MTT (0.5
209	mg/mL) at 37 °C for 2 h. Two hours later, cells were lysed by DMSO to dissolve
210	formazan crystals [30]. After the mixture was shaken at room temperature (RT) for 10
211	min, the absorbance of each well was determined at 450 nm using a microplate (ELISA)
212	reader (Bio-Tek, Winooski, VT, USA).

213 Osteoblast differentiation

214	The MC3T3-E1 osteoblasts grown in different CPC sponges have been further assessed
215	for their differentiation by alkaline phosphatase (ALP) activity assay (Alkaline
216	Phosphatase Activity Assay Kit (C); BioVision, wavelengths: 405nm, extract) [31]. The
217	cells were incubated with different CPC sponges for 3 days. The incubated cells were
218	rinsed twice with PBS, followed by the collection of total cell lysate using a lysis buffer.
219	The cell lysates were subjected to the measurement of alkaline phosphatase (ALP)
220	activity.

221 Osteoblast mineralization

222 The MC3T3-E1 osteoblasts were differentiated in an induction medium containing 223 vitamin C (50 μ g/mL), and β -glycerophosphate (10 mM) for 2 weeks as the previous 224 report described [32]. Cells were fixed in ice-cold 75% (v/v) ethanol for 30 min, and 225 the calcium deposition was determined using 40 mM alizarin red-S staining (pH 4.2) 226 (Sigma–Aldrich, 405nm, extract).

227 Osteoclast differentiation

Osteoclast differentiation was performed as previously described [32]. Briefly,
RAW264.7 osteoclast precursor cells were differentiated to osteoclasts in Dulbecco's

230	modified Eagle's medium supplemented with 10% FBS, 100 U/ml penicillin, and 100
231	$\mu g/ml$ streptomycin for 7 days. All cells were incubated with macrophage colony-
232	stimulating factor (M-CSF) (20 ng/ml) and RANKL (50 ng/ml) and incubated with
233	different CPC sponges. Finally, osteoclast differentiation was detected by tartrate-
234	resistant acid phosphatase activity (TRAP; Acid Phosphatase Kit 387-A; Sigma-
235	Aldrich, no extract) according to the manufacturer's instructions. The absorbance was
236	measured at 405 nm using a microplate reader.
237	Endothelial Cell Tube Formation Assay

238 HUVEC (3×10⁴ cells) were seeded onto pre-coated Matrigel plates (BD Biosciences,

239 Bedford, MA), which were premixed with synthetic materials. The formation of EC

tubes was photographed and tube branches were calculated using MacBiophotonicsImage J software [33, 34].

242 *Ferrous ion chelating assay*

243 For the antioxidant activity test, briefly, the synthetic materials were mixed with 5 μL

- of 2 mM ferrous chloride (FeCl₂). The reaction was initiated by the addition of 10 μL
- of 5 mM ferrozine. After 10 min at room temperature, the Abs. was determined at 562
- 246 nm using a microplate reader (Dynex Technologies, Inc., Chantilly, VA, US).

247 Statistical analysis

- 248 The statistical analysis was performed using SPSS Statistics 20. All data are presented
- as the mean \pm SD and were analyzed by one-way ANOVA. Bonferroni correction was
- 250 used for post hoc comparisons.

251 **Results**

252 Sedimentation of sub-micron particles

The experiments involved the assessment of synthetic sub-micron particle suspensions with varying average sizes, facilitating an exploration of the sample's behavior within the medium. Suspensions were created by introducing particles of distinct diameters (1 mm, 3.5, and 0.35 μm) into water. The outcomes of these experiments are depicted in Figure 2A.

258 SEM observation of TTCP/MCPM particles

259 SEM was used to evaluate the morphology of a synthetic material, TTCP/MCPM

- 260 powder. As shown in (Fig. 2A), the macroscopic morphologies of the images indicate
- the average size of particles was in the submicron to lower micron range after milling,
- compared with the original raw material (> 3 mm).

263 **Dynamic light scattering**

The particle size distributions (PSD) of our synthetic material were analyzed by DLS (Fig. 2C). The PSD result showed the average size distribution decreased to 328.7 nm after milling. More than 95% of the particles were sub-micron in diameter.

267 Setting time and compressive strength

The influence of different TTCP/MCPM ratios on the setting time of CPCs is listed in 268 (Table 1). The results showed that TTCP/MCPM ratios of 1:1 and 1.1:1 could not form 269 hard CPC sponges properly, even for more than 30 min. The CPC sponge, on the other 270 271 hand, begins to form when the TTCP/MCPM ratio increases to 2:1, with a setting time 272 of more than 20 min and soft compressive strength (1.09±0.36MPa). We also found that 273 the TTCP/MCPM ratio of 3.5:1 had an appropriate compressive strength (4.39 ± 0.96) 274 MPa) within 15 min, which is comparable to human spongy bone strength. Despite the higher compressive strength $(4.66 \pm 1.31 \text{ MPa})$ of the group with a TTCP/MCPM ratio 275 276 of 5:1, the setting time was too short for clinical procedures. Moreover, the group with 277 a TTCP/MCPM ratio of 10:1 couldn't even form a cohesive structure. Therefore, the 278 TTCP/MCPM ratio of 3.5:1 exhibited the most suitable properties for clinical applications. 279

280 SEM observation of CPC sponge with collagen covering

281	The macroscopic morphologies show that collagen uniformly covered the surface of
282	the CPC sponge (Fig. 2B(i)). After being provided with a hardening accelerator
283	(Na ₂ HPO ₄ , glycerol, and citrate), the CPC sponge exhibits a similar structure, with tinny
284	mineral crystals of collagen fibers dispersing homogeneously on the surface of the CPC
285	sponge (Fig. 2B(ii)).
286	XRD analysis
•••	

286 **XRD** analysis

287	The CPC sponge, derived from TTCP and MCPM, ultimately transforms into
288	hydroxyapatite (HA) during its formation. To confirm this characteristic, XRD analysis
289	was conducted post-reaction of the CPC sponge. As depicted in Fig. 2D, the XRD
290	patterns revealed distinct peaks for the synthesized CPC sponge at angles of 25.9° (002).
291	31.8° (211), 32.9° (300), 34.0° (202), 39.8° (310), 46.7° (222), 49.5° (213), and 53.1°
292	(004). These angles align closely with those of standard HA.

293 In vitro biocompatibility test of different CPC sponges

The cell viability on the CPC sponge can show the cytotoxicity and biocompatibility of 294

- the synthetic materials. Therefore, the MTT assay was used to investigate the viability 295
- of two different bone cells, osteoblasts, and osteoclasts on different CPC sponges. The 296
- results revealed that CPC sponges had a beneficial effect on MC3T3-E1 osteoblasts 297

298	viability, as provided in (Fig. 3A). The CPC sponges inhibited cell viability by
299	approximately 30 % in osteoclast precursors RAW264.7 at a high concentration (0.2
300	g/mL; Fig. 3B).

301 Chelation power of different CPC sponges

- The results indicated that all CPC sponges could chelate ferrous ions, and interestingly,
 CPC sponges containing magnesium possessed more significant chelation power than
 other materials, especially at a high concentration (0.2 g/mL; Fig. 4).
- 305 Osteoblast proliferation, differentiation, and mineralization assays of different
 306 CPC sponges

To evaluate the capacity of the CPC sponge for bone repair and regeneration, we 307 308 investigated the proliferation, differentiation, and mineralization in osteoblasts on 309 different CPC sponges. There was a significant difference between CPC sponges on 310 osteoblasts proliferation compared with the control group (Fig. 5A). In the osteoblast 311 differentiation assay, the data showed that the CPC sponge containing magnesium exhibited great potential to promote osteoblast differentiation after 3-day incubation, as 312 313 monitored by the ALP activity assay (Fig. 5B). Finally, the mineralization assay, which was accomplished by detecting calcium deposition, demonstrated that the CPC sponge 314

315 containing magnesium increased osteoblast mineralization as well (Fig. 5C and 5D).

316 Osteoclast differentiation assay of different CPC sponges

- 317 The osteoclast differentiation was conducted by TRAP activity assay, and the result
- 318 indicated that incubation with different CPC sponges did not increase osteoclast
- 319 differentiation compared with the positive control (RANKL+MCSF group; Fig. 6).
- 320 Instead, these synthetic materials showed inhibition of osteoclasts differentiation.
- 321 Angiogenesis assay of different CPC sponges
- 322 The result found that the CPC sponge contained magnesium had more tube-like
- 323 morphology than other synthetic materials (Fig. 7), which reveals magnesium released
- 324 from the CPC sponge may improve wound healing as well as bone regeneration.

325 **Discussions**

Our study indicates the synthetic particle with a 0.35 μ m sub-micron size generated white colloidal dispersions, suggesting sedimentation rate is greatly influenced by extra-fine particle size. We also successfully established a reliable synthetic process by wet comminution in stirred media mills to produce sub-micron particles. The TTCP/MCPM ratio of 3.5:1 had the highest compressive strength (4.39 ± 0.96 MPa) within 15 min, which is comparable to human spongy bone strength. The results

332	indicate that a CPC sponge composed of TTCP/MCPM and collagen covering could
333	produce the same crystalline structure of HA. The biocompatibility of CPC was
334	evaluated in vitro by the MTT test and by the analysis of cell morphology of the
335	MC3T3-E1 and RAW264.7 cultured in direct contact with CPC. In vitro,
336	biocompatibility tests showed that magnesium could promote osteoblast viability, in
337	agreement with previous reports [22-24]. Chelation power on ferrous ions, referring to
338	in vitro antioxidant capacity, revealed CPC sponges containing magnesium possessed
339	more significant chelation power than other materials, especially in a high concentration.
340	In agreement with a previous study [35], the evidence proved that magnesium released
341	from the CPC sponge could enhance osteoblast activity. Besides, our study reveals that
342	CPC sponges may improve bone regeneration by targeting osteoclasts [6, 36].
343	Magnesium was implicated in modulating microvascular functions, including
344	angiogenesis, considered a critical process in bone regeneration [37].

Improvement of bioactivity and biocompatibility of bone-graft substitutes in clinical applications such as bone regeneration is an unmet need [38, 39]. An increase in the biological function of various cells, for example, osteoblasts, osteoclasts, and endothelial cells resident in the fracture healing region, usually improves transplantation efficiency. Therefore, a fundamental understanding of the cell response

350	to different synthetic materials is key to the development of novel biomaterials. Here,
351	we demonstrate the effects of a sub-micron CPC sponge containing magnesium on
352	various cell types that were required for bone regeneration, for example, osteoblasts,
353	osteoclasts, and endothelial cells. The results provide promising benefits for this novel
354	CPC sponge in bone regeneration. Plenty of evidence has shown nanoscale particles
355	could improve the bioactivity of different biomaterials [40]. Bone is an organ composed
356	of approximately 60% mineral, mostly nano-hydroxyapatite, which is almost identified
357	with calcium phosphate (CaP) ceramic [41]. Tricalcium phosphate (TCP) is one major
358	form of CaP ceramic used in bone regeneration clinically. The ion-containing TCPs are
359	also produced to promote specific biological functions. For example, TCP-based
360	magnesium-containing material was proven to enhance bone healing by modulating
361	osteogenesis and angiogenesis in an animal model [42, 43], with increasing
362	compressive strength than pure TCP scaffolds. However, TCP ceramics have limitations
363	caused by poor mechanical properties [40]. In our current study, we introduced a novel
364	sub-micron CaP material consisting of TTCP/MCPM. This material has morphology
365	and biomechanical properties comparable to the nature of bone due to the needle-like
366	HA structure that formed on the surface of the material after implantation. Our synthetic
367	sub-micron CaP material also exhibited better biocompatibility than the original size of

368 CaP, which agrees with the previous findings (Appendix 1).

369	Data obtained from the in vitro experiments prove that the CPC sponge containing
370	magnesium has the capacity to promote osteoblast differentiation and mineralization.
371	Previous reports have proven that magnesium ions in the culture medium enhanced the
372	adhesion and stimulated the osteogenic differentiation of cells [44-46]. Furthermore,
373	several studies have developed magnesium/calcium phosphate types of cement (MCPC)
374	by different procedures [47-49]. In Zhang et al. report, they found that MCPC with a
375	moderate proportion of MPC (5% and 10%, referred to as 5MCPC and 10MCPC) were
376	found to strongly enhance adhesion and osteogenic differentiation of bone marrow
377	stromal cells [49]. Interestingly, this effect was accomplished by direct interaction of
378	fibronectin, integrin $\alpha 5\beta 1$, and magnesium ions on the scaffold, but not by the released
379	magnesium ions. Our present work develops a novel sub-micron MCPC sponge for the
380	first time. We also found that higher magnesium concentrations (0.2 g/mL) induced
381	osteoblast proliferation significantly. The role of angiogenesis in bone regeneration has
382	been well discussed [37]. Thomas E. Paterson et al. found that porous microspheres, an
383	injectable bone filler, have the potential to stimulate angiogenesis [50]. Our results also
384	prove a sub-micron MCPC sponge could promote the tube-like formation of HUVEC
385	cells. Claudia S. Oliveira et al. emphasized the potential of bioengineered bone

386	microenvironments to facilitate the process of bone regeneration [51]. This evidence
387	showed that this synthetic material was able to modulate multiple biological functions
388	during bone regeneration. However, the proper concentration of magnesium used in this
389	sub-micron CPC sponge should be certified in the future.
390	Conclusion
391	The current study generates sub-micron particles composed of TTCP/MCPM powder
392	and uses wet comminution in stirred media mills, which is a synthetic process. After
393	covering it with collagen and magnesium to produce a CPC sponge, we evaluated the
394	material's structural characteristics as well as biocompatibility in different cell types.
395	Our results show that a CPC sponge containing magnesium has great potential to
396	improve osteoblasts and endothelial cell functions with minimal cytotoxicity effects.
397	Our findings pave the way for upcoming endeavors to employ CPC sponge composite
398	for in vivo applications in a clinical setting.
399	Conflict of Interest
400	The authors have no conflicts to disclose
401	Acknowledgments
402	Yuan-Hsin Tsai carried out his thesis research under the auspices of the Ph.D. Program
403	in Tissue Engineering and Regenerative Medicine, National Chung Hsing University,

404 and National Health Research Institutes. We thank Li-Heng Liu for their helpful

405 assistance and support. This research was supported by the Ministry of Scien	ce and
--	--------

406 Technology, Taiwan for the grants (MOST 110-2221-E-005-010, MOST 111-2221-E-

407 005-009, and MOST 111-2221-E-005 -026 -MY3). We also thank National Chung

408 Hsing University (ENABLE: 108ST001B and 110ST001G), Kasesart University Joint

- 409 Research Project (108RA129A), and NCHU-MIRDC Bilateral Joint Research Project
- 410 (110S0703B).
- 411
- 412 Contact for reagent and resource sharing
- 413 Further information and requests for reagents should be directed to Lead Contact Hui-
- 414 Ming David Wang (<u>davidw@dragon.nchu.edu.tw</u>)
- 415 Data Availability
- 416 The data used to support the findings of this study are available from the corresponding
- 417 author upon request.
- 418 **References**
- 419 [1] Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration:
- 420 current concepts and future directions. BMC Medicine 2011;9:66.
- 421 [2] Migliorini F, La Padula G, Torsiello E, Spiezia F, Oliva F, Maffulli N. Strategies
- 422 for large bone defect reconstruction after trauma, infections or tumour excision:
- 423 a comprehensive review of the literature. Eur J Med Res 2021;26(1):118.
- 424 [3] Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect

425 repair: A review. Bioact Mater 2017;2(4):224-47.

426	[4]	Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone
427		Defects. Tissue Eng Part B Rev 2021;27(6):539-47.
428	[5]	Sen M, Miclau T. Autologous iliac crest bone graft: should it still be the gold
429		standard for treating nonunions? Injury 2007;38(1):S75-S80.
430	[6]	Huang EE, Zhang N, Ganio EA, Shen H, Li X, Ueno M, et al. Differential
431		dynamics of bone graft transplantation and mesenchymal stem cell therapy
432		during bone defect healing in a murine critical size defect. J Orthop Transl.
433		2022;36:64-74.
434	[7]	Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal
435		medicine. Injury 2009;40 Suppl 3:S1-3.
436	[8]	Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques.
437		JBJS 2011;93(23):2227-36.
438	[9]	Jeong C-H, Kim J, Kim HS, Lim S-Y, Han D, Huser AJ, et al. Acceleration of
439		bone formation by octacalcium phosphate composite in a rat tibia critical-sized
440		defect. J Orthop Translat 2022;37:100-12.

ourn	D		nr		1	
oun			UΤ	U	U.	

441	[10]	Makhdom AM, Hamdy RC. The role of growth factors on acceleration of bone
442		regeneration during distraction osteogenesis. Tissue Eng Part B, Rev
443		2013;19(5):442-53.
444	[11]	Heckman JD, McKee M, McQueen MM, Ricci W, Tornetta III P. Rockwood
445		and Green's fractures in adults. Lippincott Williams & Wilkins; 2014.
446	[12]	Bauer TW, Muschler GF. Bone graft materials. An overview of the basic
447		science. Clin Orthop Relat Res 2000(371):10-27.
448	[13]	Laubach M, Suresh S, Herath B, Wille M-L, Delbrück H, Alabdulrahman H, et
449		al. Clinical translation of a patient-specific scaffold-guided bone regeneration
450		concept in four cases with large long bone defects. J Orthop Translat
451		2022;34:73-84.
452	[14]	De Long WG, Jr., Einhorn TA, Koval K, McKee M, Smith W, Sanders R, et al.
453		Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical
454		analysis. J Bone Joint Surg Am volume 2007;89(3):649-58.
455	[15]	Centers for Disease C. Transmission of HIV through bone transplantation: case
456		report and public health recommendations. MMWR Morb Mortal Wkl Rep
457		1988;37(39):597-9.

458	[16]	Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg
459		Am volume 1992;74(6):939-50.
460	[17]	Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available
461		in orthopaedic practice: the evidence for their use. Bone Joint J 2013;95-
462		B(5):583-97.
463	[18]	Lindley TE, Dahdaleh NS, Menezes AH, Abode-Iyamah KO. Complications
464		associated with recombinant human bone morphogenetic protein use in
465		pediatric craniocervical arthrodesis. J Neurosurg Pediatr 2011;7(5):468-74.
466	[19]	Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J 2012;5(Suppl
467		1):i3-i14.
468	[20]	Belluci MM, Schoenmaker T, Rossa-Junior C, Orrico SR, de Vries TJ, Everts
469		V. Magnesium deficiency results in an increased formation of osteoclasts. The
470		J Nutr Biochem 2013;24(8):1488-98.
471	[21]	Diaz-Tocados JM, Herencia C, Martinez-Moreno JM, Montes de Oca A,
472		Rodriguez-Ortiz ME, Vergara N, et al. Magnesium Chloride promotes
473		Osteogenesis through Notch signaling activation and expansion of
474		Mesenchymal Stem Cells. Sci Rep 2017;7(1):7839.

		D		n re	$\sim f$
oun	lai			ידי	U.

475	[22]	Farraro KF, Kim KE, Woo SL, Flowers JR, McCullough MB. Revolutionizing
476		orthopaedic biomaterials: The potential of biodegradable and bioresorbable
477		magnesium-based materials for functional tissue engineering. J Biomech
478		2014;47(9):1979-86.
479	[23]	Kraus T, Fischerauer SF, Hanzi AC, Uggowitzer PJ, Loffler JF, Weinberg AM.
480		Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of
481		their degradation and interaction with bone. Acta Biomater 2012;8(3):1230-8.
482	[24]	Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et
483		al. In vivo corrosion of four magnesium alloys and the associated bone response.
484		Biomaterials 2005;26(17):3557-63.
485	[25]	Liu J, Hou W, Wei W, Peng J, Wu X, Lian C, et al. Design and fabrication of
486		high-performance injectable self-setting trimagnesium phosphate. Bioact Mater
487		2023;28:348-57.
488	[26]	Chang WT, Wu CY, Lin YC, Wu MT, Su KL, Yuan SS, et al. C(2)-Ceramide-
489		Induced Rb-Dominant Senescence-Like Phenotype Leads to Human Breast
490		Cancer MCF-7 Escape from p53-Dependent Cell Death. Int J Mol Sci
491		2019;20(17).

492	[27]	Nguyen NT-P. Nguyen LV-H. Th	anh NT. Toi VV. Ngoc	Ouven T. Tran PA, et
エノム		1 1 2 u y chi 1 1 1 - 1 , 1 y 2 u y chi 1 y - 1 1, 1 h	ami 1 1, 101 V V, 1 200 V	Quyon I, Han I A, Ci

- 493 al. Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its
 494 applications. Mat Lett 2019;248:241-5.
- 495 [28] Lin R-H, Hung H-S, Tang C-M, Tsou H-K, Chen P-H, Yueh C-Y, et al. In vitro
- 496 biocompatibility of polycaprolactone/hydroxyapatite nanocomposite
 497 membranes modified by oleic acid for bone regeneration. Colloids Surf A:
 498 Physicochem Eng Asp 2024;688:133576.
- 499 [29] Chen PC, Cheng HC, Wang J, Wang SW, Tai HC, Lin CW, et al. Prostate
- cancer-derived CCN3 induces M2 macrophage infiltration and contributes to
 angiogenesis in prostate cancer microenvironment. Oncotarget 2014;5(6):1595-
- 502 608.
- 503 [30] Nail HM, Chiu CC, Leung CH, Ahmed MMM, Wang HD. Exosomal miRNA504 mediated intercellular communications and immunomodulatory effects in
 505 tumor microenvironments. J Biomed Sci 2023;30(1):69.
- 506 [31] Izumiya M, Haniu M, Ueda K, Ishida H, Ma C, Ideta H, et al. Evaluation of
- 507 MC3T3-E1 Cell Osteogenesis in Different Cell Culture Media. Int J Mol Sci
 508 2021;22(14).

509	[32]	Chen PC, Cheng HC, Tang CH. CCN3 promotes prostate cancer bone
510		metastasis by modulating the tumor-bone microenvironment through RANKL-
511		dependent pathway. Carcinogenesis 2013;34(7):1669-79.
512	[33]	Su CM, Hsu CJ, Tsai CH, Huang CY, Wang SW, Tang CH. Resistin Promotes
513		Angiogenesis in Endothelial Progenitor Cells Through Inhibition of
514		MicroRNA206: Potential Implications for Rheumatoid Arthritis. Stem cells
515		2015;33(7):2243-55.
516	[34]	Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, et al. CCN1 Promotes
517		VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell
518		Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis.
519		JBMR: The official J ASBMR 2017;32(1):34-45.
520	[35]	Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and
521		osteoporosis: current state of knowledge and future research directions.
522		Nutrients 2013;5(8):3022-33.
523	[36]	Lee HP, Lin YY, Duh CY, Huang SY, Wang HM, Wu SF, et al. Lemnalol
524		attenuates mast cell activation and osteoclast activity in a gouty arthritis model.
525		J Pharm Pharmacol 2015;67(2):274-85.

526	[37]	Wang M, Yu Y, Dai K, Ma Z, Liu Y, Wang J, et al. Improved osteogenesis and
527		angiogenesis of magnesium-doped calcium phosphate cement via macrophage
528		immunomodulation. Biomater Sci 2016;4(11):1574-83.
529	[38]	Cai P, Lu S, Yu J, Xiao L, Wang J, Liang H, et al. Injectable nanofiber-
530		reinforced bone cement with controlled biodegradability for minimally-invasive
531		bone regeneration. Bioact Mater 2023;21:267-83.
532	[39]	Seifert A, Tylek T, Blum C, Hemmelmann N, Böttcher B, Gbureck U, et al.
533		Calcium phosphate-based biomaterials trigger human macrophages to release
534		extracellular traps. Biomaterials 2022;285:121521.
535	[40]	Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured
536		Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020;8:922.
537	[41]	Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ, et al.
538		Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking
539		the osteogenic niche for bone augmentation. Biomaterials 2015;62:128-37.
540	[42]	Bose S, Tarafder S, Banerjee SS, Davies NM, Bandyopadhyay A.
541		Understanding in vivo response and mechanical property variation in MgO, SrO
542		and SiO(2) doped beta-TCP. Bone 2011;48(6):1282-90.

	urn	D	10	n		\sim	
	սոս			Ρ	U	U	

543	[43]	Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO- and MgO-doped
544		microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical
545		properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B
546		Appl Biomater 2015;103(3):679-90.
547	[44]	Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Role of magnesium ions on
548		osteogenic response in bone marrow stromal cells. Connect Tissue Res 2014;55
549		Suppl 1:155-9.
550	[45]	Wu L, Feyerabend F, Schilling AF, Willumeit-Romer R, Luthringer BJC.
551		Effects of extracellular magnesium extract on the proliferation and
552		differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater
553		2015;27:294-304.
554	[46]	Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Magnesium ion stimulation of
555		bone marrow stromal cells enhances osteogenic activity, simulating the effect
556		of magnesium alloy degradation. Acta Biomater 2014;10(6):2834-42.
557	[47]	Jia J, Zhou H, Wei J, Jiang X, Hua H, Chen F, et al. Development of magnesium
558		calcium phosphate biocement for bone regeneration. J R Soc Interface
559		2010;7(49):1171-80.

		D	n	\mathbf{r}	\mathbf{a} f
U				ιU	U

560	[48]	Goldberg MA, Krohicheva PA, Fomin AS, Khairutdinova DR, Antonova OS,
561		Baikin AS, et al. Insitu magnesium calcium phosphate cements formation: From
562		one pot powders precursors synthesis to in vitro investigations. Bioact Mater
563		2020;5(3):644-58.
564	[49]	Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, et al. Magnesium modification
565		of a calcium phosphate cement alters bone marrow stromal cell behavior via an
566		integrin-mediated mechanism. Biomaterials 2015;53:251-64.
567	[50]	Paterson TE, Gigliobianco G, Sherborne C, Green NH, Dugan JM, MacNeil S,
568		et al. Porous microspheres support mesenchymal progenitor cell ingrowth and
569		stimulate angiogenesis. APL Bioeng 2018;2(2):026103.
570	[51]	Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic
571		design and biomedical applications of bioengineered bone microenvironments.
572		APL Bioeng 2021;5(4):041507.
573 574		

576 Figure legends

578	Submicron TTCP/MCPM preparation	Mixing process of raw materials	Molding& Freeze drying	Product finished
579				
580	Fig. 1 Schematic diagra	m of the sample prepa	aration process.	
581 582				
583				
584				
585				
586				
587				
588				
589 590				
591				
592				
593				

595 Fig. 2 Characterization of CPC powder. (A) (left) Sedimentation behavior modes of suspensions of different sub-micron CPC powder (5 mg/mL). (a) 1 mm, (b) 3.5 µm, (c) 596 597 0.35 µm. The SEM image of original feed CPC powder (middle) and sub-micron CPC powder after milling (right). (B) SEM images of surfaces of the sub-micron CPC sponge 598 599 covered by collagen. The sub-micron CPC sponge is covered by collagen before (i) and 600 after hardening (ii). (C) Particle size distributions of the sub-micron CPC powder by DLS (cumulative distributions were shown as red line). (D) X-ray diffraction patterns 601 of the hydroxyapatite (HA) and sub-micron CPC sponge (composite) after hardening. 602 603

606 Fig. 3 MTT assay of MC3T3-E1 and RAW264.7 cell lines incubated with sub-micron 607 CPC sponges (CPC + Mg + Collagen). The cells were incubated with different 608 concentrations (0.1 and 0.2 g/mL) of various CPC sponges. The cell viability assays 609 were conducted by MTT in MC3T3-E1 osteoblasts (A) and RAW264.7 osteoclast 610 precursor cells (B). (one-way ANOVA, mean \pm SD, n=6, *p < 0.05 compared with

- 611 blank).
- 612

- 615 Fig. 4 Chelation power on ferrous ions of sub-micron CPC sponges (CPC + Mg +
- 616 Collagen). (one-way ANOVA, mean \pm SD, n=6, *p < 0.05 compared with blank).
- 617 EDTA: 100μM

Fig. 5 Effects of sub-micron CPC sponges (CPC + Mg + Collagen) on proliferation, differentiation, and mineralization in MC3T3-E1 osteoblasts. The MC3T3-E1 osteoblasts were incubated with different sub-micron CPC sponges for 3 days. The cell proliferation on day 1 and day 3 (A), cell differentiation on day 1 and day 3 (B), and mineralization as calcium deposition (C), and mineralization (D) were determined. (one-way ANOVA, mean \pm SD, n=6, *p < 0.05 compared with blank).

629

Fig. 6 Effects of sub-micron CPC sponges (CPC + Mg + Collagen) on osteoclast
 differentiation. The RAW264.7 osteoclast precursor cells were incubated with different

632 sub-micron CPC sponges for 7 days. The osteoclast differentiation was analyzed by a

633 TRAP activity assay. (one-way ANOVA, mean \pm SD, n=6, *p < 0.05 compared with

634 blank).

635 EDTA: 100μM

638 Fig. 7 Effects of sub-micron CPC sponges on angiogenesis. The HUVEC endothelial

639 cells were incubated with different sub-micron CPC sponges for 12 hr. The tube-like

640 structure was monitored by a microscope and the number of cells per field was counted.

641 (one-way ANOVA, mean \pm SD, n=6, *p < 0.05 compared with blank).

- 642
- 643

 Table 1. Properties of different ratios of sub-micron CPC sponges.
 644

Properties of different ratios of sub-micron CPC (TTCP/MCPM) sponges