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Abstract: Wireless Sensor Networks (WSNs) have been adopted in various environmental pollution
monitoring applications. As an important environmental field, water quality monitoring is a vital
process to ensure the sustainable, important feeding of and as a life-maintaining source for many
living creatures. To conduct this process efficiently, the integration of lightweight machine learning
technologies can extend its efficacy and accuracy. WSNs often suffer from energy-limited devices
and resource-affected operations, thus constraining WSNs’ lifetime and capability. Energy-efficient
clustering protocols have been introduced to tackle this challenge. The low-energy adaptive clustering
hierarchy (LEACH) protocol is widely used due to its simplicity and ability to manage large datasets
and prolong network lifetime. In this paper, we investigate and present a modified LEACH-based
clustering algorithm in conjunction with a K-means data clustering approach to enable efficient
decision making based on water-quality-monitoring-related operations. This study is operated based
on the experimental measurements of lanthanide oxide nanoparticles, selected as cerium oxide
nanoparticles (ceria NPs), as an active sensing host for the optical detection of hydrogen peroxide
pollutants via a fluorescence quenching mechanism. A mathematical model is proposed for the
K-means LEACH-based clustering algorithm for WSNs to analyze the quality monitoring process
in water, where various levels of pollutants exist. The simulation results show the efficacy of our
modified K-means-based hierarchical data clustering and routing in prolonging network lifetime
when operated in static and dynamic contexts.

Keywords: WSN clustering; LEACH; K-means algorithm; unsupervised learning; water quality
monitoring

1. Introduction

A Wireless Sensor Network (WSN) consists of hundreds of independent, tiny, con-
strained energy-sensor nodes with limited sensing, data-processing, and communication
abilities [1–5]. Each node typically consists of a low power unit, a radio-sensing unit,
and a processing unit [3,6–11]. These sensor nodes are randomly deployed in a certain
geographic area to monitor various environmental and physical conditions, such as motion,
temperature, pressure, vibration, sound, or pollutants. The authors of [4] mentioned the im-
portance of a WSN’s different applications in detail, clarifying that these sensor nodes can
be deployed in complicated environments and dangerous locations [12–18]. Water quality
monitoring is one of its most important applications, as it strongly affects environmental life.
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Water is the main feeding and life-maintaining source for living creatures on planet Earth.
The imbalance in water purity levels leads to disastrous results for the plant and human
lives. Different sources of pollutants, such as hydrogen peroxide and its corresponding
radicals, are toxic and severely affect the quality of water for living organisms.

An important part that must be considered in designing a WSN-based decision-
making system for monitoring phenomena that might be detected in remote areas is the
routing of a vast amount of data [9,10], and the limited power resource of sensor nodes
(a small, irreplaceable battery power source) [19–22]. Therefore, different works have
been presented to study the effect of efficient hierarchical data-clustering approaches
on optimizing data routing, forwarding processes, and reducing energy consumption
in static and dynamic contexts. Clustering reduces the amount of data transmitted by
grouping similar nodes together and selecting one node as a Cluster Head (CH), where
data are aggregated to avoid congestion and communication loads generated by multiple
neighboring nodes, then sending aggregated data to the next CH or Base Station (BS),
where they are processed, stored, and retrieved [1,4,6]. The CH performs a variety of tasks
in addition to sensing the environment, including data collection from all cluster members
and transmission to the base station, transmission of other CHs’ data to subsequent hops,
the creation of fusion cluster data, and occasionally cluster control via the clustering
technique [13–16]. These research works were the motivation to use K-means in conjunction
with LEACH to face challenges in WSNs with sensor nodes with limited power resources
and the routing of a vast amount of data. K-means, an unsupervised learning approach, is
usually adopted to enable multi-feature-based Cluster Head (CH) election and hierarchical
clustering formation in WSNs. The CH election takes into consideration the remaining
energy level and position of the CH relative to the sensor node.

In WSNs, low-energy adaptive clustering hierarchy (LEACH) is the most efficient well-
known hierarchical clustering technique that is used considering the energy constraints
of sensor nodes [1,16]. The authors of [17] mentioned the advantages and disadvan-
tages of LEACH in detail, which has led to making it the efficient clustering technique
in WSNs [19,22–27]. In a specific group or cluster of sensors, the election of the CH is
repeated through a set of rounds and using a stochastic approach [2,12,21]. In each round,
the residual energy level of each member is examined and the sensor within the cluster
will be selected with a certain probability [17]. This clustering algorithm helps in reducing
energy consumption, as mentioned in different research works [1,5]. The authors of [12]
mentioned different cluster-based routing protocols, such as LEACH, and studied their
effect on WSNs.

This study is an extension of our previous work in [5], where we adopted the usage of
a modified K-means clustering algorithm with LEACH to enhance the network efficiency
and increase network lifetime as much as possible. We compared our proposed algorithm
and the original K-LEACH algorithm, and we proved its impact in increasing the lifetime
of the full network. We tested our modified K-LEACH algorithm on an application related
to water pollution in different scenarios to study the effect of efficient hierarchical data-
clustering approaches on optimizing data routing, forwarding processes, and reducing
energy consumption in static and dynamic contexts, and further adapted the algorithm to
consider different levels of pollution. We proved its effect by measuring average residual
energy, node death, and throughput in both dynamic and static contexts with different
pollution levels. The K-means algorithm forms clusters based on calculating the minimal
distance between nodes and CH and based on residual energy level [2,7,11,12,25,26]. Hence,
this approach helps in reducing sensor-node-consumed energy in sending data to the CH
in their cluster, which in turn will ensure an efficient and alive network for as long as
possible [18,25].

In this paper, we present a smart lightweight content-aware data-clustering approach
for the monitoring of water pollution levels that helps in increasing network lifetime
due to the usage of a modified K-means clustering algorithm in conjunction with the
LEACH protocol. One selected parameter of water quality monitoring is the detection of
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hydrogen peroxide pollutants in water, which is a measure of free radical formation in
water. Additionally, our protocol is applied along with experimental sensing measurements
using cerium oxide (ceria) nanoparticles as an active, static sensing media for pollutants,
such as hydrogen peroxide, through a visible fluorescence quenching mechanism excited
by a violet optical source [28].

Our main contribution in this paper is to provide an efficient hierarchical content-
aware data-clustering and routing method for enhanced water quality monitoring opera-
tions with increased network lifetime and optimized network energy consumption. The rest
of this paper is organized as follows. Section 2 discusses different routing protocols used
for efficient water quality monitoring and their impact on prolonging network lifetime. The
proposed K-means LEACH algorithm is presented in Section 3. Section 4 shows the physics
setup for sensing water pollutants to feed the simulation studies. Section 5 presents the
simulation studies and scenarios in various operating contexts and discusses the obtained
results. Section 6 summarizes the work and findings.

2. Materials and Methods

The most important challenge affecting the WSN is energy consumption, which can
be optimized by using an effective routing protocol. Flat, location-based, and hierarchical
routing protocols are the three basic types of routing protocols suggested for WSNs [3]. The
multi-hop approach is utilized in flat routing, where each sensor node performs identical
functions [1]. The sensing mission is conducted by sensor nodes cooperating. Instead of
sending data across the whole network, location-based routing uses sensor node position
information to distribute data to a specific region. The network is separated into clusters
in hierarchical routing, and sensor nodes with higher energy oversee data processing and
transmission. In terms of energy efficiency, hierarchical routing techniques deliver the
best results [29].

The hierarchical routing technique uses clustering mechanisms; clustering techniques
can be energy- and scalability-efficient [8]. They use a clustering technique to greatly reduce
the amount of energy consumed in collecting and disseminating (fusion and aggregation)
data. The hierarchical routing technique reduces energy consumption by grouping nodes
into distinct clusters [1].

A CH election process is based on selecting a node as a leader node within the
cluster [27]. The CH keeps information related to its community. This information includes
a list of each node’s cluster nodes and path. Choosing a particular node as a CH is not only
difficult but also a very critical task. Various considerations for selecting the best node as a
CH can be considered, such as the position of the node relative to other nodes’ positions,
mobility, energy, confidence, and node throughput.

There are many clustering techniques from which we chose hierarchical clustering and
partitioned clustering [29]. There is a wide range of commonly used partitioning techniques.
We studied LEACH, as it is known as the simplest hierarchical clustering technique, and
the K-means algorithm, as an example of the partitioned clustering algorithm to prolong
network lifetime and enhance network performance, as is illustrated in the Simulation
Section [5,23].

2.1. LEACH Protocol

LEACH is a hierarchical protocol in which nodes transmit data to CHs, and then they
forward data to the base station (sink) [16,30]. The main idea of the LEACH protocol is to
divide the whole WSN into several clusters [3,13,19,23]. LEACH randomly selects a few
sensor nodes as CHs and rotates this role to distribute the energy load among the sensors in
the network [14,31–33]. The CH node is randomly selected, and each node can be selected
as a CH node [3,21,34,35]. LEACH protocol runs for a predetermined number of rounds
and each round contains two states: cluster setup state and steady state [10–12,20,26]. In
the cluster setup state, it forms a cluster in the self-adaptive mode; in the steady state, it
transfers data [1,5,25,26,31]. The time elapsed in the second state is usually longer than the
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time elapsed in the first state for saving the protocol payload. Figure 1 shows the flowchart
of the LEACH operation.
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CH election in LEACH is based according to a certain energy threshold value [31]. If
the remaining energy is lower than a threshold, the node becomes a CH for the current
round [35]. Nodes that have been CHs cannot become CHs again for P rounds, where P is
the desired percentage of CHs. Thereafter, each node has a 1/P probability of becoming
a CH in each round [2]. At the end of each round, each node that is not a CH selects
the closest CH and joins that cluster [5,9–11,22,24–27,31,32,36]. The threshold is set as
shown in (1):

T(n) =

{
P

1−P × (r × mod 1
P )

if n ∈ G

0 else

}
(1)

where P is the desired percentage of CHs, r is the current round, and G is the set of nodes
that have not been CHs in the last 1/p rounds [10,33].

Using this threshold, each node will be a CH at some point within 1/p rounds [35].
Nodes that have been CH cannot become CHs for a second time for 1/p − 1 rounds [31].
The CHs combine and compress the data and forward them to the BS; therefore, it extends
the lifespan of major nodes [6,12,24,25]. However, the main challenge in LEACH is the
non-uniform distribution of CH nodes in the network, which makes it inapplicable in large
regions [3,20].

2.2. LEACH-Based K-Means Algorithm

K-means clustering algorithm is a well-known algorithm in machine learning [8].
Contrary to the LEACH protocol, the K-LEACH uses the K-means clustering algorithm
to have uniform node clustering and ensure better choices of CHs [11,17,27,34]. During
the first round, the K-LEACH supposes a random initial CH location [15,37]. Afterward,
K-LEACH considers that the lower distance from the cluster center is the criterion for
a node to be selected as a CH during the CH selection process (from the second round
onwards) [3]. The K-LEACH protocol is divided into several rounds, and each round
includes a cluster formation phase and a stable state round [1,11,27,33,36]. Using K-means
as a clustering strategy can minimize overhead during the CHs’ re-election [5,22,30].

The K-LEACH algorithm is similar to LEACH but with added machine intelligence
to reduce energy consumption and prolong the overall network lifespan [9,18,25]. The K-
LEACH algorithm chooses CH based on the remaining energy level and distance to cluster
members [8,9,37]. The K-LEACH algorithm is based on grouping the items according to a
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specific criterion, and the algorithm’s input is the number of K groups (clusters) [22,25].
The next step is to measure the Euclidean distance between each node and the centers
of the cluster; the smallest distance is chosen to include this node in the nearest cluster
center [2,7,25–27,34,37]. After all the nodes are grouped, the algorithm determines the new
center of gravity for each cluster at each round [30]. The algorithm stops when the groups
become stable [5,7,18,23,24,29].

In this algorithm, the CH election is not only based on the remaining energy level as
in LEACH, but also depends on the distance to the sensor nodes.

This in turn has a major effect on increasing network lifetime, as proved by Moazam et al. [38]
and Basma et al. [39] in their research work. They have presented the total remaining
energy of the sensor nodes and the number of dead nodes, which indicates that the LEACH-
based K-means can decrease the energy consumption of the sensor nodes throughout the
simulation, which will result in a higher network lifetime compared to that of LEACH.
Additionally, the number of dead nodes is lower using LEACH-based K-means.

3. Modified K-Means LEACH Algorithm

As discussed previously, there exists a range of different implementations for K-
LEACH discussed in recent research; however, the implementations mainly differ in the
enduring and dynamic behavior of the most recent CHs. Our implementation relies on two
important pillars, which are taking maximum advantage of the K-means algorithm on the
proposed network by forming a separate set of nodes for the resulting CHs and conserving
the energy of the most recent CHs to endure throughout the experiment.

It can be noticed from Algorithm 1 that it incorporates two sets of nodes, namely,
n_s and n_c, where n_s is the set of normal nodes that the simulation starts with. Our
implementation of the K-LEACH algorithm utilized the learning capability of the K-means
unsupervised classification algorithm to identify the most optimal CH positions throughout
the simulation. Hence, a new set of nodes was mounted to the network, which was denoted
by n_c and represents the CHs’ positions in each round. Since the movement of CHs
provided by the K-LEACH algorithm is limited, CHs do not change at some point in the
simulation until the end of the simulation (which is the vth round in Algorithm 1). An
energy conservation approach was taken into consideration to counter this issue, which
entails calculating the necessary excess energy needed for the most recent CHs to endure
until all n_s nodes die out (which is the wth round in Algorithm 1). n_c nodes are expected
to die out first because every node in n_c is expected to be a CH at least once, and the
energy dissipation for CHs’ is higher than the energy dissipation for the normal nodes.
Accordingly, the LEACH protocol part of the implementation was used to evaluate the
residual energy and the alive/dead state of the nodes in n_s and n_c networks separately.
Figure 2 represents the flowchart of our modified K-means LEACH algorithm, which is
explained in more detail in Algorithm 1. The main difference in our algorithm is that we
calculated the excess energy factor when all CHs are out of energy (dead) but the rest of
the nodes in the network are still alive; so, this factor helps in prolonging the CH’s lifetime
until all nodes in the network die out.

It is also worth noting the sole factor that the construction of n_c depends on the posi-
tions of the nodes of n_s. By controlling n_s and identifying the most optimal construction
for it, it acts as an initialization for a customizable system where a highly optimized n_c can
be achieved in terms of the number of nodes and the total cost of energy of n_c (excluding
the excess energy needed for the CHs to live until the wth round).
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Algorithm 1. Modified K-Means LEACH.

Input:

1. Area dimensions.
2. Sink coordinates.
3. Initial energy of nodes.
4. Number of clusters K.
5. Transmit amplifier types.
6. Data aggregation energy.
7. Set of coordinates of the n_s nodes.
8. Number of nodes n.
9. Initial values of the centroids.
10. Number of transmitted packets.
11. Number of rounds rmax.
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Algorithm 1 Cont.

Output:
for r = 1: rmax

for I = 1: n
Store the distances between each node and each of the k centroids.
Store the minimum distance from the k number of distances between each node and the k

centroids and the cluster number of it.
Declare a struct X and store the positions, minimum distances, cluster numbers, and initial

energies of the n_s nodes.
end for
Calculate the residual energy of the n_s nodes and store them in each round.
Store the number of dead nodes in each round.
Update the positions of cluster heads and store them.

end for
if all the n_s nodes die out during the rmax rounds

w is the index of the node at which all the n_s dies out.
else

w = rmax
end if
Store the index of the vth round at which the cluster heads stop moving.
Establish a new set of nodes n_c in the network with the positions of the cluster heads each round
from round 1 to v.
Eliminate the duplicates from the new set of nodes n_c if any.
Declare a struct Y and include the coordinates, minimum distances, cluster numbers, initial
energies, and types of the n_c nodes.

for r = 1: rmax
if r <= v

Reset the type of all the n_c nodes to “N”.
Compare struct Y with the stored cluster heads’ positions and select the cluster heads from the

struct Y by changing the type of the k nodes from Y that corresponds to the stored cluster heads’
positions each round to “C”.

Update the minimum distances in struct Y between the cluster heads and the sink and between
the normal nodes and cluster heads.

Calculate the residual energy of cluster heads and normal nodes in struct Y and store it each
round.
else

if r = v + 1
Declare a struct Z and store in it the energies, cluster numbers, and minimum distances

between the sink and the cluster heads at round v.
Add to the struct Z a new column that stores the excess energy needed for the cluster heads to

live until the wth round.
for I = v + 1: w
Calculate the residual energy of the cluster heads in struct Z.
if a cluster head’s energy reaches 0 or below

Add the deducted value to the excess energy column of the struct Z.
Re-add the deducted value to the cluster head’s energy in struct Z to remain positive.

end if
end for

end if
Boost up the energy of the CH nodes in struct Y by the amount of the excess energy stored in
struct Z.
Calculate the residual energy of the cluster heads and normal nodes in struct Y and store it each
round.
Update the number of dead nodes for each round.
end if
end for
plot (number of nodes)
plot (residual energy)
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4. Fluorescence Quenching of Pollutants

This section presents the physical aspect of the sensing process of one of the water
pollutants, such as hydrogen peroxides, which form radicals in water. The active sensing
material, lanthanide oxide nanoparticles, was selected as cerium oxide nanoparticles (ceria
NPs) according to its visible emission under UV or violet optical excitation along with its
reduction–oxidation capabilities. Ceria NPs were synthesized via the chemical precipitation
technique due to their cheap initial precursors and simplicity of operation [37]. The
synthesized nanoparticles solution was exposed to the violet excitation of a 405 nm light-
emitting diode (LED). The visible emission was scanned over the spectrum of 500–800 nm
through consecutive monochromatic stages for scanning, a photomultiplier tube to amplify
the optical emission, and optical power meter to detect the scanned signal. The setup
schematic is clarified in Figure 3. The solution of nanoparticles was added with different
concentrations of hydrogen peroxide; then, the emission intensity was detected at each
added concentration of the pollutant.
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5. Results and Discussion

In this section, our implementation of the K-LEACH algorithm was thoroughly exper-
imented within a scenario-like setting that aimed to simulate the fluid kinematic behavior
resulting from the number of pollutants precipitated in the water tank. Our simulations
setting was divided into four different states, defined as follows:

• Low pollutant concentration state.
• Medium pollutant concentration state.
• High pollutant concentration state.
• Mix pollutant concentration state.

Figure 4 shows the fluorescence visible emission spectrum under the optical excitation
of 430 nm. The emitted fluorescence emission spectrum of ceria NPs is according to the
molecular transition of 5d–4f [28]. The states were analyzed through the experimental
verification of fluorescence quenching results, as presented in Figure 5, according to the
static quenching of the radicals inside the hydrogen peroxide via the O-vacancies centers
inside the synthesized ceria nanoparticles [40]. The concentrations of hydrogen peroxide
are presented as follows: a low-risk concentration of lower than 5 g/L, medium risk from 5
to 15 g/L, and high-risk concentrations of peroxide greater than 15 g/L.

5.1. Simulation Test

Each of the four states was tested for our implementation of the K-LEACH algorithm
when all the nodes were set to be fixed (static) and when all the nodes were ascribed a
slight random displacement in the range of 0–2 m, each independently (dynamic).
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Accordingly, Table 1 discusses the parameter settings used in the simulations of our
implementation of the K-LEACH routing protocols.
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The number of CHs was chosen to be k = 5 from a design-wise perspective that guar-
antees the most optimal topology for our simulations in terms of the cluster-heads/normal
nodes density as well as the energy.

Moreover, we simulated the pollutant concentration effect on the water by interpreting
its effect using the number of packets sent by the nodes. If the node exists in a high pollutant
concentration area, it will have the urge to send many packets before it dies out. On the
other hand, if the node exists in a low pollutant concentration, it will send a small number
of packets, unlike in higher concentrations.

Table 2 includes the different ranges of packets used in our simulations to simulate
the effect of pollutant concentration; it is also worth noting that these ranges are normally
distributed across all the nodes of the network.
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Table 1. K-LEACH parameter settings.

K-LEACH Parameters Values

Network Size 100 m × 100 m

Location of Sink (50, 50)

Number of Nodes 132 nodes

Number of Cluster Head 5 cluster Head

Total Energy in K-LEACH 13.2 J

Total Energy in LEACH 14.2209 J

Excess Energy (ee) 1.0209 J

ETX (Energy consumed in the transmission of data) 50 nJ

ERX (Energy consumed in the reception of data) 50 nJ

Efs (Energy consumed by the amplifier to transmit at a short distance) 10 pJ/bit/m2

Emp (Energy consumed by the amplifier to transmit at a long distance) 0.0013 pJ/bit/m4

EDA (Data aggregation) 5 nJ/bit/signal

Number of Rounds 3000

Packets sent by the normal nodes 700–850 byte

Packets sent by cluster-head nodes 200–3500 byte

Table 2. Number of packets for each state of the pollutant concentration states.

Normal Nodes CH Nodes

Low pollutant concentration state 700–750 byte 2000–2500 byte

Medium pollutant concentration state 750–800 byte 2500–3000 byte

High pollutant concentration state 800–850 byte 3000–3500 byte

Mix pollutant concentration state 700–850 byte 2000–3500 byte

5.2. Findings and Result Conclusions

In all different simulated scenarios, we calculated the number of dead nodes per
round, and the average remaining energy for all nodes per round in both static and
dynamic contexts.

The following energy consumption model was used to compute the required energy
for each cluster head to withstand and stay alive during the simulation and die immediately
after the final dead node in their clusters [5]:

ETx(k, d) =
{

Eelec × k + ε f s × k× d2, d < d0
Eelec × k + εmp × k× d4, d ≥ d0

(2)

ERx(k) = Eelec ∗ k (3)

where E_Tx is energy consumption by transmission, E_Rx is energy consumption by the
receiver, E_elec is the energy required to process 1-bit of data, and k is the size of the packet.
ε_fs and ε_mp denote the energy needed to transmit 1-bit data while having an acceptable
bit error rate in the case of the free space model and multipath model, respectively. d is the
distance of transmission and d0 is the threshold, calculated as follows:

d0 =

√
ε f s

εmp
(4)
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Figure 6 clarifies the average residual energy of our modified K-LEACH algorithm
compared to the default (Classical) K-LEACH algorithm before pollution measurements.
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Additionally, we tested our modified K-LEACH algorithm with the classical K-LEACH
algorithm to check the lifetime of the nodes. Figure 7 presents the number of dead nodes of
our modified K-LEACH algorithm compared to the default (classical) K-LEACH algorithm
before pollution measurements.
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Table 3 explores the gap between nodes’ lifetime as the first die in the highest round
number in our modified K-LEACH algorithm compared to the classical K-LEACH, accord-
ing to the readings taken.



Sensors 2023, 23, 5733 12 of 18

Table 3. First node death in the modified and classical K-LEACH algorithms.

Modified K-LEACH Classical K-LEACH

Initial Energy (Eo) The First Node Dies
at Round Initial Energy (Eo) The First Node Dies

at Round

0.05 205 0.192225711 57

0.06 240 0.229612519 75

0.08 341 0.260554244 67

0.1 367 0.381269003 125

0.12 510 0.441267363 93

0.14 574 0.591142229 181

0.15 607 0.603701212 211

It can be noticed from Table 3, along with Figures 6 and 7 that our modified K-LEACH
algorithm considerably fits our discussion about its behavior in prolonging network lifetime
as the first node dies at the highest number of rounds compared to the classical K-LEACH.

The enhanced performance of the K-LEACH routing protocols on the network can be
inferred from Figures 8 and 9. Our implementation of the K-LEACH protocol preserves
the most recent CHs as discussed in the previous sections until all n_s nodes die out in
the K-LEACH low case. However, the rest cases of the K-LEACH appear sharp because of
unifying the energy of the simulation environment for all cases, so that all the cases of the
K-LEACH are throttled to the excess energy parameter generated for the K-LEACH low
case, which is ee = 1.209. ee is the excess energy required for the cluster head to stay alive
until the last node dies. Another approach would be to tolerate the full performance of all
the cases where the gradual death of nodes will be present and each case will have its ee
parameter (which becomes larger by increasing the pollutant concentration), but for the
sake of comparison, this approach was taken to control the simulation environment.
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Figure 8. Number of dead nodes of the 4 pollutant concentration states in the static case.
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Figure 9. Number of dead nodes of the 4 pollutant concentration states in the dynamic case.

Both Figures 10 and 11 tackle the average residual energy of the network throughout
the simulation in both the static and dynamic cases for the different pollutant concentration
states of the K-LEACH routing protocols. It can be noticed that the medium and mixed
states are nearly overlapping as observed in the number of dead nodes results, which
reiterate and verify our hypothesis of how it is behaving in that way.
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Figure 10. The average residual energy of the 4 pollutant concentration states in the static case.
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Figure 11. The average residual energy of the 4 pollutant concentration states in the dynamic case.

We used the confidence interval (C) to calculate the average lifetime of sensor nodes
in different pollution concentration scenarios. The C is an interval that is expected to
hold plausible values for a given statistical model. We used the recommended confidence
interval of 95% to obtain a far better overview using different readings (five readings in our
simulation), as shown in Equation (5).

X± Z
s√
n

(5)

where X is the mean, Z is the chosen Z-value from the table of the confidence interval and
it is 1.96 in the case of a 95% confidence interval, s is the standard deviation, and n is the
number of observations, which was taken five in our simulation tests.

Both Figures 12 and 13 present the first and last nodes’ death rounds, respectively, in
different pollution concentration scenarios in a static context. From both figures, we found
that the low pollution scenario is the one with a longer lifetime as the first and last node
death rounds are higher than the other pollutant concentration states.
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Figure 13. The last node death for the 4 pollutant concentration states in a static context using a
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Figures 14 and 15 show the first and last nodes’ deaths, respectively, in different
pollutant concentration scenarios in the dynamic context with a variable number of sensor
nodes using a confidence interval (95%) during five runs each at least for 3000 rounds.
From both figures, we also conclude that the low pollutant concentration state is the one
with a longer lifetime, as in the static context.
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It is clear from Figures 12–15 that the low pollutant scenario is the one that has a longer
life compared to other pollution levels. Additionally, it can be observed that the mix and
medium pollutant concentration readings are almost close.

We conclude from the previous results that our modified K- LEACH clustering al-
gorithm enhances network performance and prolongs network lifetime compared to the
usage of the standalone LEACH protocol or the classical K-LEACH protocol.
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6. Conclusions

In this paper, we studied a smart lightweight content-aware hierarchical data clustering
approach for enhanced water quality monitoring operations. We studied the use of the
LEACH algorithm in our WSN environment and its impact on energy consumption and
network lifetime. LEACH helps in reducing the nodes’ energy consumption, but its CH
non-uniform distribution increases the overload in the network. So, to enhance the overall
network lifespan and ensure efficiency, we used a modified K-means clustering algorithm in
conjunction with LEACH. Then, we simulated and compared the remaining energy levels
in different pollution levels scenarios using K-LEACH in the case of dynamic and static
contexts. We concluded that our modified K-means clustering algorithm in conjunction
with LEACH enhances network performance and prolongs network lifetime in both the
dynamic and static contexts. Our future work includes an extended study of applying
edge and the edge of things computing architectures with software-defined networking to
optimize the clustering and data-routing operations in environment-related contexts.
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