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Abstract
Perovskite solar cells (PSCs) have shown high optical absorption and consequently provide 
high conversion efficiency with stable performance. In our work, CH3NH3PbI3 (MAPbI3) 
as an absorber layer is analyzed for different crystalline structures. Cubic, tetragonal, and 
orthorhombic phases of perovskite material are investigated to check the impact of the 
crystalline structure on the solar cell performance. Both density of states and band structure 
are studied using Quantum-ESPRESSO package depending on density functional theory. 
Then, all relevant parameters were employed in SCAPS software and comprehensive study 
was done for examining the effect of the crystalline structure of perovskite layer on the 
solar cell performance. In-depth, analyses were conducted to evaluate key parameters, 
including open circuit voltage (Voc), short circuit current (Isc), fill factor (FF), and power 
conversion efficiency (PCE) considering the variations of perovskite layer thickness and 
bulk defect densities. The obtained results indicate that cells with cubic MAPbI3, which 
shows a notably higher bandgap of 1.7 eV and an enhanced optical absorption coefficient, 
especially in the higher wavelength range (around 105 cm−1), show better performance for 
almost all three scenarios. Cubic MAPbI3 cells achieve relatively higher peak efficiency of 
26% when the absorber layer thickness is almost 900 nm. The investigation into absorber 
bulk defect densities reveals the critical role of defect levels in PSC performance. Adjusting 
defect levels from 1014 cm−3 to 1018 cm−3 results in deteriorating trends in Voc, Jsc, FF, and 
PCE. Jsc remains stable until a defect level of 1017  cm−3, highlighting a threshold where 
defects begin to impact charge carrier generation and separation. Doping effect has been 
studied, PCE remains stable until a critical doping level of 1016 cm−3 after which it drops 
significantly which indicates that doping is cautioned against due to its adverse effects on 
material and carrier transport. This finding holds significant promise for experimental solar 
cell fabrication, as it suggests that cubic MAPbI3’s superior bandgap and enhanced optical 
absorption could lead to more efficient and robust photovoltaic devices in real-world 
applications.

Keywords  Perovskite · MAPbI3 · DFT · Band structure · DOS · Absorption coefficient · 
Solar cell efficiency · SCAPS-1D
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1  Introduction

Various solar photovoltaic systems have been developed to efficiently convert light into 
electricity such as perovskite solar cells (PSCs), organic photovoltaics (OPVs) (Jia et al. 
2023; Li et al. 2023a), copper indium gallium selenide (CIGS) solar cells (Jošt et al. 2022; 
Shrivastav et al. 2023), silicon solar cells (Zhou et al. 2022; Yeo et al. 2022), CdTe solar 
cells (Jain et al. 2023; Jamarkattel et al. 2022), gallium arsenide (GaAs) solar cells (Papež 
et  al. 2020; Yun et  al. 2022), and quantum dot solar cells (QDSCs) (Rasal et  al. 2022). 
The pivotal factors for widespread application of these photovoltaic devices include their 
efficiency, manufacturing cost, and stability. Among these, PSCs have garnered attention 
due to their high efficiency, easy manufacturing processes, and cost-effectiveness (Li et al. 
2023b). PSCs have rapidly emerged as a highly promising avenue for research, showcasing 
a confirmed efficiency of 26.1% since their introduction in 2013. In comparison, OPVs, 
initiated in 2001, currently achieve an efficiency of 19.2%. PSCs, despite their relatively 
recent entry, have swiftly progressed to efficiencies comparable to long-established 
technologies such as CIGS solar cells 23.6%, silicon solar cells 26.1%, CdTe 22.4%, and 
GaAs solar cells 27.8%, all introduced in the seventies of the last century. Additionally, 
perovskite solar cells outpace the efficiency of QDSCs, a more recent entrant since 2010, 
exhibit an efficiency of 18.1% (Best research-cell efficiency chart | photovoltaic research. 
2024). This rapid progression solidifies PSCs as a leading candidate for ongoing research, 
hinting at their potential to outshine established solar cell technologies in efficiency. 
These hybrid perovskite materials, possessing an octahedral crystalline structure with the 
general formula ABX3. The notable performance is credited to the unique attributes of 
halide perovskites, including a tunable bandgap, relatively simple fabrication through low-
temperature methods, and adequate absorption capability (Feng and Nan 2022; Nnochin 
et  al. 2023). Moreover, larger-scale roll-to-roll manufacturing techniques have facilitated 
extensive production, significantly enhanced the cost-efficiency of flexible PSCs, and 
signaled a promising outlook in the market (Othman et  al. 2022; Chandrasekhar et  al. 
2022).

Recent years have witnessed a focused exploration of perovskite materials’ electronic 
and optical properties through first-principles calculations, particularly employing density 
functional theory (DFT) (Lindblad et  al. 2014; Even et  al. 2014). This computational 
approach serves as a valuable tool for investigating the electronic structure of 
semiconductors and gaining insights into materials suitable for solar cells. Key among 
these insights is the study of optical absorption spectra, providing critical information 
on the electronic properties of the material (Wolf et  al. 2014). Zhu et  al. (2014) have 
contributed significantly by utilizing the GW approach to adjust quasiparticle energies, 
enhancing the accuracy of DFT descriptions for orthorhombic and tetragonal MAPbI3 
perovskite materials. Their research focused on the absorption spectrum of these materials 
and the identification of potential defects affecting the performance of PSCs. A gap 
between the first two absorption peaks was observed, indicating the potential significance 
of defect absorption in these materials. While Ahmed et al. (2015) conducted a thorough 
investigation of the optical properties of cubic MAPbI3 using GW-augmented DFT 
calculations, emphasizing the heightened optical conductivity close to the band gap and 
the system’s responsiveness to low-energy vibrational modes. The authors conducted 
calculations of the infrared (IR) absorption spectrum, yielding valuable insights into 
the material’s optical properties. The literature also delves into the advantageous feature 
of tunable bandgaps offered by PSCs (Ong et  al. 2019). Ong et  al. explored how the 
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orientation of the local structure of (CH3NH3)+ ions impact this bandgap. Additionally, the 
bandgap is influenced by the distortion of the PbI3 cage, a result of interactions between the 
inorganic framework and the molecules.

This study aims to build upon the existing body of literature by presenting an electronic 
and optical analysis of the MAPbI3 perovskite layer. The focus is on different crystalline 
structures, including cubic, tetragonal, and orthorhombic phases. The electronic structure 
will be analyzed by examining the density of states and band structure using the Quantum-
ESPRESSO package (Giannozzi et al. 2009). Simultaneously, the optical spectrum will be 
obtained using DFT, and all relevant parameters will be applied in the SCAPS solar cell 
simulator, showcasing our commitment to go beyond DFT and comprehensively study the 
behavior of the solar cell. In addition to the electronic and optical analysis, this study will 
explore the I-V curve, fill factor, efficiency, Voc, and Isc as functions of the thickness of 
the perovskite layer. This multifaceted approach aims to provide comprehensive insights 
into the performance of perovskite solar cells and the optimum thickness of the perovskite 
layer for achieving maximum efficiency. In our work, the main goal is to establish clear 
connections between prior studies and the specific outcomes of this research. By delving 
into the electronic and optical properties of MAPbI3 perovskite layers with different 
crystalline structures, this study contributes to a more nuanced understanding of the factors 
influencing the efficiency of perovskite solar cells.

The paper is structured as follows: Sec. 2 provides a detailed description of the 
computational methodology employed for DFT calculations and cell simulations using 
SCAPS. In Sec. 3, we present the results and engage in discussions concerning the 
influence of various MAPbI3 structures, absorber thickness, dopant concentration, and 
defect density. Finally, in Sec. 4, we summarize our findings, draw conclusions, and outline 
potential directions for further research.

2 � Computational methodology

Advancing the understanding of perovskite solar cells PSCs, our research uniquely 
explores CH3NH3PbI3 (MAPbI3) absorber layers with varied crystalline structures—cubic, 
tetragonal, and orthorhombic. Setting itself apart from prior studies, our approach involves 
a dual analytical method, integrating density functional theory (DFT) calculations (for 
density of states, band structure, and absorption coefficient) with the Quantum-ESPRESSO 
and YAMBO packages. The subsequent incorporation of these insights into SCAPS-1D 
software enables a comprehensive assessment of crucial parameters, including open circuit 
voltage (Voc), short circuit current (Isc), fill factor (FF), and power conversion efficiency 
(PCE). Importantly, our investigation delves into the impact of perovskite layer thickness, 
bulk defect densities and doping concentration on solar cell performance, offering a 
nuanced perspective.

2.1 � DFT analysis

DFT calculations were performed using QuantumEspresso package (Giannozzi et  al. 
2009), which is a widely used software package for first-principles electronic structure 
calculations and materials modeling based on density functional theory. To analyze 
the electronic and optical properties of the MAPbI3 perovskite layer, we utilized three 
different crystalline structures including cubic, tetragonal, and orthorhombic structures. 
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For the cubic structure, we used a MAPbI3 unit cell with a Pm3m space group, which 
contained 12 atoms. In the tetragonal structure, we employed a MAPbI3 unit cell with a 
P4/mmm space group, consisting of 48 atoms. Similarly, for the orthorhombic structure, 
we utilized a MAPbI3 unit cell with a Pnma space group, also consisting of 48 atoms. 
Spin–orbit coupling (SOC) was not considered in the calculations. Unlike the common 
issue of bandgap underestimation, the calculated bandgaps using the generalized 
gradient approximation (GGA) and local density approximation (LDA) were found to be 
very similar to the experimental values (Mosconi et al. 2013; Chang et al. 2004). This 
unexpected agreement is a result of error cancellation, specifically the omission of the 
spin–orbit interaction leading to an overestimation of the band gap, which compensates 
for the underestimation error in the LDA/GGA calculation (Even et al. 2013).

In our system, we employed the SSSP (Standard Solid State Pseudopotentials) 
with precision pseudopotentials (Prandini et  al. 2018) to describe the electron–ion 
interactions. These pseudopotentials were utilized in various calculations, such as self-
consistent field (SCF), non-self-consistent field (NSCF), and band calculations. From 
these calculations, we obtained the density of states and band structure of the system. 
For the absorption calculations, we utilized dojo pseudopotentials for both the SCF and 
NSCF calculations (Setten et  al. 2018). These potentials were specifically employed 
to capture the absorption properties of the system. The output files generated from 
these calculations, including the electronic structure information, were then passed to 
the YAMBO package (Sangalli et al. 2019; Marini et al. 2009). YAMBO was used for 
further analysis and processing of the absorption data. The YAMBO code is used to 
study the complex dielectric function in these MAPbI3 structures. To do this, we need 
the initial electronic structure data from the ground state, which comes from density 
functional theory codes (Sangalli et al. 2019). In this study, we got this data using the 
Quantum Espresso Package. It is worth noting that the selection of pseudopotentials, 
calculation methods, and software packages can vary depending on the specific 
requirements of the study and the nature of the system being investigated. In our 
analysis, the SSSP with precision pseudopotentials, dojo pseudopotentials, and YAMBO 
code were chosen as the tools to model and analyze the electron–ion interactions and 
absorption properties of the system. The criteria of convergence for energy and forces 
were set to 10−5 atomic units. For the cubic structure, a 10 × 10 × 10 k-point mesh was 
used to sample the Brillouin zone. For the tetragonal structure, a 6 × 6 × 4 k-point mesh 
was utilized, while for the orthorhombic structure, a 6 × 4 × 6 k-point mesh was used. 
The choice of k-point mesh is a compromise between computations analysis time and 
accuracy, we tested denser grids but observed subtle differences in convergence. The 
wave-function cut-off used was 47 Ry, and the charge density cut-off used was 424 Ry.

In the described computational process, “Ry” refers to Rydberg, a unit of energy 
commonly used in quantum mechanical calculations. The “wave-function cut-off” is 
a parameter that defines the maximum kinetic energy of the electrons included in the 
quantum mechanical calculations. Similarly, the “density cut-off” defines the highest 
allowed electron density in the calculations. These parameters are crucial in determining 
the precision and efficiency of the calculations.

The interaction between photons and electrons, from a quantum mechanical stand-
point, involves absorption or emission of photons causing transitions between filled and 
unfilled states within the system (Bano et al. 2017). This process is explained through 
the concept of time dependent perturbations acting on the system’s ground electronic 
state. To examine the optical response of the system, the frequency dependent dielectric 
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function, represented by the following Equation (Liu et al. 2021; Syah et al. 2021), is 
utilized:

where the cell volume is Ω , the total number of k-points in the Brillouin zone is Nk the 
operator of velocity is v̂ , � is the angular frequency, and the opportune broadening factor is 
� . The occupied and unoccupied states are represented by these indices v and c respectively. 
Then we can calculate the frequency-dependent absorption coefficient, �(�) using the next 
formula (Liu et al. 2021; Syah et al. 2021):

2.2 � Solar cell modeling and simulation

The analysis and modeling of the device were carried out using SCAPS software 
(Burgelman et  al. 2000). By solving the continuity equations for electrons and holes 
(Eqs. 3 and 4) along with Poisson equation (Eq. 5) (Almosni et al. 2017), the performance 
attributes of the device can be calculated as follows:

The afore mentioned Eqs. (3–5) involve several variables and parameters. The symbol 
G represents the generation rate, while x corresponds to the direction along the thickness. 
The lifetimes of electrons and holes are expressed as τn and τp, respectively. The diffusion 
coefficient is represented by D, and q is the electron charge of and holes, respectively. ξ is 
used to indicate the electric field, and ψ represents the electro-static potential. Additionally, 
N−
A
(x) and N+

D
(x) represent the ionized acceptor and donor concentrations, while n(x) , nt(x) , 

p(x) , and pt(x) represent the concentrations of free electrons, trapped electrons, free holes, 
and trapped holes, respectively.

The applied schematic diagram of solar cell is depicted in Fig. 1, which has been chosen 
due to its favorable attributes. These include its suitability for processing at temperatures 
below 150°°C, its capacity to minimize hysteresis effects, and its enhanced capability for 
the collection of charge carriers (Rahman et al. 2019). It illustrates the standard p-i-n struc-
ture of a perovskite solar cell fabricated on a glass substrate coated with ITO/FTO. The 
perovskite layer, CH3NH3PbI3 (MAPbI3), is situated between the hole transport material 
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(HTM) and electron transport material (ETM) layers, with ZnO being utilized as the ETM 
and NiOx is employed as the HTM for all structures. ITO/FTO functions as the front-side 
contact, while Ag/Al serves as the back-side contact for the solar cell.

In our simulation, we initially focused on the study of different perovskite phases as 
absorber layer in the SCAPS package after obtaining the absorption spectrum from DFT 
calculations. In addition to the common cubic phase, we extended our investigation to 
include the tetragonal and orthorhombic phases too. By comparing the performance of the 
three different absorbers, we aimed to assess their respective efficiencies of perovskite solar 
cell and make meaningful comparisons.

3 � Results and discussion

We have organized our computations and outcomes into two distinct categories. Firstly, we 
report the results obtained from DFT calculations for the electronic and optical properties 
of the MAPbI3 perovskite in the three introduced crystalline structures. These calculations 
provide insights into the structural stability and electronic band structure of the MAPbI3 
perovskite in each of these phases. In the second part, we perform cell simulations using the 
SCAPS simulator. We consider the cubic, tetragonal, and orthorhombic structures of the 
MAPbI3 perovskite as absorber layers in the solar cell simulation. The optical absorption 
spectra used in the simulation are obtained from the DFT calculations performed for each 
crystal structure. By utilizing different absorber structures and corresponding absorption 
spectra, we can analyze and compare the performance of the solar cell in terms of 
efficiency, fill factor, Voc, and Isc for each structure.

3.1 � DFT calculation outcomes

3.1.1 � Density of states

To assess the electrical characteristics, we investigated the electronic density of states as 
depicted in Fig. 2 for the cubic, tetragonal, and orthorhombic configurations of MAPbI3. 
Evident from their density of state profiles is the semiconductive nature of these structures, 
attributed to minimal energy interval within the density of states. Prominent peaks are 

Fig. 1   PSC structure used in the 
simulation
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Fig. 2   Total density of states for three perovskite phases, a cubic, b tetragonal, and c orthorhombic
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observable at approximately − 1.8, − 1.75, and − 1.89 eV within the valence band, along 
with 3.73, 3.58, and 3.87 eV within the conduction band, spanning from − 4 to 4 eV for 
the cubic, tetragonal, and orthorhombic arrangements, respectively. This pattern highlights 
distinct, well-defined peaks and substantial area coverage under the DOS curve, implying 
comparable electron accumulation across all three structures (Targhi et al. 2018).

3.1.2 � Band structure

For the computation of the band structures, we employed the lattice brillouin zone out-
lined in Fig. 3 (Setyawan and Curtarolo 2010). Then, the band structure of the different 
phases was analyzed. This analysis is important to understand some more properties such 
as carrier mobility and absorption spectrum (Jeng et al. 2013). As illustrated in Fig. 4 of 
the electronic band structures of MAPbI3, the band gap values, which indicate the energy 
difference between valence and conduction bands, are measured as 1.7  eV, 1.5  eV, and 
1.62  eV for cubic, tetragonal, and orthorhombic MAPbI3 structures, respectively. These 
findings also align well with the results of previous theoretical density of states (DOS) cal-
culations conducted in this study.

The analysis Indicates that the highest energy level of the valence band (VBM) and 
the lowest energy level of the conduction band (CBM) align at distinct points—the cubic 
structure at the R point and the tetragonal and orthorhombic structures at the Γ point, this 
is in good agreement with findings from a prior research by Lekesi et  al. (2022). This 
alignment underscores their common classification as direct bandgap semiconductors.

3.1.3 � Dielectric constants and absorption coefficients

In Fig. 5a, the real part of the dielectric function is shown, which tells us about how the 
material interacts with electric fields. Figure 5b, on the other hand, shows the imaginary 
part of the dielectric function, giving us more insight into the material’s absorption behav-
ior. The behavior of the imaginary part of the dielectric constant, directly linked to the 
material’s absorption shown in Fig. 6, its maximum values, detected between 2 eV and 3.5 
eV, correspond to wavelengths approximately from 350 to 650 nm—coinciding with the 
range where the absorption coefficient indicates significant values (Shaikh et al. 2016). The 
maximum absorption peaks for the cubic, tetragonal, orthorhombic crystalline structures 
are about 2.67, 3.06, and 3.15  eV respectively. However, the best absorption amplitude 
for the cubic structure is due to its high crystallinity (Bonadio et  al. 2021). These peak 
shifts could be explained by Fig. 6 using the contrast between the band structure and DOS 

Fig. 3   Lattice brillouin zone for each structure



Comprehensive performance analysis of perovskite solar cells…

1 3

Page 9 of 22    827 

Fig. 4   Band structure for three perovskite phases, a cubic, b tetragonal, and c orthorhombic
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curves taking into consideration the possible transition according to the electron’s popula-
tion through the available energy levels as shown in Fig. 6.

The qualitative analysis of the graphs explains how the material responds to electric 
fields at that energy level. Moreover, the graphs highlight peaks, representing significant 
points where the material undergoes direct transitions when interacting with light. This 
detail is important for applications like solar cells and electronic devices (Hajjiah et  al. 
2022). Even though our analysis gives us a solid understanding, considering effects 
like phonons—vibrations in the material’s lattice—might lead to small changes in the 
absorption coefficient (Liu et al. 2021).

Figure 7 compares the absorption coefficient obtained by YAMBO code for the three 
structures on the left axis, along with the solar irradiance (Mass and 1.5 Spectra.2024) 
on the right axis. The absorption coefficient curve exhibits elevated values within the low 
wavelength range, spanning from 300 to 900 nm, indicating pronounced light absorption in 
this interval. Conversely, the curve displays diminished absorption for longer wavelengths, 
underscoring a reduced tendency of the material to absorb light at lower energy levels. The 
absorption coefficient starts to increase at approximately 700 to 800 nm which corresponds 
to bandgaps values measured in eV. This alignment underscores the correlation between 
the material’s absorption behavior and its energy band gap, with the observed transition 

Fig. 5   Dielectric constant of MAPbI3 structures. a Real part and b Imaginary part

Fig. 6   The contrast between the bandgap and the possible electron transition. a cubic, b tetragonal, and c 
orthorhombic phases



Comprehensive performance analysis of perovskite solar cells…

1 3

Page 11 of 22    827 

occurring within the range of the previously determined band gap energy levels. Notably, 
the cubic structure, specifically within the broader range from 450 to 900  nm, displays 
a higher absorption coefficient. This observation gains significance as it aligns with the 
wavelength range associated with high solar irradiance. The heightened absorption in this 
solar energy range suggests superior overall performance of the cubic structure compared 
to other configurations.

3.2 � Solar cell simulation

All layers under investigation in this study are intrinsically undoped, implying the absence 
of external doping. However, due to the absence of a dedicated option for specifying 
carrier concentration within SCAPS, we employ acceptor concentration for p-type layers 
(NiOx and MAPbI3), while for n-type layer (ZnO, the electron transport material), donor 
concentration is utilized. This adaptation is justified on the premise that dopants are treated 
as being completely ionized in the simulation (Rahman et al. 2019).

The perovskite material is regarded as marginally p-type, a characterization supported 
by multiple studies (Dong et  al. 2015; Hutter et  al. 2015). The selection of mobility for 
electrons and holes stems from thin film data (Herz 2017), as opposed to single crystal 
data, to accurately replicate the fabrication conditions. Mobility values are derived from 
Hall data and are distributed uniformly for both electrons and holes. This approach is 
grounded in the similarity of effective carrier masses in MAPbI3, resulting in equal 
distribution of mobilities between the two carrier types (Leijtens et al. 2014). To ascertain 
the accuracy of our simulations, we conducted a comparison by simulating a MAPbI3 solar 
cell using the absorption spectrum derived from density functional theory (DFT). The solar 
cell simulation is executed with the parameters outlined in Tables 1 and 2.

3.2.1 � Comparison study of different MAPbI3 structures

The p-i-n perovskite solar cell (PSC) structure is investigated with three distinct MAPbI3 
absorber layer configurations: cubic, tetragonal, and orthorhombic structures. ZnO serves 
as the electron transport material (ETM) for these configurations, while NiOx is employed 

Fig. 7   MAPbI3 structures’ absorption spectrum
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as the hole transport material (HTM). The analysis maintains consistent parameters across 
these configurations, including a uniform absorber layer thickness of 320 nm, consistent 
absorber bulk defect densities at 1.5 × 1016 cm−3, and uniform interface recombination rates 
represented by Sn and Sp with values of 104 cm/s (Rahman et al. 2019).The corresponding 
current–voltage characteristics for the three distinct phases are depicted in Fig. 8, and the 
solar cell performance parameters are summarized in Table 3.

It is observed that cubic structure has superior performance over both tetragonal and 
orthorhombic structures. Among the three materials, cubic MAPbI3 shows improved 
Voc (about 86 mV higher than orthorhombic), FF (1.07% higher than orthorhombic) and 
Jsc (4.54  ma/cm2 higher than tetragonal). The underlying cause for this behavior can be 
attributed to the notably higher bandgap of the cubic structure compared to the other 
configurations accompanied with its higher absorption especially in the longer wavelength 
range, which leads to the generation of greater proportion of carriers compared to 
tetragonal and orthorhombic absorbers (Laali et al. 2020).

Table 2   Defects used in SCAPS 
of different layers

Defect property NiOx MAPbI3 ZnO

Type Acceptor Neutral Donor
Total density (cm−3) 1017 1.5 × 1016 1017

Electron diffusion length Ln (nm) 180 510 280
Hole diffusion length Lh (nm) 800 510 51

Fig. 8   I-V curve of 320 nm 
MAPbI3 PSC for three different 
structures

Table 3   p-i-n perovskite solar 
cell performance parameters

Structure Voc (V) Isc (mA/cm2) FF (%) PCE (%)

Cubic 1.16 22.6 84.17 22.13
Tetragonal 1.017 18.06 79.37 14.6
Orthorhombic 1.074 17.09 83.1 15.26
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3.2.2 � Absorber thickness variation

The thickness of the absorber layer should be chosen attentively to maximize the current 
density and not too large to minimize the reverse saturation current. To investigate the 
impact of the absorber (MAPbI3) layer thickness on PSC performance, the thickness 
systematically varied from 300 to 1900 nm. This parameter variation is carried out while 
maintaining all other factors constant, including bulk defect densities, interface states, 
and other relevant parameters, for the three different structures. The outcomes of these 
investigations are illustrated in Fig.  9. The analysis reveals a consistent trend among all 
structures in response to the variation in thickness. With increasing thickness, both 
the open circuit voltage (Voc) and fill factor (FF) exhibit a decline. The decrease in Voc 
as shown in Fig.  9a is attributed to the increment in the dark saturation current, which 
increases the recombination of the charge carriers (Ouslimane et  al. 2021). That can be 
explained by the dependency of open-circuit voltage on the photo-generated current and 
dark saturation current, which is written as (Singh and Ravindra 2012):

where KT
q

 is the thermal voltage, Jsc is the photo-generated current density, and Jo is the 
saturation current density. While FF, Fig. 9b is inversely proportional to the thickness due 

(6)Voc =
KT

q
ln

[
Jsc

Jo
+ 1

]

Fig. 9   Effect of thickness variation of MAPbI3 layer on PSC performance



Comprehensive performance analysis of perovskite solar cells…

1 3

Page 15 of 22    827 

to an increased series resistance and an internal power dissipation in a thicker absorber 
layer.

Notably, an increase in absorber layer thickness leads to an incremented light 
absorption, resulting in a rise in the short circuit current density Jsc, Fig.  9c. As for the 
power conversion efficiency PCE, Fig.  9d, an optimal absorber thickness exists, beyond 
which the efficiency diminishes with further increases in thickness, this can be explained as 
thicker layers absorb more photons, generating more electron–hole pairs. Yet, as thickness 
increases further, recombination probability rises since charge carriers must travel longer 
distances for diffusion (Anwar et  al. 2017). This behavior is found within all studied 
crystalline structures of perovskite. Among the examined structures, the cubic MAPbI3 
cells achieve an impressive efficiency peak of up to 26% at thickness 900 nm. In contrast, 
the tetragonal cells exhibit a maximum efficiency of approximately 18% at 1000 nm, 
while the cells incorporating orthorhombic MAPbI3 material fall within the intermediate 
efficiency range of 20% at 1200 nm.

3.2.3 � Absorber bulk defect densities

Perovskite materials exhibit distinctive characteristics such as extended carrier diffusion 
lengths, Ln for electrons and Lp for holes in single crystals. However, in thin films, these 
lengths can vary significantly based on the quality of the film. The diffusion length is intri-
cately linked to the bulk defect densities within the perovskite (Rahman et al. 2019). To 
explore the impact of defect densities on the performance of perovskite solar cells (PSCs), 
the single bulk defect level is systematically adjusted across a range from 1014  cm−3 
(Ln = Lp = 6.2  µm) to 1018  cm−3 (Ln = Lp = 62  nm). This alteration reflects the transition 
from a high-quality thin film perovskite layer to a layer of very poor quality. The results 
obtained from this analysis are summarized in Fig.  10a–d. As anticipated, each perfor-
mance parameter Voc, Jsc, FF, and PCE—exhibits a deteriorating trend with the introduced 
variation.

The bulk defect densities, Ndef. are inversely proportional to the diffusion length 
as depicted in Table 4. So, in the case of low defects, diffusion length is in the order of 
micrometers while long diffusion lengths are indeed an important factor for highly efficient 
solar cells. In the other case of high defects, diffusion length is in the order of nanometers 
which reflects directly on the drop in solar cell efficiency, Fig. 10d (Akel et al. 2023). The 
FF is impacted by increasing defect density, Fig. 10b. This is because of the decreasing 
electric field with the increase of defect density which causes reduction in charge carrier. 
Hence, absorber layer quality is required for higher fill factor (Nalianya et  al. 2021). 
The deterioration of Voc in Fig. 10a can be explained by the reconfiguration of the band 
structure influenced by trap states which ultimately decreases the efficiency of solar cell 
(Raval et al. 2020).

However, an interesting exception arises in the case of current density, Jsc, as illustrated 
in Fig. 10c. Notably, Jsc remains stable until a defect level of 1017  cm−3 is reached, after 
which it commences a gradual decline. At low defect densities, this behavior can be 
attributed to the presence of defects that might not significantly impact the generation and 
separation of charge carriers. The short circuit current, Jsc, is primarily determined by the 
amount of photocurrent generated due to incident sunlight and the efficient separation of 
electron–hole pairs.
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3.2.4 � Absorber doping concentration

In this section, doping the active layer is studied and consequently its effect on the solar 
cell performance is presented. Here, we added acceptor material with concentration 
ranging from NA = 10

14cm−3 to 1018cm−3 . In Fig. 11, the variations of the different solar 
cell parameters are shown ending with the efficiency. It can be noted that, for all crystal-
line structures, the PCE is stable and begin to decrease significantly after NA ~ 1016cm−3 . 
However, the cubic structure still has the best performance ( PCE ~ 22% ). This conclu-
sion is consistent with Voc and Jsc results shown in Fig. 11a, c respectively. That can be 
explained as the charge carriers are collected and transport easily below the threshold 
concentration NA ~ 1016cm−3 . For Voc behavior, this can be attributed to an increase in 
Auger recombination with higher doping which in turn increases forward bias diffusion 

Fig. 10   Effect of bulk defect density variation of MAPbI3 layer on PSC performance while keeping 
absorber thickness at 320 nm

Table 4   Defect density variation versus diffusion length

Defectdensity, Ndef.(cm
−3) 1 × 10

14
1 × 10

15
1 × 10

16 1 × 10
17

1 × 10
18

Diffusionlength,L(nm) 6200 2000 620 200 62
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current hence reducing Voc (Bertoluzzi et al. 2020). The fill factor, FF also is important 
parameter to be studied, Fig. 11b and almost have the same attitude except for higher 
doping concentrations. So, proper doping is required as heavy one lead to an increase 
in enhanced impurity scattering and Auger recombination rate and consequently, sup-
pression of hole transportation (Minemoto and Murata 2014). Generally, excessive dop-
ing changes the nature of the perovskite material to be closer to metallic nature which 
impedes the carrier transport mechanisms (Stoumpos et al. 2013).

4 � Conclusion

In this extensive study, we investigated the optical and electrical properties of MAPbI3 
with different crystalline structures to enhance solar cell performance. Using density 
functional theory (DFT) and QuantumEspresso, we explored density of states and band 
structures. Subsequently, the SCAPS software simulated perovskite solar cell performance. 
The cubic MAPbI3 structure outshone tetragonal and orthorhombic structures, displaying 
higher Voc , FF , and Jsc , primarily due to a higher bandgap and better light absorption. We 
also examined the impact of absorber layer thickness. Thicker layers improved Jsc but led 
to reduced Voc and FF due to increased series resistance. An optimal thickness was found. 

Fig. 11   Effect of doping concentration variation of MAPbI3 layer on PSC performance while keeping 
absorber thickness at 320 nm
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Among the structures, cubic MAPbI3 achieved a peak efficiency of 26% , while tetragonal 
cells reached approximately 18% , and orthorhombic cells fell in between. We analyzed 
defect densities’ influence on solar cell performance, revealing deteriorations in key 
parameters with increasing defects, especially when defect levels exceeded 1017cm−3 . The 
study on doping effects reveals that the PCE remains consistent until reaching a critical 
doping level of 1016cm−3 , beyond which a notable decrease is observed. This highlights 
the cautionary note against doping, emphasizing its adverse impact on both material and 
carrier transport. This research advances perovskite solar cell technology, emphasizing the 
potential of the cubic structure in the absorber layer for future exploration and development.
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