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Multi-branch Joint Representation Learning Based
on Information Fusion Strategy for Cross-view

Geo-localization
Fawei Ge, Yunzhou Zhang*, Yixiu Liu, Guiyuan Wang, Sonya Coleman, Dermot Kerr and Li Wang

Abstract—Cross-view geo-localization refers to recognizing
images of the same geographic target obtained from different
platforms (such as drone-view, satellite-view and ground-view).
However, cross-view geo-localization is challenging as image
capture using different platforms coupled with extreme viewpoint
variations can cause significant changes to the visual image
content. Existing methods mainly focus on mining the fine-
grained features or the contextual information in neighboring
areas, but ignore the complete information of the entire image
and the association of contextual information of adjacent regions.
Therefore, a multi-branch joint representation learning network
model based on information fusion strategies is proposed to
solve this cross-view geo-localization problem. Firstly, we obtain
feature information from the image through global information
fusion branch and local information fusion branch to help the
network learn the discernable information in the different images.
In addition, a local-guided-global information fusion branch is
introduced to make local information assist global features to
enhance the learning of potential information in the images.
Secondly, we introduced different information fusion strategies in
each branch to increase the extraction of contextual information
through expanding the global receptive field, thus improving
the performance of the model. Finally, a series of experiments
is carried out on three prevailing benchmark datasets, namely
University-1652, SUES-200, CVUAS and CVACT datasets. The
quantitative comparisons from the experiments clearly indicate
that the proposed network framework has great performance.
For example, compared with some state-of-the-art methods, the
quantitative improvements of the R@1 and AP on the University-
1652 datasets are 1.91%, 2.18% and 1.55%, 2.99% in both tasks,
respectively.

Index Terms—Geo-localization, multi-branch, hybrid informa-
tion fusion strategies, joint representation learning.

I. INTRODUCTION

CROSS-VIEW geo-localization aims to retrieve the most
relevant images of the same geographic target from dif-

ferent platforms, and has been widely used in many fields, such
as accurate delivery, autonomous driving, action recognition,
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Fig. 1. Difference of the activation maps generated by the LPN
method [1] and our method. The images on the left column
are the input drone-view and satellite-view images. The images
in the middle column are the heatmaps of LPN method. The
images ont the right column are the heatmaps of our method.
From the visualization result, it can be seen that our method
focus on the important information in the image.

change detection, event detection and land cover classification
[2]–[8]. In the era of digital maps, it is usually necessary
to estimate the geospatial localization of a given object in
real-time. This can be done with real-time Kinematic (RTK)
GPS, but these sensors are expensive and short time signal
interruptions can hinder workflows. In addition, especially
in the city, the urban canyon effect will produce a certain
deviation. At present, cross-view geo-localization based on
image retrieval is an effective method to solve these problems
[9]. In practical application, the information obtained from
different source data for the same target in different tasks
is different and related. Therefore, it is necessary to corre-
late images from different views [10]. For example, given a
drone-view image, it is necessary to retrieve images of the
same location from other viewpoints to obtain the geographic
information of the location. Given locational information is
available from different image sources such as satellite, drone,
or ground, studying the cross-view geo-localization problem is
extremely important [11]–[14]. However, the scale, viewpoint
and imaging modality for images obtained through different
platforms can be very different, e.g., the ground-view is almost
perpendicular to the horizon, while the satellite-view is almost
parallel to the horizon. Therefore, cross-view geo-localization
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is a challenging task [15].
In recent years, cross-view geo-localization has made sig-

nificant progress with the introduction of deep learning. A lot
of existing approaches use pre-trained deep learning networks
to extract the features from different platforms, and use metric
learning to distinguish whether these image feature represen-
tations have the same geospatial localization [10], [16], [17].
In this process, the network will learn a feature space to make
the image features of the same geographic target closer, and
push unmatched pairs far apart to complete cross-view geo-
localization tasks [18], [19]. In addition, auxiliary information
such as attention mechanisms, orientation information and
aligning the spatial layout of features is also widely used in
deep learning networks to improve the performance of network
models [20]–[22]. However, these geo-location methods only
consider the global information of the input images and ignore
other contextual information, which can cause images with
similar regions to be difficult to differentiate, resulting in
mismatching of cross-view images from different platforms.

Due to images obtained by different platforms, such as
drone-view or satellite-view, are typically captured at a wide
angle. These images also contain other information around the
target scene while acquiring the geospatial target, which may
also have a significant impact on the results. Most current
methods often ignore this contextual information in neigh-
boring areas, which provides critical information for cross-
view geo-localization. When there is no obvious landmarks
in the scene, the visual difference between similar scenes
is not very obvious, and it can be difficult for the human
visual system to distinguish such scenes and determine the real
target. In view of this, the inclusion of contextual information
can effectively reduce the difficulty of the task. Therefore,
mining and utilizing the contextual information in images can
effectively improve the model performance for cross-view geo-
localization [1].

Although mining and utilizing contextual information in
images can effectively improve the accuracy of cross-view
geo-localization, the use of global information in images is
equally important. As shown in Fig.1, a previous work, LPN
[1], focuses more on the contextual information for the input
image, ignoring other crucial information in the scenes. In
order to mine effective information in cross-view images, and
inspired by existing methods [1], [23], a multi-branch joint
representation learning network model based on information
fusion strategies is proposed in this paper to solve the cross-
view geo-localization problem. For this problem, we believe
that each part of the image has a significant impact on the
result of image matching. Therefore, we adapt a multi-branch
joint representation learning network model to solve this prob-
lem, which is divided into three branches, namely the global
information fusion (GIF) branch, the local information fusion
(LIF) branch and the local-guided-global information fusion
(LGGIF) branch. In the global information fusion branch,
the global features of an image can effectively express the
content information in the complete image scene, most existing
methods use this concept to solve cross-view scene matching.
However, only using the global information may result in the
acquired features that are not sufficiently discernible for certain

scenes. In order to mine the global information effectively,
we introduce the global information fusion strategy into it to
increase the global receptive field of the network, which can
improve the utilization of global information. However, as it
is difficult to distinguish similar scenes completely only using
global information, the contextual information in the image
can help with feature matching.

Therefore, we design a local information fusion branch to
improve the performance of the network model. In the local
information fusion branch, the contextual information in the
image will have a positive impact on feature matching. In
order to better mine the contextual information in the image,
we process the global information into blocks. At the same
time, in order to better mine and utilize the crucial information
of each segmented part, we introduce the local information
fusion strategy to expand the receptive field of each part. On
this basis, we divide each block feature into several parts in
a square-ring partition to obtain the contextual information
of each part thus assisting the global features to distinguish
similar scenes. In addition, we believe that local features
can assist global features to better mine information in the
image. In this regard, we also introduce a local-guided-global
information fusion branch, which mainly used local features
after segmentation to assist global features and introduce a
mixing information fusion strategy and attention mechanism
to further increase the global receptive field and mine more
useful potential information. Through these three branches, the
effective information in the cross-view image can be mined
and utilized effectively to solve the cross-view geo-localization
problem.

The contributions of this paper are summarized as follows:

• A multi-branch joint representation learning network
model based on information fusion strategies is proposed
to solve the cross-view geo-localization problem, which
consists of three parts, namely the global information
fusion (GIF) branch, the local information fusion (LIF)
branch and the local-guided-global information fusion
(LGGIF) branch.

• In order to obtain more robust features, based on the use
of global information and local information, we utilize
the idea of the local-guided-global information to build
model branch without introducing additional information
and assist network model to further mine latent crucial
information in the image, which can further improve the
performance network model.

• To further mine and utilize the crucial information in
the image, three information fusion strategies (IFS) are
designed to the three proposed branches to assist each
branch of the network model to increase the global recep-
tive field. On this basis, each branch can more effectively
mine and utilize the relevant feature information and
improve the discrimination of features.

• A series of experiments is carried out using the
University-1652, SUES-200, CVUAS and CVACT
datasets, and the experimental results demonstrate that
the effectiveness of the proposed network framework.
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II. RELATED WORK

A. Deep Cross-view Geo-localization

In recent years, with the emergence of a large number of
potential application directions in this field, the cross-view
geo-localization problem has attracted more and more atten-
tion [24], [25]. Early pioneering work [26]–[28] focussed on
addressing the cross-view geo-localization task by extracting
hand-crafted features and while some progress was made,
however, the features extracted by these methods were not
robust in some cross-view scenes. With the development of
deep convolutional neural networks (CNNs) and significant
success [29], [30], more scholars have studied deep learning
to extract robust depth features to complete the cross-view geo-
localization task. Workman et al. [31] first used the pre-trained
CNN model to extract features from cross-view images to
complete the cross-view geo-localization task. Then Workman
et al. [32] introduced cross-view training to learn joint se-
mantic feature representations between images. Although these
methods have achieved some improvements in the cross-view
geo-localization task, focussing on a single type of feature is
non-ideal due to the fact that cross-view images are captured
from different platforms and have a large content gap.

The idea of aligning the spatial layout of features has been
introduced into the cross-view geo-localization task to com-
pensate for the image context changing in different viewpoints
and platforms [33]. Shi et al. [10] proposed a regular polar
transform to warp an aerial image into a panoramic image
close to the ground-view, which can align the features of two-
view images in a certain space. In addition, Zhai et al. [16]
used an adaptive transformation to map these extracted fea-
tures into the ground-level perspective. Although the accuracy
of the cross-view geo-localization task has been significantly
improved by aligning the spatial layout of features, these
methods usually only focus on mining the global information
but omit contextual information, which can have a significant
impact on the final results.

In recent years, methods have focused on the use of con-
textual information to enhance the accuracy of the cross-view
geo-localization task. LPN [1] used contextual information
and deployed the square-ring partition strategy to mine ad-
ditional information in an end-to-end manner. In addition,
as a transformer-based model has strong local information
mining ability, and with the rapid development of transform
models, some methods now include it in the cross-view geo-
localization task. FSRA [22] introduced a simple and effective
transformer-based structure to enhance the ability of a model
to understand contextual information. After considering the
contextual information of the image, the overall performance
of these methods was improved to some extent.

However, excessively mining and using the contextual in-
formation can cause the model to over-consider the peripheral
information and ignore other crucial information, which may
reduce the performance of the network model. Therefore,
a multi-branch joint representation learning network model
based on information fusion strategies is proposed to solve
the cross-view geo-localization problem. We consider the
global information, local information and local-guided-global

information to ensure the network model fully mines the
crucial information in the image. We then introduce different
information fusion strategies to increase the global receptive
field of the model and hence increase the model’s performance,
and effectively complete the cross-view geo-localization task.

B. Part-based Representation Learning
In the design of traditional algorithms, local features have

been widely studied and applied in many fields [34]–[36].
Ojala et al. [37] proposed a generalized gray-scale and rotation
invariant feature and proved the effectiveness of these features
via experiments. Lowe et al. [38] designed a scale-invariant
feature transform descriptor (SIFT) for image matching. SIFT
is invariant to translations, rotation, and scaling transfor-
mations through summarizing the description of the local
image structures in a local neighborhood around each interest
point, and has been widely applied in many fields due to its
excellent performance. Although these methods work well in
simple environments, the feature lack robustness in complex
environments.

Recently studies have focused on local pattern learning in
deep-learning models. Spindle Net [39] is a novel network
based on human body region guided multi-stage feature de-
composition and tree-structured competitive feature fusion,
which improves model performance by extracting semantic
features and merging competitive schemes. MSVAN [40]
learned the powerful features of each part by stacking multi-
scale convolutions to obtain the contextual information from
the image. Zheng et al. [41] proposed a novel network for
discriminative embedded learning and pedestrian alignment.
These methods achieve good results when solving related
problems, and demonstrate that global contextual information
plays a crucial role in solving some problems.

With the wide application of deep convolutional networks
in various fields, attempts have been made to improve the sta-
bility of network models by extracting contextual information
from images. In a CNN, one of the easiest ways to obtain
global contextual information is to use global average pooling
[42]. However, this method cannot effectively integrate global
contextual information into each pixel representation. In order
to solve this problem, attention mechanisms are widely used in
deep learning to acquire more critical information in images.
Xu et al. [43] proposed an Attention-Aware Compositional
Network (AACN) framework, which introduces Pose-guided
Part Attention and Attention-aware Feature Composition to
enhance the network model performance. Guo et al. [44]
applied a human parsing model to extract the binary human
part masks and a self-attention mechanism to capture features.
Although the attention mechanism is effective in obtaining
global contextual information, frequently using it will increase
the computational complexity of the network model.

Therefore, we adopt a multi-branch joint representation
learning network model based on information fusion strategies
to fully mine the crucial information and contextual informa-
tion in the image. Furthermore, different information fusion
strategies is introduced into each branch to provide contextual
information to further improve the network model perfor-
mance. In addition, we introduce the attention mechanism into
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Fig. 2. The overview of the proposed network framework. As the input image may come from different platforms the proposed
network model will be set according to different task requirement. It is worth noting that the illustrated network framework
shows the drone-view and satellite-view in the University-1652 dataset as example inputs. When the ground-view is needed,
network models can be replaced or added as required. In addition, the weights in each models are not shared. During the
training period, the network model is optimized mainly through the cross-entropy loss function.

the local-guided-global information fusion branch to further
mine the crucial information to enhance the robustness of
feature extraction. We only use the attention mechanism in one
module, and the network model performance can be improved
without significantly increasing the computational complexity.

III. METHODOLOGY

In cross-view geo-localization, the contents of different
source images will change greatly due to the different obtained
views. For the same task object, there will be a lot of relevant
information in the different images. Therefore, how to match
or mine the relevant information in these different source
images is the key to solve this problem. In this regard, by
mining the global information and local information of images
from different sources, we can associate key information
from different views as much as possible and determine the
image of the same place, so as to complete the cross-view
geo-localization task. In this section, we provide a detailed
introduction to the proposed multi-branch joint representation
learning network model based on information fusion strategies.
The proposed network framework is shown in Fig.2.

Problem formulation. Given a cross-view geo-localization
dataset, we represent the input image as x and the input image
label as y. In addition, xi represents the acquisition platform
to which the input image data belongs, and i ∈ {1, 2, 3},

where x1 represents the satellite-view image, x2 represents the
drone-view image, and x3 represents the ground-view image.
The label of the sample is y ∈ [1, C], where C represents the
number of sample categories. Suppose that the dataset contains
701 buildings, each building containing multiple images from
different perspectives, and then the 701 buildings will be
numbered as 701 label indexes, each index representing a
category, i.e., the label y ∈ [1, 701]. For the cross-view geo-
localization task it is necessary to learn a mapping function
for images from different perspectives. Images obtained from
different platforms should be projected into a feature space to
ensure that the features of images from different perspectives,
at the same locations, are similar and the features of images
from different locations are not similar.

The proposed network framework is comprised of three
branches, the global information fusion branch, the local infor-
mation fusion branch and the local-guided-global information
fusion branch, these branches will be introduced in detail in
this section.

A. Global Information Fusion Branch

Firstly, we introduce the global information fusion branch
in the network framework. It is worth noting that the input
images obtained from different platforms are set as different
network branches. The model structure of each model is



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

consistent, although the weights are not shared among the
network models. ResNet50 [45] is chosen as the backbone
network to extract global and contextual features. Assuming
that this process can be expressed as a function FResNet50,
the process of extracting global features can be expressed as
follows:

fi = FResNet50(xi) (1)

where xi is the input image and fi is the global features
extracted from the image xi.

After obtaining the global features, the proposed global
information fusion branch will be activated. We believe that
the global information in the image has a significant impact
on the performance for the network model. Therefore, it is
designed to deeply mine the global information and will
provide two global feature descriptors for the final result,
namely the global information descriptor and the global feature
descriptor, based on the global information fusion strategy. The
global information descriptor is obtained through inputting the
global feature descriptor into the max pooling layer. The size
of the global information description and the global feature
descriptors are 16 × 16 × 2048 and 1 × 2048, respectively.
This process can be expressed as follow formula:

di = Maxpool(fi) (2)

where Maxpool represents the maximum pooling operation,
and di is the output feature descriptor from global feature fi.

It is difficult to effectively obtain the complete information
from an image by simply manipulating the global features
through the pooling layer. Therefore, the global information
fusion strategy [23] is introduced to increase the global re-
ceptive field of the network and obtain more effective global
features. The concrete implementation process of the global in-
formation fusion strategy is shown in Fig.3. In this strategy, the
features are first divided into ph ·pw blocks; hence each group
of features is segmented based on the channel. The newly
generated block feature consists of a large number of features
from the original location and a small number of features from
other blocks to synthesize a new complete global feature. In
this process, the sampling location will be controlled by offsets
ĥ and ŵ, and further divided c =

{
C
2 , . . . , C − 1

}
into ph ·pw

sub-groups, each sub-group has
⌊

C
2ph·pw

⌋
channels. On this

basis, the features are divided into spatial dimensions and each
part will contain

⌊
H
ph

⌋
·
⌊

W
pw

⌋
pixels. The offset can be defined

as follows:
ĥ = k ·

⌊
H

ph

⌋
, ŵ = l ·

⌊
W

pw

⌋
(3)

where k and l are the block indexes, k ∈ [0, ph − 1] , l ∈
[0, pw − 1]. The block index is applied to ĥ and ŵ to generate
ĥk and ŵl. The sampling location can be represented as
follows:

Nf = ∪k,l

{(
ĥk, ŵl

)}
(4)

Nf enumerates all the possible combinations of k, l, which
can be formulated as follows:
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Fig. 3. The concrete implementation process of the global
information fusion strategy.

Nf =
{
(0, 0) ,

(
0,
⌊

W
pw

⌋)
, · · · ,(

(ph − 2) ·
⌊
W
ph

⌋
, (pw − 1) ·

⌊
W
pw

⌋)
,(

(ph − 1) ·
⌊
W
ph

⌋
, (pw − 1) ·

⌊
W
pw

⌋)} (5)

Nf includes ph ·pw offset coordinates in total. It covers almost
the entire input feature map.

Each new block feature can be combined in the way shown
in Fig.3 to generate a complete global feature set, each newly
generated block feature can be formulated as follows:

f ′
gol,i(hk, wl) =

C
2 −1∑
c=0

fi(hk, wl, c)+

C−1∑
c=C

2

∑
(ĥ,ŵ)∈Nf

fi(hk + ĥ, wl + ŵ, c)

(6)

where (hk, wl) represent the numbered index of the newly
generated feature block.

By partitioning and merging the operations of the global
features, each block of the merged features can obtain the
information of the original location and the equally impor-
tant information of the global contextual information, which
can enhance the global receptive field of the merged global
features. The feature size of the global feature after global
information fusion fi GIF is the same as the original global
feature fi size, which is 16×16×2048. Finally, a new global
feature descriptor is obtained using equation (2) to assist the
network model to improve performance.

B. Local Information Fusion Branch

In the cross-view geo-localization task, the content infor-
mation will change greatly due to the change in the image
perspective. Therefore, it is necessary to extract the contextual
information to assist the network model. In order to make bet-
ter use of the contextual information from the image, we adapt
the local segmentation approach to mine other information in
the image as much as possible, which can improve the stability
of the network model. After the extracted global features are
partitioned, each part feature contains global information, but
the content information is different.
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Fig. 4. The local information fusion strategy.

In order to further increase the global receptive field of
each part feature, we introduce the local information fusion
strategy to improve the ability to mine contextual information,
as illustrated in Fig.4. Since the content information of each
part feature is different, to retain the feature contextual infor-
mation in each block we fully mine the content information
from other parts and provide more effective features for the
following operations. Similar to equation (5), the process can
be formulated as follows:

f ′
loc,j(h,w) =

C
2 −1∑
c=0

floc,j(h,w, c) +

C−1∑
c=C

2

N∑
n=0

floc,n(h,w, c)

(7)

where floc,j is the j-th block feature before processing, f ′
loc,j

is the j-th block feature after partitioning, and N is the
number of blocks of global features. In our work, the size
of each part of the local feature f ′

loc,j is 8× 8× 2048.
On this basis, in order to explicitly take advantage of

contextual information, we adopt the square-ring partition
strategy [1] to process the feature maps after partitioning. For
the square-ring partition strategy, the center of the image is
approximately aligned with the center of the feature map,
and the entire part is partitioned according to the distance
from the image center; specific operations are shown in Fig.5.
The processed block features are divided into the parts as
shown in Fig.5, the geographic target is usually located in
the center of the image, and other relevant information is
distributed in other locations of the image. It can be seen from
the block segmentation that each region after division is also
approximately spatially aligned in the cross-view image, which
will increase the similarity of the features of each part and
provide an effective guarantee for the accuracy of the network
model. The process can be formulated as follows:

f ′m
loc,j = Fslice

(
f ′
loc,j ,m

)
(8)

where f ′m
loc,j is the j-th block feature after processing, m

is the number of divided regions, and Fslice represents the
square-ring partition processing.

The square-ring partition strategy can not only obtain the
geographic target information in the image, but also obtain
the contextual information region of the geographic target
at different distances. Therefore, it can effectively assist the

Drone-view

Satellite-view

A
Partition

Partition

B

A B C D

C
D

A
B

C
D

Fig. 5. The square-ring partition strategy.
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mation fusion branch.

network model to mine the contextual information in the
image. In addition, all partitioned features will generate feature
descriptors through equation (2) to improve the accuracy of the
final model.

C. Local-guided-global Information Fusion Branch

In order to better utilize the global information and con-
textual information in the input image, a local-guided-global
information fusion branch is designed to assist the model
to fully exploit and utilize the potential information in the
image. The global features segmented by the local information
fusion branch generates some local features, each of them
containing a large amount of contextual information. The
global features contain more complete and critical information,
however, it may be difficult to find this critical information due
to the excessive content information in the global features.
Therefore, we introduce the local features to assist the global
features to potentially obtain more information and improve
the performance of the network model. The specific process
is shown in Fig.6.

As the dimensions of the global features are different from
the partitioned features, it is necessary to downsample the
global features to ensure the dimensions of the processed
features are consistent with the local partitioned features. The
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size of the global feature after downsampling fi down is the
same as that of the local partitioned features floc, which is
8×8×2048. Then the processed global features and the local
partitioned features are added to generate the new global-local
features. On this basis, a mixing information fusion strategy is
introduced to recombine the newly generated features. Finally,
these features are combined to generate a global feature f ′

com

that is consistent with the starting dimension 16× 16× 2048.
The newly generated global feature consists of the original
global feature and the partitioned local feature, it also contains
more contextual information. Since the newly generated global
features contain a lot of useful information, in order to make
better utilize and mine the crucial parts of these features, we
introduced the attention mechanism to solve these problems.
In addition, we introduce the information fusion strategy in the
local-guided-global information fusion branch, the content of
each piece of features has changed. CBAM [46] has two parts:
channel attention module and spatial attention module. The
combination of the two modules can better mine the crucial
information in the integrated features through the information
fusion strategy. Therefore, CBAM is introduced into the local-
guided-global information fusion branch to mine more useful
information from the feature. It is worth noting that the
features f ′

i generated in the local-guided-global information
fusion branch also need to generate a unified form of feature
descriptors through equation (2) to improve the accuracy of
the final model.

D. Model Optimization

Through the three proposed branches, each model will
obtain some features, but they may have different distribution
conditions due to the different acquisition platforms, and
therefore they cannot be directly used for feature matching.
In order to solve this problem, we set up a mapping function
that maps all images from different acquisition sources into a
shared feature space where the features of the same geo-tags
from different platforms are closer together and the feature
distances of different geo-tags are separated apart.

The classifier is composed of four parts: full connected layer
(FC), batch normalization layer (BN), dropout layer (Dropout)
and classification layer (Cls). The classifier module predicts
the geo-tag of each part based on the part features. Given the
part features dji as the input, the classifier module outputs a
column vector zji , and the dimensions of zji are equal to the
number of geo-tag categories C. The process can be expressed
by the following equation:

zji = Fclassifier(d
j
i ) (9)

In the training process, the cross-entropy loss function is
chosen to optimize the network model and is defined as
follows:

p̂(y
∣∣∣xj

i ) =
exp(zji (y))∑C
c=1 exp(z

j
i (c))

(10)

Loss =
∑
i,j

− log(p̂(y
∣∣∣xj

i )) (11)
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Fig. 7. The retrieval process of proposed network model.

where, zji (y) is the logit score of the ground-truth geo-tag
y, the probability score normalized by softmax function in
formula (9), and p̂(y

∣∣∣xj
i ) is the prediction probability that xj

i

belongs to the geo-tag y.
The cross-entropy loss function is used to accumulate

losses on different parts of images from different platforms
to optimize the whole network model. In the test stage, we
also output the features of various parts of different branches
through the classifier module. Hence, we compare the feature
similarity of different parts of the input images to determine
whether the images from different platforms represent the
same geographical target to obtain accurate results. The re-
trieval process is shown in Fig.7.

IV. PERFORMANCE EVALUATION

Details of the performance evaluation are provided in this
section, including experimental datasets, evaluation metrics,
experimental details, experimental results, ablation study and
qualitative results.

A. Experimental Datasets

Three large-scale geo-localization datasets are chosen to
train and evaluate the proposed network model, namely
University-1652 [9], CVUSA [16] and CVACT [6]. Table X
shows the number of images in the query and gallery sets for
testing different tasks using these three datasets.

University-1652 [9] is a multi-view and multi-source
dataset, including satellite-view data, drone-view data and
ground-view data. It contains 1652 buildings from 72 universi-
ties around the world. The training set contains 701 buildings
from 33 universities, the testing set contains 951 buildings
from 39 universities. There is no overlap between the datasets.
Although the University-1652 dataset contains ground-view
images, these images are insufficient to fully cover some build-
ings. Therefore, the dataset also provides additional ground-
view images collected from Google Street View with a similar
view as the existing ground-view data. As a result, these
images can be used as a supplement to the existing ground-
view data. For this dataset, the difficulty is the matching
and localization task between cross-view images from dif-
ferent platforms, which can be divided into two new tasks,
namely drone-view target localization task (Drone→Satellite)
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TABLE I. The number of images used in different test
datasets for different geo-localization tasks.

Dataset
Task

Drone→Satellite Satellite→Drone
Query Gallery Query Gallery

University-1652 [9] 37855 951 701 51355
SUES-200 [47] 16000 200 80 40000

Dataset Ground→Satellite Satellite→Ground
Query Gallery Query Gallery

CVUSA [16] 8884 8884 8884 8884
CVACT [6] 8884 8884 8884 8884

and drone navigation task (Satellite→Drone). In the training
set, 701 buildings and 50218 drone-view images are used.
In the drone-view target localization task (Drone→Satellite),
there are 37855 drone-view images in the query set, 701
true-matched satellite-view images and 250 satellite-view dis-
tractors in the gallery set. In this task, each drone-view
image corresponds to only one true-matched satellite-view
image. In the drone navigation task (Satellite→Drone), there
are 701 satellite-view images in the query set, 37855 true-
matched drone-view images and 13500 drone-view distractors
in the gallery set. In this task, each satellite-view image will
correspond to multiple drone-view images.

SUES-200 [47] is a cross-view geo-localization dataset
with multiple sources, multiple scenes, and panoramic views.
Specifically, the SUES-200 dataset includes drone-view im-
ages at different heights, including school buildings, parks,
schools, lakes, and public buildings. The matching and lo-
calization tasks are mainly divided into two types: drone-
view target localization task (Drone→Satellite) and drone
navigation task (Satellite→Drone). The training dataset con-
tains 120 scenarios which has 120 satellite-view and 24000
drone-view images. In the drone-view target localization task
(Drone→Satellite), each height in the query set has 4000
drone-view images that are matched with 200 satellite-view
images in the gallery set, and includes 120 satellite-view
distractors. In the drone navigation task (Satellite→Drone),
each height in the query set has 80 satellite-view images
are matched with 200 drone-view images in the gallery set,
which including 6000 drone-view distractors. In this task, each
satellite-view image will correspond to multiple drone-view
images.

CVUSA [16] is a cross-view dataset, which includes
ground-view data and satellite-view data. Specifically, it con-
tains 35532 sets of ground-and-satellite images used for
training and 8884 sets of ground-and-satellite images for
testing. All of the ground-view panoramic images are collected
from Google Street View and the corresponding satellite-view
images are downloaded from the Microsoft Bing Maps.

CVACT [6] is a large-scale cross-view dataset. Similarly to
CVUSA it includes ground-view data and satellite-view data.
CVACT contains 35532 sets of ground-and-satellite images
used for training, and the ground-view images are panoramas.
In addition, CVACT provides a validation set with 8884 sets
of images and a test set with 92802 sets of images. Each query
image only has one true-matched image in the gallery, while
each query image may correspond to multiple true-matched

images in the gallery for testing.

B. Evaluation Metrics

The Recall@K (R@K) and average accuracy (AP) metrics
are selected to evaluate the performance of the network model.
R@K represents the proportion of correctly matched images
in the top-K of the ranking list, which can be formulated as
follows:

Recall@K =
TP@K

N
(12)

where N is the total number of query image.
A higher recall rate demonstrates that the network model has

better performance. In addition, we calculate the area under
the Precision-Recall curve, called average accuracy (AP),
which reflects the precision and recall rate of the retrieval
performance. The formula can be shown as follows:

AP =

∫ 1

0

p (r)dr (13)

C. Implementation Detail

The experiments are completed using a Ubuntu 18.04 sys-
tem, the model is implemented based on Pytorch, and all
experiments are conducted on one NVIDIA GeForce RTX
3090. The ResNet50 [45] is used with pre-training weights
using ImageNet [29] to extract visual features. We modify
the last layer of ResNet50 and add a new layer, namely the
classifier module, and the added layer is initialized using
kaiming initialization [48]. During training and testing, the
input image is resized to a fixed size of 256 × 256 pixels
for subsequent operations. In the training, random cropping
and flipping are used to enhance the input data. For the
optimizer, we choose the stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 0.0005 with a mini-
batch of 32. The initial learning rate of the backbone layer is
0.001, and the initial learning rate of the newly added layer is
0.01. The proposed network model will train in 120 epochs,
and the learning rate decreases by 0.1 after 80 epochs. In
the test phase, the Cosine distance is used to measure the
similarity between the query image and the candidate images
in the gallery to complete the cross-view geo-localization task.

D. Experimental Results

1) The Experimental Results using the University-1652
Dataset: The comparison results with the state-of-the-art
methods using the University-1652 dataset are given in Table
X. The comparison results are mainly divided into three
groups, the baseline-related methods, methods harnessing
contextual information and Transformer-based methods. The
experimental results of the first group of methods are given in
the first row to seventh row, these methods pay more attention
to the global features and show good results. However, the
performance of these methods is not ideal as they may only
focus on some global features, these features are difficult to
fully effectively identify different scenes due to there are many
similar scenes. Moreover, these methods ignore other valid
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TABLE II. Comparison with the state-of-the-art methods
using the University-1652 dataset. † denotes the input image
of size 384 × 384. For other methods, the image size of
the transform-based methods and CNN-based method are
224× 224 and 256× 256 respectively.

Method
University-1652

Drone→Satellite Satellite→Drone
R@1 AP R@1 AP

Baseline (Instance Loss) [9] 58.23 62.91 74.47 59.45
Contrastive Loss [30] 52.39 57.44 63.91 52.24

Triplet Loss (M = 0.3) [49] 55.18 59.97 63.62 53.85
Triplet Loss (M = 0.5) [49] 53.58 58.60 64.48 53.15

Soft Margin Triplet Loss [18] 53.21 58.03 65.62 54.47
LCM† [50] 66.65 70.82 79.89 65.38

RK-Net [51] 66.13 70.23 80.17 65.76

LPN [1] 75.93 79.14 86.45 74.49
LPN + USAM [51] 77.60 80.55 86.59 75.96

PCL [15] 79.47 83.63 87.69 78.51
F3-net [52] 78.64 81.60 - -

Swin-B [53] 84.15 86.62 90.30 83.55
FSRA [22] 84.51 86.71 88.45 83.47

Ours 86.06 88.08 91.44 85.73

information in the image that can have a significant impact on
the final results. The experimental results of the second group
of methods are given in the eighth row to eleventh row, and it
can be seen from these results that the performance of these
algorithms has been significantly improved after introducing
contextual information. From the experimental results, we also
see that it is necessary to effectively introduce contextual
information into images in the network model. However, these
methods only using contextual information while ignoring
global information in the image will cause the model to ignore
some crucial information in the image, which will have an
impact on the final results. The experimental results of the third
group of methods are given in the twelfth row and thirteenth
row, and it can be seen from the experimental results that
the Transformer-based methods have better feature expression
ability than the CNN-based algorithm. Therefore, the experi-
mental results for these two methods are significantly better
than those for the CNN-based methods. The last row in the
table shows the experimental result for the proposed network
model. Since the proposed network model fully considers the
global information and contextual information in the image,
meanwhile, it introduces the idea of local information guiding
the global information to improve the ability of the model
to discover crucial information. Therefore, the performance
of the model has been significantly improved. In the drone-
view target localization task (Drone→Satellite), the proposed
model achieves 86.06% accuracy for R@1 and 88.08% AP, and
in the drone navigation task (Satellite→Drone), the proposed
model achieves 91.44% accuracy for R@1 and 85.73% AP.
Compared with the LPN method, the R@1 and AP metrics
are improved by 10.13% and 8.94% on Drone→Satellite
respectively, and by 4.99% and 11.24% on Satellite→Drone
respectively. The experimental results also prove the effective-
ness of introducing different information fusion branches. In
addition, although the Transformer-based method is better than
the CNN-based method for feature representation, the perfor-

TABLE III. Comparison with the state-of-the-art methods using
the SUES-200 dataset. The input image size for comparison
methods is 384× 384. For our method, the image size is 256×
256.

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
LCM [50] 43.42 49.65 49.42 55.91 57.47 60.31 60.43 65.78
LPN [1] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53
Vit [47] 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67

Ours 77.57 81.30 89.50 91.40 92.58 94.21 97.40 97.92

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
LCM [50] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN [1] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72
Vit [47] 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10

Ours 93.75 79.49 97.50 90.52 97.50 96.03 100.00 97.66

mance of the proposed network model is significantly better
than these two Transformer-based methods, which also proves
the effectiveness of the introduced different branches. For
the Drone→Satellite, compared with the Swin-B and SFRA
methods, the R@1 and AP are improved by 1.91% and 1.46%,
and 1.55% and 1.37% respectively. For the Satellite→Drone,
compared with Swin-B and SFRA methods, the R@1 and AP
are improved by 1.14% and 2.18%, and 2.99% and 2.26%
respectively.

2) The Experimental Results using the SUES-200 Dataset:
The comparison results with the state-of-the-art methods
using the SUES-200 dataset are given in Table III. The
experimental results are mainly divided into three groups,
namely the baseline-related methods, the experimental results
of methods using contextual information and the experimental
results of the Transformer-based method. From the Table III,
the the baseline-related methods are given in the first and
second rows, the third row shows the experimental results
of methods using contextual information, the experimental
results of the Transformer-based method are shown in the
fourth row and the last row is the experimental result of the
proposed network model. It can be seen from the experimental
results that the proposed network model achieves the accuracy
of R@1 are 77.57, 89.50, 92.58, 97.40 and AP are 81.30,
91.40, 94.21, 97.92 on the drone-view target localization task
(Drone→Satellite) at different height, and it can achieve the
accuracy of R@1 are 93.75, 97.50, 97.50, 100.00 and AP
are 79.49, 90.52, 96.03, 97.66 on the drone navigation task
(Satellite→Drone) at different height. Compared with LPN
method, the R@1 and AP are improved 10.00%, 8.75%,
5.00%, 7.50% and 12.71%, 15.51%, 14.69%, 11.94% for the
Drone→Satellite task at different heights, and the R@1 and AP
are improved 15.99%, 18.92%, 12.20%, 15.93% and 14.07%,
15.44%, 10.41%, 13.39% for the Satellite→Drone task at
different heights. It can be seen from the experimental results
that the proposed network model is effective through intro-
ducing global information and local-guided-global information
branches on the basis of using contextual information, and the
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TABLE IV. Comparison with the state-of-the-art methods using the CVUSA and CVACT datasets. * represents when the
method harnesses extra orientation information as input.

Method Backbone CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

Zhai [16] VGG16 - - - 43.20 - - - -
Vo [54] AlexNet - - - 63.70 - - - -

CVM-Net [18] VGG16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Orientation* [6] VGG16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
Zheng et al. [9] VGG16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27

Regmi [17] X-Fork 48.75 - 81.27 95.98 - - - -
RKNet [51] USAM 52.50 - - 96.52 40.53 - - 89.12

Siam-FCANet [11] ResNet-34 - - - 98.30 - - - -
CVFT [12] VGG16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [1] ResNet-50 85.79 95.38 96.80 99.41 79.99 90.63 92.56 97.03
GeoNet-II [55] ResNetX - - - 98.70 58.90 81.80 88.30 97.70

SIRNet [33] VGG16 81.82 93.39 96.24 99.49 75.37 88.76 91.90 97.42
TransGeo [56] ViT 94.08 98.36 99.04 99.77 - - - -
L2LTR [57] ViT 91.99 97.68 98.65 99.75 83.14 93.84 95.51 98.40

Polar Transform Methods

SAFA [10] VGG16 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
DSM [13] VGG16 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32

Shi et al. [58] VGG16 92.69 97.78 98.60 99.61 82.70 92.50 94.42 97.65
LPN [1] ResNet-50 93.78 98.50 99.03 99.72 82.87 92.26 94.09 97.77

LPN + USAM [51] ResNet-50 91.22 - - 99.67 82.02 - - 98.18
Toker [14] ResNet-34 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22

SIRNet [33] VGG16 93.74 98.02 98.85 99.76 86.02 94.45 96.02 98.33
L2LTR [57] ViT 94.05 98.27 98.99 99.67 84.89 94.59 95.96 98.37

Ours ResNet-50 95.09 98.85 99.34 99.77 86.64 94.61 95.94 98.45

performance of the model has been greatly improved.

3) The Experimental Results using the CVUSA Dataset:
The comparison results with the state-of-the-art methods using
the CVUSA dataset are given in Table IV. The experimental
results are mainly divided into two groups, the method without
using polar transform and the method using polar transform.
The experimental results for the first group of methods are
given in the first row to fourteenth row, these methods
show good results for the cross-view geo-localization task.
However, the CVUSA dataset is mainly aimed at cross-view
image matching between satellite-view and ground-view, due
to the huge change of perspective, the content information
has changed significantly which presents challenges to the
network model. In addition, it is difficult for these methods
to spatially align the image features under the changing view,
which leads to the model performance is not ideal. Therefore,
many methods employ polar transforms to convert satellite-
view images. It considers the geometric correspondence of
two-platform images and transforms the aerial-view image to
approximately align a ground panorama at the pixel level. The
experimental results for the second group of methods are given
in the last nine rows. From the comparison results of LPN in
the two groups, it can be seen that the performance of the
method has greatly improved after using a polar transform.
From IV, it can be seen that the proposed network model
is significantly superior to other methods using the CVUSA
dataset after employing a polar transform, and achieves an
accuracy of R@1 95.09%, R@5 98.85%, R@10 99.34% and
R@Top1% 99.77%. Compared with the LPN method after
using a polar transform, the result for R@1 improved 1.31%,
which proves the effectiveness of the proposed network model.
In addition, compared with the Transformer-based method

(L2LTR), the proposed network model can improve 1.04% and
0.10% on the R@1 and AP, which can proved the effectiveness
of the proposed network model.

4) The Experimental Results using the CVACT Dataset:
The comparison results with the state-of-the-art methods using
the CVACT dataset are given in Table IV. Due to the image
perspective structure of CVACT being similar to the CVUSA
dataset, the experimental results using this dataset are mainly
divided into two groups, the method without using polar
transform and the method using polar transform. Similar to
the experimental results in CVUSA, the performance of the
method is obviously improved after using a polar transform. It
can be seen from Table IV that the proposed network model
is significantly superior to other methods using the CVACT
dataset after employing a polar transform, and achieves ac-
curacies of R@1 86.64%, R@5 94.61%, R@10 95.94% and
R@Top1% 98.45%. Compared with the LPN method after
using polar transform, the results of R@1, R@5, R@10 and
R@Top1% improve by 3.77%, 2.35%, 1.85% and 0.68% re-
spectively. In addition, compared with the Transformer-based
method (L2LTR), the proposed network model can improve
1.75% and 0.08% on the R@1 and AP, which proves the
effectiveness of the proposed network model for the cross-
view geo-localization task.

E. Ablation Study

In order to prove the validity of each part of the pro-
posed network model, we design several ablation experi-
ments which mainly focus on two tasks, drone-view target
localization task (Drone→Satellite) and drone navigation task
(Satellite→Ground).
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TABLE V. Ablation study on the effect of the global in-
formation fusion (GIF) branch, the local information fusion
(LIF) branch and the local-guided-global information fusion
(LGGIF) branch.

GIF LIF LGGIF Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × 64.13 68.73 76.32 60.20
✓ × × 71.78 75.68 80.74 68.69
× ✓ × 68.96 72.42 84.02 66.68
× × ✓ 65.96 70.32 79.32 63.41
✓ ✓ × 82.72 84.95 89.44 79.19
✓ × ✓ 72.85 76.52 83.17 69.86
× ✓ ✓ 81.56 83.58 89.73 80.17
✓ ✓ ✓ 86.06 88.08 91.44 85.73

1) Effect of the Various Branches: The main contribu-
tion of this paper is to design three branches, the global
information fusion (GIF) branch, the local information fusion
(LIF) branch and the local-guided-global information fusion
(LGGIF) branch. In order to verify the effectiveness of these
three proposed branches in the network model, we designed
several experiments to test each branch as shown in Table V.
It can be seen from Table V that no matter which branch
is excluded, the performance of the network model has a
certain decline. In addition, the performance of the model will
be significantly improved after using any branch, which also
proves the effectiveness of the proposed different branches.
Intuitively, the performance of the model is greatly improved
after combining the local information fusion branch, which
also proves that the contextual information in the image has
a significant impact on the cross-view geo-localization task.
Thus, we fully consider the global information in the image
and employ local information to assist the global features to
mine the critical information in the image as much as possible.
From the experimental results, it can be seen that these three
introduced branches are effective and the discriminability of
the final feature descriptors can be improved through utilizing
the global features, improving the retrieval precision of the
network model.

2) Effect of Different Information Fusion Strategies and
Attention Mechanism on Different Branches: In order to
enhance the limited receptive field in each branch, we in-
troduce different information fusion strategies (IFS) and at-
tention mechanism to improve the global receptive field of
each module and enhance the performance of the network
model. In order to prove the effectiveness of these strategies,
we design some experiments for these strategies, and the
experimental results are given in Table VI. Without introducing
any information fusion strategy and attention mechanism, the
performance of the proposed network model is not very ideal.
It can be seen from Table VI that the performance of the model
has been clearly improved after introducing these strategies.
These strategies are mainly to enable each branch to mine and
utilize the critical information from the global or contextual
information, and further improve the discriminability of each
feature descriptor based on improving the limited global
receptive field. It can be seen from the experimental results
that the introduced strategies in each branch are essential and
have a huge impact on the final result of the network model,

TABLE VI. Ablation study on the effect of the information
fusion strategies (IFS) and attention mechanism (CBAM)
in the global information fusion (GIF) branch, the local
information fusion (LIF) branch and the local-guided-global
information fusion (LGGIF) branch.

IFS
in

GIF

IFS
in

LIF

IFS
in

LGGIF

CBAM Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × × 80.35 82.79 87.02 79.49
× ✓ ✓ ✓ 83.59 85.88 89.59 83.15
✓ × ✓ ✓ 82.20 84.64 88.87 82.19
✓ ✓ × ✓ 83.24 85.63 90.16 82.10
✓ ✓ ✓ × 83.97 86.21 89.16 82.75
✓ ✓ ✓ ✓ 86.06 88.08 91.44 85.73

TABLE VII. Ablation study on the effect of different input sizes
on the University-1652 dataset.

Image
Size

Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

224 77.95 80.84 85.45 76.79
256 86.06 88.08 91.44 85.73
320 86.21 88.38 91.90 85.94
384 86.91 88.83 92.15 86.50
512 87.21 88.98 92.30 85.73

which can prove the effectiveness of these designed strategies
in the network model.

3) Effect of Different Input Sizes Using the University-
1652 Dataset: For model training and testing, the size of the
input image will effect the fine-grained information within the
image, which will affect the feature representation learning
due to the missing information. However, a larger input size
introduces more memory costs during training and testing and
increases the computational complexity. Therefore, in order
to balance the size and performance of the input image, we
design some experiments to determine the influence of the
input image size on the model performance. In the experiment,
we only change the size of the input image and the region
covered by the image is not changed; the experimental results
are shown in Table VII. We test the size of the input images
from 224 to 512 in two studied tasks respectively. It is worth
noting that we choose to test the impact of this range of sizes
on the final network model performance as the size of the
image in the University-1652 dataset is 512 × 512. It can be
seen from the experimental results that the model performance
gradually improves with the change of the input image size,
which also indicates that the missing image information caused
by the reduction of the input image size also has a great impact
on the results. When we continue to expand the input size
to 512, the improvement is not so clear on Satellite→Drone,
which also shows that when the input image size reaches a
certain threshold, the impact of the missing information will
also be reduced. We hope that this finding can provide effective
insights in the case of limited computing resources, in order to
choose the size of the input image in real-world applications.

4) Effect of Image Position Shifting Using the University-
1652 Dataset: In order to demonstrate the robustness of the
proposed network model to position shifting, we design some
experiments using different degrees of horizontal shifting to
query images; the experimental results are shown in Table
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Fig. 8. The image on the left is the original query image, the
middle image is the image when translated 30 pixels, and the
right image is the new generated query image.

TABLE VIII. Ablation study on the effect of image position
shifting on the University-1652 dataset.

Shifted
Pixel

Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

0 86.06 88.08 91.44 85.73
10 86.05 88.08 91.28 85.69
20 86.02 88.06 91.01 85.42
30 85.95 87.99 90.87 84.90
40 85.77 87.84 90.44 84.44
50 85.30 87.45 90.37 83.80
60 84.77 87.00 90.34 82.98

VIII. Examples of image translation are shown in Fig.8, where
we translate the image by different degrees to generate new
query images to test retrieval performance. It can be seen from
the experimental results that the model performance gradually
decreases with the increase of image translation. However, it
does not decrease significantly in the case of slight translation,
indicating that the performance of the introduced different
branches will not be greatly affected in the case of minimal
changes in content, which proves that the proposed network
model has a strong robustness to position shifting. Although
some information is missing after the image translation, the
three designed branches can make the network model better
mine and utilize the critical information which is why the
proposed network model can resist position shifting.

5) Effect of Matching accuracy of Multiple Queries: In
practical applications, it is difficult to fully describe the target
location from a single drone-view image. Furthermore, the
University-1652 dataset provides images from different per-
spectives of each scene, which means that we can use multiple
drone-view images as queries at the same time to explore
whether these multi-view queries can improve the matching
accuracy for the Drone→Satellite task. In the test phase, we
average the features obtained from multiple images, and take
the processed feature as the final query feature. The experi-
mental results are shown in Table IX. For the test phase, we
set the number of multi-view images to 1,2,3,9,18,27 and 54
according to the number of drone-view images in the dataset. It
can be seen from the experimental results that with the increase
of the number of images used, the network model performance
has been significantly improved, with an improvement of
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Fig. 9. Heatmaps are produced by the LPN, FSRA and ours
on different platforms on the University-1652 dataset.

TABLE IX. Ablation study on the effect of matching accuracy
of multiple queries.

Query Drone→Satellite

R@1 R@5 R@10 R@Top1% AP

54 91.73 97.15 97.86 97.86 93.00
27 91.23 97.08 97.79 97.93 92.51
18 90.63 96.67 97.75 97.85 91.99
9 89.23 96.34 97.72 97.84 90.84
3 87.03 95.51 97.12 97.30 88.94
2 86.68 95.20 96.97 97.19 88.62
1 86.06 94.95 96.82 97.00 88.08

5.67% and 4.98% for Recall@1 and AP respectively. Multi-
view features are effective for Drone→Satellite task and we
hope that these experiments can provide an effective solved
method for the practical application.

F. Qualitative Results

We illustrate some heatmap visualizations generated using
LPN, FSRA and the proposed network model as qualitative
results, shown in Fig.10. It can be seen from the heatmaps
that the LPN method pays more attention to the contextual
information in the image, which may therefore ignore the
critical information. FSRA method can pay more attention
to the critical information in the image through region align-
ment strategy, however, it can only focus on a part of the
crucial information, and the use of crucial information is still
insufficient. Compared with the LPN method and the FSRA
method, the proposed network model pays more attention
to the critical information in the image after combining the
contextual information, which also shows the effectiveness of
the designed modules. In addition, some retrieval results of
compared methods on different datasets are shown in Fig.11.
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True-Matched Images False-Matched Images

I. University-1652 (Drone Localization)

II. University-1652 (Drone Navigation)
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Fig. 10. Qualitative image retrieval results. (I) Top-5 retrieval
results for drone-view target localization in different methods
using the University-1652 dataset. (II) Top-5 retrieval results
for drone navigation in different methods using the University-
1652 dataset. (III) Top-3 retrieval results of geographic local-
ization in different methods using the CVUSA dataset. (III)
Top-3 retrieval results of geographic localization in different
methods using the CVACT dataset. The true matches are in
red boxes, while the false matches are displayed in yellow
boxes.

The University-1652 dataset is utilized for two tasks, a drone-
view target localization task (Drone→Satellite) and a drone
navigation task (Satellite→Ground). The retrieval results of
these two tasks are given in Fig.11(I) and Fig.11(II). From the
compared retrieval results, it can be seen that the proposed
method can effectively retrieve the corresponding scenes in
both tasks. Although other comparison algorithms can also
find the correct scenes, there are some errors in them and they
are not the highest feature matching degree. Fig.11(III) and
Fig.11(IV) show the retrieval results of the ground→Satellite
localization task using the CVUSA and CVACT datasets. It

can be seen from these results that given a randomly selected
query image, the most relevant image can be retrieved from
the candidate gallery through the proposed method, which
demonstrates the effectiveness of the proposed network model.

V. CONCLUSION

We have proposed a multi-branch joint representation learn-
ing network model based on information fusion strategies to
solve the cross-view geo-localization problem. In order to bet-
ter focus on the critical information in cross-view images, we
introduce three branches into the network model, namely the
global information fusion (GIF) branch, the local information
fusion (LIF) branch and the local-guided-global information
fusion (LGGIF) branch, to extract global information and con-
textual information in different cross-view images. In addition,
we introduce different information fusion strategies into these
branches to expand the global receptive field of each module
and enhance the discriminability of the each part of the image
representation. From the performance comparison experiments
with other state-of-the-art methods using the University-1652,
CVUSA and CVACT datasets, the proposed framework outper-
forms these state-of-the-art methods, proving the effectiveness
of the proposed network model and improving the retrieval
accuracy. Our future work will focus on improving algorithmic
performance by introducing semantic or edge information
to enhance the ability of the model to obtain discriminable
features and improve the model performance.
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successfully in practical engineering. Image fusion is required when more than one image used for applications.——
This should be cleared to enhance the significant of this work.

Response: Thank you for the reminder. We have revised the section of the application background and application scenarios
in the manuscript to highlight the importance of the studied work. In addition, we also cite some new literature, as shown below.

[2] Novel piecewise distance based on adaptive region key-points extraction for lccd with vhr remote sensing images, IEEE
Transactions on Geoscience and Remote Sensing, 2023.
[3] Land cover change detection with heterogeneous remote sensing images: Review, progress, and perspective, Proceedings
of the IEEE, 2022.
[5] Multi-scale attention network guided with change gradient image for land cover change detection using remote sensing
images, IEEE Geoscience and Remote Sensing Letters, 2023.
[7] Iterative training sample augmentation for enhancing land cover change detection performance with deep learning neural
network, IEEE Transactions on Neural Networks and Learning Systems, 2023.
[8] Novel adaptive region spectral-spatial features for land cover classification with high spatial resolution remotely sensed
imagery, IEEE Transactions on Geoscience and Remote Sensing, 2023.

Revision: Cross-view geo-localization aims to retrieve the most relevant images of the same geographic target from different
platforms, and has been widely used in many fields, such as accurate delivery, autonomous driving, action recognition, change
detection, event detection and land cover classification [2]-[8]. In the era of digital maps, it is usually necessary to estimate
the geospatial localization of a given object in real-time. This can be done with real-time Kinematic (RTK) GPS, but these
sensors are expensive and short time signal interruptions can hinder workflows. In addition, especially in the city, the urban
canyon effect will produce a certain deviation. At present, cross-view geo-localization based on image retrieval is an effective
method to solve these problems [9]. In practical application, the information obtained from different source data for the
same target in different tasks is different and related. Therefore, it is necessary to correlate images from different views [10].
For example, given a drone-view image, it is necessary to retrieve images of the same location from other viewpoints to
obtain the geographic information of the location. Given locational information is available from different image sources such
as satellite, drone, or ground, studying the cross-view geo-localization problem is extremely important [11]-[14]. However,
the scale, viewpoint and imaging modality for images obtained through different platforms can be very different, e.g., the
ground-view is almost perpendicular to the horizon, while the satellite-view is almost parallel to the horizon. Therefore,
cross-view geo-localization is a challenging task [15]. (see the first paragraph of INTRODUCTION, pages 1-2)

Comment 3: The abstract section should quantify the benefits of improved accuracy on the dataset.

Response: This is a valuable comment. We have revised the summary of the experimental results in the abstract to quantify
the benefits of improved the accuracy of the dataset.

Revision: Finally, a series of experiments is carried out on three prevailing benchmark datasets, namely University-1652,
SUES-200, CVUAS and CVACT datasets. The quantitative comparisons from the experiments clearly indicate that the proposed
network framework has great performance. For example, compared with some state-of-the-art methods, the quantitative
improvements of the R@1 and AP on the University-1652 datasets are 1.91%, 2.18% and 1.55%, 2.99% in both tasks,
respectively. (see the Abstract, page 1)

Comment 4: In the introduction section, the research significance of cross-view is not well described, but the application
fields of cross-view are simply described, which is not conducive to readers’ understanding.

Response: Thank you very much for your valuable comments. In the introduction, we have revised and sort out the research
significance of cross-view, which can help readers better understand the research significance of this manuscript.

Revision: Cross-view geo-localization aims to retrieve the most relevant images of the same geographic target from different
platforms, and has been widely used in many fields, such as accurate delivery, autonomous driving, action recognition, change
detection, event detection and land cover classification [2]-[8]. In the era of digital maps, it is usually necessary to estimate
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the geospatial localization of a given object in real-time. This can be done with real-time Kinematic (RTK) GPS, but these
sensors are expensive and short time signal interruptions can hinder workflows. In addition, especially in the city, the urban
canyon effect will produce a certain deviation. At present, cross-view geo-localization based on image retrieval is an effective
method to solve these problems [9]. In practical application, the information obtained from different source data for the
same target in different tasks is different and related. Therefore, it is necessary to correlate images from different views [10].
For example, given a drone-view image, it is necessary to retrieve images of the same location from other viewpoints to
obtain the geographic information of the location. Given locational information is available from different image sources such
as satellite, drone, or ground, studying the cross-view geo-localization problem is extremely important [11]-[14]. However,
the scale, viewpoint and imaging modality for images obtained through different platforms can be very different, e.g., the
ground-view is almost perpendicular to the horizon, while the satellite-view is almost parallel to the horizon. Therefore,
cross-view geo-localization is a challenging task [15]. (see the first paragraph of INTRODUCTION, pages 1-2)

Comment 5: In the proposed method, may I ask why cross-view can realize geo-positioning by fusing global information
and local information? Or the principle of cross-view localization should be explained clearly.

Response: Thanks a lot for your suggestion. In the methods section, we have added the explanation of the principle of
cross-view geo-localization. In addition, in the introduction and methods section, we also explain in detail why the proposed
network model can solve the cross-view geo-localization problem.

Revision: In cross-view geo-localization, the contents of different source images will change greatly due to the different obtained
views. For the same task object, there will be a lot of relevant information in the different images. Therefore, how to match or
mine the relevant information in these different source images is the key to solve this problem. In this regard, by mining the
global information and local information of images from different sources, we can associate key information from different
views as much as possible and determine the image of the same place, so as to complete the cross-view geo-localization task.
In this section, we provide a detailed introduction to the proposed multi-branch joint representation learning network model
based on information fusion strategies. The proposed network framework is shown in Fig.2. (see the METHODOLOGY A-C,
pages 4-7)

Although mining and utilizing contextual information in images can effectively improve the accuracy of cross-view geo-
localization, the use of global information in images is equally important. As shown in Fig.1, a previous work, LPN [1],
focuses more on the contextual information for the input image, ignoring other crucial information in the scenes. In order to
mine effective information in cross-view images, and inspired by existing methods [1], [23], a multi-branch joint representation
learning network model based on information fusion strategies is proposed in this paper to solve the cross-view geo-localization
problem. For this problem, we believe that each part of the image has a significant impact on the result of image matching.
Therefore, we adapt a multi-branch joint representation learning network model to solve this problem, which is divided into
three branches, namely the global information fusion (GIF) branch, the local information fusion (LIF) branch and the local-
guided-global information fusion (LGGIF) branch. In the global information fusion branch, the global features of an image can
effectively express the content information in the complete image scene, most existing methods use this concept to solve cross-
view scene matching. However, only using the global information may result in the acquired features that are not sufficiently
discernible for certain scenes. In order to mine the global information effectively, we introduce the global information fusion
strategy into it to increase the global receptive field of the network, which can improve the utilization of global information.
However, as it is difficult to distinguish similar scenes completely only using global information, the contextual information
in the image can help with feature matching.

Therefore, we design a local information fusion branch to improve the performance of the network model. In the local
information fusion branch, the contextual information in the image will have a positive impact on feature matching. In order to
better mine the contextual information in the image, we process the global information into blocks. At the same time, in order
to better mine and utilize the crucial information of each segmented part, we introduce the local information fusion strategy
to expand the receptive field of each part. On this basis, we divide each block feature into several parts in a square-ring
partition to obtain the contextual information of each part thus assisting the global features to distinguish similar scenes. In
addition, we believe that local features can assist global features to better mine information in the image. In this regard, we
also introduce a local-guided-global information fusion branch, which mainly used local features after segmentation to assist
global features and introduce a mixing information fusion strategy and attention mechanism to further increase the global
receptive field and mine more useful potential information. Through these three branches, the effective information in the
cross-view image can be mined and utilized effectively to solve the cross-view geo-localization problem. (see the fourth and
fifth paragraph of INTRODUCTION, page 2)

Comment 6: The backbone of the network is ResNet-50, and the innovation of the proposed method in the neural
network structure should be elaborated.
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Response: Thank you very much for reminding. In our work, the main innovation of this paper is mainly reflected in the three
proposed branches and the information fusion strategy used in each branches. Based on the three proposed branches, namely
namely the global information fusion (GIF) branch, the local information fusion (LIF) branch and the local-guided-global
information fusion (LGGIF) branch, we use different information fusion strategies in these branch, which can obtain deep
latent information of the features in each branch. In addition, we believe that the content of the image will changing greatly
due to the huge changes in the view of the cross-view image. Therefore, we introduce the idea of the local information to guide
the global information, so that the network model can pay more attention to the crucial information in the different view image
through local features, which can improve the performance of the proposed model. In addition, in the local-guided-global
information fusion branch we also design a simple network structure to handle the global features, which is convenient for
our operations on the feature level. Moreover, the innovation of each proposed branch is also introduced in detail in the
introduction and methods. (see the fourth and fifth paragraph of INTRODUCTION and METHODOLOGY A-C, pages 2 and
4-7)

Revision: Although mining and utilizing contextual information in images can effectively improve the accuracy of cross-view
geo-localization, the use of global information in images is equally important. As shown in Fig.1, a previous work, LPN
[1], focuses more on the contextual information for the input image, ignoring other crucial information in the scenes. In
order to mine effective information in cross-view images, and inspired by existing methods [1], [23], a multi-branch joint
representation learning network model based on information fusion strategies is proposed in this paper to solve the cross- view
geo-localization problem. For this problem, we believe that each part of the image has a significant impact on the result of
image matching. Therefore, we adapt a multi-branch joint representation learning network model to solve this problem, which
is divided into three branches, namely the global information fusion (GIF) branch, the local information fusion (LIF) branch
and the local-guided-global information fusion (LGGIF) branch. In the global information fusion branch, the global features
of an image can effectively express the content information in the complete image scene, most existing methods use this
concept to solve cross-view scene matching. However, only using the global information may result in the acquired features
that are not sufficiently discernible for certain scenes. In order to mine the global information effectively, we introduce the
global information fusion strategy into it to increase the global receptive field of the network, which can improve the utilization
of global information. However, as it is difficult to distinguish similar scenes completely only using global information, the
contextual information in the image can help with feature matching.

Therefore, we design a local information fusion branch to improve the performance of the network model. In the local
information fusion branch, the contextual information in the image will have a positive impact on feature matching. In order to
better mine the contextual information in the image, we process the global information into blocks. At the same time, in order
to better mine and utilize the crucial information of each segmented part, we introduce the local information fusion strategy
to expand the receptive field of each part. On this basis, we divide each block feature into several parts in a square-ring
partition to obtain the contextual information of each part thus assisting the global features to distinguish similar scenes. In
addition, we believe that local features can assist global features to better mine information in the image. In this regard, we
also introduce a local-guided-global information fusion branch, which mainly used local features after segmentation to assist
global features and introduce a mixing information fusion strategy and attention mechanism to further increase the global
receptive field and mine more useful potential information. Through these three branches, the effective information in the
cross-view image can be mined and utilized effectively to solve the cross-view geo-localization problem. (see the fourth and
fifth paragraph of INTRODUCTION and METHODOLOGY A-C, pages 2 and 4-7)

Comment 7: In the proposed local-guided-global information fusion branch, the CBAM attention module is used.
Attention mechanism has developed rapidly in recent years. May I ask why CBAM is used here, or whether CBAM
module can aggregate information? I don’t see the motivation of choosing CBAM in the method.

Response: This is a valuable suggestion. We have explained why we chose the CBAM attention module in the local-guided-
global information fusion branch. In addition, we have tested the CBAM attention module and demonstrated that it can indeed
assist the network model to focus on the crucial information, although we did not include these results in the manuscript. It
can also be seen from the figure that the use of CBAM attention module is effective.

Revision: The newly generated global feature consists of the original global feature and the partitioned local feature, it also
contains more contextual information. Since the newly generated global features contain a lot of useful information, in order
to make better utilize and mine the crucial parts of these features, we introduced the attention mechanism to solve these
problems. In addition, we introduce the information fusion strategy in the local-guided-global information fusion branch, the
content of each piece of features has changed. CBAM [46] has two parts: channel attention module and spatial attention
module. The combination of the two modules can better mine the crucial information in the integrated features through the
information fusion strategy. Therefore, CBAM is introduced into the local-guided-global information fusion branch to mine
more useful information from the feature. (see the METHODOLOGY C, page 7)
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Fig. 0. The visualization results of CBAM.

TABLE X. The number of images used in different test datasets for different geo-localization tasks.

Dataset
Task

Drone→Satellite Satellite→Drone
Query Gallery Query Gallery

University-1652 [9] 37855 951 701 51355
SUES-200 [47] 16000 200 80 40000

Dataset Ground→Satellite Satellite→Ground
Query Gallery Query Gallery

CVUSA [16] 8884 8884 8884 8884
CVACT [6] 8884 8884 8884 8884

Comment 8: The experimental dataset is too small to prove the effectiveness of the proposed method, and the
experimental scene should be expanded and the relevant geographical location should be labeled.

Response: Thanks for your question! In order to prove the effectiveness of the proposed network model, we have supplemented
the experimental results of the new dataset in the experimental section. In addition, some new experiments were added to the
ablation study to analyze the proposed network model.

Revision: SUES-200 [47] is a cross-view geo-localization dataset with multiple sources, multiple scenes, and panoramic views.
Specifically, the SUES-200 dataset includes drone-view images at different heights, including school buildings, parks, schools,
lakes, and public buildings. The matching and localization tasks are mainly divided into two types: drone-view target localization
task (Drone→Satellite) and drone navigation task (Satellite→Drone). The training dataset contains 120 scenarios which has
120 satellite-view and 24000 drone-view images. In the drone-view target localization task (Drone→Satellite), each height in
the query set has 4000 drone-view images that are matched with 200 satellite-view images in the gallery set, and includes 120
satellite-view distractors. In the drone navigation task (Satellite→Drone), each height in the query set has 80 satellite-view
images are matched with 200 drone-view images in the gallery set, which including 6000 drone-view distractors. In this task,
each satellite-view image will correspond to multiple drone-view images. (see the PERFORMANCE EVALUATION A, page
8)

2) The Experimental Results using the SUES-200 Dataset: The comparison results with the state-of-the-art methods using
the SUES-200 dataset are given in Table III. The experimental results are mainly divided into three groups, namely the
baseline-related methods, the experimental results of methods using contextual information and the experimental results of the
Transformer-based method. From the Table III, the the baseline-related methods are given in the first and second rows, the
third row shows the experimental results of methods using contextual information, the experimental results of the Transformer-
based method are shown in the fourth row and the last row is the experimental result of the proposed network model. It
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TABLE III. Comparison with the state-of-the-art methods using the SUES-200 dataset. The input image size
for comparison methods is 384× 384. For our method, the image size is 256× 256.

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
LCM [50] 43.42 49.65 49.42 55.91 57.47 60.31 60.43 65.78
LPN [1] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53
Vit [47] 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67

Ours 77.57 81.30 89.50 91.40 92.58 94.21 97.40 97.92

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
LCM [50] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN [1] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72
Vit [47] 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10

Ours 93.75 79.49 97.50 90.52 97.50 96.03 100.00 97.66

TABLE V. Ablation study on the effect of the global information fusion (GIF) branch, the local information
fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch.

GIF LIF LGGIF Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × 64.13 68.73 76.32 60.20
✓ × × 71.78 75.68 80.74 68.69
× ✓ × 68.96 72.42 84.02 66.68
× × ✓ 65.96 70.32 79.32 63.41
✓ ✓ × 82.72 84.95 89.44 79.19
✓ × ✓ 72.85 76.52 83.17 69.86
× ✓ ✓ 81.56 83.58 89.73 80.17
✓ ✓ ✓ 86.06 88.08 91.44 85.73

can be seen from the experimental results that the proposed network model achieves the accuracy of R@1 are 77.57, 89.50,
92.58, 97.40 and AP are 81.30, 91.40, 94.21, 97.92 on the drone-view target localization task (Drone→Satellite) at different
height, and it can achieve the accuracy of R@1 are 93.75, 97.50, 97.50, 100.00 and AP are 79.49, 90.52, 96.03, 97.66 on
the drone navigation task (Satellite→Drone) at different height. Compared with LPN method, the R@1 and AP are improved
10.00%, 8.75%, 5.00%, 7.50% and 12.71%, 15.51%, 14.69%, 11.94% for the Drone→Satellite task at different heights, and the
R@1 and AP are improved 15.99%, 18.92%, 12.20%, 15.93% and 14.07%, 15.44%, 10.41%, 13.39% for the Satellite→Drone
task at different heights. It can be seen from the experimental results that the proposed network model is effective through
introducing global information and local-guided-global information branches on the basis of using contextual information, and
the performance of the model has been greatly improved. (see the PERFORMANCE EVALUATION D 2), pages 9-10)

1) Effect of the Various Branches: The main contribution of this paper is to design three branches, the global information
fusion (GIF) branch, the local information fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch.
In order to verify the effectiveness of these three proposed branches in the network model, we designed several experiments to
test each branch as shown in Table V. It can be seen from Table V that no matter which branch is excluded, the performance of
the network model has a certain decline. In addition, the performance of the model will be significantly improved after using
any branch, which also proves the effectiveness of the proposed different branches. Intuitively, the performance of the model
is greatly improved after combining the local information fusion branch, which also proves that the contextual information in
the image has a significant impact on the cross-view geo-localization task. Thus, we fully consider the global information in
the image and employ local information to assist the global features to mine the critical information in the image as much as
possible. From the experimental results, it can be seen that these three introduced branches are effective and the discriminability
of the final feature descriptors can be improved through utilizing the global features, improving the retrieval precision of the
network model. (see the PERFORMANCE EVALUATION E 1), page 11)

5) Effect of Matching accuracy of Multiple Queries: In practical applications, it is difficult to fully describe the target
location from a single drone-view image. Furthermore, the University-1652 dataset provides images from different perspectives
of each scene, which means that we can use multiple drone-view images as queries at the same time to explore whether
these multi-view queries can improve the matching accuracy for the Drone→Satellite task. In the test phase, we average the
features obtained from multiple images, and take the processed feature as the final query feature. The experimental results
are shown in Table IX. For the test phase, we set the number of multi-view images to 1,2,3,9,18,27 and 54 according to
the number of drone-view images in the dataset. It can be seen from the experimental results that with the increase of the
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TABLE IX. Ablation study on the effect of matching accuracy of multiple queries.

Query Drone→Satellite

R@1 R@5 R@10 R@Top1% AP

54 91.73 97.15 97.86 97.86 93.00
27 91.23 97.08 97.79 97.93 92.51
18 90.63 96.67 97.75 97.85 91.99
9 89.23 96.34 97.72 97.84 90.84
3 87.03 95.51 97.12 97.30 88.94
2 86.68 95.20 96.97 97.19 88.62
1 86.06 94.95 96.82 97.00 88.08

number of images used, the network model performance has been significantly improved, with an improvement of 5.67% and
4.98% for Recall@1 and AP respectively. Multi-view features are effective for Drone→Satellite task and we hope that these
experiments can provide an effective solved method for the practical application. (see the PERFORMANCE EVALUATION
E 5), page 12)

Comment 9: It is suggested to give the calculation formula of Evaluation Metrics.

Response: Thanks a lot for your suggestion. We have supplemented the calculation formula of evaluation metrics in the
experimental section.

Revision: B. Evaluation Metrics
The Recall@K (R@K) and average accuracy (AP) metrics are selected to evaluate the performance of the network model.

R@K represents the proportion of correctly matched images in the top-K of the ranking list, which can be formulated as
follows:

Recall@K =
TP@K

N
(12)

where N is the total number of query image.
A higher recall rate demonstrates that the network model has better performance. In addition, we calculate the area under the

Precision-Recall curve, called average accuracy (AP), which reflects the precision and recall rate of the retrieval performance.
The formula can be shown as follows:

AP =

∫ 1

0

p (r)dr (13)

(see the PERFORMANCE EVALUATION B, page 8)

Comment 10: Visual comparison of the experimental results should be presented in the paper.

Response: Thank you very much for your valuable opinions. We have modified the qualitative results section, adding the
visual comparison of heatmap results with other methods and the visual comparison of Image retrieval results.

Revision: F. Qualitative Results
We illustrate some heatmap visualizations generated using LPN, FSRA and the proposed network model as qualitative

results, shown in Fig.10. It can be seen from the heatmaps that the LPN method pays more attention to the contextual
information in the image, which may therefore ignore the critical information. FSRA method can pay more attention to
the critical information in the image through region alignment strategy, however, it can only focus on a part of the crucial
information, and the use of crucial information is still insufficient. Compared with the LPN method and the FSRA method,
the proposed network model pays more attention to the critical information in the image after combining the contextual
information, which also shows the effectiveness of the designed modules. In addition, some retrieval results of compared
methods on different datasets are shown in Fig.11. The University-1652 dataset is utilized for two tasks, a drone-view target
localization task (Drone→Satellite) and a drone navigation task (Satellite→Ground). The retrieval results of these two tasks
are given in Fig.11(I) and Fig.11(II). From the compared retrieval results, it can be seen that the proposed method can
effectively retrieve the corresponding scenes in both tasks. Although other comparison algorithms can also find the correct
scenes, there are some errors in them and they are not the highest feature matching degree. Fig.11(III) and Fig.11(IV) show
the retrieval results of the ground→Satellite localization task using the CVUSA and CVACT datasets. It can be seen from
these results that given a randomly selected query image, the most relevant image can be retrieved from the candidate gallery
through the proposed method, which demonstrates the effectiveness of the proposed network model. (see the PERFORMANCE
EVALUATION F, pages 12-13)
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Fig. 10. Heatmaps are produced by the LPN, FSRA and ours on different platforms on the University-1652 dataset.

Comment 11: The experimental analysis is insufficient, more experimental analysis needs to be added in this paper.

Response: Thanks greatly for your suggestion! We have revised the experimental results section and discussed and analyzed
the experimental results of each part more deeply.

Revision: D. Experimental Results

TABLE II. Comparison with the state-of-the-art methods using the University-1652 dataset. † denotes the input
image of size 384 × 384. For other methods, the image size of the transform-based methods and CNN-based
method are 224× 224 and 256× 256 respectively.

Method
University-1652

Drone→Satellite Satellite→Drone
R@1 AP R@1 AP

Baseline (Instance Loss) [9] 58.23 62.91 74.47 59.45
Contrastive Loss [30] 52.39 57.44 63.91 52.24

Triplet Loss (M = 0.3) [49] 55.18 59.97 63.62 53.85
Triplet Loss (M = 0.5) [49] 53.58 58.60 64.48 53.15

Soft Margin Triplet Loss [18] 53.21 58.03 65.62 54.47
LCM† [50] 66.65 70.82 79.89 65.38

RK-Net [51] 66.13 70.23 80.17 65.76

LPN [1] 75.93 79.14 86.45 74.49
LPN + USAM [51] 77.60 80.55 86.59 75.96

PCL [15] 79.47 83.63 87.69 78.51
F3-net [52] 78.64 81.60 - -

Swin-B [53] 84.15 86.62 90.30 83.55
FSRA [22] 84.51 86.71 88.45 83.47

Ours 86.06 88.08 91.44 85.73

1) The Experimental Results using the University-1652 Dataset: The comparison results with the state-of-the-art methods
using the University-1652 dataset are given in Table X. The comparison results are mainly divided into three groups, the
baseline-related methods, methods harnessing contextual information and Transformer-based methods. The experimental results
of the first group of methods are given in the first row to seventh row, these methods pay more attention to the global features
and show good results. However, the performance of these methods is not ideal as they may only focus on some global features,
these features are difficult to fully effectively identify different scenes due to there are many similar scenes. Moreover, these
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Drone Satellite (R@1→R@5)

Satellite Drone (R@1→R@5)

Ground Satellite (R@1→R@3)

Satellite (R@1→R@3)Ground

True-Matched Images False-Matched Images

I. University-1652 (Drone Localization)

II. University-1652 (Drone Navigation)

III. CVUSA (Localization)

IV. CVACT (Localization)

Ours
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Fig. 11. Qualitative image retrieval results. (I) Top-5 retrieval results for drone-view target localization in different methods
using the University-1652 dataset. (II) Top-5 retrieval results for drone navigation in different methods using the University-
1652 dataset. (III) Top-3 retrieval results of geographic localization in different methods using the CVUSA dataset. (III) Top-3
retrieval results of geographic localization in different methods using the CVACT dataset. The true matches are in red boxes,
while the false matches are displayed in yellow boxes.
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TABLE III. Comparison with the state-of-the-art methods using the SUES-200 dataset. The input image size
for comparison methods is 384× 384. For our method, the image size is 256× 256.

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
LCM [50] 43.42 49.65 49.42 55.91 57.47 60.31 60.43 65.78
LPN [1] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53
Vit [47] 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67

Ours 77.57 81.30 89.50 91.40 92.58 94.21 97.40 97.92

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
LCM [50] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN [1] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72
Vit [47] 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10

Ours 93.75 79.49 97.50 90.52 97.50 96.03 100.00 97.66

methods ignore other valid information in the image that can have a significant impact on the final results. The experimental
results of the second group of methods are given in the eighth row to eleventh row, and it can be seen from these results
that the performance of these algorithms has been significantly improved after introducing contextual information. From the
experimental results, we also see that it is necessary to effectively introduce contextual information into images in the network
model. However, these methods only using contextual information while ignoring global information in the image will cause
the model to ignore some crucial information in the image, which will have an impact on the final results. The experimental
results of the third group of methods are given in the twelfth row and thirteenth row, and it can be seen from the experimental
results that the Transformer-based methods have better feature expression ability than the CNN-based algorithm. Therefore,
the experimental results for these two methods are significantly better than those for the CNN-based methods. The last row
in the table shows the experimental result for the proposed network model. Since the proposed network model fully considers
the global information and contextual information in the image, meanwhile, it introduces the idea of local information guiding
the global information to improve the ability of the model to discover crucial information. Therefore, the performance of
the model has been significantly improved. In the drone-view target localization task (Drone→Satellite), the proposed model
achieves 86.06% accuracy for R@1 and 88.08% AP, and in the drone navigation task (Satellite→Drone), the proposed model
achieves 91.44% accuracy for R@1 and 85.73% AP. Compared with the LPN method, the R@1 and AP metrics are improved
by 10.13% and 8.94% on Drone→Satellite respectively, and by 4.99% and 11.24% on Satellite→Drone respectively. The
experimental results also prove the effectiveness of introducing different information fusion branches. In addition, although the
Transformer-based method is better than the CNN-based method for feature representation, the performance of the proposed
network model is significantly better than these two Transformer-based methods, which also proves the effectiveness of the
introduced different branches. For the Drone→Satellite, compared with the Swin-B and SFRA methods, the R@1 and AP
are improved by 1.91% and 1.46%, and 1.55% and 1.37% respectively. For the Satellite→Drone, compared with Swin-B and
SFRA methods, the R@1 and AP are improved by 1.14% and 2.18%, and 2.99% and 2.26% respectively.

2) The Experimental Results using the SUES-200 Dataset: The comparison results with the state-of-the-art methods using
the SUES-200 dataset are given in Table III. The experimental results are mainly divided into three groups, namely the
baseline-related methods, the experimental results of methods using contextual information and the experimental results of the
Transformer-based method. From the Table III, the the baseline-related methods are given in the first and second rows, the
third row shows the experimental results of methods using contextual information, the experimental results of the Transformer-
based method are shown in the fourth row and the last row is the experimental result of the proposed network model. It
can be seen from the experimental results that the proposed network model achieves the accuracy of R@1 are 77.57, 89.50,
92.58, 97.40 and AP are 81.30, 91.40, 94.21, 97.92 on the drone-view target localization task (Drone→Satellite) at different
height, and it can achieve the accuracy of R@1 are 93.75, 97.50, 97.50, 100.00 and AP are 79.49, 90.52, 96.03, 97.66 on
the drone navigation task (Satellite→Drone) at different height. Compared with LPN method, the R@1 and AP are improved
10.00%, 8.75%, 5.00%, 7.50% and 12.71%, 15.51%, 14.69%, 11.94% for the Drone→Satellite task at different heights, and the
R@1 and AP are improved 15.99%, 18.92%, 12.20%, 15.93% and 14.07%, 15.44%, 10.41%, 13.39% for the Satellite→Drone
task at different heights. It can be seen from the experimental results that the proposed network model is effective through
introducing global information and local-guided-global information branches on the basis of using contextual information, and
the performance of the model has been greatly improved.

3) The Experimental Results using the CVUSA Dataset: The comparison results with the state-of-the-art methods using the
CVUSA dataset are given in Table IV. The experimental results are mainly divided into two groups, the method without using
polar transform and the method using polar transform. The experimental results for the first group of methods are given in the
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TABLE IV. Comparison with the state-of-the-art methods using the CVUSA and CVACT datasets. * represents when
the method harnesses extra orientation information as input.

Method Backbone CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

Zhai [16] VGG16 - - - 43.20 - - - -
Vo [54] AlexNet - - - 63.70 - - - -

CVM-Net [18] VGG16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Orientation* [6] VGG16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
Zheng et al. [9] VGG16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27

Regmi [57] X-Fork 48.75 - 81.27 95.98 - - - -
RKNet [51] USAM 52.50 - - 96.52 40.53 - - 89.12

Siam-FCANet [11] ResNet-34 - - - 98.30 - - - -
CVFT [12] VGG16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [1] ResNet-50 85.79 95.38 96.80 99.41 79.99 90.63 92.56 97.03
GeoNet-II [55] ResNetX - - - 98.70 58.90 81.80 88.30 97.70

SIRNet [33] VGG16 81.82 93.39 96.24 99.49 75.37 88.76 91.90 97.42
TransGeo [56] ViT 94.08 98.36 99.04 99.77 - - - -

L2LTR [57] ViT 91.99 97.68 98.65 99.75 83.14 93.84 95.51 98.40

Polar Transform Methods

SAFA [10] VGG16 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
DSM [13] VGG16 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32

Shi et al. [58] VGG16 92.69 97.78 98.60 99.61 82.70 92.50 94.42 97.65
LPN [1] ResNet-50 93.78 98.50 99.03 99.72 82.87 92.26 94.09 97.77

LPN + USAM [51] ResNet-50 91.22 - - 99.67 82.02 - - 98.18
Toker [14] ResNet-34 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22

SIRNet [33] VGG16 93.74 98.02 98.85 99.76 86.02 94.45 96.02 98.33
L2LTR [57] ViT 94.05 98.27 98.99 99.67 84.89 94.59 95.96 98.37

Ours ResNet-50 95.09 98.85 99.34 99.77 86.64 94.61 95.94 98.45

first row to fourteenth row, these methods show good results for the cross-view geo-localization task. However, the CVUSA
dataset is mainly aimed at cross-view image matching between satellite-view and ground-view, due to the huge change of
perspective, the content information has changed significantly which presents challenges to the network model. In addition,
it is difficult for these methods to spatially align the image features under the changing view, which leads to the model
performance is not ideal. Therefore, many methods employ polar transforms to convert satellite-view images. It considers
the geometric correspondence of two-platform images and transforms the aerial-view image to approximately align a ground
panorama at the pixel level. The experimental results for the second group of methods are given in the last nine rows. From
the comparison results of LPN in the two groups, it can be seen that the performance of the method has greatly improved after
using a polar transform. From IV, it can be seen that the proposed network model is significantly superior to other methods
using the CVUSA dataset after employing a polar transform, and achieves an accuracy of R@1 95.09%, R@5 98.85%, R@10
99.34% and R@Top1% 99.77%. Compared with the LPN method after using a polar transform, the result for R@1 improved
1.31%, which proves the effectiveness of the proposed network model. In addition, compared with the Transformer-based
method (L2LTR), the proposed network model can improve 1.04% and 0.10% on the R@1 and AP, which can proved the
effectiveness of the proposed network model.

4) The Experimental Results using the CVACT Dataset: The comparison results with the state-of-the-art methods using the
CVACT dataset are given in Table IV. Due to the image perspective structure of CVACT being similar to the CVUSA dataset,
the experimental results using this dataset are mainly divided into two groups, the method without using polar transform and
the method using polar transform. Similar to the experimental results in CVUSA, the performance of the method is obviously
improved after using a polar transform. It can be seen from Table IV that the proposed network model is significantly superior
to other methods using the CVACT dataset after employing a polar transform, and achieves accuracies of R@1 86.64%, R@5
94.61%, R@10 95.94% and R@Top1% 98.45%. Compared with the LPN method after using polar transform, the results of
R@1, R@5, R@10 and R@Top1% improve by 3.77%, 2.35%, 1.85% and 0.68% respectively. In addition, compared with the
Transformer-based method (L2LTR), the proposed network model can improve 1.75% and 0.08% on the R@1 and AP, which
proves the effectiveness of the proposed network model for the cross-view geo-localization task.

E. Ablation Study
In order to prove the validity of each part of the proposed network model, we design several ablation experiments which

mainly focus on two tasks, drone-view target localization task (Drone→Satellite) and drone navigation task (Satellite→Ground).
1) Effect of the Various Branches: The main contribution of this paper is to design three branches, the global information

fusion (GIF) branch, the local information fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch.
In order to verify the effectiveness of these three proposed branches in the network model, we designed several experiments to
test each branch as shown in Table V. It can be seen from Table V that no matter which branch is excluded, the performance of
the network model has a certain decline. In addition, the performance of the model will be significantly improved after using
any branch, which also proves the effectiveness of the proposed different branches. Intuitively, the performance of the model
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TABLE V. Ablation study on the effect of the global information fusion (GIF) branch, the local information fusion
(LIF) branch and the local-guided-global information fusion (LGGIF) branch.

GIF LIF LGGIF Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × 64.13 68.73 76.32 60.20
✓ × × 71.78 75.68 80.74 68.69
× ✓ × 68.96 72.42 84.02 66.68
× × ✓ 65.96 70.32 79.32 63.41
✓ ✓ × 82.72 84.95 89.44 79.19
✓ × ✓ 72.85 76.52 83.17 69.86
× ✓ ✓ 81.56 83.58 89.73 80.17
✓ ✓ ✓ 86.06 88.08 91.44 85.73

is greatly improved after combining the local information fusion branch, which also proves that the contextual information in
the image has a significant impact on the cross-view geo-localization task. Thus, we fully consider the global information in
the image and employ local information to assist the global features to mine the critical information in the image as much as
possible. From the experimental results, it can be seen that these three introduced branches are effective and the discriminability
of the final feature descriptors can be improved through utilizing the global features, improving the retrieval precision of the
network model.

2) Effect of Different Information Fusion Strategies and Attention Mechanism on Different Branches: In order to enhance
the limited receptive field in each branch, we introduce different information fusion strategies (IFS) and attention mechanism
to improve the global receptive field of each module and enhance the performance of the network model. In order to prove
the effectiveness of these strategies, we design some experiments for these strategies, and the experimental results are given
in Table VI. Without introducing any information fusion strategy and attention mechanism, the performance of the proposed
network model is not very ideal. It can be seen from Table VI that the performance of the model has been clearly improved after
introducing these strategies. These strategies are mainly to enable each branch to mine and utilize the critical information from
the global or contextual information, and further improve the discriminability of each feature descriptor based on improving
the limited global receptive field. It can be seen from the experimental results that the introduced strategies in each branch are
essential and have a huge impact on the final result of the network model, which can prove the effectiveness of these designed
strategies in the network model.

TABLE VI. Ablation study on the effect of the information fusion strategies (IFS) and attention mechanism
(CBAM) in the global information fusion (GIF) branch, the local information fusion (LIF) branch and the
local-guided-global information fusion (LGGIF) branch.

IFS
in

GIF

IFS
in

LIF

IFS
in

LGGIF

CBAM Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × × 80.35 82.79 87.02 79.49
× ✓ ✓ ✓ 83.59 85.88 89.59 83.15
✓ × ✓ ✓ 82.20 84.64 88.87 82.19
✓ ✓ × ✓ 83.24 85.63 90.16 82.10
✓ ✓ ✓ × 83.97 86.21 89.16 82.75
✓ ✓ ✓ ✓ 86.06 88.08 91.44 85.73

TABLE VII. Ablation study on the effect of different input sizes on the University-1652 dataset.

Image
Size

Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

224 77.95 80.84 85.45 76.79
256 86.06 88.08 91.44 85.73
320 86.21 88.38 91.90 85.94
384 86.91 88.83 92.15 86.50
512 87.21 88.98 92.30 85.73

3) Effect of Different Input Sizes Using the University-1652 Dataset: For model training and testing, the size of the input
image will effect the fine-grained information within the image, which will affect the feature representation learning due to
the missing information. However, a larger input size introduces more memory costs during training and testing and increases
the computational complexity. Therefore, in order to balance the size and performance of the input image, we design some
experiments to determine the influence of the input image size on the model performance. In the experiment, we only change
the size of the input image and the region covered by the image is not changed; the experimental results are shown in Table
VII. We test the size of the input images from 224 to 512 in two studied tasks respectively. It is worth noting that we choose
to test the impact of this range of sizes on the final network model performance as the size of the image in the University-1652
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dataset is 512 × 512. It can be seen from the experimental results that the model performance gradually improves with the
change of the input image size, which also indicates that the missing image information caused by the reduction of the input
image size also has a great impact on the results. When we continue to expand the input size to 512, the improvement is
not so clear on Satellite→Drone, which also shows that when the input image size reaches a certain threshold, the impact of
the missing information will also be reduced. We hope that this finding can provide effective insights in the case of limited
computing resources, in order to choose the size of the input image in real-world applications.

4) Effect of Image Position Shifting Using the University-1652 Dataset: In order to demonstrate the robustness of the
proposed network model to position shifting, we design some experiments using different degrees of horizontal shifting to
query images; the experimental results are shown in Table VIII. Examples of image translation are shown in Fig.8, where we
translate the image by different degrees to generate new query images to test retrieval performance. It can be seen from the
experimental results that the model performance gradually decreases with the increase of image translation. However, it does
not decrease significantly in the case of slight translation, indicating that the performance of the introduced different branches
will not be greatly affected in the case of minimal changes in content, which proves that the proposed network model has a
strong robustness to position shifting. Although some information is missing after the image translation, the three designed
branches can make the network model better mine and utilize the critical information which is why the proposed network
model can resist position shifting.
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Original Query Shifting 30 New Query

Fig. 8. The image on the left is the original query image, the middle image is the image when translated 30 pixels, and the
right image is the new generated query image.

TABLE VIII. Ablation study on the effect of image position shifting on the University-1652 dataset.

Shifted
Pixel

Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

0 86.06 88.08 91.44 85.73
10 86.05 88.08 91.28 85.69
20 86.02 88.06 91.01 85.42
30 85.95 87.99 90.87 84.90
40 85.77 87.84 90.44 84.44
50 85.30 87.45 90.37 83.80
60 84.77 87.00 90.34 82.98

TABLE IX. Ablation study on the effect of matching accuracy of multiple queries.

Query Drone→Satellite

R@1 R@5 R@10 R@Top1% AP

54 91.73 97.15 97.86 97.86 93.00
27 91.23 97.08 97.79 97.93 92.51
18 90.63 96.67 97.75 97.85 91.99
9 89.23 96.34 97.72 97.84 90.84
3 87.03 95.51 97.12 97.30 88.94
2 86.68 95.20 96.97 97.19 88.62
1 86.06 94.95 96.82 97.00 88.08

5) Effect of Matching accuracy of Multiple Queries: In practical applications, it is difficult to fully describe the target
location from a single drone-view image. Furthermore, the University-1652 dataset provides images from different perspectives
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of each scene, which means that we can use multiple drone-view images as queries at the same time to explore whether these
multi-view queries can improve the matching accuracy for the Drone→Satellite task. In the test phase, we average the features
obtained from multiple images, and take the processed feature as the final query feature. The experimental results are shown
in Table IX. For the test phase, we set the number of multi-view images to 1,2,3,9,18,27 and 54 according to the number
of drone-view images in the dataset. It can be seen from the experimental results that with the increase of the number of
images used, the network model performance has been significantly improved, with an improvement of 5.67% and 4.98% for
Recall@1 and AP respectively. Multi-view features are effective for Drone→Satellite task and we hope that these experiments
can provide an effective solved method for the practical application. (see the PERFORMANCE EVALUATION D-E, pages
8-12)
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information fusion (LGGIF) branch, to extract global information and contextual information in different cross-view
images. Furthermore, this paper introduces different information fusion strategies into these branches to expand the
global receptive field of each module and enhance the discriminability of each part of the image representation. The
experiment results verify the effectiveness of the proposed model.
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Revision: (see the PERFORMANCE EVALUATION D, page 9)

TABLE X. Comparison with the state-of-the-art methods using the University-1652 dataset. † denotes the input
image of size 384 × 384. For other methods, the image size of the transform-based methods and CNN-based
method are 224× 224 and 256× 256 respectively.

Method
University-1652

Drone→Satellite Satellite→Drone
R@1 AP R@1 AP

Baseline (Instance Loss) [9] 58.23 62.91 74.47 59.45
Contrastive Loss [30] 52.39 57.44 63.91 52.24

Triplet Loss (M = 0.3) [49] 55.18 59.97 63.62 53.85
Triplet Loss (M = 0.5) [49] 53.58 58.60 64.48 53.15
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F3-net [52] 78.64 81.60 - -

Swin-B [53] 84.15 86.62 90.30 83.55
FSRA [22] 84.51 86.71 88.45 83.47

Ours 86.06 88.08 91.44 85.73

Comment 2: Figure 1 is not introduced in the paper text. Moreover, it is better to arrange the figures/tables above
the text content rather than inserting them in the middle of the content.

Response: Thank you very much for reminding. We have added the illustration of Figure 1 to the introduction. In addition,
we modified the position of the tables and figures to make them appearing above the text content.

Revision: Although mining and utilizing contextual information in images can effectively improve the accuracy of cross-view
geo-localization, the use of global information in images is equally important. As shown in Fig.1, a previous work, LPN [1],
focuses more on the contextual information for the input image, ignoring other crucial information in the scenes. (see the
fourth paragraph of INTRODUCTION, page 2)
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Fig. 1. Difference of the activation maps generated by the LPN method [1] and our method. The images on the left column
are the input drone-view and satellite-view images. The images in the middle column are the heatmaps of LPN method. The
images ont the right column are the heatmaps of our method. From the visualization result, it can be seen that our method
focus on the important information in the image.
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Fig.5”.
In the Section III.D lines 48, ”full connection layer”→”fully connected layer”.
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Revision: 1) For the square-ring partition strategy, the center of the image is approximately aligned with the center of the
feature map, and the entire part is partitioned according to the distance from the image center; specific operations are shown
in Fig.5. (see the METHODOLOGY B, page 6)

2) The classifier is composed of four parts: full connected layer (FC), batch normalization layer (BN), dropout layer (Dropout)
and classification layer (Cls). (see the METHODOLOGY D, page 7)

3) It can be seen from Table IV that the proposed network model is significantly superior to other methods using the
CVACT dataset after employing a polar transform, and achieves accuracies of R@1 86.64%, R@5 94.61%, R@10 95.94% and
R@Top1% 98.45%. (see the PERFORMANCE EVALUATION D 4), page 10)

Comment 4: Does the proposed network include a branch of ground-view image for the University1652 dataset?

Response: This is a valuable opinion. While training the University-1652 dataset, we only used satellite-view and drone-view
images, but did not use ground-view image. Therefore, the proposed network model only has two branches, which includes
the satellite-view and drone-view images.

Comment 5: What is the difference between the global information descriptor and the global feature descriptor? It
is better to mark out the mentioned features in the figures and describe the dimensions of features in content for
readers to understand.

Response: Thanks greatly for your suggestion! In our work, the global information descriptor is different from global feature
descriptor. The global information descriptors. The global information descriptor is the feature obtained from the backbone
network ResNet50, with the size of 16 × 16 × 2048. The global feature descriptor is the feature processed by the maximum
pooling layer and has a size of 1 × 2048. In addition, we have revised some descriptions and figures in the manuscript,
highlighted the mentioned features in the figures, and described the dimensions of the features in the content for readers to read.

Revision: The global information descriptor is obtained through inputting the global feature descriptor into the max pooling
layer. The size of the global information description and the global feature descriptors are 16 × 16 × 2048 and 1 × 2048,
respectively. (see the METHODOLOGY A, page 5)

The feature size of the global feature after global information fusion fi GIF is the same as the original global feature fi
size, which is 16× 16× 2048. (see the METHODOLOGY A, page 5)
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Fig. 3. The concrete implementation process of the global information fusion strategy.
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Fig. 4. The local information fusion strategy.

where floc,j is the j-th block feature before processing, f ′
loc,j is the j-th block feature after partitioning, and N is the

number of blocks of global features. In our work, the size of each part of the local feature f ′
loc,j is 8 × 8 × 2048. (see the

METHODOLOGY B, page 6)
The size of the global feature after downsampling fi down is the same as that of the local partitioned features floc, which is

8× 8× 2048. Then the processed global features and the local partitioned features are added to generate the new global-local
features. On this basis, a mixing information fusion strategy is introduced to recombine the newly generated features. Finally,
these features are combined to generate a global feature f ′

com that is consistent with the starting dimension 16 × 16 × 2048.
(see the METHODOLOGY C, page 7)

It is worth noting that the features f ′
i generated in the local-guided-global information fusion branch also need to generate a

unified form of feature descriptors through equation (2) to improve the accuracy of the final model. (see the METHODOLOGY
C, page 7)

Comment 6: What is the difference between the proposed global information fusion strategy and the reference(19)
cited in the paper?
(19)Z. Deng, X. Ren, J. Ye, J. He, and Y. Qiao, “Fcn+: Global receptive convolution makes fcn great again,” arXiv
preprint arXiv:2303.04589, 2023.
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Response: This is a valuable opinion. In the global information fusion branch, the global information fusion strategy used
in our work is roughly the same as that used in reference (19), but the subsequent processing and utilizing are different. In
reference (19), they fused this process into a single block to solve other problem, as shown in the figure, while we used
this information fusion strategy alone. In our work, we use the idea of multi-branch joint learning to solve the problem of
cross-perspective positioning. This information fusion strategy is only a part of our overall network model and is trained
in conjunction with other branches to make the model perform well. Therefore, there are still differences between us and
reference (19) in the way of utilizing this part of information fusion strategy. In addition, we also illustrate in the manuscript
that we are introducing this part of the mechanism.

GRC Block

Conv1 

(1x1)

GRC 

(3x3)

Conv3 

(1x1)

Fig. 0. The GRC Block.

Therefore, the global information fusion strategy [23] is introduced to increase the global receptive field of the network
and obtain more effective global features. (see the METHODOLOGY A, page 5)

7: In the Global Information Fusion Branch, the two output global feature descriptors after max pooling seem to
be the same. Because the proposed global information fusion strategy only changes the spatial position of features
without changing the distribution of feature channels, which will not affect the results after max pooling.
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Fig. 3. The concrete implementation process of the global information fusion strategy.

Response: Thank you for the reminder. The results of these two features are different after passing through the maximum
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pooling layer. In the global information fusion strategy, each position of the feature obtains a part from other features, and
although most of the features are retained, other features are also obtained. When the features of other parts are acquired, the
channel distribution of the features of this part will also be collected to a new location, thus affecting the spatial position of
the features of the original part and the distribution of the channels of the features. Therefore, the spatial position and channel
distribution of the features in the newly generated part will change. Finally, the features obtained after passing through the
maximum pooling layer are also different. The specific operation process is shown in the figure.

Comment 8: Can you explain equation 4 in more detail? For the equation 7, what does fl mean?

Response: This is a valuable suggestion. We have added an explanation of equation 4 to make it more detailed. fl is the
feature generated after the local information fusion strategy. In our work, this part of the feature is divided into four parts,
and we need to continue to operate on this part of the feature. In addition, we revised the representation and formula of these
features to correspond to the features in the image, so that each feature is clearer and easier to understand for readers.

Revision: The sampling location can be represented as follows:

Nf = ∪k,l

{(
ĥk, ŵl

)}
(4)

Nf enumerates all the possible combinations of k, l, which can be formulated as follows:

Nf =
{
(0, 0) ,

(
0,
⌊

W
pw

⌋)
, · · · ,(

(ph − 2) ·
⌊
W
ph

⌋
, (pw − 1) ·

⌊
W
pw

⌋)
,(

(ph − 1) ·
⌊
W
ph

⌋
, (pw − 1) ·

⌊
W
pw

⌋)} (5)

Nf includes ph · pw offset coordinates in total. It covers almost the entire input feature map.
The process can be formulated as follows:

f ′m
loc,j = Fslice

(
f ′
loc,j ,m

)
(8)

where f ′m
loc,j is the j-th block feature after processing, m is the number of divided regions, and Fslice represents the square-ring

partition processing. (see the METHODOLOGY B, page 6)
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Fig. 3. The concrete implementation process of the global information fusion strategy.

The global information descriptor is obtained through inputting the global feature descriptor into the max pooling layer. The
size of the global information description and the global feature descriptors are 16 × 16 × 2048 and 1 × 2048, respectively.
(see the METHODOLOGY A, page 5)

The feature size of the global feature after global information fusion fi GIF is the same as the original global feature fi
size, which is 16× 16× 2048. (see the METHODOLOGY A, page 5)

where floc,j is the j-th block feature before processing, f ′
loc,j is the j-th block feature after partitioning, and N is the

number of blocks of global features. In our work, the size of each part of the local feature f ′
loc,j is 8 × 8 × 2048. (see the

METHODOLOGY B, page 6)
The size of the global feature after downsampling fi down is the same as that of the local partitioned features floc, which is

8× 8× 2048. Then the processed global features and the local partitioned features are added to generate the new global-local
features. On this basis, a mixing information fusion strategy is introduced to recombine the newly generated features. Finally,
these features are combined to generate a global feature f ′

com that is consistent with the starting dimension 16 × 16 × 2048.
(see the METHODOLOGY C, page 7)
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Fig. 4. The local information fusion strategy.
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Fig. 6. The specific process of the local-guided-global information fusion branch.

It is worth noting that the features f ′
i generated in the local-guided-global information fusion branch also need to generate a

unified form of feature descriptors through equation (2) to improve the accuracy of the final model. (see the METHODOLOGY
C, page 7)

Comment 9: In the Section III.C, the paper says “Then the processed global features and the local partitioned features
are combined to generate new global-local features”, how to combine global features and local partitioned features?
Concat or addition?

Response: Thank you very much for your comments. In our work, the processed global features and the local partitioned
features are added to generate the new global-local features. We have revised and explained it in the manuscript.

Revision: Then the processed global features and the local partitioned features are added to generate the new global-local
features. On this basis, a mixing information fusion strategy is introduced to recombine the newly generated features. Finally,
these features are combined to generate a global feature f ′

com that is consistent with the starting dimension 16 × 16 × 2048.
(see the METHODOLOGY C, page 7)

Comment 10: For the Table III, the result of “shi et al.” in CVACT dataset is the best, which should be in bold font.
Response: Thank you very much for your valuable comments. We reviewed the relevant literature again and found that it was
our problem that led to the error of the numerical index, which was not the best. We have modified the result of “shi et al.”
in CVACT dataset.

Revision:
(see the PERFORMANCE EVALUATION D, page 10)

Comment 11: Lack of some competitive methods, such as SIRNet[1], L2LTR[2], TransGeo[3] and so on.
[1] Xiufan Lu, Siqi Luo, Yingying Zhu. It’s Okay to Be Wrong: Cross-View Geo-Localization With Step-Adaptive
Iterative Refinement. IEEE Transactions on Geoscience and Remote Sensing 2022



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 37

TABLE IV. Comparison with the state-of-the-art methods using the CVUSA and CVACT datasets. * represents when
the method harnesses extra orientation information as input.

Method Backbone CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

Zhai [16] VGG16 - - - 43.20 - - - -
Vo [54] AlexNet - - - 63.70 - - - -

CVM-Net [18] VGG16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Orientation* [6] VGG16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
Zheng et al. [9] VGG16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27

Regmi [57] X-Fork 48.75 - 81.27 95.98 - - - -
RKNet [51] USAM 52.50 - - 96.52 40.53 - - 89.12

Siam-FCANet [11] ResNet-34 - - - 98.30 - - - -
CVFT [12] VGG16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [1] ResNet-50 85.79 95.38 96.80 99.41 79.99 90.63 92.56 97.03
GeoNet-II [55] ResNetX - - - 98.70 58.90 81.80 88.30 97.70

SIRNet [33] VGG16 81.82 93.39 96.24 99.49 75.37 88.76 91.90 97.42
TransGeo [56] ViT 94.08 98.36 99.04 99.77 - - - -

L2LTR [57] ViT 91.99 97.68 98.65 99.75 83.14 93.84 95.51 98.40

Polar Transform Methods

SAFA [10] VGG16 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
DSM [13] VGG16 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32

Shi et al. [58] VGG16 92.69 97.78 98.60 99.61 82.70 92.50 94.42 97.65
LPN [1] ResNet-50 93.78 98.50 99.03 99.72 82.87 92.26 94.09 97.77

LPN + USAM [51] ResNet-50 91.22 - - 99.67 82.02 - - 98.18
Toker [14] ResNet-34 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22

SIRNet [33] VGG16 93.74 98.02 98.85 99.76 86.02 94.45 96.02 98.33
L2LTR [57] ViT 94.05 98.27 98.99 99.67 84.89 94.59 95.96 98.37

Ours ResNet-50 95.09 98.85 99.34 99.77 86.64 94.61 95.94 98.45

[2] Hongji Yang, Xiufan Lu, Yingying Zhu. Cross-view Geo-localization with Layer-to-Layer Transformer. NeurIPS
2021
[3] Sijie Zhu, Mubarak Shah, Chen Chen. TransGeo: Transformer Is All You Need for Cross-view Image Geo-
localization. CVPR 2022

Response: Thank you very much for reminding. We have added competitive methods to the experimental comparison on the
CVUSA and CVACT datasets. In addition, we also perform experiments on new datasets to prove the effectiveness of the
proposed network model.

Revision: 3) The Experimental Results using the CVUSA Dataset
The comparison results with the state-of-the-art methods using the CVUSA dataset are given in Table IV. The experimental

results are mainly divided into two groups, the method without using polar transform and the method using polar transform. The
experimental results for the first group of methods are given in the first row to fourteenth row, these methods show good results
for the cross-view geo-localization task. However, the CVUSA dataset is mainly aimed at cross-view image matching between
satellite-view and ground-view, due to the huge change of perspective, the content information has changed significantly which
presents challenges to the network model. In addition, it is difficult for these methods to spatially align the image features under
the changing view, which leads to the model performance is not ideal. Therefore, many methods employ polar transforms to
convert satellite-view images. It considers the geometric correspondence of two-platform images and transforms the aerial-view
image to approximately align a ground panorama at the pixel level. The experimental results for the second group of methods
are given in the last nine rows. From the comparison results of LPN in the two groups, it can be seen that the performance of
the method has greatly improved after using a polar transform. From IV, it can be seen that the proposed network model is
significantly superior to other methods using the CVUSA dataset after employing a polar transform, and achieves an accuracy
of R@1 95.09%, R@5 98.85%, R@10 99.34% and R@Top1% 99.77%. Compared with the LPN method after using a polar
transform, the result for R@1 improved 1.31%, which proves the effectiveness of the proposed network model. In addition,
compared with the Transformer-based method (L2LTR), the proposed network model can improve 1.04% and 0.10% on the
R@1 and AP, which can proved the effectiveness of the proposed network model.

4) The Experimental Results using the CVACT Dataset
The comparison results with the state-of-the-art methods using the CVACT dataset are given in Table IV. Due to the image

perspective structure of CVACT being similar to the CVUSA dataset, the experimental results using this dataset are mainly
divided into two groups, the method without using polar transform and the method using polar transform. Similar to the
experimental results in CVUSA, the performance of the method is obviously improved after using a polar transform. It can
be seen from Table IV that the proposed network model is significantly superior to other methods using the CVACT dataset
after employing a polar transform, and achieves accuracies of R@1 86.64%, R@5 94.61%, R@10 95.94% and R@Top1%
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TABLE IV. Comparison with the state-of-the-art methods using the CVUSA and CVACT datasets. * represents when
the method harnesses extra orientation information as input.

Method Backbone CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

Zhai [16] VGG16 - - - 43.20 - - - -
Vo [54] AlexNet - - - 63.70 - - - -

CVM-Net [18] VGG16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Orientation* [6] VGG16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
Zheng et al. [9] VGG16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27

Regmi [57] X-Fork 48.75 - 81.27 95.98 - - - -
RKNet [51] USAM 52.50 - - 96.52 40.53 - - 89.12

Siam-FCANet [11] ResNet-34 - - - 98.30 - - - -
CVFT [12] VGG16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [1] ResNet-50 85.79 95.38 96.80 99.41 79.99 90.63 92.56 97.03
GeoNet-II [55] ResNetX - - - 98.70 58.90 81.80 88.30 97.70

SIRNet [33] VGG16 81.82 93.39 96.24 99.49 75.37 88.76 91.90 97.42
TransGeo [56] ViT 94.08 98.36 99.04 99.77 - - - -

L2LTR [57] ViT 91.99 97.68 98.65 99.75 83.14 93.84 95.51 98.40

Polar Transform Methods

SAFA [10] VGG16 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
DSM [13] VGG16 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32

Shi et al. [58] VGG16 92.69 97.78 98.60 99.61 82.70 92.50 94.42 97.65
LPN [1] ResNet-50 93.78 98.50 99.03 99.72 82.87 92.26 94.09 97.77

LPN + USAM [51] ResNet-50 91.22 - - 99.67 82.02 - - 98.18
Toker [14] ResNet-34 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22

SIRNet [33] VGG16 93.74 98.02 98.85 99.76 86.02 94.45 96.02 98.33
L2LTR [57] ViT 94.05 98.27 98.99 99.67 84.89 94.59 95.96 98.37

Ours ResNet-50 95.09 98.85 99.34 99.77 86.64 94.61 95.94 98.45

98.45%. Compared with the LPN method after using polar transform, the results of R@1, R@5, R@10 and R@Top1% improve
by 3.77%, 2.35%, 1.85% and 0.68% respectively. In addition, compared with the Transformer-based method (L2LTR), the
proposed network model can improve 1.75% and 0.08% on the R@1 and AP, which proves the effectiveness of the proposed
network model for the cross-view geo-localization task. (see the PERFORMANCE EVALUATION D 3) and 4), page 10)

[14] A. Toker, Q. Zhou, M. Maximov, and L. Leal-Taixé, “Coming down to earth: Satellite-to-street view synthesis for geo-
localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6488-6497.
[33] X. Lu, S. Luo, and Y. Zhu, “Its okay to be wrong: Cross-view geo-localization with step-adaptive iterative refinement,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022.
[56] S. Zhu, M. Shah, and C. Chen, “Transgeo: Transformer is all you need for cross-view image geo-localization,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1162-1171.
[57] H. Yang, X. Lu, and Y. Zhu, “Cross-view geo-localization with layer-to-layer transformer,” Advances in Neural
Information Processing Systems, vol. 34, pp. 29009-29020, 2021.

TABLE III. Comparison with the state-of-the-art methods using the SUES-200 dataset. The input image size
for comparison methods is 384× 384. For our method, the image size is 256× 256.

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
LCM [50] 43.42 49.65 49.42 55.91 57.47 60.31 60.43 65.78
LPN [1] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53
Vit [47] 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67

Ours 77.57 81.30 89.50 91.40 92.58 94.21 97.40 97.92

Method
Drone→Satellite

150m 200m 250m 300m
R@1 AP R@1 AP R@1 AP R@1 AP

Baseline [47] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
LCM [50] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN [1] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72
Vit [47] 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10

Ours 93.75 79.49 97.50 90.52 97.50 96.03 100.00 97.66
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2) The Experimental Results using the SUES-200 Dataset: The comparison results with the state-of-the-art methods using
the SUES-200 dataset are given in Table III. The experimental results are mainly divided into three groups, namely the
baseline-related methods, the experimental results of methods using contextual information and the experimental results
of the Transformer-based method. From the Table III, the the baseline-related methods are given in the first and second
rows, the third row shows the experimental results of methods using contextual information, the experimental results of the
Transformer-based method are shown in the fourth row and the last row is the experimental result of the proposed network
model. It can be seen from the experimental results that the proposed network model achieves the accuracy of R@1 are 77.57,
89.50, 92.58, 97.40 and AP are 81.30, 91.40, 94.21, 97.92 on the drone-view target localization task (Drone→Satellite) at
different height, and it can achieve the accuracy of R@1 are 93.75, 97.50, 97.50, 100.00 and AP are 79.49, 90.52, 96.03,
97.66 on the drone navigation task (Satellite→Drone) at different height. Compared with LPN method, the R@1 and AP are
improved 10.00%, 8.75%, 5.00%, 7.50% and 12.71%, 15.51%, 14.69%, 11.94% for the Drone→Satellite task at different
heights, and the R@1 and AP are improved 15.99%, 18.92%, 12.20%, 15.93% and 14.07%, 15.44%, 10.41%, 13.39% for the
Satellite→Drone task at different heights. It can be seen from the experimental results that the proposed network model is
effective through introducing global information and local-guided-global information branches on the basis of using contextual
information, and the performance of the model has been greatly improved. (see the PERFORMANCE EVALUATION D 2),
pages 9-10)

Comment 12: For the Table V, it is better to explain the abbreviations in the caption.

Response: This is a valuable suggestion. We have modified Table V and Table VI to explain the abbreviation in the caption.

Revision: (see the PERFORMANCE EVALUATION E 1) and 2), page 11)

TABLE V. Ablation study on the effect of the global information fusion (GIF) branch, the local information
fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch.

GIF LIF LGGIF Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × 64.13 68.73 76.32 60.20
✓ × × 71.78 75.68 80.74 68.69
× ✓ × 68.96 72.42 84.02 66.68
× × ✓ 65.96 70.32 79.32 63.41
✓ ✓ × 82.72 84.95 89.44 79.19
✓ × ✓ 72.85 76.52 83.17 69.86
× ✓ ✓ 81.56 83.58 89.73 80.17
✓ ✓ ✓ 86.06 88.08 91.44 85.73

TABLE VI. Ablation study on the effect of the information fusion strategies (IFS) and attention mechanism
(CBAM) in the global information fusion (GIF) branch, the local information fusion (LIF) branch and the
local-guided-global information fusion (LGGIF) branch.

IFS
in

GIF

IFS
in

LIF

IFS
in

LGGIF

CBAM Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × × 80.35 82.79 87.02 79.49
× ✓ ✓ ✓ 83.59 85.88 89.59 83.15
✓ × ✓ ✓ 82.20 84.64 88.87 82.19
✓ ✓ × ✓ 83.24 85.63 90.16 82.10
✓ ✓ ✓ × 83.97 86.21 89.16 82.75
✓ ✓ ✓ ✓ 86.06 88.08 91.44 85.73

Comment 13: For the ablation study on the effect of the various branches (section VI.E.1), what are the result of
baseline and results of using each branch separately?

Response: Thanks for your question! We have supplemented the experimental results of baseline and separate use of each
branch in TABLE V, and conducted in-depth analysis of the results.

Revision: 1) Effect of the Various Branches
The main contribution of this paper is to design three branches, the global information fusion (GIF) branch, the local

information fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch. In order to verify the
effectiveness of these three proposed branches in the network model, we designed several experiments to test each branch as
shown in Table V. It can be seen from Table V that no matter which branch is excluded, the performance of the network
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model has a certain decline. In addition, the performance of the model will be significantly improved after using any branch,
which also proves the effectiveness of the proposed different branches. Intuitively, the performance of the model is greatly
improved after combining the local information fusion branch, which also proves that the contextual information in the image
has a significant impact on the cross-view geo-localization task. Thus, we fully consider the global information in the image
and employ local information to assist the global features to mine the critical information in the image as much as possible.
From the experimental results, it can be seen that these three introduced branches are effective and the discriminability of
the final feature descriptors can be improved through utilizing the global features, improving the retrieval precision of the
network model. The main contribution of this paper is to design three branches, the global information fusion (GIF) branch,
the local information fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch. In order to verify
the effectiveness of these three proposed branches in the network model, we designed several experiments to test each branch
as shown in Table V. It can be seen from Table V that no matter which branch is excluded, the performance of the network
model has a certain decline. In addition, the performance of the model will be significantly improved after using any branch,
which also proves the effectiveness of the proposed different branches. Intuitively, the performance of the model is greatly
improved after combining the local information fusion branch, which also proves that the contextual information in the image
has a significant impact on the cross-view geo-localization task. Thus, we fully consider the global information in the image
and employ local information to assist the global features to mine the critical information in the image as much as possible.
From the experimental results, it can be seen that these three introduced branches are effective and the discriminability of the
final feature descriptors can be improved through utilizing the global features, improving the retrieval precision of the network
model. (see the PERFORMANCE EVALUATION E 1), page 11)

TABLE V. Ablation study on the effect of the global information fusion (GIF) branch, the local information
fusion (LIF) branch and the local-guided-global information fusion (LGGIF) branch.

GIF LIF LGGIF Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

× × × 64.13 68.73 76.32 60.20
✓ × × 71.78 75.68 80.74 68.69
× ✓ × 68.96 72.42 84.02 66.68
× × ✓ 65.96 70.32 79.32 63.41
✓ ✓ × 82.72 84.95 89.44 79.19
✓ × ✓ 72.85 76.52 83.17 69.86
× ✓ ✓ 81.56 83.58 89.73 80.17
✓ ✓ ✓ 86.06 88.08 91.44 85.73
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