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Abstract—Drug-target interaction prediction (DTI) is of great
importance for drug discover and development. With the rapid
development of biological and chemical technologies, Network-
based method for DTI prediction is becoming the promising
strategy. However, there are few methods explore to solve cold-
start problem. Most of existing methods modeling requires
modeling under the existing interaction that can’t effectively
capture information from new drugs and new targets which have
few interaction in existing network. In this paper, we propose a
meta-learning graph transformer model named MGDTI to fill the
gap. We employ drug-drug similarity and target-target similarity
to supplemental additional information for network to mitigate
the scarcity of interaction. Besides, we train model via meta-
learning to fast adapt new tasks. Moreover, we introduce graph
transformer to prevent over-smoothing by capturing long-range
dependencies. Experimental results on the benchmark dataset
demonstrate that MGDTI is effective in DTI prediction. Case
study reveals the effective of MGDTI for predicting potential
drug-target pairs.

Index Terms—Drug-target interaction prediction, meta-
learning , graph transformer

I. INTRODUCTION

Drug-target interaction prediction(DTI) is of great signifi-
cance for drug discover and development. However, traditional
experiment are normally time-consuming and labor-intensive
process [1], [2]. In order to speed up drug discovery, computer-
based methods are proposed and rapidly developing [3]. Ben-
efiting from the rapid development of biological and chemical
technologies, heterogeneous biological data are increasingly
giving a good foundation for the development of computer-
based methods. Because network can make better use of
heterogeneous biological data, so network-based method has
becoming a commonly used strategy for DTI prediction [4]–
[6]. Graph neural network(GNN) has been widely used in
heterogeneous information networks models because of its
mechanism of aggregating neighbours with message passing
and also a few GNNs have been used in network-based
methods for DTI prediction and make great success [7], [8].

However, in real-world prediction scenarios, for new drug
development, there are few or no interactions between new
drug and targets [9]. This problem is often referred to as cold-
start problem in recommender system for it is hard train a
reasonable embedding using limited interaction [10]. Although
network-based methods have widely used in DTI prediction,
they still have shortcoming in some aspects.

Fig. 1. cold-start example

Specifically, existing network-based methods mainly focus
on the cases of existing drugs and existing targets(test drugs
and targets are known in training set and have many edges in
the network) ignoring the cold-start problem in DTI prediction,
which makes model incapable of capturing information on
cold-drugs and cold-targets. Precisely, cold-start problem in
DTI prediction is classified as cold-drug task (predict new
drugs interactions with targets) and cold-target task (predict
new targets interactions with drugs). Otherwise, most network-
based methods only focus on 1-hop neighbors information
neglecting to extract long-range dependencies. Although GNN
stacking can take advantage of information from distant nodes
captured by the message passing mechanism, it can also suffer
from problems such as over-smoothing [11].

To address the above problems, we use MGDTI, a meta-
learning based graph transformer model to handle cold-start
problem in DTI prediction. Our aim is to improve model
generalization ability and capturing long-range dependencies
ability on cold-start scenario. To enhance the ability of model’s
generalization, we introduce to train model via meta-learning
to help it adapt fast to cold-drug task and cold-target task.
It use drug-drug similarity matrix and target-target similarity
matrix to supplement additional information to mitigate the
scarcity of interaction. To prevent over-smoothing, we utilize
node neighbour sampling method to derive the contextual
sequence for each node and deliver them into graph trans-
former to capture the local structure information with context
aggregation.

The main contributions are summarized as follows:

• We propose a meta-learning based graph transformer
model to solve cold-start problem in DTI prediction
named MGDTI.

• To address cold-start problem in DTI prediction, we



utilize similarity matrix to supplemental additional infor-
mation for network to mitigate the scarcity of interaction
and train model parameters through meta-learning to fast
adapt cold-drug task and cold-target task to enhance
the model’s generalization capability. And we introduce
graph transformer to capture for long-range dependencies
for preventing model over-smoothing.

• We evaluate the performance of MGDTI on the bench-
mark dataset in cold-start scenario. Experimental results
show that MGDTI is superior to state-of-the-art methods.
And we design a case study on a real-world dataset to
demonstrate that MGDTI is effective.

The rest of this paper is organized as follows. The related
work is reviewed in Section I. Preliminaries and overall design
are shown in Section III and Section IV, respectively. Then,
the experimental setting and results are discussed detail in
Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

A. Drug-target Interaction Prediction
DTI is described as the binding of a drug molecule to a

target (usually a protein), in which a drug interact a target
to treat diseases. Improving the accuracy of DTI predictions
could lead to faster drug development.

Most of the early work are computer-based which have
many limitations and cost time. docking-based method [12]
require three dimensional structure of the target while ligand-
based method use known rules of interacting ligands to make
predictions [13]. These methods are time-costing and not work
well if some limitations can not be satisfied.

With the rapid advances in biological and chemical tech-
nologies, more sources of data are becoming available, such
as drug-drug interactions and drug-target interactions, which
could help the DTI task to predict more accurately. Because
of the availability of data from more sources, network-based
approaches have been created, which use graph-based tech-
nology to characterize the properties of drugs and targets to
predict DTI tasks. DTINet [14] learns low-dimensional feature
vectors of drugs and targets from heterogeneous networks,
then finds the optimal projection from drug space to target
space and predicts interactions. IMCHGAN [15] employs
a two-level GAT strategy to learn drug and target latent
feature representations from multiple networks and predicts
DTI using inductive matrix completion. HGAN [5] , based
on attentional mechanisms and diffusion techniques, captures
complex structures and rich semantics in bioheterogeneous
graphs for DTI prediction.

B. Graph Transformer
Recently, Graph transformer is growing popular for they

could alleviate the limitations of Message-Passing-based GNN
models such as over-smoothing, over-squashing and so on.
Graph attention mechanism has shown its power in many
different graph representation learning tasks. Transformers
mainly integrate graph structural information into the trans-
former architecture to generalize graph-structured data. Some

works, such as GraphTrans [16] , GraphiT [17] combine with
GNNs to capture local structure information. And some works
propose to add graph and structural encoding to complement
topological information into Graph Transformer. HINormer
[18], a Graph Transformer on heterogeneous information net-
work utilize a local structure encoder and a heterogeneous en-
coder for node representation learning has achieved excellent
results.

C. Meta-learning

Meta-learning [19] , an approach often regarded as ”learn to
learn”, aims to enhance the model’s ability to quickly adapt to
new tasks. For example, MAML [20] is a popular deep neural
network meta-learning framework, which learned cross-task
generalities, serves as an initialisation of the neural network
parameters. During the meta-testing phase, MAML can fine-
tune the parameters with a small number of training examples
so that the model can adapt efficiently to new learning tasks.
Due to its quickly adapt ability, meta-learning has been widely
used in the field of recommender systems to solve cold-start
problems and have achieved great success [21], [22] .

With the rapid development of meta-learning, more and
more bioscience-related tasks are also beginning to use it.
META-DDIE [23] utilize meta-learning to solve few-shot
drug-drug interaction. CML [9] , a meta-learning based ap-
proach for drug-target binding affinity prediction task.

III. PRELIMINARIES

Definition 1: Drug-target information network: Drug-
target information network (DTN) is an undirected graph
G = (V, E), with a node type mapping function ϕ : V → O
and a relation type mapping function ψ : E → R, where
O = {ϕ (v) |v ∈ V } refers to the set of node types and R
denotes the set of relations between nodes. Each node v ∈ V
belongs to a node type ϕ(v) ∈ O, and each link e ∈ E belongs
to a relation ψ(e) ∈ R.

In the drug-target information network, node type set O =
{drug, target} and relation type set R = {drug − target −
interaction, drug − drug − interaction, target− target−
interaction}. Particularly, we denote D = {d1, d2, ..., dn} as
drug set and T = {t1, t2, ..., tm} as target set, V = D ∪ T
obviously.

Definition 2: Cold-drug set and Cold-target set: We
define Dc ⊂ D as cold-drug set which have few interactions
with node set V and T c ⊂ T as cold-target set which few
interactions with node set V .

Definition 3: Cold-start task Defination:
• Cold-drug task: Given the drug-target information net-

work G, our goal is to learn a mapping function F which
can predict the interaction probability between each pair
of a drug v ∈ Dc and a target v

′ ∈ T .
• Cold-target task: Given the drug-target information net-

work G, our goal is to learn a mapping function F which
can predict the interaction probability between each pair
of a target v

′ ∈ T c and a drug v ∈ D.



Fig. 2. The overall architecture of MGDTI (a) Enhance graph by adding edges using similarity matrix (b) Using GCN to capture the local structural
information and get all nodes’ embedding (c) Do neighbor sampling for drugs and targets and feed them into different transformer to learn long
dependicies respectivly (d) DTI prediction

IV. METHOD

In this section, we presents the details of MGDTI. The
framework of MGDTI is shown in 2.

A. Graph Enhanced Module

To help model solve the cold-start problem, MGDTI sup-
plements the additional information with structural similarity
between drugs and targets, respectively. For each drug v ∈ D,
we choose the top five drugs with highest structural similarity
to drug v and add k edges to DTN G. We do the same for
each target v

′ ∈ T . After graph enhanced, we get the new
DTN graph G′

.

B. Local Graph Structural encoder

In this module, MGDTI utilize local graph structure encoder
to learn nodes’ embedding to fully capture local structural
information from DTN G′

. For each node v ∈ V , MGDTI
randomly initialize its embedding into a d-dimensional latent
space. In addition, we aggregate all nodes’ embedding to form
the embedding matrix H(0) ∈ R|V|×d Graph Convolutional
Network(GCN) [24] has been widely used in graph for its
message-passing mechanism can effectively captures the local
structural information. Formally, for the l-layer output

H(l+1) = RELU(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

where H(l) is the feature representation at the l−th layer. Here,
Ã = A+ IN is the adjacency matrix of the undirected graph
G′

with added self-connections where IN is the identity matrix
and D̃ is the degree matrix of Ã. D̃− 1

2 ÃD̃− 1
2 represents the

normalized adjacency matrix which play a key role in solving
gradient explosion problems during graph convolution process.
And W (l) is l−layer trainable weight matrix. After Local
Graph Structural encoder, we get nodes’ new embedding H .

C. Graph Transformer Module

In this module, we aim to capture information from long-
range dependencies through graph transformer because remote
nodes own some useful information that neighbours don’t have
[25].

Inspired by HINormer [18], the model samples the fixed
number (n) of node v′s neighbors as a neighborhood sequence
Sv , whose embedding is used as the input to transformer
encoder. For the node v we first sample itself, and then prefer-
entially sample its 1-hop nodes into neighbourhood sequence
Sv . If |Sv| < n, we sample from its 2-hop neighbours and so
on, until |Sv| = n.

Formally, the neighborhood sequence Sv of node v is
denoted as Sv = [v, v1, . . . . . . , vn−1], so the embed-
ding of neighborhood sequence is denoted as HS

v =
[Hv, Hv1 , ...,Hvn−1 ] ∈ Rn×d. Transformer [26] has been
widely used in different fields due to its excellent learn-
ing ability for sequences. The standard transformer layer
consists of two main components, multi-head self-attention
module(MSA) and the feed forward network(FFN). We delete
FFN in MGDTI, so we only briefly introduce MSA simplicity.

MSA allows model to learn multiple sets of attention weight
in parallel to extract features from different subspaces and fuse
them together to enhance model’s representation power.

For the neighborhood sequence embedding of node v HS
v

to learn a set of attention weight Attention, the MSA firstly
projects the input Hs

v to the query space, key space, and value
space (denoted by Q, K, and V , respectively) via the three
parameter matrices WQ, WK , WV and

Q = Hs
vWQ,K = Hs

vWK , V = Hs
vWV . (2)



The attention weight is then calculated as

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V. (3)

We calculate two independent self-attention on HS
v to obtain

two sets of attention weight Attention1, Attention2 and we
get MSA output by concatenating and linearly transforming
them:

MSA(Hs
v) = Concat(Attention1, Attention2)WM (4)

where WM is a learnable parameter. After that, the output of
MSA will be connected to layer normalisation(LN) [27] and
residual linkage. Formally, for each transformer encoder layer
is denoted as:

Hj+1 = LN(MSA(Hj) +Hj). (5)

where H0 = HS
v . After J layer transformer, the final output

of transformer encoder is denoted as H̃s
v ∈ Rn×d.

For node v, we use the H̃s
v[0] as its new embedding. After

graph transformer module, MGDTI can learn the node feature
based proximity between different positions of the neighbor-
hood sequence. It is worth noting that when updating node’s
embedding of drug node and target node, we use different
graph transformer module. Now, MGDTI gets drug node v′s
embedding Zv = H̃s

v[0] and target node v
′
s embedding

Zv′ = H̃s
v′ [0], respectively .

D. Prediction Module

MGDTI concatenates Zv and Zv′ as the input of the
prediction module, which is a 3-layer MLP. The output of
MLP is a prediction score indicating the probability of DTI,
which is denoted as

ŷ =MLP (Zv ⊕ Z
′

v) (6)

We convert the DTI prediction task into a binary classification
task and user binary cross entropy loss:

L = −y · log(ŷ)− (1− y) · log(1− ŷ) (7)

where y is the ground truth, and ŷ is the prediction value.

E. Meta-learning training method

To tackle the problem of data imbalance under cold-start
scenarios, we introduce to use meta-learning to train model
parameters.

Given a model fθ with randomly initialized model param-
eter θ, the key idea of meta-learning is to learn the optimal
parameters θ∗ for different tasks so as to quickly adapt to new
tasks. Firstly, for each epoch, we randomly divide training set
into support set {Xp, Y p} and query set {Xq, Y q}. And for
each time, we copy the model parameter θ as θ̂, which will
be updated by loss of support set Lp:

θ̂ ← θ̂ − α∇θ̂Lp (8)

TABLE I
STATISTICS OF THE DATASET

Node Type # Nodes Edge Type # Edges Source
drug-target 1,923 DrugBank [28]

drug 708 drug-drug 10,036 DrugBank [28]
target 1512 target-target 7,363 HPRD [29]

side effect 4192 drug-disease 199,214 CTD [30]
disease 5603 target-disease 1,596,745 CTD [30]

drug-side effect 80164 SIDER [25]

Then use the parameter θ̂ to train query set and get the loss
of query set Li

q . We repeat the above steps k times, and get
the average loss Lmean, which is calculated as:

Lmean =

∑k
i=1 Li

q

k
(9)

and use it to optimize the original parameters θ of model

θ ← θ − β∇θ̂Lmean (10)

where α and β are hyperparameter commonly called local up-
date learning-rate and global update learning-rate, respectively.
The detailed meta-learning process is shown with algorithm 1.

Algorithm 1 Meta-learning for MGDTI
Require: T : training set
Require: α, β, k: step size hyperparameters

randomly initialize θ
1: while not done do
2: θ̂ ← θ
3: Ltot ← 0
4: Randomly divide T into P and Q
5: for i← 1 and i <= k do
6: Evaluate Lp using P and L in Equation 7
7: update θ̂ with gradient descent in Equation 8
8: get Li

q using θ̂ and Q in equation 7
9: add Li

q to Ltot: Ltot ← Ltot + Li
q

10: end for
11: Lmean ← Ltot/k
12: using Lmean to update θ in Equation 10
13: end while

V. EXPERIMENTS

A. Experimental setting

1) Datasets: We utilize the heterogeneous network dataset
which widely used in pervious studies [14]. The detail of
dataset can be found in Table I. In MGDTI, we only use
two types of nodes, drug and target with three types of edges
drug-drug interaction, drug-target-interaction and target-target
interaction in the original table. We also incorporate drug-
drug structure similarity network by the dice similarities of
the Morgan fingerprints [31] with radius 2 which computed
by RDKit (http://www.rdkit.org) and target-target structure
similarity network by protein sequence similarity network

http://www.rdkit.org


based on pair-wise Smith-Waterman scores [32]. The data of
structure similarity networks are obtained from DTINet [14]

Dataset prepare: To evaluate cold-start issue in DTI predic-
tion, we perform distinct experimental setting split strategies
for dataset. We divide the cold-start task into two categories,
cold-drug task and cold-target task.

Taking cold-drug task as an example, firstly, we divided
drugs into 10 parts to do 10-fold cross-validation. For each
fold, we treat one part as the cold-drugs and the remaining nine
parts as existing drugs. For each cold-drug, we mask a certain
ratio of edges, including drug-drug-interaction and drug-target-
interaction in the network to create a cold-drug scenario.
Then, for each fold, we use masked edges of the drug-target
and the same number of negative samples (i.e.,cold-drug and
target have no interaction) as the test set while use unmasked
edges in the network and same number of negative samples as
training set. To evaluate the performance of model in different
cold-drug scenario, we set different mask ratios 0.5, 0.7, 0.9
and 1.0 to simulate how much information that cold-drugs
know. For the cold-target task, we do the same as above.

2) Baselines: We compared MGDTI with four advanced
models with their default parameter setting:

• IMCHGAN [15]: Inductive Matrix Completion with Het-
erogeneous GAT for DTI prdiction. IMCHGAN employs
a two-level GAT strategy to learn drug and target latent
feature representations from multiple networks and pre-
dicts DTI using inductive matrix completion.

• SGCL-DTI [4]: Supervised graph co-contrastive learning
for DTI prediction. SGCL-DTI contrasts topology struc-
tures and semantic features of drug-protein pair(DDP)
network to predict DTI.

• MultiDTI [6]: Multi-modal representation learning for
DTI prediction. MultiDTI uses joint learning in mul-
timodal representation learning to combine similarity-
based methods with network-based methods, mining not
only structural information of drugs and targets, but also
association information in heterogeneous networks to
predict DTI. MultiDTI uses extra sequence data of drugs
and targets, and can predict target for cold-drugs.

• HGAN [5]: Heterognous Graph Attention Network for
DTI prediction. HGAN constructs the biological hetero-
geneous graph with both node information and edge type
information and then utilize the graph attention diffusion
module to learn deep representations for each bioentity
node to predict DTI.

3) Experiment settings: To evaluate the effectiveness of
MGDTI, we employ two commonly used metric : the area
under the receiver operating characteristic curve (AUC). the
area under the precision-recall curve (AUPR).

For MGDTI, the number of GCN layer parameter is 2,
the number of transformer layer parameter is 3, the number
of meta layer(k) is 5 and the dimension of representation is
256. We trained MGDTI by using Adam optimizer with local-
update learning-rate(α) 1e−4, global-update learning-rate(β)
2e−4 and weight decay rate 1e−9. The epoch is set to 200.
The sequence length n is set to 10.

TABLE II
COMPARISON OF RESULTS BETWEEN OUR MODEL AND BASELINES ON

COLD-DRUGS

Mask-
Metric

Multi SGCL- IMCH
HGAN

MGF
Rate DTI DTI GAN DTI

0.5
AUC 0.870 0.871 0.903 0.924 0.927

AUPR 0.887 0.890 0.924 0.936 0.929

0.7
AUC 0.853 0.861 0.894 0.908 0.923

AUPR 0.869 0.875 0.910 0.920 0.932

0.9
AUC 0.853 0.884 0.875 0.893 0.913

AUPR 0.873 0.863 0.894 0.903 0.921

1.0
AUC 0.852 0.832 0.872 0.881 0.907

AUPR 0.870 0.845 0.887 0.880 0.915

TABLE III
COMPARISON OF RESULTS BETWEEN OUR MODEL AND BASELINES ON

COLD-TARGETS

Mask-
Metric

Multi SGCL- IMCH
HGAN

MG
Rate DTI DTI GAN DTI

0.5
AUC 0.834 0.866 0.897 0.921 0.936

AUPR 0.848 0.891 0.918 0.939 0.940

0.7
AUC 0.815 0.853 0.887 0.919 0.917

AUPR 0.827 0.876 0.913 0.936 0.920

0.9
AUC 0.744 0.816 0.848 0.861 0.897

AUPR 0.745 0.845 0.880 0.888 0.904

1.0
AUC 0.732 0.733 0.672 0.624 0.854

AUPR 0.712 0.698 0.669 0.650 0.859

All experiments were conducted on a PC with four Intel
Xeon E5-2698 GHz CPUs, four GeForce RTX 2080/3090
Ti GPUs and 512 GB memory, running Ubuntu 20.04. The
algorithms were implemented in Python and compiled by
Python 3.7. Our source code and the source codes of the
compared methods, are publicly available on GitHub1.

B. Effectiveness

To evaluate the performance of models, we implemented
10-fold cross validation on the dataset, and show the average
of ten fold results. We compare MGDTI with baselines on
the the cold-start DTI prediction task. The results of cold-
drug task is shown in II while the results of cold-target task
is shown in III. It is shown that MLGTDTI achieves best
results on most of experimental conditions on both cold-
drug task and cold-target task. And for other experimental
conditions, MLGTDTI achieves second best. According to the
results, we can draw a conclusion that MLGTDTI is more
suitable to tackle the cold-start scenarios than other baselines.
As mask-rate increases, AUC and AUPR of all models have
a certain degree of decline. We analyse that network-based
methods require the aggregation of neighbors’ information to
get the representation of the drugs and targets, but in cold-start
scenarios, cold-drugs and cold-targets has little of almost no



Fig. 3. drug-target interaction distributions

Fig. 4. Ablation study

interaction information in the network which will dramatically
limit the performance of DTI prediction. Specifically, as the
mask-rate increase, the experimental results of the cold-target
task drop more significantly than the cold-target task. To
explore the reasons for this case, we analyses the interaction
between drugs and targets, which is shown in Figure 3. We
also analysed the interaction between drugs and targets, the
xx is shown in Fig. From the figure, we can see that most of
drugs have at least one interaction with targets, while more
than 70% of targets do not have any interaction with drugs in
original DTN. It explains why the prediction performance of
cold-target decreases much more than of cold-drugs while the
mask rate increase.

C. Ablation Study

In order to understand the contribution of each component
of MGDTI, we design four model variants as follows:(i) w/o
E: MGDTI without graph enhanced module; (ii) w/o GCN:
MGDTI without GCN layer; (iii) w/o T: MGDTI without
graph transformer layer; (iv) w/o ML: MGDIT without meta-
learning framework. In Figure 4, we can see that MGDTI
outperforms the others and draw the following conclusions:

• Meta-learning framework can improve the model’s per-
formance of DTI prediction in cold-start scenarios, which
because meta-learning can accumulate knowledge from
experiences of learning similar task and seek rapid model
adaption to unseen task.

• The graph enhanced module greatly affects the perfor-
mance of the model, one potential reason is that graph
enhanced module can complement the lack of information
in cold-start scenarios. Specially, the graph enhanced

Fig. 5. parameter sensitivity

module has a greater impact on cold-target task than on
cold-drug task. It may because that cold-target originally
has fewer edges in DTN, additional edge information is
more necessary for cold-target task.

• Compared with w/o T and w/o GCN, MGDTI achieves
better prediction results, proving that it is necessary to
learn information in network through GCN layer and
graph transformer layer.

D. Parameters sensitivity study

MLDTDTI has six important hyper-parameters, including
local-update learning rate α ,global-update leraning-rate β in
meta-learning framework, num of meta-layer k, neighborhood
length n, num of GCN layer L and num of Transformer layer J
in MGDTI. In order to analyze the robustness of MGDTI, we
conduct parameter sensitivity experiments to validate the im-
pact of these hyper-parameters. When comparing a parameter,
we keep the rest of hyper-parameters constant. performances
are presented in Figure 3.

In order to analyze the influence of the num of GCN layer
on MGDTI, we change the L in {1, 2, 3, 4, 5}. For cold-drug



TABLE IV
CASE-STUDY

UniProt Target Name DrugBank Drug MGLDTI Evidence
ID ID Name Predict Score

P37231
Peroxisome proliferator

DB01050 Ibuprofen 0.993 NCT04334629/NCT04382768 [33]
-activated receptor gamma

O75469
Nuclear receptor subfam-

DB01234 Dexamethasone 0.992 NCT04509973/NCT04452565 [34]
ily 1 group I member 2

P10415 Apoptosis regulator Bcl-2 DB01050 Ibuprofen 0.988 NCT04334629/NCT04382768 [33]
Q9BYF1 Angiotensin-converting enzyme 2 DB00608 Chloroquine 0.984 NCT04347798/NCT04303299 [35]
P04083 Annexin A1 DB00959 Methylprednisolone 0.976 NCT04244591/NCT04499313 [36]

Q07869
Peroxisome proliferator-

DB01050 Ibuprofen 0.968 NCT04334629/NCT04382768 [33]
activated receptor alpha

P09488 Glutathione S-transferase Mu 1 DB00608 Chloroquine 0.820 NCT04347798/NCT04303299 [35]

task, the best performance is achieved when L=2, and drop
slightly while L increases. And for cold-target task, the best
performance is achieved when L=1, and drop obviously while
L increases. The potential reason may be that the increase in
the number of GCN layers may bring about the problem of
over-smoothing, which is more abvious for cold-target task.
neighborhood sequence length n, we change n in {5, 10, 15,
20, 25}. MGDTI gets best results when n=10 in both cold-drug
and cold-target task. When n greater than 10, the performance
of MGDTI become unstable, which may because too much
information of neighbors may cause redundancy. And when
n is set to 5, the information of neighbors is insufficient. To
analyze the influence of the num of Transformer layer J, we
set the J in the range {1, 2, 3, 4, 5}. The AUC and AUPR are
the best for both cold-drug task and cold-target task when the
Transformer layer J is 3.

We also assess the sensitivity of the num of meta-layer k
when k changes in {3, 4, 5, 6, 7}. As shown in Figure 5, the
overall performance is stable in both tasks, that is our results
would not influence too much if k changes in an appropriate
range. For cold-drug task, MGDTI achieves relatively better
when k is 5, while achieves relatively better when k is
3 for cold-target task. We further analyze the changes in
the local-update learning-rate α and global-update learning-
rate β of meta-learning framework , and α and β varies
from 1× 10−4, 2× 10−4, 5× 10−4, 8× 10−4, 1× 10−3. As
we can see from Figure 6, for α, MLDTDTI has best AUC
and AUPR in cold-target task, and relatively better AUC and
AUPR in cold-drug task when α = 1 × 10−4. And when
β = 1× 10−4, MGDTI performs best.

1) Case study: To evaluate the utility of model, we conduct
a study of potential drug-target pairs which are real but not
included in the benchmark dataset due to timeliness. We obtain
12 drug-target pairs from [37] which have no interaction in
our benchmark. And then put them into our trained model for
test. MGDTI successfully predict 7 of 12 pairs on 4 drugs
and these drugs have appeared in some clinical studies and
corresponding literatures. The result are shown in table IV.

VI. CONCLUSION

In this paper, we investigate the problem of cold-start sce-
narios in DTI prediction. To solve this problem, we proposed
a novel model named MGDTI which train model parameters
via meta-learning to fast adapt cold-drug task and cold-
target task and utilize graph transformer to capture long-range
dependencies for preventing over-smoothing. For feature work,
we intent to capture the structural information of drugs and
targets to find out which part of the structure works.
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