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Abstract—It is very potential to develop digital villages for 
promoting smart agriculture. As one of the important research 
fields of smart agriculture, smart chicken farms encounter 
management problems such as difficulties in quickly and 
accurately warning of sick and dead chickens and estimating feed 
residuals. Therefore, this study not only respectively proposed 
CKTrack and FRCM to detect sick and dead chickens and 
estimate feed residuals, but also developed a smart chicken 
farming platform for automagical management. Our main results 
include (1) the proposed CKTrack method can effectively identify 
sick and dead chickens under the condition of limited data volume 
and computing capacity; (2) the proposed FRCM method can 
accurately estimate the feed residuals; and (3) the smart chicken 
farming platform developed can provide farmers with functions 
such as early warning of sick and dead chickens, visualization of 
the chicken quantity inventory, and feed residual estimation.  

Keywords—computer vision; computational biology; object 
tracking; instance segmentation; smart chicken farming.  

I. INTRODUCTION 

Because of the difficulties of management in the large-scale 
chicken farming industry due to the crowded chickens and the 
complexity of the farm environment, it is neither possible to 
prevent large-scale disease and death, nor to estimate the feed 
residuals accurately. In addition, although traditional 
environmental monitoring systems can provide early warning 
and monitoring of the farm environment, they are unable to trace 
back to the health status of individual chickens and to estimate 
the feeding consumption of individual cages. To improve the 
chicken management capacity for the large-scale chicken 
farming industry, it is therefore important to develop such a 
smart farming system that can identify the health status of 



individual chickens and estimate the feeding consumption of 
individual cages. 

Currently, there are two mainstream methods for real-time 
monitoring of agricultural product behavior. One is behavioral 
recognition using video data. For example, Han et al. [1] used 
deep learning technology[2-4]for model training and inference 
to predict pig behavior, they obtain over 96% accuracy of pig 
behavior. However, this pig image dataset required labeling a 
large amount of different state data, and the model is subjected 
to overfitting for the pig scenario. Moreover, it is not suitable for 
the cross-domain research except pig behavior identification. 
The other method carries out behavioral discrimination tasks by 
building up the deep learning models for object detection and 
multi-object tracking. For example, for the object detection task, 
they are usually processed by Faster-RCNN [5] and YOLO [3, 
6, 7] series with high accuracy, but their detection speed is 
greatly dependent on the computing capacity. For multi-object 
tracking tasks, Wojke et al. [3] integrate Kalman filter [8]  into 
CNN (convolutional neural network) and ReID model [9] to 
track targets, which ca decrease the error rate of identification 
(ID) in the presence of occlusion, while it requests a large 
amount of annotated data for ReID model training 

For the first mainstream method, because most of chicken 
behavior are normal walking condition and abnormal behavior 
(sickness and death) of the chicken are not easy to collect, the 
data is imbalance.  It results in a long-tailed distribution of the 
collected chicken behavior data, which is not good for model 
training.  

For the second mainstream method, chickens usually live in 
crowded scenes, and factors such as shading, movement and 
inconspicuous texture features can make us hard to capture the 
individual identity information of chickens. Moreover, the 
limited computing capacity of chicken farms cannot support 
high performance neural network computing. For this reason, 
we propose our first research question: how to develop a 
lightweight object detection algorithm that can identify the 
health status of chickens with limited training data and 
computing capacity?  

For single cage feed residual estimation, as it is essentially 
an image segmentation problem, previous studies usually 
employ instance segmentation to do it. Hafiz et al.[10] indicated 
that there are four types of instance segmentation. (1) The first 
is the classification of mask proposals. For example, Zhou et al. 
[11] proposed a U-shaped encoder and decoder framework to 
segment instances of input size by layer recovery manner, but it 
is often not easy to recognize the continuous objects of the 
overlapping instances. (2) The second is the detection followed 
by segmentation. For example, He et al. [12] proposed the 
MASK-RCNN architecture, which added an object detection 
branch to the instance segmentation task to circumvent the 
instance overlap problem with multi-task learning, but it has 
great deviations in video scenes, especially for the moving and 
continuous instances from the same class. (3) The third is 
labelling pixels followed by clustering. For example, Chen et al. 
[13] guided the precise human instance matting by segmentation 
network and predicting matting alpha task in high-resolution 
images, but it is not effective for greyscale images with low 
resolution. (4) The fourth approach is employing the dense 

sliding window method. For example, DeepMask [14] and 
InstanceFCN [15] use DenseNet (Densely Connected 
Convolution Networks) as feature extractor, which generate 
region proposals by sliding window, and then classifies the pixel 
points for each region. Although it can guarantee effective 
segmentation for discontinuous sparse instances, it will increase 
the inference cost of the model and decrease real-time 
performance. 

Since the feed residuals information is discrete due to the 
non-uniform feeding habits of the chicken and the feeding line 
information is continuous, it is hard for us to employ the first 
and second approaches to segment the discrete and continuous 
instances simultaneously. Secondly, because the collected 
images are greyscale and low-resolution, we are hard to employ 
third approach to fit the model against the image data. Thirdly, 
limited to the cost of farming, it is impossible to employ the 
fourth type of approach, since the servers of chicken farms are 
usually unable to support large-scale and long-time high-
performance computing. For these reasons, we propose our 
second research question: how to simultaneously carry out 
low-latency refinement segmentation for continuous and 
discrete instances for the low-resolution greyscale moving 
images to accurately obtain the single cage feed residuals.  

Meanwhile, although smart farming systems have been 
implemented in many scenarios, they mostly focused on smart 
environmental control systems [16], smart body monitoring 
systems, and smart monitoring systems in large-scale 
agricultural product scenarios such as pig, cattle, and sheep, 
rather than chicken farming. Therefore, our third research 
scientific question is how to establish a visualized smart 
breeding system for chicken farm. 

Here, we propose three innovations to address the above 
research questions. Firstly, we propose a multi-object tracking 
algorithm (CKTrack) to recognize chicken health status 
accurately and quickly without chicken identity and behavioral 
status data [3] by integrating Kalman filtering [8], Hungarian 
matching [17] and Intersection over Union (IOU) filtering into 
YOLO [6] object detection. Secondly, based on multi-task 
instance segmentation, dynamic threshold for binarization and 
moving normal vectors, we develop an analysis process for feed 
residuals computing (FRCM) to accurately estimate the feed 
residuals. Thirdly, a visual smart chicken farming web platform 
has been established, which provides farmers with a one-stop 
chicken farming service system with various features, including 
cost monitoring, asset inventory, risk warning and tracing back 
to the source of disease. 

The research results demonstrate that (1) our developed 
CKTrack method can effectively identify sick and dead chickens 
under the condition of limited data volume and computing 
capacity; (2) our developed FRCM method can accurately 
estimate the feed residuals; (3) the smart chicken farming 
platform can provide farmers with functions such as early 
warning of sick and dead chickens, visualization of the chicken 
quantity inventory, and feed residual estimation. 

 

 

 



II. MATERIALS AND METHODS 

A. Data source 

We collected surveillance videos from the chicken farm in 
2023. After that, we generate the health status data (CKHS-2023) 
and feed residual data (CKFR-2023).  

1) CKHS-2023 datasets 
CKHS-2023 datasets consist of 4 videos. The duration of 

each video is over 20 minutes, includes about 30-100 chickens 
and has at least 1 sick or dead chicken. We take out the frame of 
the image every 5 seconds and label the chicken coordinates, ID, 
and health status on the image. 

2) CKFR-2023 datasets 
Referring to the lane line detection data production paradigm 

in the field of autonomous driving [17], CKFR-2023 datasets 
divide the annotation part of the feed information image into 
feed line and feed area (Supplementary Figure 1A). 

The annotation of the feed area employs mask to visually 
showcase the feed residuals. Here, the white area of Figure 1B 
is the mask information of the feed area, whereas the green pixel 
area of Supplementary Figure 1C is its visualization result.  To 
prevent the model from identifying areas outside the feed area 
as feed, we introduce a feed line to label the segmentation area 
out of the feed area. The labelling of the feed line can not only 
limit the visual information to the range of the feed area, but also 
display the moving trajectory of the feeder. Here, the white area 
of Supplementary Figure 1D is the mask information of the feed 
line, and the red pixel region of Supplementary Figure 1E are its 
visualization results.  

B. CKTrack method 

The CKTrack method is mainly composed of two modules: 
Detection and Health analysis, the workflow of which is shown 
by Figure 1. 

1) Detection Module: This module is described by P1 of 
Figure 1. Firstly, the CKHS-2023 datasets are generated by  Eq. 
1. 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ൌ ൛𝑥 | 𝑐௫, 𝑐௬, 𝑤, ℎ, 𝑦௖௟௦ൟ        ൫1൯ 
where 𝑥 represents the original image with chicken information, 
𝑤 and ℎ  represent the width and height of the rectangular box, 
respectively. And 𝑦௖௟௦ represents whether it is a chicken or not. 
Since the label of chicken is marked by a rectangular box, the 
center point ሺ𝑐௫, 𝑐௬ሻ of the rectangular box can be calculated. 
Then, we used the YOLOv7 [7] to train the model by loss 
function (Eq. 2). 

𝐿𝑜𝑠𝑠௖௟௦ ൌ െ
1
𝑛

෍ൣ𝑦௖௟௦ ∙ 𝑙𝑜𝑔൫𝜎ሺ𝑥ሻ൯ ൅ ሺ1 െ 𝑦௖௟௦ሻ 𝑙𝑜𝑔൫1 െ 𝜎ሺ𝑥ሻ൯൧

௡

௜ୀଵ

ሺ2.1ሻ 

𝐿𝑜𝑠𝑠௜௢௨ ൌ 1 െ
𝑏௚௧ ∩ 𝑏௣௧

𝑏௚௧ ∪ 𝑏௣௧ ൅
ቚห𝑃௖௫,௖௬, 𝑃௖௫,ෞ ௖௬ ෞ หቚ

2

2

𝑐2
ሺ2.2ሻ

 

𝐿𝑜𝑠𝑠௔௟௟ ൌ 𝜆1𝐿𝑜𝑠𝑠௖௟௦ ൅ 𝜆2𝐿𝑜𝑠𝑠௜௢௨ ሺ2.3ሻ 

𝜆1 ൅ 𝜆2 ൌ 1 ሺ2.4ሻ 

We defined the final loss function 𝐿𝑜𝑠𝑠௔௟௟ as the weighting 
function of  𝐿𝑜𝑠𝑠௖௟௦  and 𝐿𝑜𝑠𝑠௜௢௨ . 𝜆ଵ and 𝜆ଶ  represent their 
respective weighting factors. In addition, in 𝐿𝑜𝑠𝑠௖௟௦ ,  𝑛 is the 

batch size of the sample during the training process, and 𝜎 is the 
classification branch of the YOLOv7 model.  

In addition, in 𝐿𝑜𝑠𝑠௜௢௨, 𝑏௚௧ and 𝑏௣௧ represent the bounding 
box of ground truth and the predictive results for chicken, 
respectively. 𝑃௖௫,௖௬ , 𝑃௖௫ෞ,௖௬ෞ  are the centroids of the true and 
predictive box, and  𝑐 is denoted as the distance from the upper 
left corner of the true box to the lower right corner of the 
predictive box.  

Finally, we obtain the central coordinates (𝑐௫ෝ , 𝑐௬ෞ), its width 
and height (𝑤ෝ , ℎ෠ ), and the predictive value of the category 
( 𝑦ො )for the corresponding object by Eq.3.  

൛c୶ෝ , c୷ෝ , wෝ, h෠, yොൟ ൌ modelሺxሻ ሺ3ሻ 

It is noted that this study employs stochastic gradient descent 
(SGD) [18] method for model training. 

2) Health analysis module: Health analysis module is 
described as in P2 of Figure 1 and Supplementary TABLE I, 
which consists of data conversion (B1 of P2 of Figure 1), 
Hungarian matching algorithm [17] based on Intersection over 
Union (IOU) strategy [19] (B2 of  P2 of Figure 1) and Kalman 
filtering method [8] (B3-5 of P2 of Figure 1 ). 

a) Data conversion – converting the 𝑐௫ෝ , 𝑐௬ෝ , 𝑤ෝ, ℎ෠, 𝑦ො into 𝑥  
x ൌ ൛c୶, c୷, r, h, v୶, v୷, v୰, v୦ൟ ሺ4.1ሻ 

𝑑𝑒𝑡 ൌ ൛𝑐௫, 𝑐௬, 𝑟, ℎ, ൟ ሺ4.2ሻ 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝑇𝑟𝑎𝑐𝑘𝑠 ൌ ሼ𝑥, 𝑃ሽ ሺ4.3ሻ 

where, ሺ𝑐௫, 𝑐௬ሻ  represent the center coordinates of chicken 
object, 𝑟 is the aspect ratio, ℎ is the height. 𝑣௫, 𝑣௬, 𝑣௥, 𝑣௛ are the 
changes of velocity corresponding to the center point, aspect 
ratio and height, which are initialized to zero. 𝑥 is the position 
of the object, represented by an 8-dimensional column vector; 
𝑃 is the covariance matrix, represented by an 8*8 diagonal 
matrix. 

The optical tracks are randomly initialized using two 
variables (𝑥 and 𝑃).  (Eq. 4.3) 

b) IOU strategy based on Hungarian matching algorithm  
𝑋෠ ൌ ൛𝑥ො௜ห𝑥ො1, 𝑥ො2 … 𝑥ො௡ൟ𝑋 ൌ ൛𝑥௜|𝑥1, 𝑥2 … 𝑥௡ൟ ሺ5.1ሻ 

𝐼𝑂𝑈 ൌ
𝑥ො ∩ 𝑥
𝑥ො ∪ 𝑥

ሺ5.2ሻ 

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ൌ 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛 ቀ𝐼𝑂𝑈൫𝑋෠, 𝑋൯ቁ ሺ5.3ሻ 

𝑋 and 𝑋෠ represent the sequences of target monitoring results 
and predictive results by Kalman filtering, respectively. We 
employ IOU strategy based Hungarian matching algorithm [17] 
to find the optimal matching object from the candidate objects 
that meet the matching criteria. 

c) Kalman filtering method 
Kalman filter is used to predict the possible location of the 

target at the next moment. Eq. 6 describes the Kalman filtering 
method, where F is the transition matrix and Q is the noise 
matrix. 

𝑡𝑟𝑎𝑐𝑘𝑠 ൌ ൜
𝑥ො ൌ 𝐹 ∙ 𝑥

  𝑝̂ ൌ 𝐹𝑃𝐹் ൅ 𝑄 ሺ6ሻ 



Figure 1. Workflow of CKTrack method. P1, P2, and B1-B7 are the index of 
figure. 

𝑦 ൌ 𝑧 െ 𝐻𝑥ො ሺ7.1ሻ 
𝑆 ൌ 𝐻𝑃෠𝐻் ൅ 𝑅 ሺ7.2ሻ 

𝐾 ൌ 𝑃෠𝐻்𝑆ିଵ ሺ7.3ሻ 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝑇𝑟𝑎𝑐𝑘𝑠 ൌ ൜
𝑥 ൌ 𝑥ො ∙ 𝐾𝑦

  𝑃 ൌ 𝑃෠ െ 𝐾𝐻𝑃෠
ሺ7.4ሻ 

The update phase of Kalman filter is listed by Eq. 7, where 
𝐻 matrix maps the predictive space to the observation space. 
Here, the difference between the observed value 𝑧  and the 
predicted value 𝑥ො can be directly obtained. 
Similarly, 𝐻 matrix is introduced to map the covariance matrix 
𝑃෠  into the observation space. 𝑅  is the noise matrix, and 𝐾 
represents the significance of the degree of estimation errors. 

3) Data Validation Method: To investigate the distribution 
of the training data,  Eq. 8 is used to compute the ratio ρ between 
the number of examples for majority and minority classes.  

Indicated by Mateusz B et al. [20], if 𝜌<=10, the dataset is 
evenly distributed, otherwise it is long-tail distribution. 𝐶௜ is the 
set of examples of classes. 

𝜌 ൌ
𝑚𝑎𝑥ሼ|𝐶௜|ሽ

𝑚𝑖𝑛ሼ|𝐶௜|ሽ
ሺ8ሻ 

C. Feed residuals computing method 

Feed residuals computing method (FRCM) consists of 
segmentation module (P1 of Figure 2) and residual analysis 
module (P2 of Figure 2) 

Segmentation module: Here, the weighted average of the 
feed line segmentation loss (Eq. 9.1 & 2) and the feed area 
segmentation loss (Eq. 9.3) are employed as the objective                    
function for segmentation model training (Eq. 9.4). After 
training, we freeze the weights of segment module in inference 
status. 

⎩
⎪
⎨

⎪
⎧ 𝐿ூை௎ ൌ 1 െ

𝑇𝑃
𝑇𝑃 ൅ 𝐹𝑁 ൅ 𝐹𝑃

𝐹ி௟
஼ா ൌ െ

1
𝑛

෍ൣ𝑦௟௜௡௘
௜ ∙ 𝑙𝑜𝑔൫𝜎ሺ𝑥௜ሻ൯ ൅ ሺ1 െ 𝑦௟௜௡௘

௜ ሻ 𝑙𝑜𝑔൫1 െ 𝜎ሺ𝑥௜ሻ൯൧

௡

௜ୀଵ

ሺ9.1ሻ 

In Eq. 9.1, 𝑇𝑃 , 𝐹𝑁  and 𝐹𝑃  represent the number of 
predicting positive samples as positive class (True Positive), the 
number of predicting positive samples t as negative class(False 
Negative), and the number of predicting negative samples as 
positive class (False positive) in the pixel space, respectively. 
𝑦௟௜௡௘

௜  is the label of the feed line, 𝑥௜ is the input image, 𝜎 is the 
segmentation model using YOLO layers [7] as backbone, and 𝑛 
is the number of samples.  

𝐿ி௟ ൌ 𝛼𝐿ி௅
ூை௎ ൅ 𝐿ி௅

஼ா ሺ9.2ሻ 

Eq. 9.2 represents the loss function of the feed line 
segmentation. In Eq. 9.3,  𝑦௔௥௘௔

௜  is represented as the label of 
feed area.The objective function of the final model is shown by 
Eq. 9.4, and Eq. 9.5 is used as the initial condition for λ. 

𝐿ி஺ ൌ െ
1
𝑛

෍ൣ𝑦௔௥௘௔
௜ ∙ log൫𝜎ሺ𝑥௜ሻ൯ ൅ ሺ1 െ 𝑦௔௥௘௔

௜ ሻ log൫1 െ 𝜎ሺ𝑥௜ሻ൯൧

௡

௜ୀଵ

ሺ9.3ሻ 

 
𝐿௔௟௟ ൌ 𝜆ଵ𝐿ி௅ ൅ 𝜆ଶ𝐿ி஺ ሺ9.4ሻ 

 
𝜆ଵ൅𝜆ଶ ൌ 1 ሺ9.5ሻ 

1) Residual Analysis module: 
We implemented the feed residual estimation by dynamic 

threshold for binarization (B3 of P2 of Figure 2) and the 
moving normal vectors (B4 of P2 of Figure 2). 

a) Dynamic threshold for binarization method 

𝑇ሺ𝑥, 𝑦ሻ ൌ 𝑀௥∗௥ሺ𝑥, 𝑦ሻ ∙ ቈ1 ൅ 𝑘 ∙ ቆ
𝑆௥∗௥ሺ𝑥, 𝑦ሻ

𝑅
െ 1ቇ቉ ሺ10ሻ 

In Eq. 10, Tሺ𝑥, 𝑦ሻis the threshold  of the current coordinate. 
𝑀ሺ𝑥, 𝑦ሻ and 𝑆ሺ𝑥, 𝑦ሻ are the mean and standard deviation of the 
grey scale in the r*r neighborhood of the current coordinate, 
respectively. R and k are hyperparameters. 



Figure 2. Feed residuals computing method. B1 and B2 are the index of figure. 

Figure 4. A-E: Inference performance comparison for the original classifier of 
ResNext, MobileNetV2, EfficientNet-b7, and tracking method of Deepsort, 
CKTrack by Sensitivity, Specificity, Precision, Accuracy and Speed. F: Overall 
datasets volume for CKHS-2023 and CKHS-2023-MIX. 

b) Moving normal vector method 
Firstly, moving normal vector method (Supplementary 

 

Figure 3. Segmentation performance comparison by IOU  
and Speed. It is noted that FL (feed line only)  and FA (feed 
area only) are ablation models of FRCM. FLA denotes that 
the combination of FL and FA. 

Figure 5. Segmentation performance comparison by Mape. 

TABLE II) fixes the abscissa of image. 
Secondly, moving normal vector method 
traverses the number of segmented pixels in the 
feed area when the image is moving.Finally, 
based on the coordinates of the moving normal 
vector and the cage, we obtainthe feed area of 
each cage by constraining results. 

D. Web server construction 

The study develops a web server (Smart Chicken Farming 
Platform) with three components, which are IOT platform, main 
system, and AI system (Supplementary Figure 2). 



In IOT platform, we use Mysql database [21] to store the 
device information of the camera sensors installed in the farm 
and employ S3 cloud storage [22] to store the video files 
recorded by the cameras. 

In the main system, the back-end of the platform firstly 
parses the video data of the S3 cloud storage, and then stores the 
parsing results into the MySQL database. After the front-end of 
the platform sends requested data to the back-end, it reads the 
relevant static resources (such as digital twins, guiding 
animations, etc.) from the CDC object storage [23] service. 
Lastly, it visualizes these data. 

In the AI system, the AI algorithm firstly pulls video data for 
inference from S3 cloud storage through kafka middleware [24]. 
And then, the inference results of the AI algorithm return to the 
main system through asynchronous interface interaction. 

III. RESULTS 

A. The performance comparison among CKTrack and 
classical methods 

This section is to answer the first scientific question: how to 
build up such a lightweight object detection algorithm that can 
identify the health status of chickens with limited training data 
and computing capacity. 

Firstly, we compare the identification results of CKTrack 
and traditional classification models [25-27] in Section III.A.1. 

1) Identification performance comparison 
Figure 4 compares the identification effect of CKTrack, 

ResNext [25], MobileNetV2 [26], EfficientNet-b7 [27] and 
Deepsort [3] by sensitivity, specificity, precision and accuracy. 
The details of statistical testing[28-37] are shown in 
Supplementary TABLE III. 

Figure 4A&B demonstrate that CKTrack performs slightly 
worse than EfficientNet-b7 and Deepsort in sensitivity and 
specificity, respectively. Figure 4C&D demonstrate that 
CKTrack outperforms other models in precision and accuracy. 

Next, we will compare the inference speed among CKTrack 
and traditional classification models in Section III.A.2. 

2) Speed performance comparison 
Figure 4E compares the inference speed among CKTrack, 

ResNext [25], MobileNetV2 [26], EfficientNet-b7 [27]and 
Deepsort [3] which demonstrates that the inference speed of 
CKTrack is only slower than the MobileNetV2.  

3) Dataset volume comparison 
Finally, we compare the volume of training data requested 

by CKTrack and traditional classification models [25-27] in 
III.A.3. 

Because datasets that are evenly distributed could meet the 
training request for deep learning models[29, 38-41], datasets 
with long-tailed distributions may not work as well as those with 
even distributions.  

Since Figure 4F shows that CKHS-2023 dataset is long-
tailed distributed with ρ = 15 (Eq. 10), it cannot effectively 
support the training procedure for deep learning model [25-27].  

To support the training procedure for the traditional deep 
learning model [25-27], we build up a big CKHS-2023-MIX 
dataset for deep learning based models by obtaining the samples 
of sick and dead chickens from the Internet. Figure 4F also 
shows that CKTrack can work with a small dataset CKHS-2023 
dataset. 

B. Results of Feed Residuals computing methods  

This section is to answer the second research question: How 
to simultaneously carry out low-latency refinement 
segmentation for continuous and discrete instances for the low-
resolution greyscale moving images to accurately obtain the 
single cage feed residuals. 

Firstly, section III.B.1 compares the segmentation results of 
FRCM and classical segmentation models for low resolution 
greyscale continuous and discrete instances by CKFR-2023 
dataset. 

1) Segmentation performance comparison 
Supplementary TABLE IV uses four measurements (IOU_1, 

IOU_2, IOU_3, and MAPE) to assess the accuracy of the 
segmentation model. 

Figure 3A-C compares the performance of Unet[11], 
YOLOP [24] , FA, FL, FLA by IOU_1, IOU_2 and IOU_3, 
which turns out that FRCM exceeds the classical segmentation 
model and the ablated models of FRCM. Next, we will compare 
the inference speed of FRCM and classical segmentation models 
in Section III.B.2.  

2) Inference speed performance comparison 
Figure 3D compares inference speed among FRCM, 

classical segmentation model, and the ablated model of FRCM, 
which demonstrates FRCM is slightly slower than the ablated 
model of FRCM with FL and FA, but faster than FLA. Finally, 
we compared the predictive accuracy between FRCM and 
classical segmentation models [11, 24] for single cage feed 
residuals in Section III.B.3. 

3) Feed residual estimation comparison 
Figure 5 compares the MAPE (predictive accuracy) between 

FRCM and classical segmentation models (Unet and YOLOP) 
[11, 24], which shows that the predictive accuracy of FRCM is 
better than the classical segmentation models  [11, 24]. 

C. Visualization of Smart chicken farming platform 

This section is to answer the third scientific question: how t
o establish a visualized smart breeding system for chicken farm
ing. Here, we built up a smart farming platform (https://wisdom
xiaoji.msxf.com/wisdom-web/chickenCage?siteId=12&site=qd)
 with a cage chicken farming module (Supplementary Figure 3
A) and a free-range chicken farming module (Supplementary F
igure 3B). 

The platform is established using python, Java and Vue 
architecture. And the cage chicken farming module employs 
Unity-3D [42] to build up the digital twin system as shown in 
Supplementary Figure 3A, to enhance the management of 
chicken farms by farmers. The central area of P1 of 
Supplementary Figure 3A indicates the virtual projection of the 
breeding farm. Furthermore, we have updated the presentation 
of the FRCM algorithm’s inference results and the automatic 



inspection of the chicken coop, providing videos and reports in 
the relevant sections of Supplementary Figure 3A. In addition, 
the system is set up by B/S mode and accessed by users through 
SaaS (Software as a Service) [43]. Subsequently, asynchronous 
processing combined with middleware is used to manage the 
interaction of data processing such as video sequences. 

IV. DISCUSSION AND CONCLUSION 

It is very potential to develop the digital villages to promote 
the smart agriculture. To help farmers conveniently manage the 
large-scale chicken farms, we developed a CKTrack method to 
detect the sick and dead chickens; we innovated the feed 
residuals computing method (FRCM) for feed residual 
estimation; we built up a smart chicken farming platform with 
rich functions and data visualization for chicken management. 

Figure 4 A-D and Supplementary TABLE III demonstrated 
that CKTrack is statistically better than the traditional 
classification models to identify sick and dead chicken. We 
explain this phenomenon from the following perspectives.   

Firstly, since the samples of sick and dead chickens from 
CKHS-2023-MIX used in the traditional classification model do 
not come from actual farming scenarios, its classification effect 
is not better than CKTrack. Secondly, because CKTrack only 
uses the CKHS-2023 data to train the target detection task, and 
tracks the location of chickens by Kalman filtering, it is more 
accurate to identify the the sick and dead chickens than 
traditional classification models for our scenario. Thirdly, since 
CKTrack replaces the multi-tasking strategy of detection with 
the target detection with tracking strategy, the inference speed is 
faster than the traditional classification models. Although the 
inference speed of MobileNetV2 built with a small number of 
convolutional layers is slightly faster than the CKTrack, it is 
much worse than CKTrack to identify the sick and dead 
chickens (Figure 4C). Thus, we conclude that the CKTrack 
outperforms other classical classification model for our chicken 
faming study.  

Since the FRCM we proposed employs multi-task learning 
strategy to simultaneously process the continuous (feed line) and 
discrete (feed area) instances as shown in Figure 3A, Figure 3B 
demonstrate that FRCM is better than the traditional 
segmentation models  [11, 24]. On the other hand, the entire feed 
residuals estimation requests to cascaded connect FA to FL. 
Figure 3D demonstrates although FA can significantly reduce 
the inference time, the inference speed of the FLA is still slower 
than the FRCM. Therefore, we conclude that FRCM 
outperformances the current segmentation applications  [11, 24] 
for our scenario. 

Moreover, Supplementary Figure 3 turns out that the smart 
chicken farming platform not only provides farmers with early 
warning services for sick and dead chickens, but also can 
visualize the chicken quantity inventory and feed residuals.  

Although this study made a great progress in developing a 
smart chicken farm, it still has the following shortcomings. 
Firstly, our developed CKTrack can only identify the location of 
sick and dead chickens, but it cannot predict the risk of 
infectious diseases such as avian influenza. Secondly, the 
generalized capability of FRCM is not good enough, which 

needs us re-collecting data for model training and testing, once 
we change the farming scenarios or the position of the camera. 
Finally, it costs too much to draw 3D models manually for the 
construction of smart chicken farming platform. For these 
reasons, we not only plan to build up an avian influenza 
predictive model [44] for the sick and dead chickens, but also 
prepare to replace the FRCM by Swin-T model with strong 
generalized ability [45] as well as consider employing 3D 
reconstruction [46] and rendering [47]to reduce the labor cost 
for the construction of the smart chicken farming platform . 

SUPPLEMENTARY INFORMATION  

 Supplementary information accompanies this paper at https:
//github.com/qcc-gif/Supplementary-for-BIBM_yang2023.git. 
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