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Abstract: 
 

Background - Patients with de novo chest pain, referred for evaluation of possible coronary 

artery disease (CAD), frequently have absence of CAD resulting in millions of tests not having 

any clinical impact. The objective of this study was to investigate whether polygenic risk scores 

and targeted proteomics improve prediction of absence of CAD in patients with suspected CAD, 

when added to the Prospective Multicenter Imaging Study for Evaluation of Chest Pain 

(PROMISE) minimal risk score (PMRS). 

Methods - Genotyping and targeted plasma proteomics (N=368 proteins) were performed in 

1440 patients with symptoms suspected to be caused by CAD undergoing coronary computed 

tomography angiography. Based on individual genotypes, a polygenic risk score for CAD 

(PRSCAD) was calculated. Prediction was performed using combinations of PRSCAD, proteins, 

and PMRS as features in models using stability selection and machine learning. 

Results - Prediction of absence of CAD yielded an area under the curve (AUC) of: PRSCAD-

model 0.64 ± 0.03, proteomic-model 0.58 ± 0.03, and PMRS-model 0.76 ± 0.02. No significant 

correlation was found between the genetic and proteomic risk scores (Pearson’s correlation-

coefficient = -0.04, P=0.13). Optimal predictive ability was achieved by the full model (PRSCAD 

+ protein + PMRS) yielding an AUC of 0.80 ± 0.02 for absence of CAD, significantly better than 

the PMRS model alone (P<0.001). For re-classification purpose, the full model enabled down-

classification of 49% (324 of 661) of the 5-15% pre-test probability (PTP) patients and 18% (113 

of 611) of >15% PTP patients.  

Conclusions - For patients with chest pain and low-intermediate CAD risk, incorporating 

targeted proteomics and polygenic risk-scores into the risk assessment substantially improved the 

ability to predict absence of CAD. Genetics and proteomics seem to add complementary 

information to the clinical risk factors and improve risk stratification in this large patient group. 

Clinical Trial Registration - https://clinicaltrials.gov/ct2/show/NCT02264717, unique 

identifier: NCT02264717  
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Nonstandard Abbreviations and Acronyms 
CAD: Coronary artery disease 
CACS: Coronary artery calcium score 
CCTA: Coronary computed tomography angiography 
Dan-NICAD 1: Danish study of non-invasive testing in coronary artery disease 
NPX: Normalized protein expression 
PMRS: PROMISE minimal risk score 
PROMISE: Prospective Multicenter Imaging Study for Evaluation of Chest Pain 
PRS: Polygenic risk score 
PTP: Pre-test probability 
SNP: Single nucleotide polymorphism 
 

 

 

Introduction 

Symptoms of coronary artery disease (CAD) are often vague or uncharacteristic and millions of 

individuals worldwide therefore undergo examinations to diagnose CAD, while only a minority 

require revascularization or changed medical management. To guide decisions on test 

referral/deferrals, guidelines for diagnosing CAD recommend the use of a pre-test probability 

(PTP) score when patients present with symptoms suspected to be caused by CAD.1,2 Classically, 

the PTP estimation is based on sex, age, and angina typicality.2 Downstream of the PTP, 

diagnostic testing for CAD includes e.g., coronary computed tomography angiography (CCTA) 

followed, if positive, by either non-invasive or invasive methods to determine the functional 

significance of a suspected stenosis. Both the 2019 European2 and 2021 American guidelines1 on 

chronic coronary syndrome recommend diagnostic testing in patients with higher PTPs of CAD 

(PTP >15%). However, the guidelines are ambiguous regarding testing in patients with 5-15% 

PTP of obstructive CAD.3 Because most patients in this group do not have CAD, referral of this 

group for downstream investigations results in many tests not having any clinical consequences. 
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Improved tools for determining CAD absence in this intermediate PTP group (5-15%) could 

therefore be of substantial clinical value.   

 One recently developed tool for predicting the absence of CAD is the Prospective 

Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) minimal risk score 

(PMRS).4 The PMRS relies on traditional CAD risk factors, and a recent study showed that the 

PMRS could correctly down-classify one-third of patients with chest pain and intermediate PTP 

(5-15%).5 Similarly, in an attempt to assess the potential value of proteomic data for detecting 

absence of CAD in symptomatic patients, a study performed targeted proteomic measurements in 

196 patients with chest pain, including 26 without CAD and found that a signature of 35 plasma 

proteins predicted absence of CAD.6 Finally, recent studies have shown that polygenic risk 

scores can improve CAD prediction when used in combination with clinical risk factors.7 For 

instance, a study predicting CAD in the UK Biobank found a 3-percentage point improvement in 

predictive ability, when adding the PRS to a clinical risk score.8 Whether a combination of 

targeted proteomics and genetic information could have a clinical role and improve prediction of 

absence of CAD in symptomatic patients when added to clinical risk factors has not been 

systematically tested. 

 The aim of this study was therefore to examine the incremental value of adding a PRSCAD 

and proteins to the PMRS model, and secondly test the performance of this model to correctly 

down classify patients with a PTP >5% of obstructive CAD.  

 

Methods  

The study was approved by the Central Denmark Regional Committee on Health Research 

Ethics (record number: 1-10-72-190-14) and the Danish Data Protection Agency (record number: 
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1-16-02-345-14). Informed written consent was obtained from all patients. The trial was 

registered at https://www.clinicaltrials.gov (unique identifier: NCT02264717). The data that 

support the findings of this study are available from the corresponding author upon reasonable 

request. The complete methods are available in the supplementary. 

 

Results 

Study population 

Of the initial 1675 patients in the Dan-NICAD 1 cohort, 1440 patient were eligible for statistical 

analyses, as they had complete data for all 307 variables (PMRS, PRSCAD, and 305 proteins) and 

CCTA images revealing CAD status (Supplementary Figure VI). Based on the CCTA results, 

675/1440 patients (47%) had absence of CAD (no stenosis and a calcium score of zero), and 

765/1440 patients (53%) had some level of CAD, including 141/1440 (10%) patients with 

obstructive CAD (Figure 1). The PTP was associated with CAD presence (OR=1.08; P<0.001), 

histograms of the PTP distribution can be seen in Supplementary Figure VII. Patient 

characteristics of both groups are illustrated in Table 1. The baseline characteristics of the 235 

patients with incomplete data are available in Supplementary Table I. 

Single protein associations 

In a single protein analysis, 20 proteins showed a nominally significant (P<0.01) association to 

absence of CAD (Figure 2). Of these, only one protein had a positive odds ratio (CLEC4C, OR = 

1.17). The discriminatory value of the significant proteins ranged from an AUC of 0.54 ± 0.03 to 

0.56 ± 0.03. Adding any of the individual proteins to the PMRS did not increase the predictive 

performance significantly above the PMRS baseline (Figure 3). An interactive browser 

https://dannicad.com/shiny/protein_browser/ allows look-ups of single proteins including their 
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ability to predict absence of CAD, the improvement in AUC when added to the PMRS model, 

the effect of age and sex on protein levels, the pQTLs, and the variance explained by genome-

wide significant variants.  

Discriminatory value of the genetic and proteomic models 

Predictions of absence of CAD resulted in AUCs of 0.64 ± 0.03 for the PRSCAD model and 0.58 

± 0.03 for the multi-protein model. Seven proteins were included in this model. Their odds ratios 

are shown in Figure 4. Among the 7 proteins in the protein model, CLEC4C was the most 

protective protein and renin was the most detrimental. The PRSCAD model performed 

significantly better than the protein model (P<0.001). We found that the outputs of the two 

models were uncorrelated (Pearson’s correlation coefficient: -0.04; P=0.13, Supplementary 

Figure VIII), suggesting that PRSCAD and proteins capture somewhat different aspects of CAD 

risk. Finally, we tested reduced protein models, by gradually removing proteins from the 7-

protein model. AUCs of each model can be seen in Supplementary Figure IX. The AUCs became 

significantly worse when only 2 proteins remained in the model (P=0.02). 

Discriminatory value of the combined models 

The PMRS model, developed specifically to predict absence of CAD, resulted in an AUC of 0.76 

± 0.02. This value was consistent with the values reported in the initial study by Fordyce et al. 

(2017) (c-statistic: 0.71)4 and in the external validation study by Adamson et al. (2018) (c-

statistic: 0.79).9 

 Compared to the PMRS model, a model using only PRSCAD and protein performed 

significantly worse (AUC: 0.66 ± 0.03, P<0.001). Adding the 7-protein model to the PMRS did 

not significantly increase the AUC (0.77 ± 0.02, P=0.06). The modest AUC increase could be 

explained by the low predictive ability of the proteins and correlation between the outputs of the 
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protein and PMRS models (Pearson’s correlation coefficient: 0.09, P<0.001, Supplementary 

Figure VIII). Adding the PRSCAD to the PMRS resulted in a significantly better AUC of 0.79 ± 

0.02 (P<0.001) as seen in Figure 5. The outputs of the PRSCAD and PMRS models did not 

correlate (Pearson’s correlation coefficient: -0.01, P=0.57, Supplementary Figure VIII), which is 

consistent with other studies of clinical risk factors and various cardiometabolic PRSs (including 

CAD) reviewed by O’sullivan et al. (2023)10 A full model (PMRS + PRSCAD + Protein) resulted 

in an AUC of 0.80 ± 0.02, a significant improvement of 3.86 percentage points, compared to the 

PMRS model (P<0.001; Figure 5) but not significantly better than the PMRS + PRSCAD model 

(P=0.28). 

 Density plots for each basic model and the full model, stratified by CAD status, are 

shown in Supplementary Figure X. The full model showed comparable predictive ability for 

males and females (AUC: 0.78 [95% CI: 0.74-0.81] vs. 0.80 [95% CI: 0.77-0.83], P=0.20) and in 

patients under and over 55 years of age (AUC: 0.78 [95% CI: 0.75-0.82] vs. 0.78 [95% CI: 0.74-

0.81], P=0.63), which suggested that the model could be applied to both genders and in all ages.  

Reclassification potential 

To reduce the need for diagnostic testing we assessed whether prediction of absence of CAD 

could have a clinical application. For each model in Table 2 we performed down-classification of 

patients with suspected CAD, while maintaining a prevalence of obstructive CAD below 5% in 

the new low-risk group.  

 For each model the output score was converted to a binary variable using a model 

specific threshold and subsequently used to reclassify patients. The full model outperformed all 

other included models. Using the full model enabled successful down-classification of 324 out of 

661 patients (49%) in the 5-15% PTP group and 113 out of 611 patients (18%) in the >15% PTP 
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group, while 138 out of 168 patients (82.1%) in the ≤5% PTP group remained low-risk, resulting 

in a new low-risk group containing 575 patients with an obstructive CAD prevalence of 2.3% 

(Figure 6). Prior to down-classification the obstructive CAD prevalence in the <5% PTP group 

was 3.0%. Reclassification performance of all models can be seen in Table 2. 

 

Discussion 

In this study, we combined genetic information, proteomics, and a clinical prediction model 

(PMRS) to improve prediction of absence of CAD in a large consecutive population of patients 

with suspected coronary artery disease. The two main findings were 1) Combining PRSCAD with 

the PMRS significantly increased the ability to predict absence of CAD in patients with chest 

pain, with no further improvement by the tested proteins; and 2) From a re-classification 

perspective, it seems to be most beneficial to use a model including clinical risk factors, genetics 

and proteomics. To our knowledge, this study is the first to add both the PRSCAD and proteins to 

a clinical risk model in patients with symptoms of CAD.  

Prediction improvement 

The AUC improvement of 0.03 from PRSCAD when added to the PMRS was consistent with 

other studies combining PRS with various clinical risk scores (pooled cohort equation and 

QRISK3), as seen in e.g., UK Biobank8,11 and the Malmö Diet and Cancer cohort.12 Despite the 

modest increase in predictive ability when adding the PRSCAD and proteins to the PMRS, we 

were able to further improve reclassification of low-intermediate (5-15% PTP) risk patients from 

31% to 49%. Our overall improvement was achieved because of the relatively low initial 

discriminative ability of the ESC PTP (AUC: 0.71), which allowed the PMRS (AUC: 0.76) to 

immediately down-classify 31% of the low-intermediate risk patients (Figure 6A), similar to 
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what was found by Rasmussen et al.5 The PRSCAD and proteins provided another 4 percentage 

points to the PMRS AUC, resulting in a total reclassification of 49% of low-intermediate risk 

patients relative to the initial ESC PTP classification. 

Protein associations 

Our protein model included seven proteins. Of these proteins, four (MMP12, REN, OPG, and 

GDF-15) were also identified among the most predictive proteins for plaque absence in a 

previous study by Bom et al. (2019)6 Our findings are remarkably consistent with theirs, 

although they studied a smaller cohort with a larger fraction of patients with more extensive 

disease. This means that despite differences in sample collection, patient characteristics, the 

different machine learning techniques used, and having only 3 out of 4 overlapping panels 

between the studies, we replicated the top proteins. Of note, five proteins (GDF-15, MMP12, 

OPG, CHI3L1, and KIM1) were also chosen in a previous study as part of a proteomic profile 

predicting acute myocardial infarction.13 Also, there is an overlap in proteins (KIM1, GDF-15, 

REN, OPG) between our model and studies that identified proteins for predicting recurrent 

atherosclerotic cardiovascular disease14 and predicting all-cause mortality.15 Overall, these 

overlaps suggest that these proteins are markers of pathological processes that are shared among 

many conditions. Interestingly, our study included the Immune Response panel, which was not 

included in any of the other studies. In this panel we identified CLEC4C as a marker of absence 

of CAD; thus, high CLEC4C levels were associated with absence of CAD. CLEC4C (also 

known as CD303/BDCA-2) is a marker of plasmacytoid dendritic cells, which may play a role in 

CAD.16 Consistent with our observation is the fact that the level of plasmacytoid dendritic cells 

in blood has been shown to be reduced in patients with CAD.17 CLEC4C might represent a new 

player in cardiovascular disease, but this hypothesis must be validated in other cohorts. 
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 The relatively weak proteomic signal found in this study can in part be explained by 

normalizing for sex and age, which are both strong predictors of CAD absence. The non-

significant increase in predictive performance achieved by adding proteins may also be explained 

by the fact that we investigated targeted panels of proteins which have previously been linked to 

various aspects of CAD, e.g., renin leading to hypertension, which is already included in the 

PMRS. It is likely that future studies including much larger and more hypothesis-free proteomics 

panels will yield better predictive signatures for the absence of CAD.  

Clinical implications 

A direct clinical approach of utilizing a combined proteomics and PRS panel to assess risk in 

chest pain patients is not available for large scale implementation at present. However, based on 

our findings, such approach seems feasible and at very low cost when PRS information is readily 

available from a central database. Such databases are being established in several societies and 

only require a one-time sampling.  

 Similarly, the area of proteomics is under rapid development and will likely expand in the 

number of proteins analyzed and it would also be expected to be obtainable at a much lower 

price and much faster than today. Most likely a more comprehensive array of proteins will be 

readily available but whether this will improve the ability to discriminate the absence of CAD 

remains to be seen. 

Strengths and limitations 

The main strengths of our study are the large sample size of consecutively enrolled patients with 

chest pain and the detailed data on findings at downstream CCTA. In addition, a referral bias was 

unlikely, because the Danish healthcare system is without direct payment for all citizens, and 

CCTA is the recommended first-line diagnostic test for patients with a low-intermediate PTP of 
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obstructive CAD. The main study limitation is that we tested our results internally. The optimal 

solution would be a validation in an independent external cohort. To avoid overfitting, we used 

stability selection prior to training and retained a subset of data for testing; finally, the results 

were given as the mean of 100 iterations. Some overfitting may still remain in our own models 

relative to PMRS and PRSCAD as their weights were predetermined. 

 Similarly, all re-classification thresholds were based on the intra-cohort prevalence of 

obstructive CAD, meaning that our re-classification results may be somewhat inflated. This 

limitation however applies to all models, meaning that their relative performances can still be 

compared. 

 This study used targeted proteomics from four Olink® panels, measuring proteins 

previously implicated in immune response, inflammation, and cardiovascular conditions. This 

approach was both a strength and a limitation. The strength was that we could compare our 

results to relevant studies that used the same panels, however this approach may have caused an 

overlap between the underlying information captured by both clinical risk factors and proteins. 

Future research should include larger, more hypothesis-free proteome panels to facilitate 

potential new discoveries and further improvements in risk classifications. 

 Finally, it is known that a PRS developed in a European population will perform less well 

in individuals of non-European ancestry.18 This phenomenon is far less studied in protein risk 

scores, and it remains to be determined whether our results can be directly extrapolated to other 

populations.  

Conclusions 

In conclusion, combining clinical and genetic risk scores with circulating plasma proteins as a 

supplementary test to the pre-test probability assessment can improve down-classification of 
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intermediate risk (5-15% PTP) patients, where European and American guidelines differ. This 

study therefore demonstrated that genetics and proteomics provide additional, complementary 

information to clinical risk factors. This combinatory approach has the potential to substantially 

reduce the large number of CCTA scans and likely also other diagnostic tests like e.g., perfusion 

scans and invasive angiographies showing no CAD.  
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Table 1. Baseline characteristics of patients with symptoms suggestive of CAD. 
 
Demographics Overall 

(n = 1440) 
Absence of CAD  

(n = 675) 
CAD  

(n = 765) 
Age, years 57 ± 9 54 ± 8 60 ± 8 
Males 692 (48%) 249 (37%) 443 (58%) 
Risk factors, n (%) 
Family history 525 (36%) 227 (34%) 298 (39%) 
Current smoker 226 (16%) 93 (14%) 133 (17%) 
Body mass index, kg/m2 * 27 ± 4 27 ± 4 27 ± 4 
Type 2 diabetes 88 (6%) 26 (4%) 62 (8%) 
Hypertension 517 (36%) 187 (28%) 330 (43%) 
Dyslipidemia † 352 (24%) 111 (16%) 241 (32%) 
Type of chest pain, n (%) 
Typical angina 385 (27%) 164 (24%) 221 (29%) 
Atypical angina 493 (34%) 244 (36%) 249 (33%) 
Non-specific chest discomfort 266 (18%) 145 (21%) 121 (16%) 
Dyspnea 296 (21%) 122 (18%) 174 (23%) 
Laboratory tests 
Total cholesterol, mmol/L * 5.4 ± 1.1 5.3 ± 1.0 5.4 ± 1.2 
LDL cholesterol, mmol/L * 3.3 ± 1.0 3.2 ± 0.9 3.3 ± 1.0 
HDL cholesterol, mmol/L 1.5 ± 0.4 1.5 ± 0.5 1.5 ± 0.4 
Triglyceride, mmol/L * 1.3 [1.0 - 2.0] 1.3 [0.9 - 1.9] 1.4 [1.0 - 2.1] 
Troponin, ng/L ‡ 6.0 [4.0 - 11.0] 6.0 [4.0 - 12.0] 6.0 [4.0 - 10.0] 
Creatinine, µmol/L 75.3 ± 14 73.3 ± 13 77.0 ± 14.6 
eGFR <60 mL/min, n (%) 66 (5%) 25 (4%) 41 (5%) 
CRP ≥2.5 mg/L, n (%) ‡ 379 (26%) 166 (25%) 213 (28%) 
Other 
Systolic blood pressure, mm Hg * 139 ± 19 136 ± 18 141 ± 19 
Diastolic blood pressure, mm Hg * 83 ± 11 82 ± 11 84 ± 11 
PROMISE minimal risk score 0.20 [0.10 - 0.34] 0.30 [0.17 - 0.44] 0.13 [0.07 - 0.23] 
Pre-test probability of CAD 0.12 [0.06 - 0.22] 0.10 [0.06 - 0.16] 0.17 [0.11 – 0.26] 
Values are the mean ± standard deviation (for normally distributed data), the number (%), or the median 
[interquartile range], as indicated. * Missing values were observed in: BMI n=8, total cholesterol n=6, 
LDL cholesterol n=7, triglyceride n=10, systolic and diastolic blood pressures n=3; † Dyslipidemia was 
defined as cholesterol treatment at arrival; ‡ Values below the LOD were observed in troponin n=741 and 
CRP n=34. Abbreviations: CAD, coronary artery disease; LDL, low density lipoprotein; HDL, high 
density lipoprotein; eGFR, estimated glomerular filtration rate; CRP, C-reactive protein; PROMISE, 
Prospective Multicenter Imaging Study for Evaluation of chest pain; LOD, limit of detection.  



18 

Table 2. Re-classification performance 
 

Model Threshold
≤5% PTP patients 

remaining low-
risk 

5-15% PTP 
patients down-

classified 

>15% PTP 
patients down-

classified 

Patients in 
new low-

risk group 

Patients with 
obstructive CAD in 
new low-risk group 

PRSCAD <30 12 (7.1%) 47 (7.1%) 45 (7.4%) 104 1 (1.0%) 
Protein >85 2 (1.2%) 12 (1.8%) 13 (2.1%) 27 0 (0.0%) 

Protein + PRSCAD >65 69 (41.1%) 221 (33.4%) 210 (34.4%) 500 16 (3.2%) 

PMRS >60 123 (73.2%) 206 (31.2%) 24 (3.9%) 353 11 (3.1%) 
PMRS + protein >70 69 (41.1%) 109 (16.5%) 9 (1.5%) 187 3 (1.6%) 

PMRS + PRSCAD >55 140 (83.3%) 325 (49.2%) 85 (13.9%) 550 14 (2.5%) 

Protein + PMRS + PRSCAD >55 138 (82.1%) 324 (49.0%) 113 (18.5%) 575 13 (2.3%) 

CAD, coronary artery disease; PRSCAD, polygenic risk score for CAD; PMRS, PROMISE minimal risk score; PTP, Pre-test probability of CAD. 
For each model, the score was divided in bins of 5, setting the threshold at the lowest bin, which maintained an obstructive CAD prevalence ≤5%.  
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Figure Legends: 

 

Figure 1. Overview of the Dan-NICAD 1 cohort. 1440 patients in total, of which 675 had no 

coronary artery disease (CAD) and 765 had some level of CAD. Patients with symptoms 

suggestive of obstructive CAD (n=350) were referred for invasive coronary angiography (ICA) 

with fractional flow reserve (FFR), where 141 patients were found to have obstructive disease. 

CACS: Coronary artery calcium score; CTA: Computed tomography angiography. 

 

Figure 2. Volcano plots with odds ratio (OR) for absence of CAD on the x-axis and -log10(P 

value) on the y-axis for each protein stratified by Olink protein panel. Nominally significant 

proteins (P<0.01) are shown in either red (OR < 1, predicting disease in the coronary arteries) or 

blue (OR > 1, predicting absence of CAD).  

  

Figure 3. Area under the curve (AUC) for each nominally significantly (P<0.01) associated 

single protein (white dots) and added to the PROMISE minimal risk score (PMRS) (black dots). 

The vertical dashed line at 0.76 indicates the AUC of the PMRS without any proteins. Error bars 

indicated 95% confidence interval. 

 

Figure 4. Protein model odds ratio for absence of coronary artery disease (CAD). Average odds 

ratios (OR) for each protein in the protein model across 100 iterations of training data are shown. 

Error bars indicate standard deviation. Proteins with an OR > 1 predict absence of CAD and are 

shown in blue, proteins with an OR < 1 predict disease in the coronary arteries and are shown in 

red.  
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Figure 5. Diagnostic performance of prediction models in test sets. Areas under the curve 

(AUCs) of the polygenic risk score (PRSCAD) model, the protein model, the PROMISE minimal 

risk score (PMRS) and four combined models. Error bars indicate standard deviation. The 

vertical dashed line indicates the AUC of the PMRS model (0.76), which was used as the 

baseline for comparisons. ns: non-significant; *** P<0.001 

 

Figure 6. Re-classification of all patients using the PMRS model (A) and full model (B). A) In 

the ≤5% PTP group 123 patients (73.2%) remained low-risk, in the >5-15% PTP group 206 

patients (31%) were down-classified and in the >15% PTP group 24 patients (4%) were down-

classified to low-risk. B) In the ≤5% PTP group 138 patients (82.1%) remained low-risk, in the 

>5-15% PTP group (N = 661) 324 patients (49%) were down-classified and in the >15% PTP 

group (N = 611) 113 patients (18%) were down-classified to low-risk. 


