

UMS+24°

SERIES 4th - 6th April 2024

MONA PLAZA HOTEL, Belgrade, Serbia

XIII CONGRESS OF MICROBIOLOGISTS OF SERBIA

with international participation

MIKROMED REGIO 5

FROM BIOTECHNOLOGY TO HUMAN AND PLANETARY HEALTH

BOOK **OF ABSTRACTS**

ORGANIZER:

SUPPORTED BY:

Republic of Serbia MINISTRY OF SCIENCE, TECHNOLOGICAL DEVELOPMENT AND INNOVATION

Publisher

Serbian Society for Microbiology www.ums.rs

For publisher

Prof. dr Lazar RANIN President of the Serbian Society for Microbiology

Editors

Dr Ivica DIMKIĆ – University of Belgrade - Faculty of Biology, Serbia Doc. dr Dušan KEKIĆ – University of Belgrade - Faculty of Medicine, Serbia

Technical Editor & Cover design

Vojislav SIMIĆ & Stevan MIHAJLOVIĆ

ISBN 978-86-7078-178-8

SCIENTIFIC COMMITTEE CHAIRPERSON

IVICA DIMKIĆ

University of Belgrade - Faculty of Biology, Serbia

ORGANIZING COMMITTEE CHAIRPERSON

DUŠAN KEKIĆ

University of Belgrade – Faculty of Medicine, Serbia

SCIENTIFIC & ORGANIZING COMMITTEE CO-CHAIRPERSON

LAZAR RANIN

President of the Serbian Society for Microbiology

Scientific Committee

ALEXANDER OSMOLOVSKIY

Lomonosov Moscow State University, Russian Federation

ALFONSO ESPOSITO

Faculty of Medicine and Surgery, University of Enna "Kore", Italy

CECILIA FLOCCO

Leibniz-Institute DSMZ, Germany

KONSTANTINOS PAPADIMITRIOU

Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece

LUÍS DANIEL RODRIGUES DE MELO

CEB – Centre of Biological Engineering, University of Minho, Portugal

MARIAGRAZIA DI LUCA

Department of Biology, Microbiology Lab, University of Pisa, Italy

IVANA GOBIN

Faculty of Medicine, University of Rijeka, Croatia

NIKOLINA UDIKOVIĆ KOLIĆ

Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia

SVETLANA UGARCINA PEROVIĆ

Laboratory of Computational Metagenomics, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Italy

TAMAR SACHANELI

Georgian Technical University, Faculty of Agricultural and Biosystems Engineering Science, Georgia

VITTORIO VENTURI

International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy

ALEŠ LAPANJE

Department of Environmental Sciences Jozef Stefan Institute, Ljubljana, Slovenia

NEMANJA KUZMANOVIĆ

Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Germany

MIRNA MRKONJIĆ FUKA

Department of Microbiology at the Faculty of Agriculture University of Zagreb, Croatia

DJORDJE BAJIĆ

Section of Industrial Microbiology, Department of Biotechnology, Technical University Delft, Delft, The Netherlands

VASO TALESKI

FEMS Director of Events , University Goce Delcev, Sthip, North Macedonia

NATAŠA OPAVSKI

University of Belgrade – Faculty of Medicine, Serbia

JOVANA GRAHOVAC

Department of Biotechnology, University of Novi Sad, Faculty of Technology Novi Sad, Serbia

TATJANA STEVIĆ

Institute of Medicinal Plant Research "Dr. Josif Pančić", Serbia

NEMANJA MIRKOVIC

University of Belgrade – Faculty of Agriculture , Serbia

NIKOLA UNKOVIĆ

University of Belgrade - Faculty of Biology, Serbia

MARINA SOKOVIĆ

University of Belgrade – Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Serbia

GORAN VUKOTIĆ

University of Belgrade - Faculty of Biology, Serbia

ANA BANKO

University of Belgrade - Faculty of Medicine, Serbia

IVANA MORIĆ

University of Belgrade, Serbia – Institute of Molecular Genetics and Genetic Engineering (IMGGE), Serbia

JASMINA NIKODINOVIĆ-RUNIĆ

University of Belgrade, Serbia – Institute of Molecular Genetics and Genetic Engineering (IMGGE), Serbia

BRANKICA FILIPIĆ

University of Belgrade – Faculty of Pharmacy, Serbia

LUKA DRAGAČEVIĆ

Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia

JASMINA GLAMOČLIJA

University of Belgrade – Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Serbia

MILICA MARKOVIĆ

University of Belgrade - Faculty of Agriculture, Serbia

BRANKA VASILJEVIĆ

FEMS General Secretary, Serbia

DRAGANA MITIĆ ĆULAFIĆ

University of Belgrade - Faculty of Biology, Serbia

SANJA JEREMIĆ

University of Belgrade, Serbia – Institute of Molecular Genetics and Genetic Engineering (IMGGE), Serbia

ALEKSANDRA ŠMITRAN

University of Banja Luka – Faculty of Medicine, Bosnia and Herzegovina

HUGO ALEXANDRE MENDES DE OLIVEIRA

University of Minho - Campus of Gualtar, Portugal

PAUL COS

University of Antwerp, Belgium

ALEKSANDRA KNEŽEVIC

University of Belgrade - Faculty of Medicine, Serbia **INA GAJIĆ**

University of Belgrade - Faculty of Medicine, Serbia **BRANKO JOVČIĆ**

University of Belgrade - Faculty of Biology, Serbia

SRĐAN MILETIĆ

Institute of Chemistry, Technology and Metallurgy, Serbia

NEDJELJKO KARABASIL

University of Belgrade - Faculty of Veterinary Medicine, Serbia

MILICA LJALJEVIĆ GRBIĆ

University of Belgrade - Faculty of Biology, Serbia

DEJAN BASKIĆ

University of Kragujevac – Faculty of Medicine, Serbia

STOIMIR KOLAREVIĆ

University of Belgrade – Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Serbia

GORDANA SUBAKOV SIMIĆ

University of Belgrade – Faculty of Biology, Serbia

MARINA T. MILENKOVIĆ

University of Belgrade - Faculty of Pharmacy, Serbia

LJILJANA PAVLOVIĆ

Institute of Public Health of Serbia Dr Milan Jovanovic Batut, Belgrade, Serbia

MIRJANA RAJILIĆ-STOJANOVIĆ

University of Belgrade – Faculty of Technology and Metallurgy, Serbia

SNEŽANA JOVANOVIĆ

University Clinical center of Serbia – Departement for Microbiology, Belgrade, Serbia

MAJA RUPNIK

University of Maribor – NLZOH, Maribor, Slovenia

MATJAŽ HLADNIK

University Primorska – The Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia

BRANISLAVA KOCIĆ

Public health department in Niš, Serbia

Organizing Committee

TAMARA JANAKIEV

University of Belgrade – Faculty of Biology, Serbia

KATARINA KRUŠČIĆ

University of Belgrade – Faculty of Biology, Serbia

NENAD ANTIĆ

University of Pristina – Faculty of Sciences and Mathematics, Serbia

MARKO JANKOVIĆ

University of Belgrade - Faculty of Medicine, Serbia

MILOŠ JOVIĆEVIĆ

University of Belgrade – Faculty of Medicine, Serbia

JOVANA KABIĆ

University of Belgrade – Faculty of Medicine, Serbia

ANA TOMIĆ

University of Belgrade – Faculty of Medicine, Serbia

PP26

EXPLORING THE BIOTECHNOLOGICAL POTENTIAL OF THERMOPHILIC BACTERIA - DERIVED PECTIN LYASES: A MINI-REVIEW

Marija Pavlović¹, Aleksandra Margetić¹, Marina Ristović¹, Sanja Stojanović¹, Stefan Nikolić², Zoran Vujčić³ and **Marinela Šokarda Slavić**¹

- ¹ Department of Chemistry, University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Republic of Serbia
- ² Innovative Centre Faculty of Chemistry, University of Belgrade, Belgrade, Republic of Serbia
- ³ Department of Biochemistry, University of Belgrade Faculty of Chemistry, Belgrade, Republic of Serbia Contact: marinela.sokarda@ihtm.bg.ac.rs

Bacteria are an ideal source for producing pectin lyases (PNLs) due to their amenability to laboratory cultivation and genetic manipulation, which facilitates enhanced enzyme production. Predominantly originating from various thermophilic bacteria, bacterial PNLs usually exhibit alkaline properties, although cases of acidic variants have also been documented. In particular, a thermostable alkaline pectin lyase, displaying optimal activity at 60°C, has been characterized from the thermophilic bacterium Brevibacillus borstelensis P35. Similarly, thermostable acidic PNLs have been identified in Geobacillus stearothermophilus Ah22 and Bacillus subtilis SAV-21. Thermophilic bacterial species are emerging as significant and highly efficient sources, boasting diverse enzymatic repertoires, including pectinolytic enzymes, rendering them attractive candidates for various biotechnological applications. This mini-review focuses on the characterization of pectin lyases from a thermophilic bacterium, shedding light on its biochemical properties, substrate specificity, and potential industrial applications. Enzymes exhibit outstanding biochemical properties, with optimal pH

and temperature ranges conducive to industrial processes, along with notable thermostability and pH tolerance, augmenting their suitability for diverse biotechnological endeavours. Furthermore, the enzyme demonstrates specificity towards pectin, efficiently cleaving glycosidic bonds within the polysaccharide backbone. Understanding the substrate specificity of pectin lyases is crucial for its effective utilization in industrial processes, especially considering its preferences for high-methoxylated pectin while still demonstrating activity on low-methoxylated and amidated pectins, expanding its applicability. Additionally, the synergy of pectin lyases with other pectinolytic enzymes enhances the efficiency of pectin degradation, facilitating the production of valuable products such as biofuels, dietary fibers, and oligosaccharides. The versatility and efficiency of pectin lyases from thermophilic bacteria highlight its potential for application across various biotechnological sectors, including food and beverage, textile, and pharmaceutical industries. Its capability to modify pectinaceous materials offers sustainable solutions for waste valorization and bioconversion processes.

KEYWORDS: thermophilic bacteria; pectin lyases; thermostable pectin lyase

ACKNOWLEDGEMENT: This research has been financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Contract numbers: 451-03-47/2023-01/200026; 451-03-47/2023-01/200168; 451-03-47/2023-01/200288.

