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Abstract 

There is vast amount of empirical evidence that childhood is a period of increased 
curiosity for the world and of broad exploration. This exploratory behaviour is 
manifested both as directed information to resolve uncertainty in the environment, 
as well as novelty seeking. It has been proposed that both exploratory tendencies 
gradually become narrower as adulthood is reached, giving space to more 
exploitative, goal-directed behaviour. However, findings to date have been 
contradictory, and the exact balance between exploration and exploitation, as well as 
between exploratory behaviours across development have yet to be clarified. A 
substantial part of this thesis focuses on the real-time conflict between these options 
when people are interacting with the world, and how this might change with 
improving cognitive control across development. We approach this question first by 
employing hand kinematics analyses in a decision-making task. Here, the analyses of 
kinematic parameters were found to capture meaningful online decision-making 
processes in children. A second part of this thesis focuses on information in the 
physical world, and how the available amount of information might influence object 
manipulation and exploratory behaviour, specifically when object complexity varies. 
We find that children prefer novel stimulation more as compared to the other age 
groups, especially when additional cognitive load is enforced by the decision context 
or by individual level of executive functioning skills. Finally, we also found that 
object complexity differentially affects preschoolers’ interest and explicit preferences, 
especially in the visual as compared to the haptic domain. Object complexity also 
significantly affected young children’s still-developing object fitting skills, leading 
them to use their hands as attentional anchors in the environment. In summary, this 
thesis shows that humans track informational changes with their perception and 
action from a very early age (3 years old) and assign value to this information in 
different ways as they grow older, based on their level of cognitive control abilities, 
their individual preferences and their contextual or long-term goals.   
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Chapter 1 
 
Extrinsic reward vs. information as motive for action 
across development: Theoretical and methodological 
foundations 
 
 

1.1. Introduction 

Human desire for information needs no scientific proof: from activities 
explicitly related to knowledge, such as reading the news, looking up an unknown 
word and visiting museums, to more implicit ones, such as playing games, solving 
crosswords and enjoying forms of art, humans crave for and enjoy acquiring new 
knowledge about themselves and the world. However, humans avoid information 
equally often; for example, when they expect bad personal or medical news or when a 
skill is too difficult for them to master. Every single moment, humans predict and 
calculate the effects of information on their cognition, their mood and their 
possibility of gaining rewards. This is then used to guide their actions towards or 
away from knowledge.  

People seek information when they expect to resolve uncertainty and learn. 
This learning can be associated with high instrumental utility – i.e., knowledge which 
might increase their possibility to acquire external rewards in the future (such as in 
explore-exploit tasks, e.g., Wilson, Geana, White, Ludvig, & Cohen, 2014). Or, it can 
be valuable in and of its own (e.g, Chater & Loewenstein, 2016; Cogliati Dezza, Yu, 
Cleeremans, & Alexander, 2017; Crupi, Nelson, Meder, Cevolani, & Tentori, 2018; 
Golman & Loewenstein, 2018; Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Kidd & 
Hayden, 2015; Kobayashi, Ravaioli, Baranes, Woodford, & Gottlieb, 2019; Oudeyer, 
Lopes, Kidd, & Gottlieb, 2016; Schwartenbeck et al., 2019; van Lieshout, de Lange, & 
Cools, 2021). This vast literature on intrinsic motivation, curiosity and active 
learning will be extensively discussed next in this chapter.  

Moreover, the decision to acquire information can significantly impact 
humans’ affect. It has been widely shown that people are more likely to look for 
positive than negative news and their expectations about how they will be feeling 
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after they learn significantly influences their decision to search out information 
(Charpentier, Bromberg-Martin, & Sharot, 2018; Cogliati-Dezza, Maher & Sharot, 
2022; Karlsson, Loewenstein, & Seppi, 2009; van Lieshout, de Lange, & Cools, 2020; 
van Lieshout, Traast, de Lange, & Cools, 2021). Taking all these motives into account, 
decisions on whether to seek information are always based on the context and the 
relative – and cumulative – utility of available options. 

In this thesis, we are interested in the relationship between non-instrumental 
and instrumental behaviour, as well as the ways they motivate action across 
development. Next in this chapter, we will discuss key topics on information seeking, 
how non-instrumental and instrumental behaviour interact and how maturation of 
cognitive control might influence the balance between the two. Finally, at the end of 
this chapter, we will discuss our methodological approach.   

 

1.2. What motivates information – seeking?  

1.2.1. Novelty vs. complexity-based exploration 

The theories about the motives for information-seeking can be grouped in two 
big categories regarding the stimuli or situation characteristics that excite more 
curiosity and exploratory behaviour: (i) novelty-based theories and (ii) complexity-
based theories. Novelty theories propose that people explore more what they know 
less about or what they are less confident about (Dubey & Griffiths, 2020). Berlyne 
(1950) suggested that exploring novel stimuli is intrinsically rewarding and described 
novelty as a driving force that motivates exploration and diminishes with exposure. 
Supporting this theory, he showed that rats tend to explore more the stimuli that are 
more novel to them (1966). Similar findings have been reported in young children 
and infants; e.g., Smock and Holt (1962) showed that children played more with 
novel than familiar toys and Fantz (1964) observed that infants direct their attention 
to stimuli that are maximally novel.  

Recent advances in reinforcement learning algorithms have also shown that 
novelty-based strategies are efficient in exploration tasks (Lehman & Stanley, 2011; 
Tang et al., 2017; also Twomey & Westermann, 2018 for similar findings using a 
neural network approach). This is specifically the case when agents have to explore in 
very unpredictable environments, where new information is highly useful and leads 
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to increased learning (Brändle et al., 2020). However, novelty-based exploration can 
prove suboptimal in other contexts, as the more novel stimulus is not necessarily the 
one with the largest subjective utility. For example, exploring based on novelty can 
lead in learning traps; i.e., situations where no learning can be achieved (Gottlieb et 
al., 2013). Furthermore, novelty-based exploration cannot explain why people often 
avoid new stimuli or highly uncertain situations (Kidd et al., 2012; Loewenstein et 
al., 2001). 

Alternatively, it has been proposed that people engage in more information-
seeking when stimuli or situations are neither too simple nor too complex.  Berlyne 
(1960) proposed that people feel more curious and explore more when they face an 
intermediate amount of uncertainty, complexity or incongruity (what he called 
“collative variables”). In a similar approach, Loewenstein (1994), in his information-
gap hypothesis, suggested that people explore more when they become aware of a 
gap in their knowledge. This approach implies that people become more curious 
when they already have some amount of knowledge about a stimulus or a topic, but 
this curiosity diminishes when they know very little or too much about it. This 
hypothesis has been supported by various studies, showing that curiosity is an 
inverted U-shaped function of confidence, and that people show the highest curiosity 
for topics that they are moderately confident about (also termed the Goldilocks 
principle; Kidd et al., 2012). This inverted U-shaped function is also suggested by 
complexity theory (Dember & Earl, 1957; Kidd & Hayden, 2015), according to which 
the level of curiosity depends on how well a system can assimilate new information. 
Thus, the best learning target for a system is neither overly simple (already encoded 
into memory), nor “too disparate from existing representations already encoded into 
memory” (Kidd et al., 2012). This idea is also similar to the zone of proximal 
development, put forward by Vygotsky, according to which students learn optimally 
when an instructor provides them with knowledge which is neither already learned, 
nor too far from their accomplished level (Metcalfe et al., 2020; Vygotsky, 1978).  

How confident people are in these approaches depends on their prior 
knowledge of a topic, as well as their expectations about their ability to learn in 
specific contexts. Such an approach presumes the existence of an 
evaluation/appraisal mechanism. Thus, recent theories have explicitly suggested that 
confidence is calculated when encountering an information gap. For example, Grüber 
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and Ranganath (2019) in their Prediction, Appraisal, Curiosity and Exploration 
(PACE) framework, suggest that people calculate the probability of their information 
gaps being resolved by incoming information and that this evaluation can lead either 
to approach (‘curiosity’) or avoidance (‘anxiety’). Similarly, Silvia (2005) proposes 
the calculation of a ‘coping potential’ in the face of new information, an appraisal 
process which can direct people towards or away of new information, based on 
whether learning can be achieved. These frameworks both point towards curiosity 
being better understood as a metacognitive process (Goupil & Proust, 2023).   

Experimental findings have corroborated these proposals. It has been shown 
that adults usually explore more when they have low confidence (Desender, Boldt, & 
Yeung, 2018). For example, Desender, Murphy, Boldt, Verguts, and Yeung (2019) 
trained an algorithm to classify high versus low confidence responses from 
electroencephalographic data. Their algorithm could accurately predict whether 
participants would seek information or not.  Similarly, Kang et. al (2009) found that 
adults were more curious when they reported medium amounts of confidence about 
an answer in trivia questions. Baranes et. al., (2014) also showed that, when given 
the choice to organise their practice, people first explore easier tasks and then 
gradually progress to harder tasks, after having accumulated experience. Children 
have also been shown to engage in information-seeking based on their confidence 
levels (Coughlin, Hembacher, Lyons, & Ghetti, 2014; Goupil & Kouider, 2019; 
Lapidow, Killeen, & Walker, 2022). For instance, in a perceptual identification task, 
3- to 5-year-old children asked for additional information – instead of responding by 
themselves – more frequently in conditions in which they also reported low 
confidence (Coughlin et al., 2014). In the language domain, 4-year-olds’ were more 
curious about word meanings when their confidence was lower (Jimenez, 2018; 
Jimenez, Sun, & Saylor, 2018) and even 20-month-olds asked for help when they 
forgot the location of a toy (Goupil, Romand-Monnier, & Kouider, 2016).  

All of the aforementioned examples suggest that people approach information 
as a function of their confidence, consistently monitoring their knowledge state. As 
mentioned above, apart from their prior knowledge, people also simultaneously 
monitor the possibility of gaining information from what is presented to them in the 
environment. For example, infants have been shown to direct their attention to 
stimuli based on how complex, predictable or informative they are. Kidd et al. (2012) 
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showed that infants preferably attend to image sequences of medium 
unpredictability, which are neither too easy nor too difficult to process. The same 
finding was observed with auditory stimuli (Kidd, Piantadosi, & Aslin, 2014) and 
with macaque monkeys (Wu, Blanchard, Meschke, Aslin, Hayden, & Kidd, C., 2022). 
Infants have also been shown to track the informativity of stimuli and orient their 
attention to stimuli they can learn from. Addyman & Mareschal (2013) showed that 
5-month-olds disengage from visual sequences when the information presented 
become redundant. Similarly, it was recently shown that 8-month-olds prefer visual 
stimuli which are associated with larger information gain (Poli et al., 2020).  

Some computational approaches have attempted to quantify the notion of 
‘intermediate’ complexity, using information-theoretic measures such as surprise, 
uncertainty, and information gain (e.g., Kidd et al., 2012, calculated the negative log 
probability/surprise of expected events). One recent influential approach originating 
from the field of developmental robotics is the Learning Progress Theory (LPT) 
which proposes that the brain, as a predictive machine, “is intrinsically motivated to 
pursue activities in which predictions are improving” (Luciw, Kompella, 
Kazerounian, & Schmidhuber, 2013, Oudeyer et al., 2016; Figure 1.1.). According to 
LPT, humans – and artificial agents – can preferentially choose tasks that are 
learnable, by constantly calculating their prediction errors and directing their 
exploration based on the minimisation of these errors. This approach often generates 
different predictions of exploratory behaviours as compared to the predictions 
derived from novelty-based theories, since the more novel stimulus is not always the 
one which contributes more to learning. Indeed, recent findings in adults and infants 
confirm this distinction (Poli, Meyer, Mars, & Hunnius, 2022; Ten, Kaushik, 
Oudeyer, & Gottlieb, 2021). A related Bayesian approach (Friston et al., 2017; 
Schwartenbeck et al., 2019) proposes that, based on the availability of information in 
the environment, people should engage in different exploratory strategies: when 
information is available and reliable, they should direct their exploration either 
towards events to-be predicted (“hidden state exploration”), or the causal, 
parametric structure of the model itself (“model parameter exploration”). When 
information is not reliable, they should engage in random exploration.  
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Figure 1.1.  

The Learning Progress Theory (LPT) conceptualization of curiosity 

 

Note. Compared to previous studies of curiosity and learning (A), the learning 
progress hypothesis suggests that learning progress itself, measured as the 
improvement of prediction errors, can be intrinsically rewarding, and thus create a 
positive feedback loop between state curiosity and learning (B). Reprinted from " 
Intrinsic motivation, curiosity, and learning: Theory and applications in educational 
technologies" by P.-Y. Oudeyer, J. Gottlieb, and M. Lopes, 2016, Progress in Brain 
Research, 229, p. 266. Copyright 2016 Elsevier B.V. 

 

Complexity-based theories, along with their computational implementations, 
can accurately explain exploratory behaviour in multiple contexts, but still have 
limitations. Theoretically, they cannot explain how curiosity is generated and how 
people will direct their exploration if they have no information about the 
environment, and thus cannot compare the prediction errors generated by the 
available stimuli (although, the aforementioned Bayesian approaches propose that 
random exploration is the chosen strategy in these situations). Related to this, they 
cannot incorporate situations in which novelty is considered a better predictor of 
learning progress than prediction errors (i.e., in contexts with very little knowledge 
about the world). 
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A recent rational account of curiosity and exploration attempts to account for 
all information-seeking contexts, considering the limited resources that humans have 
when exploring their environments and their goal to choose the stimulus with the 
higher knowledge value (Dubey & Griffiths, 2020; Lieder & Griffiths, 2020). 
According to this view, the volatility of the environment is also taken into account. In 
stable environments, humans direct their exploration towards areas of medium 
uncertainty, aiming to minimise their prediction errors – as they expect this error 
minimisation to prove valuable in future decisions. In contrast, when environments 
are constantly changing, exploration should favour novelty and surprise. This 
ensures that humans will choose the option that makes better use of their cognitive 
resources and will consequently provide higher rewards in the future. Indeed, recent 
findings in adults and children suggest that they take the cognitive cost of 
exploration into account when choosing their actions (e.g., Aguirre et al., 2022,  
showed that toddlers could plan their epistemic actions taking into account whether 
information would be available in the environment). We will be discussing the role of 
cognitive control in exploration across development later in this chapter.   

In summary, different accounts have described the relative role of 
informational attributes such as stimulus novelty, subjective uncertainty and 
incongruity in provoking curiosity and directing exploration. Although much 
debated, many theorists, as well as direct phenomenological experience, suggest that 
these attributes are associated with specific emotional states that motivate different 
goal-directed behaviours. The subjective quality of these emotions has also been 
extensively discussed and studied, and we will be covering this topic next.  

 

1.2.2. Exploration and affect: how does it feel to be curious?  

Although not included in the traditional list of emotions (e.g., Ekman, 1999), 
curiosity has often been described by recent theorists as an epistemic (Vogl et al., 
2020) or a metacognitive feeling (Goupil & Proust, 2023). In reality, curiosity has 
been approached as a feeling since the early years of its scientific study, with most of 
the discussion focusing on its valence, while specific categorisations seem to 
correspond directly with novelty-based vs. complexity-based exploratory motives. 
Berlyne (1954) described curiosity as an appetitive drive for knowledge, following 
previous conceptualisations (e.g., Freud, 1915, had described it as a ‘thirst for 
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knowledge’). He then went further to differentiate between specific curiosity, which 
arises when people are missing information – similar to the concept of intermediate 
uncertainty – and diversive curiosity, which describes a tendency to look for new 
tasks/learning goals driven by feelings of boredom (or lack of arousal, e.g., Berlyne, 
1967) – a positive feeling which can possibly relate to exploring based on novelty. 
Two subsequent theories expanded on these directions: Loewenstein (1994; Golman 
& Loewenstein, 2018) described curiosity as the aversive, unpleasant feeling 
experienced when people become aware of an information gap that motivates them 
to fill this gap in – he specifically suggested that its intensity varies as a function of 
the gap size, with smaller gaps giving rise to feelings such as the ‘tip-of-the-tongue’. 
On the other hand, Spielberger and Starr (1994) in their optimal stimulation model 
suggested that people explore in order to induce pleasurable curious states to 
themselves – although approaching dangerous stimuli can also induce anxiety (too 
much arousal). Building on these theories, Litman and Jimerson (2004) formulated 
their interest/deprivation(I/D) model of curiosity. Although this model aimed to 
examine stable traits regarding the ways people approach new information, it can be 
applied to fleeting emotions in a similar way. According to this model, curiosity can 
be a positive motivation for learning and engagement (the interest factor) or a 
negative emotion generated by uncertainty or conflict (the deprivation factor) – both 
feelings lead to information-seeking but they arise in different contexts. Moreover, 
different people also exhibit more stable dispositions (trait-like tendencies) towards 
uncertainty, characterising their usual affective experience (i.e., they might be more 
or less risky or ambiguity-averse in life in general). The relationship between the 
exploratory behaviour and these emotions is also quite clear, especially in the case of 
complexity-based exploration and feelings of deprivation. In the case of novelty-
based exploration, the interest factor of the model has been associated with 
sensation-seeking and openness-to-experience (Kashdan et al., 2018; Litman, 2005; 
2008), both factors related to seeking novel experiences, again as more stable 
individual dispositions1. Litman (2005) also draws connections between the I/D 
model and the wanting/liking dissociation, which refers to the two subcortical 
neurobiological systems that seem to underlie appetitive motivation and subsequent 

 
1 The definitions of novelty-seeking do not directly correspond with the ones discussed in the previous 
chapter section, where it was used as a measure of previous exposure to stimuli. However, the process 
of directing exploration based on novelty is similar and presupposes looking for stimuli for which 
there is none or minimal information – the scope of the theories is different.   
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experiences of pleasure (Berridge, 1999; Berridge & Robinson, 1998). He specifically 
suggests that the desire for specific information based on deprivation relates to 
wanting states (controlled by the dopaminergic system), while open-ended seeking 
based on interest is motivated by the liking motive (controlled by the opioid system). 
The two systems always interact; for example, there is always the pleasure of filling-
in a gap that might motivate information-seeking but they can also be dissociated 
(Litman, 2010; Figure 1.2.).   The reward-learning framework proposed by 
Murayama (2020) makes a similar point about learning how to engage in 
information-seeking.  

Figure 1.2 

 Wanting vs. Liking motives in information-seeking 

 

Note. Hypothesized emotional-motivational tendencies relevant to information-
seeking associated with relatively high or low levels of wanting and liking. Reprinted 
from " Relationships between measures of I- and D-type curiosity, ambiguity 
tolerance, and need for closure: An initial test of the wanting-liking model of 
information-seeking," by J.A. Litman, 2010, Personality and Individual Differences, 
48, p. 398. Copyright 2009 Elsevier Ltd. 
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In summary, the discussion on the emotional aspect of information-seeking is 
directly related to its relationship with the reward system of the brain. The 
overlapping mechanisms that support both extrinsic and intrinsic rewards will be 
discussed in more detail in the relevant experimental chapters.  

 

1.2.3. Instrumental vs. non-instrumental information seeking 

So far, we have discussed information-seeking and its phenomenology without 
referring much to humans’ motivation when they seek information. Such motivation 
can be instrumental (i.e., aim in collecting more information which will lead to the 
acquisition of extrinsic rewards), or non-instrumental (i.e., acquire knowledge for its 
own sake). Factors such as novelty and complexity influence humans’ information-
seeking similarly regardless of their motivation. For example, in explore-exploit tasks 
(Cohen, McClure, & Yu, 2007; Mehlhorn et al., 2015), where information-seeking is 
directly related to increasing one’s rewards, people usually engage in directed 
exploration, choosing the option which will optimally resolve their uncertainty about 
the available rewards; this strategy takes into account both novelty and complexity 
depending on the context (e.g., see Gershman, 2018, for a discussion of the 
algorithms which underlie the exploratory strategies in explore-exploit tasks). While 
novelty-seeking is considered a more efficient strategy when the environment is 
volatile and the knowledge about the environment is little; as we discussed above 
(Dubey & Griffiths, 2020), this is still a different strategy than random exploration in 
explore-exploit paradigms; the latter likely reflects behavioural variability or a total 
lack of knowledge (or just temporary disregard) of the values of options (Wilson et 
al., 2021).  

However, most differences between instrumental and non-instrumental 
information-seeking seem to regard the affective part: theorists refer to feelings of 
curiosity more often when it comes to non-instrumental information-seeking 
(Gottlieb & Oudeyer, 2018). Non-instrumental information seeking is characterised 
by the lack of external reinforcers, and is thus considered an intrinsically motivated 
activity. Intrinsic motivation refers to humans’ tendency to seek out information and 
challenges spontaneously, to independently choose to expand their skills and 
knowledge without the presence of external rewards (di Domenico & Ryan, 2017). It 
has been suggested that intrinsically motivated learning serves adaptive functions in 
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organisms, allowing them to survive in changing environments, whereas innate 
mechanisms take longer to develop and often prove too limited (Baldassare, 2013; 
Blain & Sharot, 2021).  

The advantages of built-in self-motivated learning abilities have been recently 
shown in artificial agents’ adaptivity (e.g., Colas, Fournier, Chetouani, Sigaud, & 
Oudeyer, 2019; Forestier, Mollard & Oudeyer, 2016). On the phenomenological level, 
the inherent subjective value of non-instrumental learning in humans proposedly 
originates from feelings of increasing growth and fitness. Ryan and Deci (2000, 
2017; also, di Domenico & Ryan, 2017) with their self-determination theory (SDT) 
suggest that intrinsic motivation supports two basic psychological needs: the need 
for autonomy and the need for competence. Based on DeCharms (1968), they define 
autonomy as a state of volition characterised by a feeling of authenticity and self-
directedness in one's actions, as opposed to internal conflicts, pressures, or external 
coercion, while competence is defined as the experience of effectance, which involves 
a perception of steadily improving proficiency in tasks that offer an optimal level of 
challenge and contribute to the development of one's abilities. Similarly, Blain and 
Sharot (2021) suggest that actions are satisfying in and of themselves when they 
contribute to increased self-efficacy - a similar concept to the ones proposed by Ryan 
and Deci which incorporates feelings of agency and competence. Indeed, the 
experience of agency and competence during learning have been shown to produce 
positive feelings; they seem to relate to the concept of flow (Csikszentmihalyi, 1990), 
which refers to a state of performing and learning in an optimal, smooth, automatic 
way. This positive feeling, when experienced during learning, likely reinforces the 
information-seeking process, adding value to it in a similar way as external rewards 
do (Murayama, 2022). This relationship between intrinsic and extrinsic reward, as 
well as the way it motivates behaviour, will be discussed in the following chapter 
section. 

 

1.3. Extrinsic vs. intrinsic reward: Similarities and differences  

We have already shown above that information can motivate (exploratory) 
action. It has been suggested that this information seeking motivation resembles the 
way that other actions are motivated be external reinforcers (i.e., food or money): if 
an action leads to a rewarding experience, its subjective value increases, and thus so 
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does the likelihood of repeating it. The subjective value of information seems 
comparable to the value that originates from extrinsic rewards. Many studies have 
shown that humans and primates treat information as rewarding for its own sake 
and that they are even willing to sacrifice food or money for information. For 
example, Charpentier, Bromberg-Martin and Sharot (2018) and Vellani, de Vries, 
Gaule and Sharot (2020) found that people were willing to pay to get information in 
advance about the outcomes of a gamble, especially when they expected these 
outcomes to be positive. Similarly, Bromberg-Martin and Hikosaka (2015) showed 
that macaque monkeys were willing to sacrifice water to get advance information 
about winning more water in a comparable task. These studies have also examined 
the neural mechanisms that underlie both extrinsic and intrinsic reward-based 
behaviour, and potential overlap has been identified. These (possibly) shared 
mechanisms might also explain how people learn to assign value to information in 
the long-term scale. 

 

1.3.1. Shared and separate mechanisms  

While explicit behaviour and affect seem to suggest that extrinsic and intrinsic 
rewards work in a similar way, whether the brain uses the exact same mechanisms 
and computations is still not fully understood. The fact that humans and recent 
evolutionary ancestors engage in intrinsically rewarding activity much more often 
than simpler organisms might imply that these activities involve the neocortex and 
do not rely on the dopaminergic midbrain system. Another hypothesis is that a 
combination of systems might be at play, or that the intrinsic rewards relies on the 
same primary rewards system to guide behaviour based on learning. Several studies 
point towards an overlap; for example, single-cell recordings in monkeys (Blanchard, 
Hayden, & Bromberg-Martin, 2015) show that the orbitofrontal cortex encodes both 
possible primary reward and informativeness, whereas neuroimaging and 
pharmacological studies in humans (Charpentier et al., 2018; Lau et al., 2020; 
Vellani et al., 2020) have identified that the same systems and neuromodulators are 
involved in signaling information and primary rewards – they specifically found that 
information prediction errors (i.e., errors in predicting how informative a stimulus 
is) are encoded by the ventral striatum, such as primary reward prediction errors. 
Furthermore, even without direct experimental comparisons between primary 
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rewards and information, many studies have consistently reported activation of the 
brain’s mesolimbic dopaminergic circuit when people are curious, looking for 
information, or learning new things (Tomov et al., 2020). However, it was shown in 
monkeys that even within the OFC, distinct neurons encode either the value of 
primary rewards or of information, suggesting there might be variations in the cell 
level (Blanchard et al., 2015). Also, while valuation of primary rewards and 
information might largely overlap, the integration of these calculated values and the 
subsequent action/decision-making largely involves areas of the prefrontal and 
motor cortex (Tomov, Truong, Hundia, & Gershman, 2020). The interplay between 
these areas is yet to be fully understood, but in general, it seems that intrinsically 
rewarding information seeking activates at least partly the same brain areas that 
external rewards do.  

This large overlap might explain how people learn to value information as they 
develop, and subsequently use this value to guide their behaviour. In their recent 
process account of curiosity and interest, Murayama and colleagues (2019; 
Murayama, FitzGibbon, & Sakaki, 2019) propose that humans learn the value of 
information as they continuously engage in information-seeking and resolve their 
uncertainty, based on a positive feedback loop similar to the one proposed in 
reinforcement learning: the positive feeling experienced by the resolution of 
uncertainty is rewarding, thus leading to more information seeking, just as the 
acquisition of primary rewards and the accompanying pleasure reinforce such 
seeking behaviours. According to this framework (Figure 1.3.), information holds 
incentive salience, a term used to describe the motivational character of rewards in 
the reward-learning literature (e.g., FitzGibbon, Lau, & Murayama, 2020). This 
conceptualisation is consistent with several theories discussed previously; e.g., the 
LPT, which also suggests that learning itself motivates information-seeking in a 
reinforcing loop.  
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Figure 1.3  

The incentive salience of information 

 

Note. The knowledge acquisition process as reward learning supported by incentive 
salience. Reprinted from " The seductive lure of curiosity: information as a 
motivationally salient reward," by L. FitzGibbon, J.K.L. Lau and K. Murayama, 
2020, Current Opinion in Behavioural Sciences, 35, p. 23. Copyright 2020 The 
Authors. 

 

In summary, extrinsic and intrinsic rewards seem to share computational and 
neuronal mechanisms and generate similar motivational states. As we are interested 
in studying these processes across development, we will next be discussing how they 
manifest in different ages, and possible hypotheses explaining these differences.  

 

1.4. How does exploratory behaviour change across development? 

While extrinsic and informational value motivate action throughout life, 
common experience and scientific evidence show that humans might differ in the 
relevant amount and strategies of exploration they engage in at different 
developmental stages. Children and adolescents are commonly thought to be more 
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exploratory and driven by new experiences than adults. However, the specific 
changes in behaviour and possibly brain functions are still under examination.  

Humans can track informativity in the environment and direct their attention 
to it from infancy (Addyman & Mareschal, 2011; Kidd et al., 2015; Stahl & Feigenson, 
2015; Poli et al., 2020; Wu, Gopnik, Richardson, & Kirkham, 2011), while toddlers 
and preschoolers recognise uncertainty and learning possibilities (e.g., Aguirre et al., 
2022; Ruggeri, Pelz, Gopnik, & Schulz, 2021) and engage in exploratory action to de-
confound variables (Schulz & Bonawitz, 2007), to examine belief violations 
(Bonawitz, van Schijndel, Friel, & Schulz, 2012) and test their intuitive theories and 
hypotheses (Cook, Goodman, & Schulz, 2011). Despite this general sensitivity to 
informativity, it has been suggested that children’s exploration differs from adults in 
breadth (i.e., children engage in broader exploration; Gopnik, 2020), and possibly to 
differential sensitivity to parameters of information: infants and young children are 
possibly affected differently by novelty compared to uncertainty in the environment 
(Goupil & Proust, 2023; Nussenbaum et al., 2022).  

The specific trade-off between exploration and exploitation has been 
extensively studied with traditional bandit tasks (Sutton & Barto, 1998), which can 
capture human behaviour when faced with the dilemma between extrinsic rewards 
and information2. Such tasks can also particularly shed light on the shift in 
exploratory strategies used at different ages. In many such examples, children have 
been found to explore more broadly first, and settle later for the more rewarding 
option, a strategy which often protects them from ‘learning traps’ and allows them to 
uncover more complex rules in unknown environments. For example, Liquin and 
Gopnik (2022) compared preschoolers’ and adults’ performance in an approach-
avoid task and found that young children explore for longer and are thus more 
accurate in understanding the complex structure of the presented environment. 
Similarly, children as young as 3 years old choose equally often the bad and good 
options in bandits throughout the tasks (Blanco & Sloutsky, 2021; Sumner, Steyvers, 
& Sarnecka, 2019). Equally,  5- to 12-year-olds are better at noticing changes in the 
structure of a multi-armed bandit task than adults (Sumner et al., n.d.). It has 
recently been shown that this advantage might result from more distributed 

 
2 Information-seeking in explore-exploit tasks is almost exclusively instrumental – tied to gaining 
extrinsic rewards, as we already discussed in 1.3. However, we consider the findings we present here 
relevant to the developmental changes in exploration in general. 
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attention during the learning phase in a category-learning task (Blanco, Turner, & 
Sloutsky, 2023), but this might also reflect different information processing during 
exploration of the environment more generally.  

Furthermore, evidence suggest that children differ from adolescents and 
adults in the relevant amount of directed and random exploration they engage in 
when searching a new environment (Gopnik, 2017; Wilson, Bonawitz, Costa, & Ebitz, 
2021). Directed (or systematic) exploration refers to exploratory behaviours directed 
towards informative parts of the environment. They are accompanied by an 
information or learning progress ‘bonus’ that makes the exploratory choice more 
valuable. In contrast, random exploration reflects behavioural variability (i.e., noise-
in-choice behaviour) and it is more common when there is no prior knowledge about 
the values of options (extrinsic-reward or information-wise). Studies which have 
used variations of bandit tasks show that children engage in more random 
exploration than adolescents and adults. For example, Wu, Ruggeri and Meder 
(2019) compared children in middle and late childhood to adults in a spatially 
correlated multiarmed-bandit task. Their findings showed that children engaged in 
more directed exploration and generalised less than adults, but the groups did not 
differ in terms of random exploration. The same research group (Meder, Wu, Schulz, 
& Ruggeri, 2021) used a similar task to disentangle children’s exploration strategies 
at 4 and 9 years of age, showing that random exploration decreased as children grew 
older. They also found evidence of directed exploration in the youngest group. 
Somerville et al., (2017) investigated 12 to 28 year-olds, using armed bandit tasks to 
manipulate the time horizon of the informational utility. In their study, adolescents 
appeared more influenced by immediate rewards. Moreover, adolescents who 
engaged in more random exploration also scored higher in a risk-taking scale.  

The aforementioned tasks differentiate between exploration based on 
uncertainty/information value and exploration without knowledge of values. 
However, exploration might also differ based on the type of informational attribute 
which might be more relevant for learning in different age groups or different 
contexts. For example, novelty-seeking might underlie both exploration based on 
directed information seeking as well as some behaviours typically considered as 
random exploration.  
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Recent studies have shown that stimulus novelty has a separable influence on 
exploratory behaviours compared to uncertainty or expected learning progress in 
adults (Cockburn et al., 2021; Poli et al., 2022). Furthermore, Nussenbaum et al. 
(2022) compared participants ranging from 8 to 27 years of age in an exploration 
task that separately manipulated stimulus novelty and reward uncertainty. 
Interestingly they found that, while all age groups were influenced by novelty in their 
exploration, children showed no uncertainty aversion and explored the uncertain 
options more than the adults. This lack of aversion in early childhood has been 
documented before (Li, Roberts, Huettel, & Brannon, 2017; Rosenbaum & Hartley, 
2018) and might explain children’s exploratory tendencies. Moreover, Blanco and 
Sloutsky (2021) document that children visit all the options in an armed bandit task 
using a time-dependent strategy (i.e., keeping track of the options they have not 
visited recently and using this information to guide their exploration).  

Despite still being under investigation, the general tendency of children 
towards broader exploration, which possibly still undergoes further change during 
adolescence, has been related to the protracted human development and reliance on 
learning. Specifically, Gopnik et al. (2017; Gopnik, 2020) has proposed human’s 
unique developmental life history (i.e., a very long childhood, many carers and the 
long reliance on them, increased brain plasticity and sensitive periods for a long 
time) might underlie the developmental changes observed in the trade-off between 
exploration and exploitation. Gopnik and her colleagues suggest that the lack of 
mature executive functions, which results in minimised capacities for focused 
attention, planning and delayed gratification, also allows children to distribute their 
attention more broadly during learning (e.g., Blanco et al., 2023, as we discussed 
earlier; Plebanek & Sloutsky, 2017), generate and test broader hypotheses (Lucas, 
Bridgers, Griffiths, & Gopnik,  2014) and engage in more creative, ‘divergent’ 
thinking (Thompson-Schill et al., 2009). Indeed, children have been shown the 
ability to imagine more new uses for a tool (German & Defeyter, 2000). 

In summary, there is compelling evidence to suggest that children explore 
more and differently than adults. How children differ from adolescents is still 
unresolved. The exact differences in the role of informational attributes across 
development, though, is only now starting to be investigated. Moreover, the role of 
developing cognitive control and the possible individual role of separate executive 
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functions (e.g., inhibition) might play is still, to our knowledge, not understood. We 
aim to contribute towards this direction with our studies.  

 

1.5. Methods 

1.5.1. Paradigms to study curiosity and exploratory strategies across 
development 

We have already discussed various tasks used by researchers to measure 
curiosity and exploratory behaviour, focusing mostly on situational manifestations of 
such behaviour. As curiosity and exploration have always been of relevance in 
education and psychology, there was also interest in their measurement as a stable 
trait. Jirout and Klahr (2012) review many of these measurements, for example the 
different questionnaires used in the past decades to measure trait curiosity (e.g., the 
Ontario Test of Intrinsic Motivation (OTIM) by Day (1971), or the State-Trait 
Curiosity Inventory (STCI) by Spielberger et al. (1980)), as well as behavioural 
measures such as the amount of spontaneous exploration of objects (e.g., Minuchin, 
1971; Smock & Holt, 1962) and preference for complexity (e.g., Henderson & Moore, 
1980). Even though they were used to investigate (proposedly stable) individual 
differences in curiosity and possible relationships with academic achievement, these 
behavioural tasks are similar to the ones used to study exploration as a spontaneous 
behaviour – and possible factors that affect it – in more naturalistic settings (e.g., 
Schulz and Bonawitz, 2007; Taffoni et al., 2014 and others we have already discussed 
above). At the same time, extensive research has used variations of bandit tasks to 
study the balance between exploration and exploitation, and developmental 
differences in this balance.  

Most of these tasks, while very diverse, show important commonalities if we 
attempt to analyze the underlying cognitive processes that take place. When 
participants have to choose between interacting with different objects or features (in 
naturalistic tasks) or between exploiting and exploring options in bandits, they 
essentially engage in value-based decision making. The steps humans follow when 
deciding based on subjective value (i.e., the representation of the decision space, the 
calculation of values, the value comparison and accumulation of evidence; e.g., 
Tajima, Drugowitsch & Pouget, 2016) as well as the factors which affect the decision 
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process (e.g., time limit; Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010) can 
similarly be taken into account when analyzing humans’ behaviour in information-
seeking contexts, but such approach has not been employed so far, at least 
extensively. Such an approach could help identify how different rewarding options 
influence action, and possibly also help dissociate the neural correlates which 
underlie extrinsic and intrinsic reward – for example, it could be the case that people 
are taking the two types of rewards into consideration on different steps in their 
decision process. Furthermore, recent experimental findings have suggested that 
cognitive control plays a significant role in decision-making. Frömer, Wolf & 
Shenhav (2019) showed that the specific task goals influence participants in 
dissociable ways compared to how rewarding they consider the options. This 
interesting observation might be of relevance to our developmental perspective, as 
the ability to follow goals or prioritize between them is still under development up to 
adolescence (Somerville, & Casey, 2010). Taking these into consideration, we decided 
to design a series of tasks where we can track the decision process when participants 
choose between options with different value (extrinsic vs. different informational 
rewards) and use mouse and finger tracking to reveal the underlying steps and 
processes. More details on this methodology will be discussed in the following 
subchapter.  

 

1.5.2. Decision-making and hand kinematics 

Over the past decades, hand-movement tracking methods (3D motion-
capture, touchscreen finger-tracking, mouse tracking), have been increasingly 
utilized in psychological sciences, their spread especially facilitated by recently 
developed open-source software, particularly in finger- and mouse-tracking (for 
example MouseTracker by Freeman and Ambady, 2010; or mousetrap by Kieslich 
and Henninger, 2017). Experimental findings from various cognitive tasks have 
provided evidence against a serial, feed-forward, and stage-based view of mental 
processing, and supported a more dynamic view of the mind in which “processes 
across perception, cognition, and action often – though, not necessarily always – 
unfold in a parallel, interactive, and continuous manner” (Cisek & Kalaska, 2010; 
Lakoff & Johnson, 1999; Smith & Gasser, 2005; Spencer et al., 2009; Spivey, 2007). 
The use of tracking methods has been particularly fruitful in language processing 
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(Dale & Duran, 2011; Farmer, Cargill, Hindy, Dale, & Spivey, 2007; Spivey, Grosjean, 
& Knoblich, 2005; Tomlinson, Bailey, & Bott, 2013), numerical cognition (Dotan & 
Dehaene, 2013; Faulkenberry, Montgomery, & Tennes, 2015; Marghetis, Núñez, & 
Bergen, 2014; Song & Nakayama, 2008), reasoning (Travers, Rolison, & Feeney, 
2016), and social cognition (Duran, Dale, Kello, Street, & Richardson, 2013; Freeman 
& Ambady, 2009; Freeman, Ma, Han, & Ambady, 2013; Freeman, Pauker, & 
Sanchez, 2016). Simultaneously, a different line of research focusing on consumers’ 
choices has also extensively used hand tracking methods, as well as more broadly 
research on value-based decision-making (e.g., Koop & Johnson, 2011, 2013; Lee & 
Hare, 2022; O’Hora, Carey, Kervick, David Crowley, & Dabrowski, 2016). This latter 
field’s advances are of interest for our research, especially in terms of their analysis 
methodology, as it does not involve correct and wrong options and responses, but 
rather the incorporation of values during the decision-making processes.  

While hand-movement tracking has been extensively used with adult 
participants, its employment in developmental research is limited, possibly due to 
factors related to manual dexterity and accuracy in younger ages, which might render 
such methods too noisy. For example, two studies on cognitive control used hand-
tracking in 3D space to compare children’s (5- to 10-year olds) and adults’ inhibitory 
and switching performance (Erb, Moher, Song, & Sobel, 2017a, 2017b) and revealed 
improvements in cognitive control in older children, reflected in specific movement 
parameters. Schroer, Cooper and Mareschal (2021) also used 3D hand-tracking with 
motion capture to investigate preschoolers’ ability to plan action sequences, showing 
different use of the non-reaching hand between children with different planning 
skills. Another study used mouse-tracking to identify arithmetic difficulties in an 
online learning environment (de Mooij, Raijmakers, Dumontheil, Kirkham, & van 
der Maas, 2020), while a series of mouse-tracking studies looked into the influences 
of food attributes (healthiness, taste) and self-control on children’s decision-making 
(Ha et al, 2016; Pearce, Adise, Roberts, White, Geier, & Keller, 2020). In total, the 
use of such methods in developmental research is on the rise. However, there is need 
for methodological clarity in the design and analysis aspects of such approaches.  

Regarding the design of mouse-tracking tasks, numerous studies over the past 
decade have focused on important factors which affect performance and 
assumptions, such as starting procedures (time-limited or not), target sizes, response 
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type (hover vs. click), stimulus positions (centred vs. edged), and so on (e.g., 
Hehman et al., 2015; Kieslich et al., 2020; Schoemann et al., 2019). The analyses 
procedures have also been discussed, especially regarding the specific parameters of 
movement which are more or less informative. The proposed measures are very 
diverse, and vary greatly due to the differences in each task design on the spatial level 
(e.g., where stimuli appear, how many stimuli, whether there is an optimal path etc.), 
as well as the cognitive processes which proposedly underly the task according to its 
theoretical assumptions (e.g., conflict due to competing phonological activations, vs. 
conflict due to competing reward values). A common approach which is applied in 
various task designs and theoretical interests is the single feature approach , where 
various geometrical, temporal and entropy measures are calculated from the spatial 
coordinates and time data, and then some of them are singled out to proposedly 
reflect more information about the processes of interest (Figure 1.4. from Wirth et 
al., 2020). This approach is widely used and accepted, however the high degrees of 
freedom it allows to researchers leads to lack of consensus regarding the measures 
and often difficulties in reproducibility.  

Figure 1.4  

Geometrical, temporal and entropy measures calculated from kinematic data 
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Note. Overview of possible dependent variables when analyzing movement trajectory 
data. The circle at the bottom represents the starting area; the two on the top left and 
top right represent the target areas. Reprinted from " Design choices: Empirical 
recommendations for designing two-dimensional finger-tracking experiments" by R. 
Wirth, A. Foerster, W. Kunde and R. Pfister, 2020, Behavior Research Methods, 52, 
p. 2399. Copyright 2020 The Authors. 

 

Recently, Maldonado, Dunbar and Chemla (2019) tried a machine learning 
approach to identify the most informative measures for a linguistic processing and a 
double negation task. They used kinematics data points (with dimensionality 
reduced to 13 principal components with a Principal Component Analysis) to train a 
supervised classifier (Linear Discriminant Analysis, LDA), which could predict two 
different theoretical explanations of the movement data. Although their approach 
was successful, it is not easy to apply to other data or designs.   

In our tasks, we decided to follow recent studies on value-based decision-
making, and calculate commonly used measures, in an attempt to provide 
comparable results. For example, Koop & Johnson (2013), who focus on preferential 
choice, use some geometrical measures (MAD, AAD) and an entropy measure (x-
flips), while Pearce et al. (2020) analyzed the temporal unfolding of action. We were 
interested in calculating all types of measures, as preference based on different types 
of rewards might either unfold gradually and show as deviating trajectories 
(reflecting an initial choice and continuous suppression of the alternative), or as a 
two-step incorporation of the values or a dissociation between the value of a goal vs. 
the value of information, showing up as sudden changes of mind and direction of 
movements. We will be broadly following the procedure described by Wulff, Kieslich, 
Henninger, Haslbeck and Schulte-Mecklenbeck (2021), which we will describe in 
more detail in the relevant chapter.    

 

1.6. Τhe current studies – Aims and summary 

The theoretical and experimental advances discussed so far provide evidence 
for developmental differences in curious exploration. It has been proposed that 
exploration gradually becomes narrower as adulthood is reached, giving space to 
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more exploitative, goal-directed behaviour. However, findings have been 
contradictory so far, and the exact balance between exploration and exploitation, as 
well as between exploratory behaviours across development have yet to be clarified. 
Substantial part of this thesis focuses on the real-time conflict between 
explore/exploit options when people are interacting with the world, and how this 
might change with maturation. We are approaching this by employing hand 
kinematics analyses in a decision-making task (more in Methods subchapter). A 
second part of this thesis focuses on information sampling in the physical world, and 
how the available amount of information might influence exploratory behaviour, 
specifically manipulating object complexity.  

Chapter 2 discusses our first experiment, which aimed to identify how object 
complexity might relate to motor imagery and self-oriented gesturing, building on 
the embodied cognition hypothesis that manipulating and imagining objects might 
lead to similar activation of the motor system. Specifically, 3-5 year-olds manipulated 
objects of different complexities and their hand movements during mental rotation 
on a subsequent phase were video-recorded (and partly measured through motion-
capture). The experiment identifies some embodied strategies that children use to 
think about objects, and indeed shows that object complexity linearly increases these 
strategies. However, no explicit gesturing is documented.  

Chapter 3 includes our series of mouse- and finger-tracking experiments 
(experiments 2-5), in which we aimed to focus on the specific process of planning an 
exploratory versus an exploitative action and investigate how these decisions unfold 
real-time. Furthermore, we aimed to examine how its parameters can be predicted by 
age and individual differences. Our participants chose between different options to 
interact with, when these options led either to the attainment of a rewarding goal, to 
missing information or to novel unpredictable stimuli. We looked into how the 
competition between these options was reflected in the real-time action plans; i.e., at 
the specific hand kinematics while participants made their choices. Participants 
completed a computerized decision-making task as we tracked their mouse positions, 
stimulus-preference tasks with varying levels of uncertainty and complexity and 
standard executive functions tasks. In different versions of this task, we manipulated 
specific parameters: In experiment 2, participants had a short exploration horizon, 
i.e., the acquisition of the extrinsic reward (which required following specific steps) 



 24 

prevented them from exploring the other two options. This was changed in 
experiment 3, where participants could keep exploring for a longer time. In 
experiment 4, the experimental stimuli associated with missing information were 
changed to better capture perceptual uncertainty, and the ones associated with novel 
stimulation were also replaced with different ones, more unpredictable, preventing 
any possibility of guessing based on categorization. Eventually, in experiment 5, the 
extrinsic-reward option was replaced: instead of requiring goal-following, this option 
was offering rewards on every trial. The experiments overall show differences in 
participants’ preferences, especially when time-limit is imposed, showing that 
children engage in more novelty-based exploration than older groups. This is also the 
case for individuals with lower EF skills, although not consistently across 
experiments. Kinematics data reveal greater conflict between the two exploratory 
options. 

Chapter 4 includes experiment 6, in which we aimed to examine whether 
preschoolers (4-year-olds) gather information through object exploration in a 
different manner across the visual and the haptic modality, and whether their 
interest in exploration can dissociate from their explicit liking. Specifically, children 
explored sets of 3D-printed objects with three different levels of complexity 
unimodally through vision or touch, and we measured the exploration time spent on 
each object and their subjective preferences for the objects. Results showed a linear 
relationship between visual complexity and exploration time, but no significant 
relationship for haptic complexity. Explicit preferences were not consistently affected 
by complexity or modality and did not correlate with exploration time – large 
individual differences were observed.  

Chapter 5 discusses all the experimental findings together, to form a 
comprehensive broader view of the influence of information on perception, action 
and subjective valuation across development. In this chapter, we make a point about 
the need for more nuanced theoretical and experimental manipulations of the 
concept of novelty. We also emphasize the distinct effects of object complexity on 
exploration and aesthetic judgements. Finally, we discuss this thesis’ limitations and 
propose new directions for research.   
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Chapter 2 
 

Action planning and spatial-motor imagery – Effects of 
object complexity on preschoolers’ real and imagined 
object-fitting 

 

2.1. Introduction 

After achieving the important milestone of grasping objects in their immediate 
environments, infants start performing a variety of prehensile activities that extend 
beyond this and require planning (e.g., putting toys in containers, piling up blocks to 
build a tower or putting an item in someone’s hand).  In order to accomplish such 
goals, a sophisticated coordination between perception and action is necessary. This 
is particularly evident when it comes to fitting objects into apertures, a skill widely 
used as a marker for developed motor problem-solving abilities at the second year of 
life. In object-fitting, a combination of a wide range of perceptual and motor skills 
are at play that offer the chance to examine how successfully real-time planning is 
accomplished.  

In order to be able to fit objects into apertures, children have to develop 
certain perceptual abilities, such as object unity (Johnson & Aslin, 1996), recognizing 
the objects’ different shapes and sizes and the constancy of such attributes (e.g., 
Soska & Johnson, 2008), the spatial relations between objects (e.g., Rigney & Wang, 
2015) and eventually, to understand the shapes and size of apertures (e.g., Adolph, 
2000). 

However, when it comes to using these perceptual skills to guide action on 
objects, there are large individual differences between children of the same age in 
their ability to systematically apply them in relevant tasks. Arguably, this goes back 
to the evidence of a dissociation between ventral and dorsal visual stream maturation 
(Johnson, Mareschal, & Csibra, 2008), with the latter having a more protracted 
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development. Many studies have looked into the ways children adjust their reaches 
and grasps prospectively based on (visually gathered) information on object 
characteristics, such as size, shape (e.g., symmetric or not) and orientation. Most of 
these studies suggest that children start making such adjustments from the second 
part of their first year of life (e.g., Berthier & Carrico, 2010). Although children can 
configure their hands successfully when they approach an object based on its 
characteristics, they cannot apply the same skill when they have to insert an object 
into an aperture until after their 18th month of life. This is often referred to as a 
‘coordination of spatial frames of reference’ problem. When acting directly on an 
object, children use an egocentric frame of reference: they compute their hand/body 
position in comparison with objects on the environment. However, when holding an 
object, the hand and the object change position and orientation differently compared 
to the environment (allocentric frame of reference), adding degrees of freedom and 
thus, increasing difficulty and cognitive resources’ requirements (Lockman, 2000). 
Furthermore, the geometric structure of the objects to be fitted into aperatures also 
influences the difficulty of fitting: asymmetric objects and objects that can only be 
fitted along a specific axis are more demanding and later to be mastered (Ornkloo & 
von Hofsten, 2007; Fragaszy, Kuroshima, & Stone, 2015). Despite revealing all these 
contributing factors in successful object-fitting, these previous studies have not 
looked into the real-time process of planning actions in order to accomplish the 
fitting goal, but have rather focused on achievement in different ages.  

Taking a more process-focused approach, Jung et al. (2015) had toddlers 
between 16 and 33 months of age fit a bar of different orientations (vertical, 
horizontal) into an aperture in front of them and tracked their hand movements with 
motion capture. Their findings showed that less efficient children under 20 months 
had a two-stage fitting strategy: first translating the bar (i.e., moving it towards the 
hole), and then rotating it after they had approached the opening. This suggests that 
they did not plan ahead to pre-align the object while transporting it. This lack of 
planning is supported by the fact that they changed the orientation of the bar even in 
the cases where it already had the right orientation from the beginning (i.e., 50% of 
the cases). In contrast, more efficient fitters combined translation and rotation while 
moving the object towards the opening. Crucially, the most efficient solvers kept the 
object close to the table, avoiding the rotation of the bar in the vertical axis, which 
was not necessary for the task.  
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Fragaszy et al. (2015) and Ornkloo and von Hofsten (2007) also focused on 
how young children (from 14-months up to four years old) processed different object 
characteristics as they attempted to fit them into holes. Specifically, the more 
complicated a shape was – thus, having more spatial features to process in order to 
be aligned successfully with a hole – the more difficult it was for children to pre-align 
it. The manipulated complexity had specifically to do with symmetry and with the 
axis of elongation which should be considered to fit the objects, and with their 
interaction. Specifically, children had more difficulty fitting asymmetric objects (i.e., 
which could only be fitted with specific orientation along their middle axis), 
especially when the aperture was matching their short axis (e.g., Figure 2.1a, b; 
Fragaszy et al., 2015; Ornkloo & von Hofsten, 2007). Due to this added difficulty, 
children had to explore more options with vision by comparing the objects with the 
apertures after bringing them above the holes, and with touch by attempting to fit the 
object in different ways.  

All of these studies underline the importance of vision for children to analyse 
the spatial features of objects and the environment, suggesting that visual inspection 
plays an important role in formulating the action plan and influencing the online 
adjustments of hand movements in accordance with a perception-action approach. 
Both the Jung et al. (2015) study and the Fragaszy et al. (2015) study comment on 
the direction of visual attention during transport and fitting of the objects, which 
alternates between the object and the hole. However, none of the studies examines 
more specifically how this correlates with hand movements in real time.  

Figure 2.15 

Examples of object complexity manipulation in object-fitting studies, a) example of 
symmetry stimuli in Fragazcy et al., (2015), b) example of symmetry stimuli with 
short elongation axes in Ornkloo and vanHofsten (2007). 

a) b) 
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This was done by Ossmy, Han, Cheng, Kaplan and Adolph (2020), who used 
eye tracking to reveal how eye movements unfold during the grasping, transport and 
fitting of objects, while analysing the hand movements using simultaneous video 
recordings. This study investigated 3- to 5-year-olds and adults. Interestingly, 
although they managed to fit the objects in most trials, children showed much less 
visual attention to their hands during transport of the objects than adults, and only 
focused on the object and the aperture when they eventually reached the hole. This 
resulted in delays in the adjustment, which, as the researchers suggest, had to do 
with delayed sampling of the useful spatial information through vision. Specifically, 
they suggest that children lack the ability to plan proactively where they should look 
in order to guide their actions efficiently. Instead, children spend a lot of time 
looking at irrelevant items in the environment, something that the other studies had 
not identified.  

This inability to direct their vision so as to serve their fitting plan (although 
they might have already decided correctly which object fits where) could have to do 
with attentional capture by equally interesting/rewarding stimuli in the 
environment. Bottom-up attentional capture from salient stimuli has been widely 
documented in infants’ eye-movements (e.g., Gluckman & Johnson, 2013), but it has 
also been shown to affect hand trajectories in adults (e.g., Song & Nakayama, 2006; 
Welsh, 2011). This effect on movement has also been reported in the Jung et al. 
(2015) study in which children move the objects towards the apertures using larger, 
less efficient routes than the straight ones – but it has not been tested in terms of the 
exact irrelevant stimuli characteristics in the environment. 

Apart from these skills, several investigators have suggested that to pre-align 
objects with apertures quickly, especially those with a relatively complex spatial 
structure, children may perform mental rotation (Jung et al., 2015, 2018; Ornkloo & 
von Hofsten, 2009) and, more specifically, engage in spatial-motor imagery. An 
interesting window into imagery can be provided by the connection between spatial-
motor imagery and hand gestures. From an embodied point of view, gestures are 
considered to arise from embodied simulations of actions and perceptual events (e.g., 
the Gesture as Simulated Action Framework; Hostetter & Alibali, 2008).  

A large number of studies have focused on how different forms of imagery 
(visual, spatial, motor) give rise to different gestures (Hostetter & Alibali, 2019). 
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From an embedded/extended cognition point of view, gestures are suggested to 
provide an external, physical tool which can replace and support parts of the 
cognitive process (Pouw, De Nooijer, Van Gog, Zwaan, & Paas, 2014). In one of the 
very few studies that have looked into these processes in children, Wakefield and 
colleagues found that 4-year-olds benefit more by using gestures than by physical 
action when they learn how to mentally rotate objects (Wakefield, Foley, Ping, 
Villarreal, Goldin-Meadow, & Levine, 2019). Furthermore, 4-year-olds 
spontaneously produce representational gestures (gestures referring to 
objects/processes) when asked to solve spatio-motoric problems (Boncoddo, Dixon, 
& Kelley, 2010) and 3-year-olds use private pointing in order to keep the position of a 
toy in memory (Delgado, Gómez, & Sarriá, 2011). It has also been found that young 
children who gesture more have better performance in visuospatial tasks, whereas 
less spontaneous gesturing or inhibition of hand movements can impair performance 
(O'Neill & Miller, 2013). However, most of these studies have looked into children 
trying to engage in spatial problem solving and, importantly, have not tried to 
approach gesturing as an embodied manifestation of the underlying imagery (which 
must necessarily takes place in children’s minds during such tasks). In an attempt to 
combine the findings of these lines of research, we aimed to (i) understand how 
preschoolers plan the object-fitting process, (ii) whether they use gestures to aid 
their mental rotation (specifically spatial imagery) of 3D objects, and (iii) whether 
these movements are necessary for spatial problem-solving at this age. 

We were further interested in exploring the particular parameters of the hand 
kinematics that can be associated with the real and imagined object manipulation. To 
this end, 3 to 5 year old children completed a task in which they initially manipulated 
3D objects of different complexities and attempted to fit them in an object-fitting toy. 
They then had to solve the same problem mentally, either with the possibility of 
using hand gestures, or in a condition in which it was not possible to use hand 
movements to solve the planning problem. We planned to record their hand 
movements using Motion Capture and their motor preparation recording the 
electrical activity of their hand muscles using electromyography (EMG).  

Our hypotheses were that: a) the level of object complexity will influence the 
fitting process, in terms of the needed attempts to fit the object and the fitting time, 
b) children who plan for a longer time before movement will be more accurate in 
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fitting, c) younger children will plan for a shorter period and will start the transport 
phase earlier, d) higher spontaneous gesture rates will correlate with the difficulty of 
the task (shape complexity) and e) successful inhibition of hand movement will 
significantly decrease the accuracy in the mental rotation task. Regarding the amount 
of gesturing as a function of age, one possibility is that young children will gesture 
more, because of lower visual working memory capacity (and, thus, increased need 
for reliance on proprioceptive/environmental input) and also due to less inhibition of 
the motor system when they engage in imagery. The particular kinematics of their 
gestures were expected to correlate with the actual movement kinematics while they 
manipulated the objects, but we refrain from making more specific predictions 
regarding these movements, as they might use their hands to mimic either their 
manipulation or the manipulated object. Finally, we expected to find muscle activity 
of motor preparation through EMG in the inhibited movement condition (e.g., 
Addyman, Rocha, Fautrelle, French, Thomas, and Mareschal, 2016 observed such 
activations in infant EMG data), further supporting the children’s tendency to use 
their hands as support for spatial imagery.   

 

2.2. Methods 

2.2.1. Participants  

Our participants were 24 children, aged from 3 to 5 year old (Mean: 4.13 
years, 9 girls). All participants were neurotypical and had normal or corrected-to-
normal vision. The participants were volunteers recruited though the Birkbeck 
Babylab database. 

 

All children were tested on an object fitting task and a visual-spatial working 
memory task. Each of these is discussed in turn below. 

 

2.2.2. Object-fitting task 

2.2.2.1. Materials  

The following objects were used for the experiment: (1) A rectangular house-
shaped box with 8 holes on the roof, 4 on each roof side (Figure 2.2a,b). Every hole 
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existed twice in the box, once on each side. The holes are configured in order to fit 
only one particular object, as a 2D projection of it; (2) The objects, which were 
different arrangements of 3D rectangles, joined together on the larger sides, each 
having a different animal face drawn on it (Figure 2.2c). There are four different 
objects configurations of growing complexity, each of them used twice, resulting in 8 
shapes; (3) A short rectangle box with a one-way mirror glass surface on the top side, 
which was illuminated from inside when a sensor was touched, using an Arduino 
circuit (Figure 2.2d,e). Four of the objects were stuck with blue-tac inside the mirror 
box, arranged at different angles (the position of the objects in the mirror box was 
determined beforehand and consistent across participants. The orientation of the 
fixed objects mental rotation by the participant in order to find the right hole); (4) 
Two paper-printed sensors, made with conductive paint and 3D-printing technology, 
with a carton hand-shape stuck on top with glue (Figure 2.2d,e);  (5) Six Vicon 
Bonita Motion Capture cameras;  (7) Kids’ fingerless gloves with attached 
retroreflective markers.  

Figure 2.26 

Experimental stimuli and materials, a,b) Object-fitting house, both sides, c) 
example stimuli set, four complexity levels (low to high: upper left corner to low 
right corner), d,e) box with light, open and closed, and paper-printed sensors with 
conductive paint  

a)                                       b)                                        c)    
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  d)                                                                       e) 

 

2.2.2.2. Design  

Children had to complete all three of the following conditions: In the first 
condition (Free Movement Condition) they were encouraged to manipulate the 
objects and fit each of them into the correct aperture at the object-fitting toy. In the 
second condition (Gesture Condition) they could see but not interact with the 
objects, which were inside a box under a glass surface. Their hands were free to point 
or gesture in any way they wanted while trying to match each shape with the correct 
hole. In the third condition (No-Movement Condition) they were able to see the 
objects inside the box but they were instructed not to move their hands from certain 
spots on the table. These spots were hand-shaped surfaces of conductive material, 
which turned on the light inside the box only when participants kept their hands in 
touch with the surface (the experimenter kept the light consistently on in the Gesture 
condition). They then had to state which object fits which hole (Figure 2.3a-c). The 
conditions were presented with the sequence mentioned above (Free Movement-
Gesture-No Movement) for most children (N=8) and randomly for the rest of them 
(N=16). 

2.2.2.3. Procedure 

The procedure changed slightly during the pilot phase of the experiment, in an 
attempt to examine the best sequence and the effect of certain changes on the 
observed behaviour. For some children (N=6), the following procedure was used: 
First the child sat at the table and was given the first four shapes to familiarise 
themselves with. The experimenter then presented the object-fitting house and 
demonstrated the game and the rules (i.e., that each animal gets in the house 
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through its own gate and no two animals get through the same one, so each one 
object gets in through a different hole). The experimenter made sure the child 
understood this constraint by completing a practice trial. The child completed the 
task alone, while experimenter reminded them of the rules if they tried to put two 
objects into the same hole and by asking them where each animal goes where next 
after they completed a trial. When the child completed fitting all objects in one side 
of the house-fitting toy, the experimenter turned the house around and offered the 
child the new four objects to fit. When they successfully completed the game, the 
experimenter presented and positioned the mirror box right between the child’s 
hands, explaining the rules for the next condition (i.e., that they cannot touch the 
pieces but that they should decide where each animal should go to get inside the 
house). When they had answered for all 8 objects (i.e., both sides of the toy), the 
experimenter placed the pad with the sensor under their hands and explained to 
them that this time they will have to think where each animal must go, but without 
moving their hands – otherwise the light inside the box would go off, obscuring the 
objects. When the child answered about all the objects, they earned a reward and 
proceeded to the working memory game on the tablet.  

For the remaining children (N=18), the procedure had the following changes: 
In the third condition, the light inside the box was kept on by the experimenter and 
the child had to keep her hands on the table without playing a role in keeping the 
light on. This choice was made because it became obvious that children were able to 
keep their hands immobile just by instructing them to do so, and thus the procedure 
could be simplified. Further, we added different colour codes next to each hole of the 
object-fitting house, in order for the experimenter to ask about the correct hole 
without pointing to the apertures – and thus possibly unintentionally encouraging 
pointing from the child. Finally, a few children (N=5) wore fingerless gloves with 
Motion Capture reflective markers to measure dynamic kinematics, but such data 
was only captured from three children.  
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Figure 2.37 

Experimental conditions: a) Free Movement, b) Gesture, c) No-Movement 

 

      a)                                             b)                                                 c) 

 

2.2.3. Visual-spatial working memory task 

To measure visual-spatial working memory, we used the “Mr. Ant” task from 
the Early Years Toolbox (EYT; Howard & Melhuish, 2017). EYT consists of iPad-
based direct assessments of early executive function, language, self-regulation, 
numeracy and social-emotional development. The particular task involves 
remembering the positions of "stickers" on a cartoon ant and later identifying those 
positions after a short period of time (Figure 2.4). The difficulty increases gradually 
as the task progresses, requiring participants to remember the locations of more 
stickers. Each level of difficulty consists of three trials, ranging from one to eight 
stickers. The procedure for all trials is as follows: (a) Mr. Ant is presented with a 
specific number of colored stickers, which corresponds to the current difficulty level, 
for 5 seconds, (b) a blank screen is shown for 4 seconds, and then (c) an image of Mr. 
Ant without stickers is displayed, accompanied by an auditory cue prompting 
participants to recall the sticker locations. Participants respond by tapping on the 
spatial positions of the stickers on Mr. Ant that they believe were there previously. 
The task continues until either all three trials at a particular difficulty level are failed 
or the participant completes Level 8, which involves remembering eight spatial 
locations. The task was administered using an iPad.  
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Figure 2.48  

Visual WM task trial example: Mr Ant appeared with a sticker on his left cheek. 
Children had to touch the correct position on a sticker-less Mr.Ant image after a 4s 
delay between the two presented images 

 

 

2.2.4. Data collection and coding   

Unfortunately, the collection of motion-tracking and EMG data was was made 
impossible because of the global pandemic and subsequent COVID-19 testing 
procedures when the labs reopened. Thus we only collected and analyzed behavioural 
data, which were coded from video recordings. This, as a result, made the detailed 
analyses of movement kinematics and motor preparation impossible.  

We coded the videos using the VLC video player software to identify accurate 
fitting attempts, hand movement phases during object-fitting, eye fixations in areas 
of interest and overall time profiles of the problem-solving strategy of the 
participants. The main variables that were measured were Fitting Accuracy in each 
condition, Attempts to fit each object in Free Movement condition, Fitting time of 
each object in Free Movement condition, Planning Time to Fitting Time ratio, 
Response Time in Gesture and No-Movement conditions, Eye fixation time on box, 
Eye fixation time on house, number of Fixation Changes between house and box in 
Gesture and No-Movement conditions and Pointing in Gesture condition.  

In the Free Movement condition, we coded as Fitting Accuracy the number of 
correct fits the participant made without help by the experimenter, and Attempts to 
Fit as the number of attempts to insert each object in a hole which was either the 
wrong hole, or the correct hole with a wrong object orientation., We coded Fitting 
Time as the time (in miliseconds) that the participants spent to find the correct hole 
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for each object (regardless of whether they were helped by the experimenter or not). 
Finally, we coded Planning Time as the amount of time spent by participants looking 
at and manipulating the objects before they started the transport movement towards 
the holes, and Fitting Time as the amount of time spent to transport and fit the 
object. We then calculated the ratio, in order to capture the different strategies that 
were used.  

In the Gesture and No-Movement conditions, we coded Fitting Accuracy as 
the number of correct first responses (or immediate changes of responses from a 
wrong to a correct one) regarding the hole in which each object would fit in. We 
coded Response Time as the time in ms which each participant spent to answer about 
the correct hole for each object. Further, we measured the Eye fixation time in ms 
that the participants spent in total when focusing on the box and on the Shape-fitting 
House during their problem-solving phase. However, it worth underscoring that this 
was a coarse measure as the angle of video capture did not allow for much detail 
about the specific areas on the box or house that the children fixated. We also 
measured the number of Fixation Changes between fixating on the box and on the 
house before each response.  

Finally, in the Gesture condition participants only made pointing gestures 
towards the box and the house as a means of answering the questions asked of them 
(i.e., there were no representational gestures simulating part of the imagined 
manipulation or the object). We thus recorded whether the participant pointed to the 
box and to the house during their problem-solving phase, since pointing might still 
be a way to offload spatial information and direct the gaze – we were thus expecting 
it to correlate with WM levels. To code this, we used three levels, namely 0 for no 
pointing, 1 for pointing to 1-3 objects and 2 for pointing at the box for all objects. 
Finally, we refer to  the objects as Object 1, 2, 3 and 4, reflecting their growing 
complexity respectively (1 referring to the simplest and 4 to the most complex). 

 

2.3. Results 

We first examined the effect of the procedure changes on our data. Wearing 
the motion capture gloves did not affect accuracies and reaction times in any of the 
conditions. Moreover, using colour codes and having the participant turn the box 
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light on (Procedure 2) did not affect accuracy, and reaction times either. Since 
changes in the procedure, motion capture and colour codes did not affect 
performance, we pooled the data and analysed them as one sample. One participant 
was excluded from the analyses because part of their video recording was lost.  

Accuracy scores and reaction times (both Fitting times and Response times) 
were tested for normality and differed significantly from normal distributions, so we 
either conducted non-parametric comparisons (for Accuracy) or used the log-
transformed values (for Response Times). Specifically, we conducted Friedman tests 
as alternative to repeated-measures ANOVA, to check for differences between 
groups, as well as Mann-Whitney U tests to compare between the two Age groups 
after a median split (see below). We also calculated the Spearman’s rho coefficient 
for correlations between variables. The main descriptives for each complexity level 
are reported in Table 2.1.   

Table 2.1  

Means and SDs for Accuracy and Time spent per Object in each condition 
 Accuracy – 

Free 
Movement  

Fitting 
Time 
(ms) 

Accuracy 
- Gesture 

Respons
e Time – 
Gesture 
(ms) 

Accuracy 
– No 
Moveme
nt 

Response 
Time – No 
Movement 
(ms) 

Complexity 1 0.913 

(0.288) 

5144.34 

(4842.80) 

0.708 

(0.464) 

3529.64 

(2041.36) 

0.713 

(0.657) 

4073.88 

(3663.84) 

Complexity 2 0.783 
(0.421) 

7642.39 
(6515.53) 

0.833 
(0.381) 

3223.59 
(1800.57) 

0.798 
(0.985) 

4826.13 
(3124.25) 

Complexity 3 0.565 

(0.507) 

17505.83 

(16389.17) 

0.542 

(0.509) 

5539.05 

(4319.71) 

0.493 

(0.596) 

6499.82 

(4898.69) 

Complexity 4 0.522 

(0.510) 

19110.21 

(14975.47) 

0.543 

(0.592) 

4340.45 

(2559.40) 

0.477 

(0.558) 

2977.11 

(1080.56) 

 

 

The participants’ Age did not significantly affect their accuracies in any 
condition (Free Movement: χ2(2) = 2.769, p = .250, Gesture: χ2(2) = .447, p = .800, 
No Movement: χ2(2) = 1.341, p = .512). In an attempt to reveal developmental 
differences within the age range we examined, we split the children (based on 
median age) into Younger and Older participants. The effect of Age Group was still 



 38 

not significant (Free Movement: U = 91.5, p = .221. Gesture: U = 56, p = .326, No 
Movement: U = 67.5, p = .786). 

Moreover, there were no statistically significant differences in accuracy 
between the different movement conditions (χ 2(2) = 2.032, p = .362) either.   

The four objects differed significantly in number of attempts to fit in the holes 
in Free Movement condition (χ2(3)=24.387, p <.001) (Figure 2.5). Post-hoc analyses 
with Wilcoxon signed-rank tests showed significant differences between the attempts 
to fit Object 1 compared to Object 3 (Z = -3.264, p = 0.001) and compared to Object 4 
(Z = -3.253, p = 0.001). Similarly, attempts to fit Object 2 differed significantly from 
attempts to fit Object 3 (Z = -2.857, p = 0.004) and Object 4 (Z = -3.041, p = 0.002). 
On the other hand, attempts to fit the two simplest objects did not differ significantly 
(Z = -1.403, p = 0.161) and neither did the attempts for the two more complex ones 
(Z = -0.076, p = .939).  

 

Figure 2.59  

Number of fitting Attempts per Object in Free Movement Condition 
 

 

 

 

 

 

 

 

The Fitting Time between the objects in Free Movement condition also 
differed significantly (F(3)=9.708, p < .001) (Figure 2.6a). Specifically, Object 1 took 
significantly less time to fit than Object 3 (p = .007), and Object 4 (p < .001). Also, 
Object 3 took significantly less time to fit than Object 4 (p = .006). There was a 
significant difference in Response Times for each object in Gesture condition (F(3) = 
2.831, p = .045). Post-hoc tests however did not show significant differences between 
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Response Times for each of them (Figure 2.6b). In the No Movement condition, 
Response time again differed significantly (F(3) = 7.059, p < .001; Figure 2.6c) 
between objects. Specifically, Object 3 took significantly more time to fit than Object 
1 (p = .024) and Object 4 (p = .002). The fact that Object 4 did not have the greatest 
difficulty to fit in No Movement condition, was probably because it was chosen last 
by the children to fit, after answering for the previous objects  – it was thus a 
restrained choice. 

Figure 2.610  

Fitting/Response time per Object in a) Free Movement, b) Gesture, and c) No 
Movement condition 

 

 

 

 

a)                                                          b)  

 

 

 

 

               c)        

 

Furthermore, the Planning to Fitting time ratio did not correlate significantly 
with Age (r=0.076, p = .366), but it positively correlated with Accuracy in Free 
Movement (r=0.345, p = .05), suggesting that spending more time to plan the 
transport and rotation produced more accurate fittings (Figure 4a).  

Working memory levels positively correlated significantly with Age (r=0.607, 
p = .001) and showed a trend but did not significantly correlate with Accuracy in 
Free Movement (r=0.304, p = .085), neither with Accuracy in Gesture (r=0.064, 
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p=.38), nor with Accuracy in No Movement condition (r=0.162, p = .22).  Finally, the 
amount of Pointing in Gesture condition was not associated with Age (r=-.266, p=.11) 
nor with Working Memory (r=.132, p=0.56).   

 

2.4. Discussion 

Our findings confirm our first hypothesis that preschoolers would find it more 
difficult to fit the more complex objects in the Free Movement condition, needing 
more time and more attempts to achieve this. However, the difference between the 
two simpler and the two more complex objects was not systematic – children needed 
more time to fit Object 4 than Object 3, but they made an equal number of attempts. 
Similarly, they spent a similar amount of time to fit Object 1 and 2. The fact that the 
object complexity did not produce a linear increase in difficulty can also be observed 
in the Gesture condition, where response time differences between the simpler 
objects and Object 3 was marginal – and non-significant in the pairwise 
comparisons. A consequence of our design in the Gesture and No Movement 
conditions made it impossible to actually measure the response time for Object 4 
meaningfully (it was always last and so the possible solutions was much more highly 
constrained than for the other objects) so it is difficult to draw conclusions about it. 
That said, this lack of consistency in the effects of object complexity observed is also 
probably explained by the exact geometrical features we manipulated in their design: 
Object 1 and 2 differed in their symmetry but they could be fitted in the same number 
of ways, while Object 3 and 4 had their complexity manipulated in a non-comparable 
way: either across symmetry, or across the axis of elongation which should be used to 
fit the aperture. To better control and measure such effects, these characteristics 
should be manipulated separately, as it has been shown in previous studies (Fragazcy 
et al, 2015; Ornkloo & vanHofsten, 2007; Street, James, Jones, & Smith, 2011). 

  Moreover, we did not find significant age differences in terms of accuracy, 
suggesting that, although the different skills relevant to object fitting are still 
developing during our age range, and different children are more or less proficient, 
all children eventually manage to fit the shapes successfully given enough time. Since 
we were mostly interested in the fitting process, we did not use a stricter measure of 
accuracy (e.g., successful pre-adjustments, as in Ornkloo & vanHofsten, 2007). When 
looking into the fitting process, a difference between more and less efficient fitters 



 41 

was evident and had a significant correlation with the time that the children spent 
planning (by looking and manipulating the object) before they decide to transport it 
towards a hole. This different strategy could be explained by a lower ability to 
mentally represent and remember many spatial relations between object parts (e.g., 
asymmetrical shapes need larger amounts of information to be processed and stored) 
and, thus, a lower ability to mentally rotate. As a result, when this offline capacity is 
lower, the environment has to be exploited more in order to support the mental 
processes – in this case, more actual comparison of the object and the aperture until 
they are aligned.  

Another interesting – and possibly related - observation in the Gesture 
condition, was that children used pointing gestures to guide their attention to 
relevant items and to highlight their important characteristics as they attempted to 
choose the correct hole for each object, although they did not use representational 
gestures. In this case, hands were possibly used as a stable mnemonic anchor in the 
environment that allowed them to move their eyes less between the possible 
solutions.  

Such connection between pointing and eye movements has been reported 
before (Cappuccio, Chu & Kita, 2013). However, we did not find a relationship 
between the pointing behavior and WM. This might be explained by the different use 
of pointing by children, both as a communicative gesture to answer questions and as 
a mnemonic support – these two types of pointing were not differentiated in our 
coding scheme and could thus have obfuscated the actual effect. To actually tap into 
attentional processes and how hand movements are possibly used to direct the eyes 
(an hypothesis opposite or complimentary to visually-guided action which we 
previously discussed) would need a detailed real-time capture of eye and hand 
movements during real and imagined object manipulation. Unfortunately, while 
planned, this was not possible because of the Covid pandemic and the associated 
testing restrictions. 

Finally, since accuracy was not compromised when hand movements were 
prohibited (No Movement condition), we conclude that, while useful in directing 
attention, gestures were not necessary for children to solve this particular task. 
However, we should emphasise that most studies that report a benefit in 
performance from co-thought gestures in mental problem-solving tasks explicitly 
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encourage people to use gestures to help themselves (e.g., Chu & Kita, 2011), whereas 
we expected this behaviour to be expressed in a spontaneous way. 

In general, our experimental design would benefit from more nuanced 
manipulation of object complexity across different attributes, along with measures 
which will reveal eye and hand movements during fitting and mentally rotating 
objects – as well as possible standardised measures of mental rotation skills. This 
would allow as to record aspects of the fitting process in more detail, as well as the 
interplay between action and vision, specifically in the context of using the body 
while sampling and processing information in the environment. 

In the next chapter we move to investigating the value of information for 
different age groups, and we explore how school-aged children, adolescents and 
adults balance their preferences between gaining external rewards, resolving their 
uncertainty and exploring novel stimuli. We will return to an examination of object 
complexity and its effect on preschoolers’ exploration in Chapter 4.  
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Chapter 3 

 

Real-time planning of explorative and exploitative 
actions across development: Four mouse-tracking 
studies 

 

3.1. Introduction 

From a very early age humans act intentionally on their environments in order 
to reach a desirable state (e.g, obtain a goal). This desired goal can be an internal or 
external state and can be reached in a shorter or longer time.  Everyday life is a 
constant balancing act or struggle between these two types of goals. Goal-directed 
actions, as a psychological process, have been predominantly investigated in 
instrumental contexts, where an agent aims to change the state of the world and 
success is externally rewarded. However, humans constantly also plan epistemic 
actions, where they aim in changing their internal knowledge state (i.e., they actively 
interrogate their environment to gain information and improve their understanding 
of the world). These actions are also rewarded but by experiencing the intrinsic value 
of the learning progress, rather than obtaining a clear external reward such as food.  

As both types of rewards (internal and external) motivate actions, humans 
often experience conflict between choosing a known, rewarding option and the 
option to try something new (e.g., a new bar, a new holiday destination, a new toy).  
This situation is known as the exploration-exploitation dilemma (Sutton & Barto, 
2018; Cohen, et al., 2007; Melhorn et al., 2015), This dilemma highlights the 
following problem: sticking to the familiar option will yield immediate and 
predictable rewards, but might never lead to more rewarding options, whereas trying 
the new option might or might not lead to external reward, but it will lead to learning 
and will improve future decisions. The optimal solution to this dilemma is dependent 
on the specific demands of the decision context. For instance, increased exploration 
is optimal when the agent has less knowledge about the environment or when the 
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environment changes frequently and has large variability, whereas exploitation is 
better suited for known environments that remain relatively stable. Thus, the best 
choice might depend on context and also perhaps on the level of development (e.g., 
children might benefit from broader exploration in general, as their knowledge of the 
world is smaller).  

In fact, children have indeed been shown to explore more in uncertain 
situations (i.e., where information is ambiguous and contradicting or when prior 
knowledge assumptions are violated; Bonawitz, van Schijndel, Friel, & Schulz, 2012; 
Cook, Goodman, & Schulz, 2011; Schulz & Bonawitz, 2007; Taffoni et al., 2014; 
vanSchijndel Visser, van Bers, & Raijmakers, 2015). More specifically, children seem 
to keep exploring while there is still learning progress and uncertainty in their 
environment (Liquin, Callaway, & Lombrozo, 2021: Ruggeri, Pelz, Gopnik, & Schulz, 
2021). Similar findings have been reported with infants (Addyman & Mareschal, 
2013; Chen, Westermann, & Twomey, 2022; Kidd & Haynes, 2015; Kidd, et al., 2014; 
Poli et al., 2020; Sim & Xu, 2017).  

However, although common experience and theory have suggested that 
infants and young children are more explorative than adolescents and adults, or at 
least that their exploration is broader (Gopnik, 2017; Sumner et al., 2019), research 
has only recently started to shed light on the exact differences in their exploratory 
strategies. Specifically, it has been suggested that children might be different in the 
relevant amount of directed and random exploration they engage in when searching 
a new environment (Gopnik, 2017; Wilson et al., 2021). Since directed exploration is 
considered a more sophisticated ability, it has been suggested that it could be related 
to the development of cognitive control (Blanco, et al., 2015; Badre, Doll, Long, & 
Frank, 2012; Otto, Knox, Markman, & Love, 2014). However, the dissociation 
between directed and random exploration is based on the presence vs. absence of 
sufficient knowledge to guide behaviour, while different informational attributes 
might also be relevant for exploratory behaviour, and might possibly be weighted 
differently in different ages. Specifically, it could be the case that novelty might 
influence exploration in a dissociable way compared to uncertainty, reflecting a 
broader possibility for learning. In this case, it would stand somewhere between 
directed exploration which focuses specifically on missing parts of information, and 
random exploration, which reflects a complete lack of knowledge, i.e., if one doesn’t 
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know the specific source for uncertainty resolution, choosing a new option will 
always facilitate learning. The separate influence of novelty on learning is 
documented since infancy (e.g., Poli et al., 2020), but the relative influence of 
uncertainty and novelty across development is still not extensively studied.   

Several recent studies have directly tried to assess the differences in 
exploratory strategies in children, adolescents and adults. For example, in a study by 
Schulz et al. (2019), children in middle and late childhood and adults completed a 
spatially correlated multiarmed-bandit task. Children engaged in more directed 
exploration and generalised less than adults, but they did not show any differences in 
the amount of random exploration. Similarly, Meder et al. (2021) used a similar task 
to study children’s exploration strategies at 4 and 9 years of age, finding that random 
exploration decreased as children grew older. They also found evidence of directed 
exploration in the youngest group. Somerville et al., (2017) studied 12 to 28 year-
olds, showing that adolescents were strongly driven by immediate rewards. Jepma, 
Schaaf, Visser and Huizenga (2020) compared adolescents’ and adults’ exploratory 
strategies and learning rates and showed that, overall, adolescents explore more and 
assume greater environmental volatility compared to adults. Recently, in an attempt 
to dissociate between the influence of novelty and uncertainty, Nussenbaum et al. 
(2022) studied participants aged from 8 to 27 years in an exploration task that 
separately manipulated stimulus novelty and reward uncertainty. They found that 
children explored the uncertain option more than older participants, but risk 
aversion was probably a strong factor which influenced adolescents’ and adults’ 
behaviour. Overall these findings point towards certain directions but show that the 
relationship between maturation and the exploration-exploitation balance is still 
unclear.   

Taking these open questions into account, we designed and conducted a series 
of studies that aim to address some aspects of the exploration-exploitation dilemma 
across development. The studies explore the ongoing conflict between possible 
behavioural options during a choice decision process, and its relation to cognitive 
control. We designed a decision-making task in which participants had to choose 
between three possible options across a number of trials: (i) an externally rewarding 
option (hereafter called ER), (ii) an option revealing missing information (hereafter 
called IR, informational reward) and (iii) an option offering random novel 
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stimulation (hereafter called NS). The task differed in some aspects from a classic 
explore-exploit task (e.g., n-armed bandits; Sutton & Barto, 2015; Witten, 1977) in 
several ways. First, we were interested in dissociating informational value from the 
acquisition of the reward, such that learning could be motivating per se, regardless of 
one’s desire to obtain a reward. Second, we were interested in both short-term and 
long-term rewards (both external and intrinsic) because real-life situations often 
involve persistence in the face of other valuable distractors to achieve a reward (e.g., 
as in delay discounting tasks; da Matta, Goncalves, & Bizarro, 2012). Previous studies 
have also shown that longer temporal horizons make exploration more valuable 
(Somerville et al., 2017; Wilson et al., 2014). Finally, our task had pre-established 
and stable external rewards, which the participant explicitly learned from the 
training phase, in order to avoid exploration and curiosity relevant to the reward 
(i.e., they knew exactly what they should choose to obtain the reward, and what this 
reward would be).  

We were also interested in investigating the role the development of cognitive 
control on the selection of a specific exploratory strategy. To this end, we drew from a 
different research line suggesting that subtle differences in hand movements can 
reveal differences in participants’ cognitive control during real-world online decision 
making. For example, control processes such as inhibition and attention can be 
revealed by tracking hand movements in a 3D space (in adults: Erb, Moher, Sobel, & 
Song, 2016, and in children: Erb, Moher, Song, & Sobel, 2017, 2018), as well as 
mouse movements in computerised tasks (Benedetti, Gronchi, Gavazzi, Bravi, 
Grasso, Giovannelli, & Viggiano, 2021; Dieciuc, Roque, & Boot, 2019). Mouse-
tracking is widely used to assess ongoing decision processes, and often also to reveal 
preferences in value-based decision making (Koop & Johnson, 2013; O’Hora et al., 
2016). Because our task involved comparisons between subjective values of different 
options, this seemed an appropriate way to reveal differences in individuals’ 
subjective evaluations that might be overlooked by simply focusing on their final 
choices.  

Specifically, based on the literature reviewed above, we anticipated differences 
between age groups in their choice preferences in the decision-making task, such that 
the child group would choose the NS option more than the other two groups, who 
would not differ in terms of preferences for the NS option. We also expected 
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adolescents to choose the ER option more than the other options. Furthermore, we 
expected to find differences in their mouse movements, such that the children’s 
movements would reflect greater conflicts between the ER and IR options, as well as 
the IR and NS option than either adolescents or adults. More specific hypotheses in 
each experiment are discussed separately below.  

 

3.2. Experiment 1 

In our first experiment, we compared children from 5 to 9 years of age, 
adolescents aged 13 to 16 years and adults up to 35 years. The age range was chosen 
to reflect the age ranges of similar experiments (e.g., Wu et al., 2019). Pilot studies 
also revealed that 5 years of age was a lower bound of children who could (i) use a 
mouse efficiently, (ii) complete the task, and (iii) not produce too much extreme 
movement noise.  

The decision-making task involved choosing between three options, but in a 
two-alternative forced choice format per trial (2AFC; i.e., participants had to choose 
one of the two presented options for the experiment to proceed). This allowed for 
direct comparisons between different dilemmas. In this initial task, each 
experimental block ended when the participants obtained the ER, or when a 
maximum number of 27 trials elapsed, allowing participants to win the ER without 
completing the total number of the block trials (e.g., by consistently making hard ER-
driven choices). This strategy provided a short temporal horizon and could thus lead 
to less exploration if participants were very reward-oriented.  

We expected all groups to obtain the ER in the majority of the blocks, but to 
show differences in the frequencies of their choices of IR and NS. We also expected 
all groups to choose IR more than NS, but children to choose NS more than 
adolescents and adults, sacrificing some of their IR choices to explore NS. In terms of 
movement parameters, we anticipated differences in temporal parameters and 
geometrical-complexity parameters in different dilemmas in all age groups. 
Specifically, we expected more conflict (i.e., longer times, later commitment, more 
deviation, more entropy) in ER-IR and IR-NS dilemmas for children, whereas we 
anticipated more conflict in ER-IR for adults. Adolescents might also be conflicted in 
ER-IR, but individual differences might be large.  
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3.2.1. Methods 

3.2.1.1. Participants 

Our participants consisted of 23 children (5 females, mean age: 7.09 years), 
20 adolescents (12 females, mean age: 14.47 years) and 20 adults (11 females, mean 
age: 32.5 years). All participants were neurotypical and had normal or corrected-to-
normal vision. The participants were volunteers recruited mainly from word-of-
mouth and though the Birkbeck Babylab database. They received a £5 Amazon 
voucher for their participation.   

3.2.1.2. Design 

Participants in all age groups had to complete three experimental blocks of a 
maximum of 27 trials each. In each trial, two of the total three options (selected 
randomly) appeared on the screen. The participants had to choose an option in a 
2AFC format for one of the following dilemmas: External Reward vs. Informational 
Reward (ER-IR), External Reward vs.  Novel Stimulation (ER-NS), or Informational 
Reward vs. Novel Stimulation (IR-NS). When the External Reward (ER) option has 
been chosen for nine times in total, the participant won the reward and the block 
ended. Otherwise, the trials continued until ER was acquired or a total of 27 trials 
was completed. This means that the maximum number of choices of the other 
curiosity options could be for a maximum of 18 for each type of curiosity (total 
number of trials (27)/3 options = 9, presented by 2 every time, i.e., 18 times for each 
option), whereas the ER option could only ever be chosen for a maximum of 9 times 
within a block.  

3.2.1.3. Stimuli and procedure 

Due to the COVID-19 pandemic measures, the task was delivered online, 
through the participant’s own home computer using a computer mouse. The use of a 
laptop’s touchpad was not encouraged but it was allowed. Participants could also use 
a tablet. The task was presented as a game in which participants had to make 
decisions between three dogs and gain a reward at the end of every block, based on 
their choices. The choice was operationalised by clicking on a dog bone and dragging 
it towards one of two possible dogs. (Figure 3.1). The reward strategy was explicitly 
stated from the beginning: They were told that choosing one of the dogs (the red one) 
led to the accomplishment of the main goal: the construction of a tower – but they 
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were not explicitly encouraged to do so. However, the other two options were also 
designed to be attractive, although not explicitly rewarded.  

 

Figure 3.111  

The different dilemmas (ER-IR, ER-NS, IR-NS). 

 

More specifically, the game unfolded as follows:  

(i) Training trials: One of the three dogs (red, green or yellow) appeared in 
random positions at the top of the screen. Every dog appeared for 9 trials. The 
participants had to drag the bone from the bottom middle starting location 
and drop it on the dog. When they achieve this, the screen changed to one of 
three possible situations (see Figure 3.2). When the red dog was chosen (an 
ER choice), a screen with a tower appeared. Every time this option was 
chosen, another block was added onto the tower until it reached a cloud. 
When the yellow dog was chosen (an IR choice), a screen with a puzzle 
appeared. Every time this option was chosen, another piece of the puzzle was 
revealed. When the green dog was chosen (an NS choice), a screen with a 
cartoon character appeared. Every time this option was chosen, a different 
character would appear. 
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Figure 3.212   

The effects associated with each choice: Red Dog: Build the tower with increasing 
blocks (main goal – Externally Rewarded), Yellow Dog: Reveal the puzzle with 
increasing pieces filled (Informational Reward), Green Dog: See a new image 
(Novel Stimulation) 

 

 

(ii) Experimental trials: two of the three dogs (pseudo-randomly selected) 
appeared in one of two fixed positions each, at the top of the screen. The 
participants had to drag the bone to one of the dogs, thereby making a choice. Α 
bar with the remaining lives to the end of the block could be seen on the right side 
of the screen, decreasing one at a time with every choice (Figure 1). Depending on 
the choice, the relevant second screen appeared, as in the training set. Whenever 
the participant managed to complete the tower (by choosing the red dog 9 times), 
the block ended and a WIN screen appeared, followed by a screen which showed 
the rewards gained. Otherwise, trials continued until a maximum number of 27 
was completed. In this case, a TRY AGAIN screen appeared. Children completed a 
slightly different version of the task than the one for the adolescents and adults. 
Specifically, the puzzles in the child version showed scenes from the popular 
cartoon movie “Monsters Inc.” (Figure 3.3a) and the character images were 
animal cartoons (cats, penguins and jungle animals; Figure 3.3b). In contrast, in 
the adolescent and adult version the puzzles showed surrealistic collages (Figure 
3.3c) and the character images were animal photographs (cats, dogs and horses; 
Figure 3.3d). Furthermore, the children’s rewards were images of donuts and a 
maximum of three could be gained, one for each block of trials. The adult and 
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adolescent rewards were images of shop vouchers, and a maximum of three could 
be gained as well. In both cases the promise of winning the actual rewards (sweets 
and vouchers) was made.  

 

Figure 3.313   

Examples of IR and NS stimuli for children’s and adolescents-adults’ versions.a) 
Children IR, b) children NS, c) adolescent-adult IR, d) adolescent-adult NS 

a)                                  b)                                   c)                                 d) 

The participants were contacted via video-calls and, after some familiarisation 
with the experimenter, they were asked for consent. They were then presented with 
the training trials. After completing this, the instructions of the main game were 
explained to them. They were given the time to ask any relevant questions that they 
may have about playing the game. After each set of experimental trials (a block), the 
participants were reminded of the instructions. More specifically, they were 
reminded that the puzzles and characters would be novel for the new block. 

 

3.2.2. Results 

No participants were excluded from this experiment, although there were 
three individuals (2 children and 1 adult) who did not complete the final block of 
trials due to technical issues with their computers. We first describe the choice data 
and then report the motion parameter analyses. 

 

3.2.2.1. Choices analyses 

Table 3.1 shows the main descriptives for the different choices made by each 
age group. We first compared how many times each group chose each option with a 
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two-way ANOVA and found a significant interaction between Age Group and Option 
(F(3.612,120) = 2.706, p = .039, Greenhouse-Geiger corrected). Post-hoc Bonferroni-
corrected comparisons showed that in total, participants chose the ER option more 
than the IR option (p<.001) and the IR option more than the NS option (p<.001) 
(Figure 3.4a). Simple effects revealed that adolescents chose the ER option 
significantly more than adults (p = .041), but not children (p = .702), while children 
and adults also did not differ in their ER choices (p = .513). Furthermore, groups did 
not differ in their IR choices, but adults chose the NS option significantly more than 
adolescents (p = .026). There was no significant difference between the children and 
adolescents (p = .998) and children and adults NS choices (p = .208). Within each 
group, children chose the ER option significantly more often than the IR option (p < 
.001) and the NS option (p < .001). They didn’t differ in their IR and NS choices (p = 
.059). Adolescents chose ER significantly more often than the IR option (p < .001) 
and the NS option (p < .001). They also chose the IR option more often than the NS 
option (p = .007). Adults only had a marginally significant difference in their ER and 
NS choices (p = .051). Their ER and IR choices did not differ (p = .374), neither did 
their IR and NS choices (p = .210). 

 

Table 3.12  

Means and SDs of choices per Option for each age group 
 

 

 

 
 

 

 

 Children  Adolescents Adults 

External Reward 8.287 (1.050) 8.842 (0.688) 7.939 (1.605) 

Informational 
Reward 

5.515 (2.260) 5.280 (2.480) 6.787 (2.793) 

Novel Stimulation 3.893 (3.197) 3.017 (1.995) 5.257 (3.733) 
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Figure 3.4 14 

 a) Differences between Option choices across groups, b) The younger adolescents 

group had no significant difference in the number of IR and NS choices.  
 

 

 

Since the children and adolescent group had a large age range, within which 
developmental differences in decision-making might occur, we split these two groups 
into two each and examined their choices (Figure 3.4b). The two child age groups (5-
7.5 year-olds, 7.5-9 year-olds) did not differ in terms of choices (F(1,21) = .054, p = 
.818) and had the same pattern of significant differences between all options. 
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However, there was a significant interaction between membership in the adolescent 
age groups (13-14 year-olds, 15-16 year-olds) and choice (F(2,34) = 5.440, p<.01). 
Specifically, the younger adolescent group had no difference in their choices between 
the IR and NS options, similar to the children group. 

 

3.2.2.2. Mouse-tracking analyses 

Pre-processing of movement data 

To analyse the data we collected through mouse-tracking, we broadly followed 
the process discussed by Wurff et al. (2021). To preprocess the data and calculate the 
variables of interest we used the package mousetrap 
(http://pascalkieslich.github.io/mousetrap/), which was built by Wurff and 
colleagues in the R programming language (R core team, 2020). Further statistical 
analyses were also performed using R. The Mousetrap package allows for the 
calculation of the most commonly used parameters in decision-making experiments; 
namely, trajectory indices and temporal measures, while offering some more 
sophisticated analysis options regarding types of trajectories that are commonly 
observed in such experiments. In our experiment, although we calculated a range of 
several measures, we will be reporting the analyses of five trajectory indices: three 
curvature measures, Maximum Absolute Deviation(MAD), Maximum deviation 
above the ideal line (MDabove; i.e., taking into account only the deviation towards 
the alternative option) and Area under the Curve(AUC); one complexity measure (x-
flips); and one temporal measure, Response Time (RT)). Furthermore, we fitted the 
trajectory data to predefined (by the mousetrap package) trajectory types which are 
believed to reflect different cognitive processes such as discrete vs. continuous 
decision-making process (Wulff, Haslbeck, Kieslich, Henninger, & Schulte-
Mecklenbeck, 2019). We observed instances of all the proposed trajectories: Straight, 
Curved, Continuous Change of Mind (cCoM), Discrete Change of Mind (dCoM) and 
Double Discrete Change of Mind (dCoM2). We then compared the frequency of these 
types in each dilemma.  

Το calculate these parameters, we spatially and temporally normalized our 
raw data (for trajectory and temporal measures respectively), and filtered out any 
anomalous trajectory that deviated by more than 2 SDs from the different prototypes 
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already included in the mousetrap package. These trajectories are basically the ones 
with “erratic output producing non-interpretable looping cycling leftward and 
rightward” (Freeman et al., 2008).   

 

Analyses 

Table 3.2 shows the main descriptive values for all movement parameters and 
Table 3.3 depicts the frequency of trajectory types per dilemma and Age Group. We 
used R (R Core Team, 2020) and lme4 (Bates, Maechler & Bolker, 2012) to perform a 
mixed effects analysis of the relationship between each parameter and the three 
choice environments (Dilemmas: ER-IR, ER-NS, IR-NS). We used the log-
transformed values for RTs, as these violated the normality assumption (a common 
case with response times data, Lo & Andrews, 2015). Moreover, we built generalised 
mixed effects models for MDabove, using a Gamma distribution with a log link 
function, and similarly for xflips, using a Poisson distribution with a log link 
function. To compare the frequencies of trajectory types per Dilemma and Age 
Group, we performed ordinal regressions, using a cumulative link mixed model. For 
all the measures, as fixed effects, we entered Dilemma and Age Group and their 
interaction into the models. To incorporate the dependency among observations of 
the same subject and dilemma, as random effects, we had intercepts for subjects and 
by-subject random slopes for the effect of Dilemma. For example, the model for RTs 
including all age groups was the following:  

RT.model = RT ~ Dilemma*AgeGroup + Dilemma + AgeGroup + 
(1+Dilemma|subject)  

P-values were obtained by restricted maximum likelihood ratio tests of the full model 
with the effect in question against the model without the effect in question (chi-
square tests for nested models). 
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Table 3.23  

Means and SDs for movement parameters per Dilemma and Age Group 
  Children Adolescents Adults 

Featuresa   Mean SD Mean SD Mean SD 

Maximum 
Absolute 
Deviation 

(MAD) 

ER-IR 

ER-NS 

IR-NS 

40.24    

21.52 

54.62    

139.84 

122.30 

165.12    

21.45  

17.33  

34.91    

121.84 

101.45  

127.19    

19.06  

19.32   

44.43    

118.34 

112.02 

156.06 

Maximum 
Deviation 

above ideal 
line 

(MDabove) 

ER-IR 

ER-NS 

IR-NS 

66.92    

53.61  

86.79    

121.24 

102.90 

137.80   

47.25  

42.63  

57.55    

106.55 

84.24   

112.33    

48.65   

48.06   

69.69    

101.06 

93.83 

140.39      

Area Under 
the Curve 

(AUC) 

ER-IR 

ER-NS 

IR-NS 

10378.46  

4902.83 

14984.84  

44327.26 

35770.59 

45897.18 

6125.90 

3882.43  

8939.75  

41060.39 

32221.04 

39801.28 

2946.68 

2944.88  

8593.42  

32365.41 

29655.73 

41403.56 

x-flips ER-IR 

ER-NS 

IR-NS 

1.09     

0.96  

1.21      

1.46 

1.13 

1.58     

0.51  

0.51    

0.57      

0.79 

0.84 

0.85       

0.70     

0.77   

0.76      

0.99 

0.91 

1.15    

Response 
Times 

ER-IR 

ER-NS 

IR-NS 

1340.56   

1347.69  

1424.55   

1041.81 

1018.71 

1030.61 

927.63    

974.56   

966.09    

534.11 

631.35 

571.01 

904.53   

900.37 

950.44    

491.15 

515.89 

601.66    

aAll time related values are presented in milliseconds (ms), all position related values 
are presented in pixels (px), area (AUC) is displayed in px2. 

 
The unfolding of aggregated trajectories across time steps for each Dilemma can be 
seen at Figure 3.5. There was no significant DilemmaXAge Group interaction effect 
on MAD (χ2(4) = 1.991, p = .738). However, the type of Dilemma significantly 
affected MAD (χ2(2) = 28.192, p <.001). Specifically, there was greater deviation in 
the IR-NS dilemma than the ER-NS (p = .003) and the ER-IR (p = .022) (Figure 
3.6a). There was no significant difference due to Age Group (χ2(2) = 1.913, p = .384). 
No significant interaction between Dilemma and Age Group was observed for 



 57 

MDabove (χ2(4) = 2.084, p = .720), but type of Dilemma significantly affected 
MDabove (χ2(2) = 32.986, p <.001) (Figure 3.6b). There was greater deviation in the 
IR-NS dilemma than the ER-NS (p <.001) and the ER-ER (p <.001). Age Group did 
not have a significant effect (χ2(2) = 2.220, p = .330). Furthermore, there was no 
significant DilemmaXAge Group interaction effect on AUC (χ2(4) = 2.168, p = .705). 
Type of Dilemma had a significant effect on AUC (χ2(2) = 11.773, p = .003), with the 
IR-NS dilemma having larger AUC than the ER-NS (p = .003) (Figure 3.6c). No 
significant effect was observed due to Age Group (χ2(2) = 3.566, p = .168). There was 
no significant DilemmaXAge Group interaction effect on xflips (χ2(4) = 6.888, p = 
.141). No main effect of Dilemma was observed (χ2(2) = 2.385, p = .304), but there 
was a main effect of Age Group (χ2(2) = 16.653, p < .001). Specifically, children did 
more xflips than adolescents (p<.001) and adults (p = .021). Last, no significant 
DilemmaXAge Group interaction effect was observed on RTs (χ2(4) = 1.290, p = 
.863). There was a main effect of Dilemma on RTs (χ2(2) = 6.269, p = .043) (Figure 
3.6d). Specifically, participants were slower at the IR-NS dilemma than the ER-IR 
dilemma. There was also a significant effect of Age Group on RTs (χ2(2) = 11.850, p = 
.003). Specifically, children were slower than adolescents (p = .030) and adults (p = 
.007).  

Figure 3.515  

Change of mouse position on x-axis during the progress of each trial (time-
normalised trajectories). Data have been aggregated for each dilemma. A slower 
unfolding of the decision at the IR-NS dilemma can be observed in the full sample 
data (a). Different unfolding of decisions over time can be observed in children (b), 
adolescents (c) and adults (d). 

 

a) 
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b) 

 

c) 

 

d) 
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Figure 3.616  

Trajectory indices per Dilemma, a) MAD, b) MDabove, c) AUC, d) RTs 

 

 

 

 

a)                                                                   b) 

 

 

 

 

 

 
Table 3.34  

Frequencies of trajectory types per Dilemma and Age Group. 
 Straight Curved cCoM dCoM dCoM2 

ER-IR 

ER-NS 

IR-NS 

805 

840 

739 

140 

136 

145 

30 

35 

44 

24 

14 

39 

4 

5 

7 

Children 

Adolescents 

Adults 

616 

748 

1020 

233 

105 

83 

47 

22 

40 

27 

24 

26 

5 

1 

10 

c) d) 
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An illustration of all trajectories clustered in different types can be seen in 
Figure 3.7. There was no significant DilemmaXAge Group interaction effect on the 
types of trajectories (χ2(4) = 1.323, p = .858). There was a significant effect of 
Dilemma (χ2(2) = 14.490, p <.001), and specifically the IR-NS dilemma was 
significantly different from ER-NS (p<.001) and ER-IR (p = .013). To look further 
into these differences, we compared each type of trajectory per type of Dilemma 
separately. We found that the IR-NS dilemma marginally differed in straight 
trajectory paths (F(2, 110) = 2.978, p = .055), especially when compared to ER-IR (p 
= .003). Also, the IR-NS dilemma had significantly more trajectories that showed a 
discrete change of mind (F(2, 110) = 2.863, p = .004) and specifically more than the 
ER-IR (p = .003). There was also a significant main effect of Age Group (χ2(2) = 
13.261, p = .001). Children differed from adolescents (p = .02) and adults (p < .001) 
in their types of trajectories frequencies. Specifically, children differed in terms of 
their frequency of straight paths (F(2,54) = 7.874, p = .001), which were significantly 
less than the adults’ one (p = .001).   

Figure 3.717  

All observed trajectories as they have been automatically clustered in five different 
prototypes by mousetrap, a) Total sample, b) Children, c) Adolescents, d) Adults 

a)  
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b)  

c)  

d)  

 
3.2.2.3. Summary of results 

We observed significant differences in participants’ choices overall and per 
age group. Adolescents chose the ER option more than adults, but not more than 
children, and the NS option less than adults but not less than children. Children did 
not differ from the other groups in any of their option choices. Furthermore, children 
and adolescents chose the ER option more than the IR and the NS options, and only 
adolescents chose the IR option more than the NS option. Adults, on the other hand, 
did not differ in terms of their ER and IR choices, and chose ER marginally more 
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often than the NS. When splitting the adolescent group in younger and older 
participants, we found that the younger group chose the ER more than the IR and NS 
options (which did not differ), while the older group chose ER more than IR and NS, 
and IR more than NS. 

Regarding movement parameters, the type of dilemma significantly affected 
all three curvature measures (MAD, MDabove and AUC), RTs and trajectory types. 
Specifically, in all age groups, participants’ trajectories deviated more towards the 
alternative option in the IR-NS dilemma than in the other two, which did not 
significantly differ. Their movements in the IR-NS dilemma were also significantly 
slower compared to the other two dilemmas, and their trajectory paths showed a 
discrete change of mind more often than in the ER-IR dilemma. Age groups 
significantly differed in their movement complexity. Specifically, children did more 
x-flips, and their trajectories followed a straight path significantly less often than 
adults. 

 

3.2.3. Discussion of Experiment 1 

The results suggested that all groups were interested in completing the main 
goal and achieving the external reward. Furthermore, children and adults were not 
drawn more to the option with informative value than the option only offering novel 
stimulation, which was the case only for adolescents. However, we did not find a 
difference in the frequency of adult choices when they were choosing between the ER 
and the IR option. The adult approach could be considered the optimal strategy, as 
the design of the task allowed for achieving both the external reward and the learning 
goals, with efficient planning of the future choices early in every block. This strategy 
may therefore indicate mature cognitive control or greater experience present in the 
adults. At the same time, adolescents showed a different pattern to adults, choosing 
the ER option more than the IR option. This is consistent with adolescents’ 
previously reported preferences for external rewards (Somerville et al., 2017). 
However, it is possible that some exploratory strategies were hidden by the fact that 
the procurement of the external reward led to the termination of the block (especially 
in adolescents who favoured the ER choice). Therefore, we decided to change this in 
our next experiment. Furthermore, when we split the adolescents group we found 
that younger teens were less interested in the IR similar to the one-goal approach 
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that children had, but older teens preferred IR to NS, getting closer to a possibly 
more mature strategy. However, since the split adolescent groups consisted of only 
10 participants each, so it might be that the observed difference was heavily 
influenced by individual differences and not revealing of a meaningful group 
developmental difference.  

In addition, we observed a clear difference between different dilemmas in 
several mouse-tracking parameters, suggesting a difference in the decision-making 
process in the IR-NS dilemma, especially as compared to the ER-IR one. The greater 
deviation towards the alternative option, as shown in MAD, MDabove and AUC 
suggests greater difficulty in committing to one of the two exploratory options, a 
difficulty which particularly materialises in children’s equal preference for IR and NS 
and adults’ marginal differences in this dilemma. While these effects were consistent 
across all age groups, it is possible that they were driven by a few individual 
participants with more stable dispositions or preferences. Therefore, we aimed to 
investigate these individual differences more explicitly in Experiment 2. 

Moreover, there were interesting differences in the types of trajectories 
observed in children as compared to the older groups (differences also observed in 
the elevated number of x-flips in children). These differences in trajectory variability 
might relate to differences in the integration of values during the decision process at 
different ages. From a motor control perspective, movements or trajectories that 
appear continuous on the surface, might hide small sub-movements that can only be 
revealed by small changes in velocity or acceleration (Dotan, Manyel, & Dehaene, 
2018; Wulff et al, 2021). These sub-movements might be more visible when motor 
control is still developing, and thus materialise in more discrete changes of direction 
as children integrate conflicting motor plans in their movement.  

Lastly, although we did observe effects in the mouse tracking parameters, as it 
has previously been seen in value-based decision-making tasks (e.g., Koop & 
Johnson, 2013), no differences were captured in two of the tasks dilemmas (ER-IR, 
ER-NS). The importance of design choices in mouse-tracking studies has been 
emphasised repeatedly (e.g., Wirth et al., 2020). Our study had no time limit for the 
trial onset and, as a result, the decision process might have preceded the onset of 
movement. Time-limited onset has been previously documented to affect movement 
parameters (Scherbaum & Kieslich, 2018). Thus, in Experiment 2, we made small 
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design changes, including setting time limits for response, in the hopes of better 
capturing the decision-making process.  

 

3.3. Experiment 2 

In our second experiment, we selected participants with a narrower age range 
(children 5-7 years old, adolescents 13-15 years old and adults up to 35 years old). We 
also implemented small design changes in the mouse tracking task (see Procedure).  

Based on the observations from Experiment 1, we decided to allow for a longer 
temporal horizon in the decision-making task; i.e., each experimental block would 
need more trials to end, and to lead (or not) to the external reward. Longer temporal 
scales for reward acquisition have been shown previously to favor exploratory 
behaviour (Sadeghiyeh, Wang, Alberhasky, Kyllo, Shenhav, & Wilson, 2020). We 
would expect this to be especially reflected in children’s and adolescents’ choices, 
which showed strong ER preferences in Experiment 1; they will may make more IR 
and NS choices as they will have more choices to spare. In terms of their movement 
parameters, we expected larger conflicts than in Experiment 1 because the 
exploration options might have become more attractive due to the aforementioned 
procedural change.  

Executive functions 

In this experiment, we were also interested in looking more deeply into 
individual differences between participants. Specifically, we decided to include 
separate executive functions measures as a means of further uncovering possible 
connections between cognitive control and exploratory behaviour. In addition, the 
presence of correlations between executive functions (EF) and specific movements 
parameters (previously documented; e.g., Erb et al., 2016) would further validate the 
use of mouse-tracking to approach our experimental question. We were mostly 
interested in inhibition skills as a causal factor because the control expected by 
participants to achieve the optimal balance between exploration and exploitation 
involves choosing the best option in every trial and inhibiting movements driven by 
the attractive alternative options (either intrinsically or extrinsically rewarding). 
However, keeping the rewarding goals in mind also involves working memory, and 
being able to choose based on an overarching goal while navigating different 
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dilemmas possibly also involves flexible response updating. Thus, we included and 
inhibitory control task, a switching task and a working memory task in our study.  

Importantly, EF functions have been measured with a variety of tasks, each 
focusing on different components and developmental stages. For example, inhibition 
has been widely measured with Go/No-Go tasks (e.g., Kindlon, Mezzacappa, & Earls, 
1995), where participants are trained in a dominant response and then either their 
ability to inhibit this response is measured, or their ability to readily respond 
correctly (e.g, performance on omission vs. commission errors has been found to 
correlate with different control abilities; Bezdjian, Baker, Lozano, & Raine, 2009). 
Other inhibition tasks are based on pre-existing dominant responses, for example 
Stroop-like inhibition tasks (Ikeda, Okuzumi, & Kokubun, 2014) or the Flanker task 

(Zelazo, Anderson, Richler, Wallner-Allen, Beaumont, & Weintraub, 2013). In our 
study, we will use a version of the Go/No-Go task, measuring the participants errors 
of commission, which have been previously associated with impulsivity (Bezdjian et 
al., 2009). Similarly, task switching has been assessed in various ways, but most of 
these are a variation of the Dimensional Change Card Sorting task (DCCS; Zelazo, 
2006), which expects participants to flexibly change their learned responses based 
on a rule change across blocks of trials. In our study, we designed a version of the 
DCCS task using different cars and boats of different colours, broadly following the 
design of the equivalent task by Howard and Melhuish (2017) for their Early Years 
Toolbox (YET). The stimuli presented remained the same but expected responses 
changed based on the task rule. We also relied in on the YET for the design our 
working memory task. This task included auditory instructions and the goal was to 
choose the correct shape among many. The instructions had growing difficulty, 
which participants should remember to be able to choose the correct shape. We 
expected participants with larger choice conflicts and more unbalanced choices (e.g., 
more NS choices) to score worse in general on the EF tasks, especially the Go/No-Go 
task. 

 

Individual traits 

Curious behaviour (i.e., increased exploration) has also been associated with 
differences in people’s personalities. These associations have predominantly focused 
on stable dispositions rather than state-dependent exploration or developmental 
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differences, which were our main focus in our first experiment. For example, a series 
of studies by Litman and colleagues have associated different types of curiosity with 
sensation seeking, anxiety and ambiguity tolerance (Litman, 2010; Litman, Collins, & 
Spielberger, 2005), while more recently aspects of trait curiosity have been 
decomposed by Kashdan et al. (2018). In this second experiment, we aimed to 
discover whether two specific and supposedly stable dispositions can predict 
participants’ exploratory strategies; specifically, (i) complexity preference, and (ii) 
unpredictability preference.  

Instead of using questionnaires, we designed two short tasks in which 
participants could choose how long they would explore options of different visual 
complexity and predictability. Visual complexity was chosen because of the seminal 
work suggesting that people preferably attend to images of intermediate complexity 
as compared to high or low complexity (e.g., Berlyne, 1958; Kidd et al., 2014). We 
expected participants’ preferences for intermediate visual complexity to correlate 
with more directed exploration (IR choices) in all ages. Stimulus unpredictability 
(i.e., uncertainty in the temporal domain) is the most common variable manipulated 
in “armed bandit” experiments. It directly affects learning and exploration by making 
environments more or less easily learnable (e.g., Poli et al., 2022; Blanco & Sloutsky, 
2021).  

In our task participants could choose to explore choices at three levels of 
predictability (100%, 70% and 50% probability of the same stimulus appearing), all 
of which were learnable but at different rates. We expected age differences, such that 
children might explore the 50% option more, whereas adolescents and adults would 
prefer the 70% option. These preferences for each age group were expected to 
correlate positively with more IR choices for each participant.  

 

3.3.1. Methods 

3.3.1.1. Participants 

In this experiment, the participants were 22 children (9 females, mean age: 
6.09 years), 20 adolescents (10 females. mean age: 14.47 years) and 24 adults (11 
females, mean age: 32.5 years). All participants were neurotypical and had normal or 
corrected-to-normal vision. The participants were volunteers recruited mainly from 
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word-of-mouth and through the Birkbeck Babylab database. They received a £5 
Amazon voucher for their participation.   

 

3.3.1.2. Mouse-tracking task 

3.3.1.2.1. Design 

Participants of all age groups had to complete four experimental blocks of 27 
trials each. In each trial, two of the total three options (selected randomly) appeared 
on the screen. The participants had to choose an option (in a 2 alternative forced 
choice format) in one of the following dilemmas: External Reward VS Informational 
Reward (ER-IR), External Reward VS Novel Stimulation (ER-NS), or Informational 
Reward VS Novel Stimulation (IR-NS). If the External Reward (ER) option is chosen 
for a total of nine times, the participant won the reward. The trials continued until a 
total of 27 trials was completed. This means the maximum choices for each option 
could be 18. 

3.3.1.2.2. Stimuli and procedure 

The stimuli and procedure were almost identical to those in Experiment 1, 
with the following important changes, applied both on the training and the test 
phase: participants had a time-limit of 6s (children) or 2s (adolescents and adults) to 
start moving the bone towards the (dog) choice options (i.e., to start the trial). The 
two options did not appear unless the bone had been moved a minimum of 4 pixels 
above its initial position. If the time-limit was exceeded, participants were informed 
that they were too slow and the trial started over again. An equivalent time limit was 
set for the answer – participants had to pick an option in 6s (children) or 2s 
(adolescents and adults). They received the same warning if they were too slow with 
their answer. No punishment was inflicted in terms of remaining lives for the 
completion of the block.   

 

3.3.1.3. Secondary tasks 

All secondary tasks in our experiments were created and hosted using the 
Gorilla Experiment Builder (www.gorilla.sc; Anwyl-Irvine, Massonnié, Flitton, 
Kirkham & Evershed, 2018). 
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3.3.1.3.1. Inhibition task 

We used a child-friendly Go/No-Go task adapted from Bezdjian et al. (2009). 
Specifically, we replaced the letters which served as Go and No-Go stimuli in the 
study by Bezdjian et al. (capital Ps and capital Rs respectively) with animal images (a 
hedgehog as a Go stimulus and a bear as a No-Go stimulus) and the array of stars 
with an array of flowers. The number of trials and breaks was also adapted to make 
the total experimental time efficient for testing children online: while experimental 
blocks lasted 160 trials in the original study, they only lasted 40 trials in our study. 
The Go/No-Go ratio was kept the same. The same version of the task was used for all 
age groups.  

Design 

Participants had to complete three experimental blocks of 40 trials each. The 
ratio of Go and No-Go trials was 80% Go – 20% No-Go trials. The Go/No-Go trials 
were pseudorandomized, making sure no subsequent No-Go trials were presented.  

Stimuli and procedure 

Participants were instructed to try and catch the mole which appeared among 
three flowers, in one of four random positions in a square grid (Go Stimulus; Figure 
3.8a), but they had to avoid catching the bear (No-Go stimulus; Figure 3.8b). They 
had to press the Space key as soon as the mole appeared on the screen but not when 
a bear appeared. The experiment started with 10 practice trials, which were repeated 
if the participant was too slow or if they made an error at both of the No-Go trials 
(which were pseudorandomised to appear after five Go trials to create a prepotent 
response). Each trial started with a presentation of a block of four flowers for 1500ms 
(Figure 3.8c), followed by the target stimuli for 500ms. The response screen showed 
four flowers again for 1200ms. Participants had to respond during this time limit, or 
the trial was recorded as an error. After each response, participants received 
feedback (as a thumbs up or a thumbs down image) for 200ms, both in practice and 
experimental trials.  
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Figure 3.818  

Go/No-Go task stimuli, a) Go stimulus, b) No-Go stimulus, c) Masking Image 

 

3.3.1.3.2. Switching task 

This task was adapted from the YET toolbox’s ‘Rabbits and Boats’ task 
(Howard and Melhuish, 2017). First, we used a simpler interface. Secondly, the 
participants in our task had to decide between cars and boats (Vehicle rule), or blue 
and red (Colour rule). Furthermore, the change of rule was communicated through a 
shape before the beginning of each block of trials (see Procedure below). The total 
number of blocks was also decreased as compared to the original.  

Design 

Participants had to complete four experimental blocks, two with each rule 
(Vehicle and Colour). Each block had six trials. The task rule sequence was always 
Vehicle-Colour-Vehicle-Colour. Accuracy was measured as the number of errors at 
the incongruent trials following a rule change. A trial was considered incongruent 
when pressing the response that was expected was the opposite from the 
corresponding image at the top of the screen (see Table 3.4).  
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Table 3.45  

Switching task design according to stable on-screen categories 
 Vehicle 

Type of Response 

Colour 

Type of Response 

Red car Incongruent Congruent 

Blue car Congruent Incongruent 

Red boat Congruent Incongruent 

Blue boat Incongruent Congruent 

 

Stimuli and procedure 

Participants started the task with two practice blocks of three trials per task 
rule. At the beginning of all trials, they watched a blue car in the top left of their 
screens and a red boat in the top right (Figure 3.9a). Then the shape signaling the 
rule was presented in the middle of the screen for 400ms. A yellow triangle was used 
to signal the Vehicle rule, whereas a green circle was used to signal the Colour rule 
(Figures 3.9b and 3.9c). A verbal reminder was also given along with the 
presentation of the shapes. When the shape disappeared, the target stimulus 
appeared at the middle bottom of the screen and remained until a response was 
given (Figures 3.9d and 3.9e). Participants had to respond by pressing the Z or M 
keys on their keyboards to categorise the stimuli. Feedback was given during the 
practice trials but not during the experimental trials.  
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Figure 3.919  

Switching task stimuli, a) Background categories screen, b) Rule 1 (Vehicle type), c) 
Rule 2 (Colour), d) Correct categorization of blue boat stimulus based on Rule 1, e) 
Correct categorization of red car stimulus on Rule two. 

 

 

 

 

 

 

3.3.1.3.3. Working memory task  

The task was similar to a Direction Following task (Im-Bolter, Johnson, & 
Pascual-Leone, 2006), measuring specifically phonological memory, as it required 
participants to keep in mind features of shapes (shape, size and colour) which were 
described to them verbally. They were then asked to choose objects which did not 
have the aforementioned characteristics. As the task progressed, the features 
increased in number, starting from simple descriptions, e.g., ‘Find a shape that is not 
red’, to much more complicated ones, e.g., ‘Find a shape that is not big, not red, not a 
triangle and not a circle’. The task is an adapted version of the ‘Not This’ task of the 
YET (Howard & Melhuish, 2017), with the main change being the number of trials 
per block (our task had 3 trials), to make the task shorter for children and prevent 
fatigue.  

Design 

The task consisted of a maximum 7 blocks/levels of complexity, consisting of 
three trials each. Each level involved adding an extra feature in the description of the 
shapes. However, the total duration varied based on a participant’s performance. If a 
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participant made two mistakes on the same level or three mistakes in total, the task 
was terminated. Performance was measured as the maximum level they managed to 
complete, plus 0.33 for every correct trial after that before they lost (e.g., they scored 
6.33 if they only got one trial correct on level 6 and missed the next two). 

Stimuli and procedure 

Participants started the task with three practice trials (two Level-1 and one 
Level-2 example). On each trial, participants had to press a button presented at the 
centre of the screen in order to hear the recorded description of the shape. They 
could only hear the recording once. After the recording, the screen remained blank 
for 3000ms and it was followed by a screen where 20 shapes were presented in 
button-like form (Figure 3.10). The participants had to click on the shape that did not 
have any of the features described at the recording. No time limit was set for them to 
answer.  

Figure 3.1020  

Working memory task shapes configuration. 

 

 

3.3.1.3.4. Complexity preference task 

Drawing from older stimulus preference tasks, measuring participants’ 
looking time or explicit preference/liking judgements on complexity (e.g., Day, 1966; 
Munsinger, Kessen & Kessen, 1964), we designed a task in which participants could 
choose to view/explore for more or less time four abstract stimuli of growing 
complexity. There was a minimum time of exploration per trial, in order to make 
participants’ preferences more obvious.  



 73 

Design   

The task consisted of 12 trials. During each trial, participants could choose 
between two alternatives of different complexity (2AFC task). We used stimuli of 4 
levels of complexity (see Stimuli and Procedure) and no image was presented twice. 
This meant that each level was presented 6 times, in 3 different dilemmas, and 
contrasted with levels of greater or smaller complexity. Preference was measured as 
the total frequency of choices for each level. 

Stimuli and Procedure  

We used a number of symmetric stimuli produced by Gartus and Leder 
(2017). We clustered these into four complexity levels, based on the human and a 
computational model’s ratings provided in Gartus and Leder (2017). The stimuli 
were coloured to be more appealing to children (the colours were randomized for 
each level). Example stimuli for each level is shown in Figure 3.11a.  

At the beginning of the task, participants completed a practice trial during 
which they were encouraged to explore the options they liked more. On each trial, 
participants were initially presented with a configuration of two closed windows 
(left-right; Figure 3.11b). The windows remained closed for 3000ms, then both 
opened for 1500ms, revealing the abstract shapes of the trial (Figure 3.11c). Then 
they closed again, and the participants had to choose which window they wished to 
open by pressing the left or right arrow on their keyboards. When they pressed the 
key, the window of their choice opened for 1000ms, revealing the image, and then 
closed again. Then a new choice had to be made. Participants had to keep choosing 
for a minimum of 6 times. Finally, a button appeared in the bottom right of the 
screen allowing them to proceed to the next trial. However, if they wanted to explore 
the current stimuli more, they could keep choosing one of the windows for up to 6 
more times ( i.e., 12 times in total). 
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Figure 3.1121  

a) Example of experimental stimuli at four different complexity levels (adapted 
from Gartus and Leder, 2017), b) Initial screen, hiding the experimental stimuli, c) 
Presentation of both stimuli at the beginning of each block, d) Revealed stimulus 
after choice has been made. 

 

 

 

 

 

 

 

3.3.1.3.5. Unpredictability preference task 

As with the complexity preference task, we chose to design this task as a  
decision task between options that were more or less predictable (i.e., they allowed 
participants to learn the statistics of stimulus presentation more quickly or more 
slowly). Three different options were presented simultaneously: (i) one which always 
included the presentation of the same abstract image every time that it was selected 
(100% predictable), (ii) one in which the same stimulus was presented on 70% of the 
trials and another (but also stable) stimulus was presented on the remaining 30%, 
and (iii) one in which two stable stimuli were presented for 50% of the trials each.  

Design 

Participants had to complete three blocks of 20 trials each. During each trial, 
participants could choose between three options. They had to keep choosing until the 
block ended. Preference was measured as the total frequency of choices for each level 
of predictability.  
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Stimuli and procedure 

For this task we used a subset of the stimuli used in the complexity preference 
task; specifically, we only used stimuli of the same level of complexity for each 
exploration block (e.g., five level-4 stimuli for Block 1, etc.; see Figure 3.12a).  

As the task had a similar layout to the complexity one, no practice trials were 
used. Participants were instructed to choose the option that they wanted to see by 
pressing the keys 1, 2 or 3 on their keyboards. On each trial, they were initially 
presented with a configuration of three closed windows (Figure 3.12b). The windows 
remained closed until the participants pressed the key associated with their 
preference. The stimulus then appeared for 1000ms and was hidden again. The 
participant was expected to make choices until 20 trials were completed, and then a 
button appeared in the bottom right of the screen allowing them to proceed to the 
next block.  

Figure 3.1222  

a) Set of stimuli used in the same block of the unpredictability task, b) Hiding 
windows configuration and predictability, c) A stimulus shown after window 2 has 
been chosen 

 

 

 

 

 

a) 

b) c) 
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3.3.2. Results 

No participants were excluded from this study; however, one child did not 
complete the final block of trials in the mouse-tracking study due to technical issues 
with their computer. Outliers in the separate tasks were excluded from the relevant 
analyses. The exclusion criteria will be discussed separately below for each task. 

  

3.3.2.1. Choices  

Figure 3.13 and table 3.5 show the mean number and SDs of choices of each of 
the three options for each age group. We first analysed the choices each age group 
made and found a significant interaction of Age Group and Option: F(4, 122) = 
10.853, p<.01. Post-hoc Bonferroni-corrected comparisons showed that in total, 
participants chose the ER option more than the IR option (p=.038) and the IR option 
more than the NS option (p<.001). Simple effects comparisons showed that children 
chose the NS option more than adolescents (p = .004) and adults (p<.001), whereas 
groups did not significantly differ in their other choices. Analyses within age groups 
showed no differences in children’s choices: children chose the ER option equally to 
the IR option (p = .092) and the NS option (p = .694).  Adolescents chose ER 
significantly more than NS (p < .001) and IR significantly more than NS (p = .003), 
while their ER and IR choices did not differ (p=.886). Finally, adults also chose ER 
significantly more than NS (p<.001), and IR significantly more than NS (p<.001) but 
their ER and IR choices did not differ (p = .789).  

 

Table 3.56  

Means and SDs of choices per Option for each age group 

 

 Children  Adolescents Adults 

External Reward 9.716 (2.106) 10.342 (1.822) 10.281 (2.310) 

Informational 
Reward 

8.602 (2.269) 9.829 (1.868) 10.120 (3.300) 

Novel Stimulation 8.989 (2.374) 6.474 (2.195) 5.837 (2.500) 
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Figure 3.1323  

Number of choices per Option for each age group in Curiosity task 

 

 

To examine if participants were affected by the longer decision horizon, we 
also analyzed their choices up to the completion of the tower (i.e., the ER goal 
prerequisite), if they had chosen to complete it, or one of the other two choices (i.e., if 
they completed the puzzle, or chose the NS for nine times). This way, the behaviour 
could be comparable to what participants did in Experiment 1, when they knew that 
they could not keep exploring if they acquired the ER. We analysed the choices each 
age group made and found a significant interaction of Age Group and Option: F(4, 
124) = 4.665, p = .002. The main effect of Option was also significant: F(2,124) = 
12.945, p<.001. Post-hoc Bonferroni-corrected comparisons showed that in total, 
participants chose the ER option more than the IR option (p=.003) and the NS 
option, while the IR and the NS options did not differ (p = .158). Overall, children 
chose the IR option significantly less than adults (p = .0.48) and the NS significantly 
more than adults (p = .013). We further examined the effect of option on each age 
group. Children’s choices did not differ, whereas adolescents chose ER significantly 
more than IR (p =.011) and NS (p = .035) but their IR and NS choices did not differ 
(p = .789). Adults chose ER significantly more than NS (p<.001), and IR significantly 
more than NS (p<.001) but their ER and IR choices did not differ (p = .819).  
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3.3.2.2. Mouse-tracking data analyses 

Here, we followed the same procedure as in Experiment 1 to extract features 
from the raw mouse-tracking data. Table 3.6 shows means and SDs for the five 
indices we chose to compare between each dilemma.  

Table 3.67 

 Means and SDs for movement parameters per Dilemma and Age Group 
  Children Adolescents Adults 

Featuresa  Mean SD Mean SD Mean SD 

Maximum 
Absolute 
Deviation 

(MAD) 

ER-IR 

ER-NS 

IR-NS 

133.60 

135.47  

142.46    

191.62 

200.70 

204.23   

167.62    

188.94  

169.25    

 

199.80 

215.41 

207.12   

180.10 

186.14    

184.64    

    

197.63 

195.72 

197.98 

Maximum 
Deviation 

above ideal 
line 

(MDabove) 

ER-IR 

ER-NS 

IR-NS 

161.20 

167.42  

173.30    

159.47    

163.32    

171.20   

180.68   

202.79  

184.19    

184.11 

198.84 

191.21   

187.64    

193.43 

192.55    

189.12 

187.43 

189.24    

Area Under 
the Curve 

(AUC) 

ER-IR 

ER-NS 

IR-NS 

39358.80  

37838.06  

38907.45  

60626.44 

59274.46 

62177.45 

48670.43  

53952.11 

48398.64  

68616.82 

72629.98 

71127.28 

56187.19  

58374.96  

58746.30  

74058.19 

74034.01 

76899.29 

x-flips ER-IR 

ER-NS 

IR-NS 

2.10      

2.02 

2.16      

1.84 

1.82 

1.96       

1.29   

1.44 

1.34      

1.22 

1.28 

1.28         

1.25    

1.31     

1.37      

1.10 

1.20 

1.21 

Response 
Times 

ER-IR 

ER-NS 

IR-NS 

2590.18 

2541.43   

2597.26   

2493.74 

2516.43 

2826.00   

810.85  

842.33 

823.84    

304.33 

326.51   

311.86    

896.55    

925.16   

910.62    

342.89 

442.91 

343.47 

aAll time related values are presented in milliseconds (ms), all position related values 
are presented in pixels (px), area (AUC) is displayed in px2. 
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There was no significant DilemmaXAge Group interaction effect on MAD 
(χ2(4) = 3.984, p = .408). Type of Dilemma did not affect MAD (χ2(2) = 2.507, p = 
.285), neither did Age Group (χ2(2) = 2.930, p = .231). No significant interaction 
between Dilemma and Age Group was observed for MDabove (χ2(4) = 1.815, p = 
.770). Type of Dilemma did not affect MDabove (χ2(2) = 2.255, p = .324, neither did 
Age Group (χ2(2) = 1.902, p = .386). Furthermore, there was no significant 
DilemmaXAge Group interaction effect on AUC (χ2(4) = 3.444, p = .486). Type of 
Dilemma did not have a significant effect on AUC (χ2(2) = 1.279, p = .528), neither 
did Age Group (χ2(2) = 2.457, p = .293. There was a significant DilemmaXAge Group 
interaction effect on xflips (χ2(4) = 10.525, p = .032) (Figure 3.14). Post-hoc 
comparisons showed that children did significantly more flips than adolescents 
(p<.001) and adults (p<.001). No main effect of Dilemma was observed (χ2(2) = 
1.068, p = .586). Lastly, no significant DilemmaXAge Group interaction effect was 
observed on RTs (χ2(4) = 2.036, p = .729). There was no main effect of Dilemma on 
RTs (χ2(2) = 1.165, p = .559). There was a significant effect of Age Group on RTs 
(χ2(2) = 85.602, p <.001). Specifically, children were slower than adolescents 
(p<.001) and adults (p<.001), but they were also given more time to respond (6s 
compared to 2s)3. 

Figure 3.1424  

Mean number of x-flips per Age Group across all dilemmas. 

 

Figure 3.15 shows the automatically clustered trajectories for the full sample, 
and for each age group. There was no significant DilemmaXAge Group interaction 
effect on the types of trajectories (χ2(4) = 1.752, p = .781). There was a significant 

 
3 When RTs were standardised, no main effect of Age Group was found (χ2(2) = 0.058, p = .971. 
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effect of Dilemma (χ2(2) = 15.102, p <.001), and specifically the IR-NS dilemma was 
significantly different from ER-NS (p<.001) and ER-IR (p = .006). To look further 
into these differences, we compared each type of trajectory per type of Dilemma 
separately. We found that the IR-NS dilemma significantly differed in frequency of 
straight trajectory paths (F(2, 110) = 17.027, p < .001), and specifically when 
compared to ER-NS (p = .002). Also, the IR-NS dilemma had significantly more 
trajectories that showed a discrete change of mind (F(2, 110) = 4.850, p = .011) and 
specifically more than in the ER-NS dilemma (p = .013). There was also a significant 
main effect of Age Group (χ2(2) = 13.079, p = .001). Children differed from 
adolescents (p = .02) and adults (p < .001) in their types of trajectories frequencies. 
Specifically, children differed in terms of their straight path frequencies (F(2,53) = 
6.135, p = .004), which were significantly more than the adults’ ones (p = .003). The 
difference in curved path frequencies was marginal (F(2,53) = 2.973, p = .060).  

 

Table 3.78  

Frequencies of trajectory types per Dilemma and Age Group. 
 Straight Curved cCoM dCoM dCoM2 

ER-IR 

ER-NS 

IR-NS 

875 

842 

888 

674 

623 

616 

311 

370 

312 

185 

187 

169 

35 

32 

34 

Children 

Adolescents 

Adults 

969 

752 

884 

580 

617 

716 

290 

321 

382 

116 

168 

257 

23 

45 

33 
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Figure 3.1525  

All observed trajectories as they have been automatically clustered in five different 
prototypes by mousetrap, a) Total sample, b) Children, c) Adolescents, d) Adults 

 

a)  

b)  

c)  
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d)  

 

3.3.2.3. Secondary tasks 

A subgroup of participants did not complete these tasks due to fatigue (11 
children) or connectivity/PC issues (6 adolescents and 4 adults). The  final sample 
for these measures consisted of 13 children, 14 adolescents and 20 adults. No outliers 
were excluded. 

 

3.3.2.3.1. Complexity preference task 

The complexity preference score was calculated as the total number of choices 
for each level of complexity (1 to 4) across all trials for each participant.  

We performed a two-way ANOVA with Age and Level of Complexity as factors 
(Figure 3.16). There was no significant interaction (F(6,132) = 1.958, p = .076, but 
there was a main effect of Level of Complexity (F(3, 132) = 25.299, p <.001. 
Specifically, participants chose the less complex option significantly less than the 
others (p<.001). Age did not have a significant effect (F(2,44) = 2.783, p = .076).  

 

3.3.2.3.2. Unpredictability preference task  

The unpredictability preference score was calculated as the total number of 
choices for each level of predictability (1 to 3) across all trials by each participant.  

We performed a two-way ANOVA with Age and Level of Predictability as 
factors with the number of choices as the dependent variable (Figure 3.17). There was 
a significant interaction between Age and Level of Predictability (F(4,80) = 5.082, p 
= .001). We then analysed age groups separately. Only adults were significantly 
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affected by the level of predictability (F(2,32) = 5.595, p = .008); they chose the less 
uncertain option less than the more uncertain (p = .016). 

Figure 3.1626  

Complexity preference per Age Group 

 

 

Figure 3.1727  

Unpredictability choice preference per Age Group 
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3.3.2.3.3. Go-No Go (Inhibition) task 

Task performance was measured as the number of errors in the No Go trials 
divided by the total number of No Go trials. We performed a one-way ANOVA with 
Age Group as factor (Figure 3.18a). There was a main effect of Age Group (F(2,40) = 
7.990, p = .001). Specifically, children performed significantly worse than 
adolescents and adults (p = .001 and p = .002). However, there was essentially a 
ceiling effect for the two older groups. 

 

3.3.2.3.4. Switching task 

Task performance was measured as the number of errors in Incongruent trials 
after a set-rule change. We performed a one-way ANOVA with Age Group as factor 
(Figure 3.18b). There was no significant difference between the groups’ performance 
(F(2,45) = 0.718, p = .494. 

 

3.3.2.3.5. Memory task 

Task performance was measured in the following way: Participants earned 1/3 
of a point for every correct answer. They then proceeded to the next level if they got 
the 2/3 trials of a level correct. The score was the last one accomplished before a total 
of three mistakes and two consecutive mistakes. For example, a score of 5.33 means 
the participant completed five full levels and only got one correct trial of the sixth 
level, followed by wrong ones. We performed a one-way ANOVA with Age Group as 
factor (Figure 3.18c). There was a significant main effect of Age (F(2,39) = 14.149, 
p<.001), with children performing significantly worse than the other two groups (p = 
.012 and p<.001), who did not differ from each other. 

 

 

 

 

 

Figure 3.1828  
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Performance in Executive functions tasks per Age Group. a) Inhibition task, b) 
Switching task, c) Working Memory task 
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3.3.2.4. What predicts participants’ choices? 

Following the aforementioned analyses, we attempted to predict individual 
choices in the mouse-tracking task based on their scores at the side tasks. We built a 
Poisson generalised linear model (since choices were count data) entering 
Complexity Score, Unpredictability Score, Inhibition Score and Shifting Score as 
fixed effects.  

In the full sample, the full model could not significantly predict External 
Reward choices (F(1,8) = 2.074, p = .979) nor Informational Reward choices (F(1,8) 
= 1.789, p = .987), but it did predict Novel Stimulation choices (F(1,8) = 21.808, p = 
.005). Specifically, Working Memory Score was a significant predictor (p = .002): for 
every extra level completed in the WM task, 1.29 fewer NS choices were made (95% 
CI, -.213 to -.046).  

Within each age group, the model did not significantly predict choices. 
Specifically, in the children groups the full model could not significantly predict 
External Reward choices (F(1,7) = 1.644, p = .977), Informational Reward choices 
(F(1,7) = 5.292, p = .624), nor Novel Stimulation choices (F(1,7) = 7.450, p = .384).   

In the adolescents group, the full model could not predict External Reward choices 
(F(1,8) = 2.407, p = .966), Informational Reward choices (F(1,8) = 3.030, p = .932), 
nor Novel Stimulation choices (F(1,8) = 7.258, p = .509). 

Finally, in the adults group, the model did not predict External Reward 
choices (F(1,7) = 6.493, p = .484), however Uncertainty preference seemed to be a 
marginally significant predictor (p = .051). Specifically, it seemed that participants 
who preferred the intermediate uncertainty option in the relevant task chose the ER 
option significantly less (-.600 ER choices, 95% CI, -1.092 to -.109, p=.017). 
Otherwise, the model did not predict the Informational Reward choices (F(1,7) = 
2.958, p = .889), nor Novel Stimulation choices (F(1,7) = 8.072, p = .326).  

 

3.3.2.5. Summary of Results 

We observed significant differences in participants’ choices depending on 
their age. Overall, children did not differ in their choices throughout the task, making 
balanced decisions between the three options. Compared to the other groups, they 
chose the NS option significantly more than adolescents and adults. Adolescents and 
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adults, on the other hand, did not differ in terms of their ER and IR choices, and both 
chose ER and IR more often than the NS option.  

When participants’ choices up to the ER, IR or NS completion were analyzed, 
we found that children chose the IR less than adults and the NS more than adults, 
whereas the groups did not differ in other choices. Children also did not show any 
difference between their choices, while adolescents chose ER more than the other 
options. Adults chose ER and IR more than the NS option.  

Regarding movement parameters, the type of dilemma significantly affected 
trajectory types. Specifically, in all age groups, participants’ trajectory paths in the 
IR-NS dilemma showed a discrete change of mind more often than in the ER-NS 
dilemma. The type of dilemma did not affect trajectory curvature measures (MAD, 
MDabove and AUC), nor RTs and x-flips. Age groups significantly differed in their 
movement complexity. Specifically, children made more x-flips, and their trajectories 
followed a straight path significantly more often than adults. 

In the complexity preference task, participants in all age groups chose the less 
complex option significantly less than the other three, which did not differ in terms 
of frequency. In the unpredictability preference task, only adults chose the more 
unpredictable option more than the less unpredictable, while the other groups did 
not show any significant differences in their choices. In the Go/No-Go and Memory 
tasks, children performed significantly worse than adolescents and adults, who 
reached ceiling performance. In the Switching task, no significant differences were 
observed between groups. 

Lastly, Working Memory scores significantly predicted the NS choices in the 
regression model when all age groups were analysed together. Specifically, lower 
Working Memory scores predicted more NS choices. No other score successfully 
predicted choices in the mouse-tracking task. Within the age groups, preference for 
Intermediate Uncertainty in the adults group marginally resulted in fewer ER 
choices.  

 

3.3.3. Discussion of Experiment 2 

Our second experiment replicated some of the findings of the first one, but 
also differed in important aspects. Regarding participants’ choices, all age groups 
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were interested in acquiring the external reward, but offering them more tokens 
(trials) to spare made them choose the other options for a significant amount of 
times. Specifically, adults followed the same (optimal) strategy with Experiment 1, 
acquiring the external reward and also achieving the (implicit) learning goal. 
Adolescents followed the same strategy, since the design of this experiment forced 
them to keep making choices even after the acquisition of the external reward. 
Indeed, when the choices they made up to the ER acquisition were analysed, it 
became obvious that they followed the same ER-driven strategy as in Experiment 1. 
In contrast, children preferred to balance their extra choices between the two 
exploratory options, choosing the novel stimulation option an equal number of times 
with the informational reward option. This finding is consistent with some previous 
findings, which show that school-aged children still do a lot of random exploration 
(Meder et al., 2019), as well with findings showing that longer decision horizons 
favour exploratory choices in general (both directed and random). However, other 
findings suggest that children in this age already choose a lot based on information 
gaps and in a (systematic) way that supports their learning progress (Blanco & 
Sloutsky, 2021; Schulz et al., 2019). This employment of different strategies in 
children might be explained by individual differences in a large spectrum, as well as 
within-subject differences per block or even trial (e.g., Siegler, 2007, discusses the 
change of strategies as children learn to do a task or change goals trial-to-trial). 
Inspecting the individual strategies in both of our experiments showed that some 
children preferred to choose based on IR, while others consistently preferred NS, at 
least for some of the blocks, suggesting that cognitive or dispositional factors might 
play a role in these differences. Thus, we measured participants’ executive functions 
and preferences towards complexity and unpredictability to shed some light to these 
factors. 

Our results suggest that some of these factors might play a significant role in 
participants’ individual exploratory strategies, although these findings should be 
interpreted carefully. We had hypothesised that cognitive control (inhibition being 
the more possible candidate) and preference for unpredictability will play an 
important role in participants preference for the novel stimulation choices (Gopnik, 
2020; Litman, 2010). From our findings, only WM score was a significant (negative) 
predictor of NS choices. However, as this was probably the task which captured age 
differences in the more accurate way, this finding might just reflect the (already 
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observed) differences in NS choices between the groups, and not have any 
explanatory value. Furthermore, certain design decisions that we made might have 
influenced how accurately we measured the aforementioned variables. Specifically, 
although we captured age-related differences in the Go/No-Go task, it is possible that 
we did not capture individual differences in inhibitory ability (which would be the 
important ones in our regression analysis, as we were interested in predicting 
individual scores). The reason might have been the decrease in experimental trials 
per block (compared to the Bezdjian et al. (2009) study), which might have not been 
sufficient to establish a strong prepotent Go response, and would thus make the task 
much easier for more proficient participants (especially for adolescents and adults). 
Furthermore, our preference for unpredictability task also included very few trials 
(20 per block) and might thus have made the statistics of each option hard to learn – 
and as a result, prefer – for younger participants.  

The variables of our mouse-tracking task might also have been confounded. 
Specifically, adolescents’ and adults’ choices show a clear preference for IR options 
compared to NS ones, which can be motivated by closing information gaps and 
obtaining information based on previous knowledge and informational uncertainty 
(a behaviour, as stated at the introduction, close to directed exploration). However, 
the fact that a puzzle implicitly has a specific goal (its completion), it is unclear 
whether participants were drawn by trial-by-trial informational value, or by the 
overall aim to achieve a goal – and similarly experience satisfaction by it. Even on a 
trial-by-trial basis, taking rewarding steps to achieve a long-term goal has been 
shown to be intrinsically motivating (Woolley & Fishbach, 2017), in a different way 
compared to knowledge. Furthermore, although our NS option involved the 
presentation of new cartoon (or animal) images on every trial, the category of the 
images was predictable on every block, e.g., images of horses would appear. This 
might have decreased the amount of novelty, while at the same time increasing the 
possible effect of individual interests (e.g., someone might dislike horses, and thus 
choose more the IR option on that block). As a result, we decided to address these 
issues by making changes in the task in our next experiment.  

Finally, although we had aimed to capture the decision process more in the 
movement parameters by imposing a time-limit in our mouse-tracking task, our 
results showed no differences in most trajectory features between dilemma types, in 
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contrary to Experiment 1. This finding might be explained by this time-limit, as 
recent research suggests that time-limit might specifically influence the initial stages 
of the movement, and thus affect the curvature features more (e.g., Wirth et al., 
2020, suggest that free initiation should be preferred if curvature measures are of 
interest). However, our finding might be explained by the differences in the task 
itself, and specifically by the increase of the number of trials, which might have 
added less pressure and conflict on individual decisions (since many options could be 
chosen across a block).  

Thus, to assess these matters, we proceeded in our third experiment. 

 

3.4. Experiment 3 

In Experiment 3, we decided to examine children only, as we were mainly 
interested in refining our experimental manipulations of informational reward and 
novelty and replicate our previous findings with a slightly modified task. We 
specifically tested 5- to 7-year-olds (as in Experiment 2) and overall kept the 
experimental design identical, implementing small changes in the mouse-tracking 
task procedure (i.e., removing the time limits) and, most importantly, in the task 
stimuli. Regarding the decision horizon, we decided to keep a long horizon (i.e., 
participants could still make choices after they had acquired the ER), so that we 
could compare our findings with those of Experiment 2. Lastly, we had participants 
complete three EF tasks (inhibition, working memory and switching abilities), 
different from those used in Experiment 2, in order to capture individual differences 
more accurately.  

We expected to replicate our previous findings; i.e., that children will be 
equally driven by the three options and balance their choices from the beginning of 
the block. We also expected mouse-tracking measures to reflect the conflicts more 
accurately, since we returned to a time-limitless procedure as in Experiment 1. 
Eventually, we expected the EF performance to correlate with ER and NS choices, 
such that better EF performance will favour exploitatory choices. 
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3.4.1. Methods 

3.4.1.1. Participants 

In this experiment, the participants were 18 children (9 females, mean age: 
6.09 years). All participants were neurotypical and had normal or corrected-to-
normal vision. The participants were volunteers recruited through the Birkbeck 
Babylab database and local primary schools. They received a gift for their 
participation.   

 

3.4.1.2. Mouse-tracking task 

3.4.1.2.1. Design 

Participants had to complete four experimental blocks of 27 trials each. In 
each trial, two of the total three options (selected randomly) appeared on the screen. 
The participants had to choose an option (in a 2 alternative forced choice format) in 
one of the following dilemmas: External Reward VS Informational Reward (ER-IR), 
External Reward VS Novel Stimulation (ER-NS), or Informational Reward VS Novel 
Stimulation (IR-NS). If the External Reward (ER) option is chosen for a total of nine 
times, the participant won the reward. The trials continued until a total of 27 trials 
was completed. This means the maximum choices for each option could be 18. 

3.4.1.2.2. Stimuli and procedure 

The general layout of the decision-making task remained the same as in the 
previous two experiments: the two alternative options appeared in fixed positions on 
the top of the screen during the test trials (or in random positions during the training 
trials) and participants had to click and drag a third icon (a heart) on top of the 
options make a choice. However, the stimuli themselves differed (Figure 3.19). 
Specifically, the three dogs were removed and the decision screen could now show 
the following options:  

- For the ER, it depicted the tower on its current stage of completion, e.g., if the 
ER option was already chosen in four previous trials, the tower appeared with 
four floors already built. If this option was chosen, the next screen (reward 
screen) depicted the tower with an extra floor added on top.  
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- For the IR, it depicted a blurry picture. The pictures were chosen from the 
large dataset used by Jepma, Verdonschot, Van Steenbergen, Rombouts, & 
Nieuwenhuis (2012; shared with us by the authors). They had a resolution of 
71 dpi, and were centered on a white rectangle of 197 × 281 pixels. The blurred 
version of each picture was created by Jepma et al. (2012) by means of 
Gaussian smoothing with a radius of 20–22 pixels. When this IR option was 
chosen, the reward screen revealed the clear version of the picture. No picture 
was shown more than once. 

- For the NS, the option was a red question mark, indicating that an unknown 
image would follow. Indeed, if it was chosen, an image was shown in the 
reward screen, which was drawn randomly from a large variety of images : 
they varied in terms of type (e.g., realistic photo, drawing, sketch, cartoon) 
and theme (e.g., animals, landscape, fruit, people, household items). These 
images were chosen on the basis of being highly unpredictable, while the 
images in Experiments 1 and 2 were still new on each trial but belonged to the 
same category (animals).   

Procedure was almost identical to Experiment 2, with the following important 
change applied both on the training and the test phase: participants did not have a 
time limit to start the trial (i.e., to move the heart) or to make the choice after they 
had started their movement. However, as in Experiment 2, the two options did not 
appear unless the bone had been moved a minimum of 4 pixels above its initial 
position.  
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Figure 3.1929  

The new dilemmas and stimuli. Above, the dilemmas, left to right: ER-NS, IR-NS, 
ER-IR. Below, the reward screens, left to right: NS, IR, ER. 

 

3.4.1.3. Executive functions tasks 

3.4.1.3.1. Switching task  

We used a child-friendly version of a switching task previously developed in 
our lab (Carteron, 2022), where both the sets of stimuli and responses changed 
simultaneously, with the classification dimension being intrinsically determined by 
the stimuli. A similar version of this task designed for adults (Rogers & Monsell, 
1995) asks participants to classify numbers as either odd or even (task set 1) and 
letters as vowels or consonants (task set 2). In our case, the task sets involved 
categorizing animals as either sea or land creatures and categorizing objects as sports 
or food items. Consequently, the classification dimension was dictated by the nature 
of the stimulus, be it an animal or an object. The task was administered using a 
laptop and children indicated their choices by pressing either the left or right key on 
a keyboard. There was no time limit in their response. The mapping of left and right 
keys was represented using pictograms of sea and land (for task set 1) or sports and 
food (for task set 2), displayed on the left and right sides of the screen, as illustrated 
in Figure 3.20. This setup ensured that when the central icon represented an animal, 
a sea pictogram consistently appeared on the right, with a land pictogram 
consistently on the left. In contrast, when the central icon depicted an object, a sports 
pictogram was consistently displayed on the right and a food pictogram was 
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consistently shown on the left. A total of six distinct animals and six distinct objects 
were used. At the beginning of the task, practice trials were completed with all of the 
6 possible stimuli, and ensured instructions were understood. Then a block of 10 
trials of the animal task set was presented, followed by 10 trials of the objects task set 
(Block 1 and 2; non-switch trials), followed by a block of 20 trials alternating between 
each task set (Block 3; switch trials). We measured response times in switch and 
non-switch trials, as it is considered a more informative measure compared to 
accuracy, representing the extra processing cost in switch trials. The final score was 
calculated as the difference between the two scores.  

 

Figure 3.2030  

Example of a display of the switching task. Participants had to categorise the 
animal as a “land animal” or a “sea animal”. 

 

 

3.4.1.3.2. Inhibition task 

Inhibition ability was measured using the BAT task (Figure 3.21), a child-
friendly version of the go/no-go task designed by Schröer, Cooper and Mareschal 
(2021) and based on similar tasks (e.g., Drechsler, Rizzo, & Steinhausen, 2010; Sobeh 
and Spijkers, 2013). The task was administered using a laptop. Children were asked 
to respond by pressing the space bar every time they saw a bat appear on the screen, 
because bats can turn into vampires, but instead refrain from pressing the bar when 
they saw a cat, because cats are good. They were instructed to press the space bar as 
fast as possible when they saw the bat ("go trials"), but not when they saw a cat ("no-
go trials"). In the beginning of the task, children completed two practice trials, one 
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for each animal, and they had to answer what they were supposed to do when they 
saw each animal. To ensure that the go response was the default action, the children 
were initially presented with five consecutive go trials. The remaining trials were 
presented in a random order. The majority of the trials, specifically 74% of the total 
35 trials, were go-trials. Children were given a 2-second window in which to respond 
before the image disappeared from the screen, and the subsequent trial commenced 
following a 1-second interstimulus interval. The inhibition score was computed by 
dividing the errors (false alarms/commission errors), by the total number of trials.  

 

Figure 3.2131  

Example of the trial sequence in the BAT task. Participants had to press Space when 
they saw a bat, but not when they saw a cat. 

 

 

3.4.1.3.3. Working Memory task 

Working memory was measured using the original version of the “Not this” 
task from the Early Years Toolbox (EYT; Howard, & Melhuish, 2017), which was 
completed on a tablet. We also used the EYT ‘Not This’ task (which measures 
phonological WM). In this task, as in the one used in Experiment 2, children had to 
follow auditory instructions of increasing complexity (Figure 3.22). Children are 
asked to choose a stimulus that is not of a particular colour, shape or size (or some 
combination of these). The task includes five trials at each level of complexity (levels 
1 to 8), whose difficulty depends on the number of stimulus characteristics that must 
be simultaneously activated in mind (i.e., level 1 involves maintaining one feature in 
memory, level 2 involves maintaining 2 features in memory, and so on). Each trial 
has the following procedure: (1) an auditory instruction is played against a white 
screen; (2) a 3 second delay follows against a white screen; and then (3) a 4 x 5 array 
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of different shapes of different colours and sizes with cartoon faces are presented 
until a response is made by tapping the shape(s) that the participant believes match 
to the instruction. The task continues until the full completion (at level 8, eight 
features to remember) or failure to accurately complete at least three of the five trials 
within a level. Performance is measured using a point score, which is computed as: 
starting from level 1, one point for each level in which at least three of the five trials 
were performed correctly, plus 1/5 of a point for all correct trials thereafter.  

 

Figure 3.2232  

Array of target shapes in Working Memory task. Participants had to remember 
auditory instructions about colour/shape/size combinations to pick to correct 
shape(s). 

 

 

3.4.2. Results 

One participant was excluded from the study as they needed help to with the mouse 
to complete the mouse-tracking study, and thus the movement data could not be 
used. Outliers in the separate tasks were excluded from the relevant analyses. The 
exclusion criteria will be discussed separately below for each task. 
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3.4.2.1. Choices 

Figure 3.23a and Table 3.8 show the mean number of choices and the SDs of each of 
the three options. We initially analysed the choices that participants made and found 
a significant main effect of Option: F(2, 34) = 5.682, p = .007. Pairwise comparisons 
showed that in total, children chose the ER option significantly more than the NS 
option (p=.011) whereas the ER and the IR option did not differ (p = .092), neither 
did the IR and the NS option (p = .068).  

 

Table 3.89  

Means and SDs of choices per Option 
 

 

 

 

 

 

 

Figure 3.233  

Number of choices per Option in the Curiosity task, a) until block completion, b) 
until first option completion 

  

a)                                                                     b) 

 

 Mean choices 
(sd) 

External Reward 9.592 (2.106) 

Informational 
Reward 

8.197 (3.079) 

Novel Stimulation 6.671 (2.926) 
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To examine if participants were affected by the longer decision horizon, we also 
analyzed their choices up to the completion of at least one of the options (Figure 
3.23b). We found no significant effect of Option F(2,34) = 1.322, p = .280.  

 

3.4.2.2. Mouse-tracking data analyses 

The same procedure as in Experiments 1 and 2 was followed to extract features from 
the raw mouse-tracking data. Table 3.9 shows means and SDs for the five indices we 
chose to compare for each dilemma.  

 

Table 3.910 

 Means and SDs for movement parameters per Dilemma and Age Group 
  Children 

Featuresa  Mean SD 

Maximum Absolute 
Deviation (MAD) 

ER-IR 

ER-NS 

IR-NS 

127.99     

112.19    

126.77    

151.84 

138.67 

152.47 

Maximum Deviation above 
ideal line (MDabove) 

ER-IR 

ER-NS 

IR-NS 

141.32    

125.06    

140.77    

135.571 

123.92 

135.98 

Area Under the Curve 
(AUC) 

ER-IR 

ER-NS 

IR-NS 

29542.90 

28639.84  

27859.48  

57440.08 

43080.93 

47916.56 

x-flips ER-IR 

ER-NS 

IR-NS 

1.72      

1.60      

1.87    

1.61 

1.43 

1.69 

Response Times ER-IR 

ER-NS 

IR-NS 

3980.31   

3818.76   

4062.83   

1965.11 

1665.34 

1977.19 

aAll time related values are presented in milliseconds (ms), all position related values 
are presented in pixels (px), area (AUC) is displayed in px2. 
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Our analyses showed that the type of Dilemma did not affect MAD (χ2(2) = 
3.585, p = .166) or MDabove (χ2(2) = 4.698, p = .095. Furthermore, there was no 
significant effect of type of Dilemma on AUC (χ2(2) = 0.375, p = .829). There was a 
significant main effect of Dilemma on x-flips (χ2(2) = 6.495, p = .039; Figure 3.24). 
However, pairwise comparisons showed no significant differences between the ER-
IR and ER-NS dilemmas (p=.426) or between the ER-IR and IR-NS dilemmas 
(p=.583). A marginally significant difference was found between the ER-NS and IR-
NS dilemmas (p=.054), specifically showing that children made more flips in the IR-
NS dilemma. Lastly, no significant main effect of Dilemma was found for RTs (χ2(2) 
= 4.971, p = .083).  

 

Figure 3.2434  

Mean number of x-flips per type of Dilemma. 

 

Figure 3.25 shows the automatically clustered trajectories. There was a 
significant effect of Dilemma on trajectory types (χ2(2) = 16.413, p <.001), and 
specifically the IR-NS dilemma was significantly different from ER-NS (p<.001) but 
not from ER-IR (p =.100). The ER-IR and ER-NS dilemmas did not differ (p=.115). 
To further investigate these differences, we compared each type of trajectory per type 
of Dilemma separately (Table 3.10). We found that the participants significantly 
differed in the frequency of straight trajectory paths in each dilemma (F(1.513, 
25.725) = 8.819, p =.003), and more specifically, they had significantly more straight 
paths in the IR-NS dilemma when compared to ER-IR (p=.035) or to ER-NS (p = 
.011). Also, participants significantly differed in the frequency of curved trajectory 
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paths in each dilemma (F(2,34) = 4.150, p =.024), but pairwise comparisons did not 
show any significant difference – IR-NS dilemma had marginally less curved 
trajectories than the ER-NS one (p=.058). Finally, there was significant difference in 
their trajectories which showed a continuous change of mind (F(2,34) = 3.805, p = 
.032, but pairwise comparisons did not show any significant difference. 

Table 3.11  

Frequencies of trajectory types per Dilemma. 
 Straight Curved cCoM 

ER-IR 

ER-NS 

IR-NS 

515 

490 

546 

70 

84 

51 

13 

20 

10 

 

Figure 3.2535  

All observed trajectories as they have been automatically clustered in three 
different prototypes by mousetrap. No dCoM and dCoM2 types were observed. 

 

3.4.2.3. Secondary tasks 

Participants’ performance (means and SDs) in the EF tasks is shown in Table 
3.11. Go/No-Go scores are participants’ commission-error rate (i.e., inability to 
inhibit response in No-Go trials), Switching score is participants’ RT difference in 
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mixed vs. simple blocks (i.e., the extra processing cost in blocks where rule switching 
was required) and working memory scores reflected completed levels and trials 
within the task.  

Table 3.12  

Participants’ performance in EF tasks 
Task (measure) Mean score SD 

Inhibition (error rate) 0.160 0.133 

Switching (ms) 102 31 

Working Memory (level) 2.933 0.172 

   

 

3.4.2.4. What predicts participants’ choices? 

We also tried to predict individual choices in the mouse-tracking task based 
on their scores at the side tasks. We built a Poisson generalized linear model entering 
Inhibition Score, Switching Score and Memory Score as fixed effects.  

The full model could not significantly predict External Reward choices (F(1,3) 
= 2.535, p = .469), Informational Reward choices (F(1,3) = .948, p = .814), nor Novel 
Stimulation choices (F(1,3) = 2.018, p = .569).  

 

3.4.2.5. Summary of Results 

We observed significant differences in participants’ choices. Overall, children 
did not differ in terms of their ER and IR choices, or in terms of their IR and NS 
choices, but they chose ER more often than the NS option. When only their choices 
up to the initial ER, IR or NS completion were analysed, we found that children did 
not show any difference between their choices, balancing the three options.  

Regarding movement parameters, the type of dilemma marginally affected 
trajectory types. Specifically, children’s trajectory paths in the IR-NS dilemma were 
straight more often than in the other dilemmas, and curved less often than in the ER-
NS. The type of dilemma did not affect trajectory curvature measures (MAD, 
MDabove and AUC), nor RTs. Children made significantly more x-flips in the IR-NS 
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dilemma compared to the ER-NS dilemma, however this difference was only 
marginally significant.   

Finally, none of the individual EF scores predict choices made in the regression 
model.  

 

3.4.3. Discussion of Experiment 3 

The aim of Experiment 3 was to replicate our previous findings, while 
measuring the different variables (ER, IR and NS) in a more accurate way by 
unconfounding them from possible factors that might have influenced decisions in 
the previous experiments. More specifically, we were interested in capturing 
behaviours driven by IR as a “trial-by-trial” relief of perceptual curiosity, rather than 
a longer term information gathering goal spread over several trials, and NS in a set of 
stimuli which could not be predicted – and thus being consistently novel.  

Our results replicate some of our previous findings. Children seem to prefer 
the ER choices compared to the NS ones as a general tendency, a finding that 
replicates the findings of our first experiment but contradicts the findings of the 
second. One possible reason for this difference could be the time limit imposed on 
decisions in Experiment 2 that might have forced participants to choose more 
impulsively – and thus maybe taking more into account the immediately rewarding 
option compared to a delayed rewarding state. Of course, we cannot rule out the 
possible effect of the new NS stimuli, which were less predictable – and this amount 
of novelty might have created a certain amount of aversion to children, or at least 
some of them – stable or contextual predispositions towards unpredictability might 
play such a role, as was previously discussed in Experiment 2.  

Furthermore, the new EF tasks performance did not predict participants’ 
choices, a finding consistent with Experiment 2. This was also the case for WM. This 
suggests that individual differences in choice selection are not explained by cognitive 
factors as we had initially hypothesised, but might instead be related to attitudes and 
traits, such as trait curiosity and tolerance for uncertainty.  

The movement trajectories revealed some differences in the IR-NS dilemma. 
This was also the case in our previous experiments. Interestingly, in this experiment 
we found straighter trajectories, and more x-flips in the IR-NS conditions as 



 103 

compared to the other dilemmas, a movement profile which seems contradictory. 
However, if we take into account the categorisation of trajectory types, to continuous 
vs. more discrete paths, it seems that this dilemma probably did not have a 
continuous conflict like the ER-NS dilemma (since it had significantly fewer curved 
paths), but more likely had small micro-changes of direction, possibly too short to be 
categorised as discrete changes of mind, but still flips on the y-axis. The 
interpretation of this difference is not straightforward, as a similar conflict could 
have been observed in the ER-IR dilemma if it was just a reflection of ongoing 
conflict. nevertheless, as in our previous experiments the IR-NS dilemma seemed 
slightly more difficult for children.  

The lack of other differences in the curvature or RT measures, even without a 
time limit, could be explained by the temporal horizon of decisions, as in Experiment 
2. Because participants knew that they had enough trials to both explore and obtain a 
reward, the pressure on each decision became smaller.    

Finally, an important point should be made regarding the value comparison 
between the options. Even though we replaced the IR goal option with trial-by-trial 
perceptual uncertainty resolution, the ER option still consisted of a goal – 
participants had to choose this option repeatedly in order to finally acquire the 
reward, but they were not explicitly rewarded on each trial – unless only by 
association. In an attempt to make the values of the options even more comparable 
in terms of instant reward, in our next experiment we decided to change the ER 
option content.  

   

3.5. Experiment 44 

In our final experiment, we were interested in dissociating the value of the 
external reward from the goal-following process. It is known that decision-making is 
often influenced by the goals that people choose to pursue, which might take into 
account the subjective value of available options, but also influence the valuation of 
these options in return (Frömer & Shenhav, 2022; Molinaro & Collins, 2023). For 
example, in our paradigm, higher order preferences such as deciding to complete the 

 
4 Data collection for experiment 4 was carried out by Dian Qu, graduate student in Birkbeck MSc 
Psychology, as part of her final dissertation.   
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ER goal for the sake of it (or because they are told to) might explain participants’ 
behaviour in a specific block, and as a result their preference for this option might 
not reflect how rewarding they actually find it. In this case, we would not be 
comparing between reward values, but separate goals. As a result, in this experiment 
we replaced the ER option with stimuli associated with primary or secondary 
rewards (food or money) which could be gained on every trial, but had no end goal. 
No other changes were made to the procedure described in Experiment 3. We also 
decided to only focus on two executive function skills in this experiment (inhibition 
and switching), as we considered them better possible candidates for an association 
with exploratory tendencies. Our participants were 5- to 7-year-olds, 13- to 15-year-
olds and adults.   

We expected participants to have similar preferences for the ER option as in 
previous experiments; i.e., to still choose ER either equally to the other options 
(children) or significantly more than NS (adolescents and adults).  

3.5.1. Methods 

3.5.1.1. Participants 

In this experiment, the participants were 20 children (9 females, mean age: 
6.32 years), 10 adolescents and 20 adults. All participants were neurotypical and had 
normal or corrected-to-normal vision. The participants were volunteers recruited 
through the Birkbeck Babylab database, word of mouth and local primary schools. 
They received a gift for their participation.   

 

3.5.1.2. Mouse-tracking task 

3.5.1.2.1. Design 

Participants had to complete four experimental blocks of 27 trials each. In 
each trial, two of the total three options (selected randomly) appeared on the screen. 
The participants had to choose an option (in a 2 alternative forced choice format) in 
one of the following dilemmas: External Reward VS Informational Reward (ER-IR), 
External Reward VS Novel Stimulation (ER-NS), or Informational Reward VS Novel 
Stimulation (IR-NS). The trials continued until a total of 27 trials was completed. 
This means the maximum choices for each option could be 18. 
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3.5.1.2.2. Stimuli and procedure 

The general layout of the decision-making task remained the same as in the 
previous two experiments: the two alternative options appeared in fixed positions on 
the top of the screen during the test trials (or in random positions during the training 
trials) and participants had to click and drag a third icon (a heart) on top of the 
options make a choice. However, the stimuli for the ER option differed (Figure 
3.26a-d). Specifically, instead of the tower image, on the decision screen children 
were now seeing a bag of candies. If they chose this option, the reward screen 
depicted three candies and a stack of candies that was getting one candy taller every 
time this option was chosen. Instead, adolescents and adults saw a bag with money 
on the decision screen. If they chose this option, the reward screen showed them 
three coins and a stack of coins getting on coin taller each time. These stimuli were 
chosen as candies and money are commonly used (external) rewards in armed-
bandit tasks – and gambling games in general.    

The rest of the procedure was identical to that of Experiment 3.  

Figure 3.2636  

Example decision and reward screens for children (a,b) and adolescents-adults 
(c,d) 

a)                                       b)                                    c)                                    d)  

 

3.5.1.3. Executive functions tasks 

3.5.1.3.1. Inhibition task 

For children, we used the BAT task as in Experiment 3. 

For adolescents and adults, we used a simple Go/No Go task, similar to the 
one used in Experiment 3. Participants were instructed to press the Space key on 
their keyboards when the letter P appeared among three stars, in one of four random 
positions in a square grid (Go Stimulus; Figure 3.27), but they had to withhold their 
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response when the letter R appeared instead (No-Go stimulus). Each trial started 
with a presentation of a block of four stars for 1500ms (Figure 8c), followed by the 
target stimuli for 500ms. The response screen showed four stars again for 1200ms. 
Participants had to respond during this time limit, or the trial was recorded as an 
error. Participants did not receive any feedback for their responses, and the next trial 
commenced immediately after the response/time limit. The block started with 5 go-
trials to create a prepotent Go response and the majority of the trials (30 out of 40 
trials) were go-trials. The inhibition score was the false alarm rate, which was 
computed as the ratio of NoGo trials in which a response was given by the ones it was 
inhibited (commission errors).  

 

Figure 3.2737  

Example grid of Go and No-Go trials in adolescents’ and adults’ Inhibition task 
 

 

 

 

 

3.5.1.3.2. Switching task 

For children, we used the same task as in Experiment 3.  

For adolescents and adults, we used a standard Dimensional Change Card 
Sort task (Zelazo, 2006). Participants were asked to sort coloured shapes (red and 
blue triangles and squares) according to one of the two dimensions: colour or shape 
(Figure 3.28). On each trial, participants would always see a red triangle and a blue 
square on the bottom of their screen, always with the same right-left mapping. A 
word would appear between the shapes for 500ms, indicating the sorting rule: 
COLOUR or SHAPE), and the target shape would then appear in the middle of the 
screen until a response was given. Participants were asked to press “A” when the 
target shape was red or a triangle, and “L” when the target shape was blue or a 
square. An interstimulus interval of 800ms followed the response. There were 20 
shape and 20 colour trials, and 20 mixed trials. We measured response times in 
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switch and non-switch trials, and the final score was calculated as the difference 
between the two scores.  

 

Figure 3.2838  

Example trials for each sorting rule. Participants had to categorize the middle 
shape according to the shown rule. The trials could appear in separate or in the 
same (mixed) blocks. 

 

 

3.5.2. Results 

No participants were excluded from this study. Outliers in the separate tasks were 
excluded from the relevant analyses. The exclusion criteria will be discussed 
separately below for each task. 

  

3.5.2.1. Choices  

Figure 3.29 and Table 3.12 show the mean number of choices and SDs of each of the 
three options for each age group. We first analysed the choices each age group made 
and found no significant interaction between Age Group and Option: F(3.532, 
83.004) = 1.180, p = .325, Greenhouse-Geisser corrected. There was no main effect 
of Option (F(1.766, 83.004) = 1.392, p = .254, nor Age (F(2,47) = 2.883, p = .066. 
Since it was part of our hypotheses, we also inspected the pairwise differences 
between age groups’ choices. Adults chose the NS option significantly more than 
children (p = .029), but the three groups did not differ significantly in the other 
choices. We did not observe any significant differences in the choices within each age 
group either.  
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Table 3.13  

Means and SDs of choices per Option for each age group 

 

 

Figure 3.2939  

Number of choices per Option for each age group in Curiosity task 

 

 

3.5.2.2. Mouse-tracking data analyses 

We followed the same procedure as in the previous experiments to extract 
features from the raw mouse-tracking data. Table 3.13 shows means and SDs for the 
five features we chose to compare between each dilemma. The unfolding of 
aggregated trajectories across time steps for each Dilemma can be seen at Figure 
3.30. 

 Children  Adolescents Adults 

External Reward 10.150 (5.850) 10.759 (4.760) 8.737 (6.575) 

Informational 
Reward 

8.100 (3.159) 8.575 (3.790) 9.713 (5.441) 

Novel Stimulation 6.050 (4.080) 7.675 (3.817) 9.900 (5.173) 
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Figure 3.3040 

Change of mouse position on x-axis during the progress of each trial (time-
normalised trajectories). Data have been aggregated for each dilemma. (a). 
Different unfolding of decisions over time can be observed in children (b), 
adolescents (c) and adults (d) 
 
 

 

a) 

 

b) 
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c) 

 

d) 

 

Table 3.14  

Means and SDs for movement parameters per Dilemma and Age Group 
  Children Adolescents Adults 

Featuresa  Mean SD Mean SD Mean SD 

Maximum 
Absolute 
Deviation 

(MAD) 

ER-IR 

ER-NS 

IR-NS 

107.04 
118.01 

133.40 

137.49 
143.64 
155.71 

84.37 

113.43 
91.61 

130.63 

141.77  

135.42 

124.41 

116.08 

122.05    

138.69 

140.82 

138.82 

Maximum 
Deviation 

above ideal 
line 

(MDabove) 

ER-IR 

ER-NS 

IR-NS 

122.34 
131.99 

150.95 

116.37 
123.34 

133.57 

99.97 
123.79 

104.23 

111.69 

130.03 

121.96 

130.09 

123.44 

127.60 

131.64 

132.99 

132.50 

Area Under 
the Curve 

(AUC) 

ER-IR 

ER-NS 

IR-NS 

26668.42 
29838.19 

29033.79 

34503.86 
41123.82 

37930.33 

23932.44 

29443.65 

26227.24 

40367.07 

39185.82 

108296.89 

34836.22 

31194.98 

34818.59 

44462.16 

41654.78 

46180.97 

x-flips ER-IR 

ER-NS 

IR-NS 

1.91  

2.06  

2.71 

1.86  

2.29  

2.57 

1.17 

1.31 

1.31 

1.13  

1.41 

1.49 

1.42 

1.46 

1.40 

1.34 

1.39 

1.27 

Response 
Times 

ER-IR 

ER-NS 

IR-NS 

3737.29 
3798.59 

4298.20 

2434.34 
3160.80 
3301.51 

2257.51 

2272.82 

2308.67 

941.61 

880.14 

925.59 

2740.68 

2696.49 

2796.44 

1294.38 

1327.85 

1318.56 

aAll time related values are presented in milliseconds (ms), all position related values 
are presented in pixels (px), area (AUC) is displayed in px2. 
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There was a significant DilemmaXAge Group interaction effect on MAD (χ2(4) 
= 11.844, p = .019). Pairwise comparisons did not show any differences in MAD in 
each dilemma between the age groups. We then analysed the effect of Dilemma 
within each age group. There was no significant effect of Dilemma in children’s MAD 
(χ2(2) = 4.937, p = .085) nor in adolescents’ MAD (χ2(2) = 5.564, p = .062). Adults’ 
MAD did not differ either in each Dilemma (χ2(2) = 0.764, p = .682).   

A significant interaction between Dilemma and Age Group was observed for 
MDabove (χ2(4) = 12.834, p = .012). Pairwise comparisons did not show any 
differences in MDabove in each dilemma between the age groups. Within each age 
group, there was no significant effect of Dilemma on children’s MDabove (χ2(2) = 
4.901, p = .086). No significant effect of Dilemma on adolescents’(χ2(2) = 5.085, p = 
.079) and adults’ MDabove (χ2(2) = 1.398, p = .497) was observed either. 

Furthermore, there was no significant DilemmaXAge Group interaction effect 
on AUC (χ2(4) = 4.965, p = .290). Type of Dilemma did not have a significant effect 
on AUC (χ2(2) = 0.906, p = .635), neither did Age Group (χ2(2) = 2.404, p = .301.  

There was a significant DilemmaXAge Group interaction effect on xflips (χ2(4) 
= 18.165, p = .001) (Figure 3.31). Specifically, simple effects showed that it was 
children that had significantly more x-flips than adolescents (p = .003) and adults (p 
= .001) in the IR-NS dilemma. When we analysed each group separately, we found 
that children made significantly more flips ((χ2(2) = 17.008, p <.001), specifically in 
the IR-NS dilemma compared to the ER-IR (p<.001) and compared to the ER-NS 
dilemma (p<.001). In comparison, adolescents did not differ in the number of flips in 
each dilemma (χ2(2) = 1.227, p = .541) and neither did adults ((χ2(2) = 0.055, p = 
.973), suggesting that the overall differences observed were due to the children’s x-
flips.  

Lastly, a significant DilemmaXAge Group interaction effect was observed on 
RTs (χ2(4) = 16.694, p = .002). Simple effects showed that children were significantly 
slower than adolescents (p = .008) and adults (p = .007) in the IR-NS dilemma. 
When we analyzed each group separately, we found that children were significantly 
slower (χ2(2) = 11.728, p = .003), specifically in the IR-NS dilemma compared to the 
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ER-IR (p = .003) and to the ER-NS dilemma (p = .005). Adolescents also showed 
marginal overall difference in RTs (χ2(2) = 6.052, p = .049), but no significant 
differences in pairwise comparisons. Adults did not differ significantly in their RTs in 
each dilemma (χ2(2) = 2.221, p = .329.   

Figure 3.3141  

Mean number of x-flips per Age Group across in the IR-NS dilemma. 

 

There was no significant DilemmaXAge Group interaction effect on the types 
of trajectories (χ2(4) = 6.338, p = .175). There was a significant main effect of 
Dilemma (χ2(2) = 7.894, p =.019), and specifically the IR-NS dilemma was 
significantly different from ER-NS (p = .019). To look further into these differences, 
we compared each type of trajectory per type of Dilemma separately (Table 3.14 and 
Figure 3.32). We found that the dilemmas did not differ significantly in frequency of 
straight (F(2, 96) = 0.803, p = .451), curved (F(2, 96) = 1.595, p = .208) or cCoM 
trajectory paths (F(2, 96) = 0.401, p = .671). There was also no significant main effect 
of Age Group (χ2(2) = 2.095, p = .351).  
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Table 3.15  

Frequencies of trajectory types per Dilemma and Age Group. 
 Straight Curved cCoM dCoM 

ER-IR 

ER-NS 

IR-NS 

1236 

1175 

1247 

238 

260 

220 

160 

180 

155 

0 

0 

1 

Children 

Adolescents 

Adults 

1371   

771    

1516     

302   

161   

255   

203   

122   

170   

0   

1 

0 

 

Figure 3.3242  

All observed trajectories as they have been automatically clustered in five different 
prototypes by mousetrap, a) Children, b) Adolescents, c) Adults 

a)
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b)

 

c) 

  

 

3.5.2.3. Secondary tasks 

A subgroup of participants did not complete these tasks (2 adolescents and 1 adult), 
due to technical issues. No outliers were excluded.  

 

3.5.2.3.1. Inhibition task 

Task performance was measured as the number of errors in the No-Go trials divided 
by the total number of No-Go trials. We performed a one-way ANOVA with Age 
Group as factor (Figure 3.33a). There was no main effect of Age (F(2,45) = 0.357, p = 
.702).  
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Figure 3.33  

Participants’ error rate in the(a) Go/No-Go task and (b)  Switching task. 

a)  

b)  

 

3.5.2.3.2. Switching task 

Task performance was measured as the difference between Reaction Times in 
mixed rule and simple rule trials. We performed a one-way ANOVA with Age Group 
as factor (Figure 3.33b. There was no main effect of Age (F(2,45) = 2.623, p = .084).  

 

3.5.2.4. What predicts participants’ choices? 

We also tried to predict individual choices in the mouse-tracking task based 
on their scores in the secondary tasks. We built a Poisson generalised linear model 
entering Inhibition Score and Shifting Score as fixed effects.  
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In the full sample, the full model significantly predicted External Reward 
choices (F(1,2) = 8.939, p = .011). Specifically, Shifting Score was a significant 
predictor (.001 more ER choices, 95% CI, .000 to .001, p = .020). The model did not 
predict Informational Reward choices (F(1,2) = 1.825, p = .402), nor Novel 
Stimulation choices (F(1,2) = 3.009, p = .222).  

We then ran analyses within each age group. In children, the model 
significantly predicted ER choices (F(1,2) = 14.740, p<.001). Specifically, Shifting 
Score was a significant predictor (.001 more ER choices, 95% CI, .000 to .001, p = 
.001). On the contrary, the model did not predict IR choices (F(1,2) = 1.856, p = 
.395), but it did predict NS choices (F(1,2) = 14.930, p <.001). Βoth Inhibition and 
Shifting Scores were significant predictors. Inhibition error rate positively predicted 
NS choices (.150 more NS choices, 95% CI, .069 to .232, p<.001), while shifting score 
negatively predicted NS choices (.001 less NS choices, 95% CI, -.002 to -.000, p = 
.016). To further examine the exact participants’ preferences based on their EF 
scores, we first calculated the difference between ER, IR and NS choices in each 
dilemma. For example, the ERIR difference was a score measuring how many times 
participants chose ER over IR in the ER-IR dilemma, by subtracting the IR from the 
ER choices. Thus, a larger positive score indicated greater ER preference in the 
specific dilemma, and a negative score the opposite preference. We then correlated 
these scores with Shifting and Inhibition Scores. Inhibition error rate positively 
correlated with NSIR preference (ρ = .592, p = .006) but not with other differences, 
whereas Shifting score positively correlated with both ERIR preference (ρ = .502, p = 
.024) and ERNS preference (ρ = .461, p = .041).  

In the adolescents group, the model did not predict ER choices F(1,2) = 3.848, 
p=.146), IR choices (F(1,2) = 3.386, p=.184), nor NS choices (F(1,2) = 2.987, p=.225).  

Similarly, in the adults group, the model did not predict ER choices F(1,2) = 
1.421, p=.491), IR choices (F(1,2) = 2.785, p=.248), nor NS choices (F(1,2) = 1.878, 
p=.391).  

  

3.5.2.5. Summary of Results 

In our fourth experiment, participants’ performance differed from the 
previous findings. Specifically, participants in all age groups did not differ in their 
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choices of the three options overall. However, a difference was observed in children’s 
and adults’ NS choices, with adults choosing NS more often. Otherwise, no difference 
was observed within each age group’s choices either.  

Οur EF tasks did not show any age-related difference in performance, however 
when the scores were added in the regression model, they significantly predicted 
children’s ER and NS choices. Specifically, higher switching performance was 
associated with more ER choices and less NS choices, while lower inhibition also 
predicted more NS choices, specifically in the IR-NS dilemma. The adolescents’ and 
adults’ choices were not successfully predicted by the model.  

Analyses of the movement indices showed that children did significantly more 
x-flips and responded more slowly in the IR-NS dilemma, compared to the other 
groups and the other dilemmas. There were also significant interactions between 
type of dilemma and age group in the MAD and MDabove measures, but no 
significant differences in comparisons. The comparison of trajectory types showed 
that the IR-NS dilemma was significantly different to the others, but no specific type 
of trajectory appeared to be more common in this specific dilemma.  

 

3.5.3. Discussion of Experiment 4 

The aim of our fourth experiment was to compare participants’ choices when 
the ER option was no longer a final reward acquired after following a certain strategy 
(i.e., a goal), but a trial-by-trial acquisition of either a candy or a coin – as a proxy for 
secondary rewards of everyday life. This change aimed in comparing the rewarding 
feeling after obtaining an external reward to the rewarding feeling of uncertainty 
resolution or novel stimulation.  

Our results suggested that participants were equally driven by all options. By 
inspecting the data, we can observe a general tendency to follow similar patterns to 
the previous experiments, specifically for children and adolescents, whereas adults 
seemed completely divided between the options. This behaviour possibly highlights 
the importance and strong motivation which accompanies a goal especially for 
adults, regardless of the actual reward’s value, which did not differ in Experiment 4 
compared to the previous ones. However, in our first experiment adults seemed to 
balance their choices options too, despite showing some preference for the ER. In our 
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second experiment, they still balanced their choices between the two options which 
included a goal (explicit and implicit), and chose NS less. However, the decision 
time-limit in Experiment 2 might have reinforced these goal-directed strategies even 
more, which could not have been the issue in the first and fourth experiments. As a 
result, we cannot safely conclude that including a goal changed adults’ behaviour 
dramatically, although obvious differences are observed.  

Furthermore, children and adolescents also seemed to be affected by the lack 
of an explicit goal. However, in all groups we observed large variations, suggesting 
that some individuals might have actually followed strategies more or less consistent 
to previous findings. Specifically in children, some of this variation seemed to be 
explained by their EF maturation – such that participants with a larger ability to 
switch (or, at least, with the ability to switch with less cognitive effort) chose ER 
more and NS less often. Moreover, participants with worse inhibition within the 
children group also chose the NS option more. The fact that this finding is observed 
in this experiment, but not the previous ones (where the ability to follow goals was 
more necessary) is intriguing. Especially regarding children’s shifting score, we 
would expect it to predict a greater balance between the options, considering that it 
reflects the ability to successfully change rules in each context. However, it could also 
be the case that, even though many children might have wanted to choose the ER 
option, only the children with better ability to do this could keep this in mind when 
the type of dilemmas changed trial to trial, whereas the rest might be more easily 
sidetracked when faced with a different dilemma; e.g., an IR-NS one, where no ER 
option was provided, and found it harder to switch back to an ER driven approach. 
At the same time, the NS option seems to be one that children possibly tried to 
suppress, even when they could not – considering that children with lower inhibition 
and shifting ability chose it more. The explanation for this is not clear, as no 
instruction or external reason was provided for such a preference. They could have 
had such a behaviour towards any of the other options as well. We could speculate 
that this option possibly held greater risk, as it could not be predicted, and children’s 
developing risk aversion influenced their tendencies.  

The difficulty of the IR-NS dilemma for children is also clearly reflected in 
their movement trajectories, specifically in their movement entropy and time. This is 
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consistent with the findings of our previous experiments, suggesting that children 
find the NS option tempting even when they end up choosing different options.  

We will be discussing our overall findings, limitations and proposed changes 
and extensions in the General Discussion of this chapter.  

 

3.6. Comparison across all four experiments 

The analyses in each of our experiments revealed interesting findings 
regarding participants’ choices in different age group and pointed towards more 
systematic differences in these different ages. However, in each experiment we chose 
to manipulate the decision environment, creating different dilemmas for groups, or 
we slightly changed the age limits. A summary of these differences is presented in 
Table 3.15. Based on these manipulations or differences, we considered interesting to 
examine whether participants’ specific preferences are stable or whether the groups 
are significantly affected by facing different options or goals.  

We expected that different decision contexts will influence participants’ 
preference for each of the choices, especially the differences between having a goal or 
not – being instrumental to a goal will make an option more attractive. Furthermore, 
we expect that overall, children will consistently prefer the NS option significantly 
more than the other groups, and the adolescents will prefer the ER more.  

Figure 3.34 shows each Age group’s choices in all four experiments. We found 
a significant three-way interaction between Dilemma, Age Group and Experiment 
(F(7.413, 352.134) = 3.060, p = .003). Simple effects showed that different groups 
chose each option differently based on the experiment. Children and adolescents 
chose the ER option equally in all experiments, regardless of the presence of a goal 
(non-significant effects). However, adults chose the ER option less in Experiment 1 
compared to Experiment 2 (p = .008). Furthermore, all groups chose the IR option 
less in Experiment 1 compared to the other experiments, as it was expected by the 
block termination when the ER was acquired. Similarly, children and adolescents 
also chose the NS less in Experiment 1 compared to the other experiments. However, 
adults chose the NS equally in Experiment 1 and 2, and significantly more in 
Experiment 4. Children also chose the NS significantly less in Experiment 4 
compared to Experiment 2.  
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Table 3.16  

Differences in age range and task design of the four experiments 
 Age Groups ER Goal IR Goal NS stimuli 

version 
Decision 

Time limit 

Exp 1 5-9 year olds 

13-16 year-olds 

Adults 

Yes Yes 1 No 

Exp 2 5-7 year olds 

13-15 year-olds 

Adults 

Yes Yes 1 Yes 

Exp 3 5-7 year olds Yes No 2 No 

Exp 4 5-7 year olds 

13-15 year-olds 

Adults 

No No 2 No 

 

Figure 3.3443  

Choices per Age group in all experiments. 
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Taking all experiments into account, children and adolescents seem to prefer 
the ER option to the IR option (p = .004 for children and p = .023 for adolescents) 
and the IR option to the NS option (p = .031 for children and p = .002 for 
adolescents). In contrast, adults seem to choose the ER and IR options equally (p = 
.987) and prefer both options to the NS (p = .002 and p = .011 respectively). Overall 
between groups, the only significant difference seems to regard the IR option – 
adults prefer this option more compared to children (p = .041). 

 

3.7. General Discussion 
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Οur series of experiments aimed to uncover developmental differences in the 
balance between exploitation, exploration based on uncertainty, and exploration 
based on novelty. Based on previous findings, we started with the overarching 
hypothesis that children will be more novelty-driven than the other age groups, and 
that adolescents will be strongly exploitative, while we expected adults to be less 
novelty-driven and overall more exploitative than children. Furthermore, we were 
interested in the role that cognitive control and stable predispositions towards 
uncertainty might play for the individual differences in the explore/exploit balance. 
We found evidence supporting some of our initial hypotheses, but overall the 
findings paint a more complicated picture. 

The expected children’s increased preference for novelty was not consistently 
confirmed. Children did not differ from the other groups in their NS choices across 
all experiments, and only showed such a preference in Experiment 2. It seems that 
experimental manipulations played an important role in this difference. Specifically, 
children chose the NS option significantly more only when they were given a time 
limit for their decision. We consider these rapid decisions to be more revealing of 
children’s initial, “intuitive” preferences, some of which they have to overcome in 
favour of more future-oriented rewards. Recent findings have shown that (adult) 
decision making related to the explore-exploit dilemma and behaviour towards 
uncertainty is affected by time pressure (Wu, Schulz, Pleskac, & Speekenbrink, 
2022). It has previously been shown that imposing limitations to cognitive resources 
in decision tasks changes the participants’ strategies to faster, “cheaper”, more 
intuitive decisions (see also Kahneman, & Frederick, 2002), making immediate 
outcomes more salient (Ariely & Zakay, 2001). Specifically in an explore-exploit task, 
limiting cognitive capacities has often been shown to increase exploration, by leading 
to more risk-taking and making more decisions regardless of their actual outcome or 
expected value (Madan, Spetch, & Ludvig, 2015; Olschewski & Rieskamp, 2021). In 
contrast, it has also been shown to decrease exploration, by making people repeat 
their previous actions (Betsch, Haberstroh, & Molter, 2004). In our specific example, 
it is possible that putting cognitive constraints to children’s decision-making 
influenced either their calculation of relative values (i.e., they often did not have 
enough time to analyse the possible extra future value they will gain by the ER and 
IR choices) or even after calculating the values, they had to resist/inhibit their NS-
driven tendencies and choose more according to longer-term goals, on the action 
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level – and this might require more cognitive power. Furthermore, since time-limited 
tasks lead to simpler strategies, children probably repeated the same strategy 
throughout the blocks – an assumption which is supported by their choices being 
consistent before and after the acquisition of the first reward. Such repetition of a 
simple strategy possibly explains the lack of conflict reflected in the mouse-tracking 
trajectories. While more difficult inhibition should be reflected in their ER-NS and 
IR-NS dilemmas, it is possible that participants chose early on not to do an exact 
comparison of the values each time, but repeat their first choices of each block, and 
thus no conflict was happening online in each trial. Indeed, in the other experiments 
(which did not have a time constraint), all participants – including children – found  
the IR-NS dilemma harder. The implication of cognitive control especially for 
children is further supported by our findings in Experiment 4, where participants 
with stronger EF skills were better able to inhibit the NS-driven and favour the ER-
driven behaviour. 

Our findings in the adolescents group validated our hypotheses that they will 
be very ER-driven, especially when the experiments included an ER goal. However, 
they were not significantly more ER-driven than the other groups in their total 
number of choices. Their behaviour was distinct from both the children and the 
adults’ one in some interesting aspects. For example, in Experiment 2 they changed 
their strategy after acquiring the ER, showing a clear ER preference, and switching to 
an IR-driven one later on, similar to the adults’ group, which still reflects an implicit 
learning goal. Their NS preferences are also similar to both groups in different 
contexts. Their difference with the children’s NS choices are more obvious in the 
second experiment, where children clearly choose NS more – for reasons discussed 
above. However, adolescents do not seem to experience any conflict in these 
dilemmas (ER-NS and IR-NS), apart from the first experiment, possibly because the 
presence of a strong ER goal which could be acquired and lead to the termination of 
the block made the other two options equally (not) interesting for adolescents.  

Similar observations were made for adults, especially regarding their ER-IR 
balance, although adults seemed to like both options equally, or they preferred a 
balanced strategy compared to a serial one (something possibly reflecting 
adolescents’ strong desire/anxiety around the ER acquisition). Interestingly, adults 
seemed to choose the NS option a lot too, especially in the experiments where they 
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could spend more time to calculate each value – while they seemed to focus almost 
exclusively in the other two options when the time was constrained. This behaviour is 
the opposite from the children’s one, revealing that NS choices for adults were 
probably a reflection of “safe” exploration done with rationality when they had a 
longer time horizon, rather than impulsive and driven by compromised action 
suppression. However, it could be the case that repetition also affected adults’ 
behaviours, as they started the block by choosing the options that were more 
valuable to them (ER and IR) and it was possibly more computationally efficient to 
keep choosing in the same way. Furthermore, the lack of an ER goal in Experiment 4 
seemed to affect adults more than the other groups in their NS choices, possibly by 
making the ER less appealing and giving more choices to be spent exploring. 
However, the nature of the ER goal in Experiment 4 (candies/coins) might just not 
have been as successful as a proxy for a secondary reward in general. Although 
representations of money or sweets are often used as rewards in bandit tasks, the 
task instructions often inform the participants that they can win an amount of these 
money or candies at the end of the experiment. We did not give such an instruction, 
as we expected just the association with the actual objects would be sufficient.  

Overall our methodology had several limitations. An important one regards 
the operationalisation of our concepts (external reward, informational reward, 
novelty, goals). While overall participants seemed to respond differently to the 
options they were given, suggesting some existing fundamental difference between 
them, the exact amount of uncertainty resolution/information gain (in the IR option) 
in each step in our first two experiments was not quantified. This was changed in the 
last two experiments, where we aimed for a specific amount of perceptual 
uncertainty, created with the same image resolution changes in all images. Still, the 
initial information held by each picture (in terms of complexity, symmetry, etc.) 
fluctuated randomly, and possibly influenced participants’ interest/preference. 
Furthermore, due to the design of our task (2AFC), we could only analyse 
participants’ exploration strategies by looking into broad preferences for each option, 
and not analyze their choices in a simultaneous setting. This would allow for a 
temporal perspective into decision making, and specifically to look into participants’ 
profiles in each age group, when they might switch from each type of reward to 
another, and the contribution of learning, as it is eloquently shown in many recent 
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paradigms of exploratory tasks in children and adults (e.g., Poli et al., 2022, Wilson 
et al., 2021).  

The design of our secondary tasks also restricts the conclusions we can make 
based on our data. The utilisation of different EF tasks versions in our experiments 
limits the comparison between them and weakens our results.  Furthermore, the 
uncertainty task in Experiment 2 seemed to particularly provide some interesting 
directions regarding the relationship between more stable attitudes and exploratory 
behaviour – and a longer version should be used with an explore/exploit paradigm to 
further investigate this relationship, as an alternative to commonly used 
questionnaires.  

Finally, the inclusion of mouse-tracking methodology in such a paradigm 
offered useful and important complimentary findings. As these methods are rarely 
used in developmental value-based decision-making paradigms, our task is a good 
example of the processes that can be revealed, especially as to reveal underlying 
conflict and processing difficulty when values are compared (as it has already been 
shown in pure cognitive tasks; e.g., by Erb et al., 2016). Our findings also raise the 
possibility that children’s conflict is revealed in different movement indices – 
children seemed to make more small but discrete changes such as x-flips and less 
curved trajectories which imply a continuous decision process. However, more 
detailed analysis on the data would be needed to reach conclusions on these topics. A 
more bottom-up process (e.g., as in Maldonado et al., 2019) would be needed to 
clarify whether children’s decisions also share specific different characteristics in 
their trajectories compared to older groups. Apart from this question, our analyses 
could also be expanded by analysing the temporal characteristics of the trajectories, 
such as velocity and acceleration, but most importantly by breaking down the 
movements in theoretically important stages, in an attempt to identify the exact 
timescale of value-based decisions. This last approach, if combined with 
neuroimaging in such a paradigm, could possibly test the hypothesis about whether 
immediate reward and higher-order, future goals (both external and informational) 
influence movement serially or simultaneously (e.g., as other attributes in similar 
tasks; Sullivan et al., 2015). 

In summary, our experiments provided some evidence for differential 
valuation and preference for external rewards, uncertainty resolution and novelty by 



 126 

school-aged children compared to adolescents and adults, and the possible 
implication of cognitive control maturation to these attitudes. The incorporation of 
mouse and finger tracking overall proved a promising technique to reveal children’s 
preferences.  

In our next chapter, we are examining how visual and haptic object complexity 
influences preschoolers interest and overall liking, attempting to dissociate the two 
processes and expand previous studies from vision to the haptic modality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
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Object exploration with vision and touch – Effects of 
object complexity on preschoolers’ interest and 
aesthetic judgements5 

 

 

4.1. Introduction 

People casually perceive and characterise images, concepts or situations as 
simple or complex; such a characterisation is usually based on how much 
information must be processed. For example, musical compositions can be complex 
if they involve many changes in tune and melodies, or a political issue might be 
complex if many points of view are contradicting. Such judgments also take place in 
the perceptual domain, in a seemingly more automatic, immediate way – humans 
can judge whether an image or an object is simpler than another in a similar way as 
when judging objects’ colour or size. The ability to track stimulus complexity 
spontaneously has been suggested to have biological significance, related to the 
extremely well-tuned human ability to identify learning possibilities in their 
environments; i.e., to track the available information and its potential for improving 
the observer’s state of knowledge. Indeed, stimulus complexity has been long known 
to influence human information sampling and attention across the lifespan. Early 
theorists such as Berlyne (1960) have described and extensively investigated the 
effects of complexity on exploratory behaviour. In his arousal theory, Berlyne 
included complexity to the collative variables (i.e., the stimulus properties more 
likely to generate arousal) and suggested that medium amounts of complexity lead to 
increased motivation for exploration (curiosity) and more information-seeking 
behaviour. Similarly, Attneave (1954; 1957) took an information-theory approach to 
describe how specific variables of image complexity (e.g., recurrence or proximity) 
might lead to longer processing of visual stimuli. Since the days of these early 
studies, extended research in cognitive psychology with a focus on learning has 

 
5 This chapter is part of a larger collaborative project, with Tommaso Ghilardi, Francesco Poli and 
Sabine Hunnius, who had significant contribution to the conceptualisation and data analyses of this 
experiment.  
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shown that visual complexity is picked up even from infancy (Brennan, Ames, & 
Moore, 1966; Cohen, DeLoache, & Rissman, 1975), and that more complex sequences 
are also preferred by infants6 (Addyman & Mareschal, 2013; Kidd et al., 2012). A 
corresponding but distinct line of research, experimental aesthetics, has also 
extensively investigated complexity preferences across the lifetime (e.g., Güçlütürk, 
Jacobs, & van Lier, 2016), promising more robust methods to quantify perceptual 
complexity, which has generally been overlooked by experimental psychologists. 
Comparing findings from the two fields gives rise to important questions and 
directions for further investigation. 

One such question regards the nature of the psychological effects of stimulus 
complexity. As mentioned above, some early studies have related the arousal 
potential of a stimulus to its complexity with an inverted U-curve (e.g., Berlyne, 1970, 
Berlyne & Crozier, 1971; Kidd et al., 2012); when presented with a set of stimuli, 
participants will be more interested to the ones of medium complexity. However, 
others have failed to find evidence for such a relationship (e.g., Martindale, Moore, & 
Borkum, 1990). This inconsistency has been attributed to different factors. Τo start 
with, a dissociation between interestingness and liking/pleasantness of stimuli is 
necessary. While ‘interestingness’ is mostly associated with learning/categorising 
processes, quantifying the learning potential of a stimulus, ‘liking’ or ‘pleasantness’ 
reflects an aesthetic judgement and feelings of satisfaction and enjoyment. This 
dissociation is also likely to be reflected in the different measures that have been 
used in complexity preference studies. While most studies in experimental 
psychology considered looking time as a measure of preference in general (an 
assumption which still holds), it has been shown that looking or exploration time 
might specifically reflect stimulus processing in terms of learning, contrasted to 
explicit liking/beauty judgements (e.g., Wohlwill, 1968). Even in explicit judgements, 
when participants were asked to rate interestingness vs. pleasantness, 
interestingness seemed to increase linearly with increasing stimulus complexity or 
follow a U-shaped curve, while pleasantness peaked either in low or high degrees of 

 
6 From an information-theory perspective, a dissociation between complexity and 
novelty/unpredictability might not be meaningful. However, for the purposes of this study, we will 
refer to complexity as the amount and structural organization of information in the spatial domain. 
The two studies mentioned here focus on how information is organized in the temporal domain, closer 
to stimulus unpredictability.   
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stimulus complexity (W-shape, based on individual ratings; Berlyne, Ogilvie, & 
Parharn, 1968; Day, 1967;1968; Musinger & Kessen, 1964). Similar dissociation has 
been shown in school-aged children (Hutt & McGrew, 1969).  

Regarding what might be causing this dissociation, it has been proposed that 
different informational aspects of stimuli might influence these two types of 
judgements. Indeed, complexity is better understood as multidimensional: one 
dimension involves the amount and variety of elements, while the second involves 
their organisation and grouping (Nadal, Munar, Marty, & Cela-Conde, 2010). Earlier 
studies also make such distinctions. For example, Chipman (1977; Chipman & 
Mendelson, 1979) distinguished between a quantitative factor (related to amount of 
elements) increasing complexity, and a structural factor (determined by different 
forms of structural organisation, but mainly by symmetry), which decreases 
complexity. When asked to provide ratings based on the images’ asymmetry (a 
structural organization component), participants judged more asymmetrical images 
as more interesting but less pleasant (Day, 1968). More specifically, asymmetry has 
been shown to have differential effects on judgements of beauty (e.g., Jacobsen & 
Hofel, 2001). Consequently, research designs looking into the psychological effects of 
complexity should include both implicit and explicit measures, and carefully 
operationalise interest and liking. Furthermore, it is important to quantify 
complexity in terms of all the relevant dimensions, and carefully manipulate its 
changes.   

However, even after dissociating these two aspects of preference, studies 
systematically report large individual differences in preference for complexity 
(Aitken, 1974; Güçlütürk et al., 2016; Lane, 1968; Rump, 1968), both in terms of 
interest and pleasantness. Specifically, Güçlütürk et al. (2013) used an exploratory 
clustering analysis to group people with low- and high-complexity preferences, and 
showed that different people tend to be consistent in their high or low complexity 
preferences. Moreover, they suggest that the frequently observed U-shaped curve can 
be the result of grouping all participants’ responses together. Certain dispositional 
and contextual factors have been proposed as an explanation for individual 
complexity preferences. These primarily reflect more general approach-avoidance 
tendencies towards new information and uncertainty. In a recent application of 
emotion appraisal theories to the psychology of interest, Silvia (2005) proposed that 
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feelings of interest presuppose both a potential for learning and a coping judgment; 
i.e., the belief that a particular learning goal can be achieved by the subject, taking 
into account their current total state (knowledge- and physiological-wise). Similarly, 
Gruber and Ranganath (2015) incorporate an appraisal step in their PACE 
(Prediction-Appraisal-Curiosity-Exploration) framework, suggesting that learners 
evaluate whether new information will lead to learning or harm (and this evaluation 
leads to exploration or avoidance).  

While the appraisal is definitely contextual (e.g., influenced by the current 
mood), it is also affected by dispositional factors. For example, high scores in specific 
personality factors such as Openness to Experience and Contentiousness have been 
positively correlated with preference for more complex stimuli (Chamorro-Premuzic, 
Burke, Hsu, & Swami, 2010). However, when it comes to complexity specifically, 
these dispositions might also be confounded by experience: since complexity is a 
collative variable, it is always compared to how much experience an observer has 
with complex images. McDougall, Curry, and de Bruijn (1999) measured complexity 
and familiarity judgements of stimuli and found that less familiar shapes were also 
judged as more complex. This is an important point that should be considered when 
participants are exposed to similar stimuli over consecutive trials during studies. In 
summary, we could expect that individuals might have relatively stable dispositions 
towards complexity and certain exploratory strategies, which might consistently 
produce different responses in complexity preference tasks. 

The aforementioned research has focused almost exclusively on the visual 
domain. However, complexity can also be relevant in or sensory modalities such as 
the haptic domain. The exploration in the visual and haptic domains have been 
shown to have many similarities (Lacey, Campbell, & Sathian, 2007; Lederman & 
Klatzky, 1987). Moreovoer, significant overlap has been shown in brain areas 
preferentially activated when assessing geometric representations regardless of their 
encoding modality (Amedi, Jacobson, Hendler, Malach, & Zohary, 2002). Thus, 
many common informational attributes are available and recognisable by both vision 
and touch, including both quantitative and structural information; e.g., variability of 
items or proximity/symmetry (Locher & Simmons, 1978; Overvliet, Krampe, & 
Wagemans, 2012; Overliet & Sayim, 2016).  
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A strong correlation in complexity judged through vision and touch has been 
reported in early studies (Owen & Brown, 1970). Although haptic exploration 
strategies in the presence or absence of vision have been well studied, very few 
studies have tried to measure the interestingness and pleasantness of haptic stimuli, 
in relation to their complexity. One study by Jakesch and Carbon (2012) showed 
increased liking of complex haptic stimuli after familiarisation (known as the Mere 
Exposure effect) based on the objects’ texture (e.g., more liking for stone objects vs. 
wood). In a more recent study, Muth, Ebert, Markovic and Carbon (2018) had 
participants rate the pleasantness, liking and interest for more or less complex 
configurations of specific 3D objects (fish). They were particularly interested in 
identifying an insight effect on pleasantness (but not interest) through haptic 
exploration, similar to the one which can be observed through vision (i.e., images 
that cause sudden insight are rated as more pleasant). Indeed, increased complexity 
was strongly correlated with interest, while insight was correlated with both 
pleasantness and interest. Interestingly, the researchers made the same 
measurements for vision, compared the correlations between the two modalities, and 
found similar effects in both modalities.   

In the current study, we aimed to examine how complexity might influence 
interest and liking through both vision and touch. We were further interested in how 
these preferences might develop from a very young age (i.e., preschoolers). From the 
scarce evidence mentioned above, children’s preferences have only been measured in 
visual complexity studies, and the findings are often contradictory. Although haptic 
modality development and its relationship to object exploration and learning has 
been extensively studied (e.g., Pereira, James, Jones, & Smith, 2008), the effects of 
complexity have not been investigated. We were particularly interested in this age 
group because multisensory integration processes are still under development (Gori, 
Del Viva, Sandini, & Burr, 2008). This might affect children’s ability to facilitate the 
mental representations of objects using mental imagery (i.e., crossmodal 
correspondences to unify how an object looks and how it feels when it is 
manipulated). As a result, testing children might enable  a dissociation between 
liking as a result of direct perception vs. imagined manipulation to emerge, 
something that cannot be achieved in adults.  
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In our task, 4-year-olds explored 3D objects of three levels of complexity 
through vision and touch unimodally. The objects were based on abstract, 
symmetrical shapes (see Stimuli) used by Gartus and Leder (2017; constructed by 
Jacobsen and Höfel, 2002). Their study included both symmetric and asymmetric 
stimuli and aimed at comparing subjective (human) and machine-learning based 
ratings of complexity, revealing high correlations between the two. In our study, we 
only used symmetric stimuli, and manipulated complexity by changing the amount of 
variability on each shape (based on the number of different groups of characteristics; 
see Alberti & Witryol, 1990). Importantly, we did not modify the abstract patterns, 
but chose them based on complexity ratings in Gartus and Leder (2017; see Stimuli 
in Methods). We measured both exploration time (looking or touching) as a measure 
of interest and explicit ratings on liking and play preference.  

We expected participants’ exploration times to differ based on three possible 
strategies: (i) an overall preference for a specific level of complexity applying to all 
participants (e.g., more interest for the intermediate level), (ii) different preferences 
for individual participants (e.g., medium and high complexity explorers, consistent 
across modalities), and (iii) different preferences for each participant, which was also 
different between each modality (possibly due to their proficiency at exploring in one 
modality over the other). Finally, we expected participants’ exploration times and 
explicit liking answers to differ. Specifically, we expected more individual differences 
in liking, such that they might consistently prefer low or high complexity objects.  

 

4.2. Methods 

4.2.1. Participants 

Our sample consisted of 29 children (14 females, mean age: 4.5 years). All 
participants were neurotypical and had normal or corrected-to-normal vision. The 
participants were volunteers recruited though the Birkbeck Babylab database. 

  

 

4.2.2. Design 
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All participants had to complete two experimental blocks, with 10 trials each. 
One block consisted of Visual trials (i.e., participants could see the stimuli but they 
could not touch them), while the other block consisted of Haptic trials (i.e., 
participants could only touch the stimuli but they could not see them.) The block 
order was randomised for each participant. In each Visual trial, the participant had 
to look for as long as they wanted to three objects of different levels of complexity 
(Low, Medium, High), presented simultaneously through three different holes on a 
board (position 1, 2 and 3; see Stimuli). In each trial, the level of object complexity 
presented in each position was randomised. At the end of the trial, participants had 
to answer an overall Liking Preference question (LP: “Which stone did you like 
more?”) and a Play Preference question (PP: “Which stone would you play more with 
at the end of the game, if I were giving one to you?”). In each trial, the total 
exploration time (ET) for each object was measured, as well as their answers to the 
two questions above. Similarly, in each Haptic trial, participants had to touch three 
objects of three different levels of complexity with both hands, through side holes in 
three boxes, for as long as they wanted, and then answer the same questions. Total 
exploration time for each object and the participants’ answers were recorded.      

 

4.2.3. Stimuli 

We used 18 objects of low, medium and high complexity as experimental 
stimuli (Figure 4.1a). The 2D versions (i.e., images viewed from the top, Figure 4.1b) 
of the objects had been objectively and subjectively rated for visual complexity in a 
previous study by Gartus and Leder (2017). In this study, the authors compared 
different objective complexity measures to identify the ones that most accurately 
predicted participants’ subjective complexity ratings. They found that, from all 
twenty parameters evaluated, mirror symmetry and the root mean square contrast 
(RMS) of the images when saved as Graphics Interchange Format (GIF) were the 
best predictors (Gartus & Leder, 2017). Since we only used symmetric images, and 
thus mirror symmetry was not relevant, we used the RMSGIF measure to categorise 
the stimuli we used to test the children. After obtaining the full set of images from 
the authors, we clustered them in three sets based on their RMSGIF. The 18 images 
we eventually chose had large correlation between their objective and subjective 
ratings (r(16) = 0.95). The 18 chosen images were then 3D-printed and rated in 
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terms of their haptic complexity by 10 adult volunteers. The participants were 
specifically asked to categorise the objects in low, medium and high complexity, and 
their ratings were highly consistent (r(9) = .89). The 3D printed objects were all red 
and black (black base 10cmX10cm, red shaped protrusion of 4cm height) and they 
included a small magnet inside the base, in order to be attached on boxes for the 
visual trials.  

 

Figure44.1  

a) 3D-printed object exploration task stimuli, low to high complexity (left to right), 
b) original images from Gartus and Leder (2017) study 

 

a)                                                                       b) 

 

We used three boxes with side holes and a removable top side to present the 3 
stimuli in only 1 modality (Figure 4.2). For the visual trials, the boxes were 
positioned one next to the other, behind a black panel/occluder, which had three 
small holes for the participant to look through (Figure 4.3a and 4.3b). In each trial, 
the objects were attached in the interior back wall of each box, where a small magnet 
had also been placed. For the haptic trials, the same boxes were removed from the 
back of the panel, and were stacked one on top of the other, fitting on pre-designed 
recesses (Figure 4.2a and 4.2b). The top box was closed on top with the removable 
part. The side holes of the boxes allowed the participants to fit their hands inside and 
explore an object in each box.    

Figure 4.245  
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Configuration of the boxes for Haptic trials, a) participant side, b) experimenter 
side 

 

a)                                                                  b)  

Figure 4.346  

Experimental setup for the visual trials, a) participant side, b) experimenter side. 

 

a)                                                                    b) 

 

 

 

4.2.4. Procedure 
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Children were asked to stand in front of the board (for Visual trials) or in front 
of the block of boxes (for Haptic trials). Then the experimenter started narrating the 
following: “Today we are going to explore two magical kingdoms: a magical forest 
and an underwater kingdom. Which one do you want to explore first?”. Then the 
child answered and experimenter presented ten different cards to the child, from the 
kingdom they have chosen. The child was asked to name the characters they saw, as 
part of initial engagement. After all characters were named, the experimenter 
explained the following: “Each character has three magical stones in their house, and 
you can sneak-peak and look at the stones through these holes for as long as you 
like/you can put your hands through these holes and touch these magical stones for 
as long as you like”. Then the experimenter gave one of the objects to the child for 
familiarisation (this object was not used in the test trials). When the child was ready, 
they picked a card from the pile and the first trial begun. In each trial, the child 
started exploring from the position of their preference; they were allowed to go back 
to a previously explored position freely as many times as they liked. When they 
stopped exploring, they were asked the GL and the PP questions and were 
encouraged to give only one answer (one object of preference). Next, they were asked 
to pick another character card and the next trial started. After one block of trials 
ended, the configuration was changed by the experimenter to continue to the other 
modality block of trials. Meanwhile, the child was presented with 10 new character 
cards, and was asked to name those. The same procedure was followed for the next 
block.  

 

4.2.5. Video coding 

Two people coded the data independently – one of them was naive to the 
purposes of the experiment and the other was the experimenter. The dependent 
variables of interest were participants’ Exploration Time (ET), their overall Liking 
Preference (LP) and their Play Preference (PP). As participants were allowed to start 
exploring from the position of their choice, their Order of exploration was also coded.  

Specifically, we coded as Exploration Time as follows: in visual trials, the total 
time in ms between the moment the participant turned their head towards a hole and 
aligned their eye to it, such that the object could be visible through it, and until they 
turned their head away from the hole. If the participant returned to look through a 
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hole again, this time was added to the total time. As a result, Exploration Time refers 
to all the exploration attempts the participants did.  In haptic trials, we coded as 
Exploration Time the total time in ms from the moment participants touched an 
object inside the box until they removed their fingers from it. Again, if they returned 
to the object, that time was added to the total time.  

Participants’ Liking Preference was the object they chose verbally or by 
pointing when asked “which one did you like more?”. If the participants did not seem 
sure (i.e., pointing to more than one object), they were asked again to give a 
definitive answer and this was the one we coded as chosen. The initial coding 
referred to the position of choice, which was then matched to the complexity level of 
the object of choice, as well as the specific object the participants were choosing. 
Similarly, their Play Preference was the object they chose when asked “which one 
would you play more with at the end?”. Their Order of Exploration referred to 
whether they explored each object first, second or third.   

 

4.3. Results 

Three participants were excluded from the sample as they completed fewer 
than half of the trials in at least one Modality block. Therefore, the final sample 
consisted of 26 participants.  

Table 4.1 shows the main descriptive values for Exploration Time. We used R 
(R Core Team, 2020) and lme4 (Bates, Maechler & Bolker, 2012) to perform a mixed 
effects analysis of the relationship between ET and our predictors (Modality and 
Complexity). We also included Order as a covariate. We used the log-transformed 
values for RTs, as the raw scores violated the normality assumption. As fixed effects, 
we entered Modality, Complexity, Order and Trial, and the interaction between 
Modality and Complexity into the model. To incorporate the dependency among 
observations of the same subject and the repeated trials, as random effects, we had 
intercepts for subjects. The model for ET was the following:  

ET.model = log(ET) ~ Modality*Complexity + Order + Trial + (1 |Subject)  
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P-values were obtained by restricted maximum likelihood ratio tests of the full model 
with the effect in question against the model without the effect in question (chi-
square tests for nested models). 

Table 4.117  

Exploration Time means and SDs per Complexity level and Modality 
 Visual Haptic 

Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

Complexity 
1 

3043.29 
(2740.99) 

2202.32 
(2248.95) 

2255.27 
(1658.76) 

4287.44 
(4685.67) 

4192.38 
(5116.28) 

3525.59 
(2628.35) 

Complexity 
2 

3721.98 
(3514.85) 

2749.05 
(3730.37) 

2742.22 
(2558.47) 

6090.71 
(6684.11) 

3239.88 
(3015.15) 

3827.76 
(3752.50) 

Complexity 
3 

3884.93 
(3935.78) 

2523.74 
(3207.97) 

2575.17 
(2591.29) 

4899.40 
(6113.13) 

3273.00 
(2802.75) 

3836.93 
(4029.92) 

 

There was no significant interaction between Modality and Complexity (χ2(1) 
= 1.893, p = .388). No main effect of Complexity was found (χ2(2) = 3.061, p = .216). 
There was a main effect of Modality (χ2(1) = 80.895, p <.001), showing that 
participants spent significantly more time exploring in Haptic compared to Visual 
trials. There was also a main effect of Order (χ2(2) = 61.29, p<.001). Specifically, 
participants explored the first object they saw or touched significantly more than the 
others (p<.001), whereas the ET in the other two positions did not differ. Finally, 
Trial was a significant covariate (χ2(1) = 214.71, p <.001), negatively correlated with 
ET (i.e., participants explored significantly more time in the first three trials and 
significantly less in the final three trials). We used AIC model selection to distinguish 
among the aforementioned set of models, as well as the mοdel without the random 
effect factor. The best-fit model, carrying 84% of the cumulative model weight, 
included Modality, Complexity, Order and Trial, no interactions and the random 
effects. Since we had specific hypotheses for the two modalities, we also analysed the 
data of each modality block separately. As the relationship between Complexity and 
ET is not always linear, we ran a polynomial regression for the Complexity predictor, 
in order to also check for a quadratic fit. A main effect of Complexity as a linear 
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predictor was found in the visual block (χ2(2) = 2.136, p = .033). In the haptic block, 
Complexity was not significant as a linear predictor (χ2(2) = 0.509, p = .611) nor as a 
quadratic one (χ2(2) = 1.597, p = .111).  

We also decided to conduct the analyses with Complexity as a continuous 
factor, by using the corresponding RMSGIF measure for each object. We did this in 
order to potentially capture more subtle influences of complexity which might have 
been missed when objects were grouped into three levels of complexity. There was no 
significant interaction between Modality and Complexity (χ2(1) = 1.683, p = .194). No 
main effect of Complexity was found (χ2(2) = 0.356, p = .551). There was a main 
effect of Modality (χ2(1) = 82.965, p <.001), as participants spent significantly more 
time exploring in Haptic compared to Visual trials. There was also a main effect of 
Order (χ2(2) = 60.51, p<.001). Specifically, participants explored the first object they 
saw or touched significantly more than the other (p<.001), whereas the ET in the 
other two positions did not differ. Finally, Trial was a significant covariate (χ2(2) = 
201.71, p <.001), negatively correlated with ET (i.e., participants explored for less 
time as trials progressed). We used AIC model selection to distinguish among the 
aforementioned set of models, as well as the mοdel without the random effect factor. 
The best-fit model, carrying 71% of the cumulative model weight, included Modality, 
Complexity, Order and Trial, no interactions and the random effects by individual 
subjects. Similarly, we also analyzed the data of each modality block separately. A 
main effect of Complexity as a linear predictor was found in the visual block (χ2(2) = 
5.011, p = .037). In the haptic block Complexity was not significant as a linear 
predictor (χ2(2) = 0.501, p = .617) nor as a quadratic one (χ2(2) = 1.882, p = .060). 
Figure 4.4 shows the relationship between object complexity and ET in each 
modality.  

We then analysed the relationship between the ET and the explicit object 
preferences (i.e., the answers to the Liking/Play questions). Table 4.2 shows 
participants’ preferences in total, and in each modality. Complexity did not seem to 
significantly affect participants’ Liking Preference (F(2,52) = .001, p = .999), nor Play 
Preference (F(2,52) = .918, p = .406) when comparing the data of both modalities 
together. When comparing participants’ preferences in each modality separately, in 
visual trials Complexity did not affect participants’ Liking Preference ((F(2,52) = 
.038, p = .963), nor Play Preference (F(2,52) = .034, p = .967). Similarly in haptic 
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trials, Complexity did not affect participants’ Liking Preference ((F(2,52) = .047, p = 
.954), nor Play Preference (F(2,52) = 2.101, p = .133).  

 

Figure 4.447  

Effect plot showing the relationship between a) Exploration Time and visual 
RMSGIF complexity, b) Exploration Time and haptic RMSGIF complexity 

 

 

 

 

 

 

 



 141 

Table 4.218  

Participants’ mean frequencies of Liking and Play preferences per Modality and 
level of Complexity 
 

 

 

 

 

 

 

 

 

However, a visual inspection reveals very different patterns both between 
participants and between the two types of explicit preference in each modality. Some 
participants seem to prefer the most complex objects visually but not haptically (e.g., 
Participant 2; Figure 4.5c), while others’ preferences might match in the Liking 
question and the Play Preference question across modalities but differ between them 
(e.g., Participants 1, 3, Figure 4.5a,b). Some might choose similarly in both questions 
in one modality but differ in the other (e.g., Participant 8, Fig 4.5d). As a result, we 
decided to cluster participants based on their preferences in each modality, and then 
use the clusters to predict their ET. We used the k-means clustering method to create 
a predetermined number of clusters for each modality and preference. To identify the 
optimal number of clusters, we compared different groupings using the silhouette 
method (i.e., the optimal number of clusters was the one with larger silhouette 
values). For Visual Liking, the optimal number of clusters was 3, corresponding to 
participants’ larger preference for the Low, Medium or High complexity. For Visual 
Play preference, the optimal number of clusters was 6, corresponding to the 
aforementioned strong preferences (Low, Medium, High), as well as three categories 
for Low-Medium, Medium-High and Balanced preferences. Similarly, in the Haptic 
Liking, the optimal number of clusters was 6, which corresponded to Low-Medium, 
Medium-High, Balanced preferences, as well as Low-High and Strong Medium 

  Low 
Complexity 

Medium 
Complexity 

High 
Complexity 

Visual Liking 9.78 (5.66) 10.22 (4.26) 9.89 (5.18) 

Play 9.78 (5.17) 9.67 (4.80) 10.11 (6.07) 

Haptic Liking 9.56 (4.71) 9.11 (4.74) 9.33 (4.35) 

Play 7.56 (4.02) 10.44 (5.29) 9.67 (4.80) 

Overall Liking 19.33 (8.25) 19.33 (6.83) 19.22 (7.07) 

Play 17.33 (7.46) 20.11 (5.81) 19.78 (7.45) 
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preferences. Finally, for Haptic Play, the optimal number of clusters was 6, 
corresponding to the same categories as in Haptic Liking. However, participants’ 
clusters did not significantly predict their ET for either of the explored objects’ 
complexity level in any modality (Appendix B).   

 

Figure 4.548  

Participants’ mean frequencies of preference per level of complexity. Columns, from 
left to right: Visual Liking Preference, Haptic Liking Preference, Visual Play 
Preference, Haptic Play Preference. Rows show different participants, a) 
participant 1, b) participant 3, c) participant 2, d) participant 8   

    

a) 

    

b) 

   

c) 

   

d) 
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4.3.1. Summary of results 

Participants’ exploration time was significantly influenced by the order they 
chose to explore the options, spending more time in the first position, as well as by 
trial number, and spending less time exploring as the task progressed. Furthermore, 
they spent more time exploring objects haptically than visually. There was no main 
effect of Complexity (as a category – Low, Medium, High – or as an exact measure 
(RMSGIF)) when analysing visual and haptic trials together. However, there was a 
main effect when the two modalities were analysed separately. Complexity 
significantly affected ET in the visual block, with ET increasing linearly with higher 
object complexity. In contrast, Complexity did not affect ET in the haptic trials, 
despite approaching a significant quadratic relationship. Participants’ explicit 
preferences were not influenced by object complexity in the full sample. However, 
large individual differences were observed, and individual clusters revealed 
preferences for different levels of complexity. These preferences were also not 
consistent across modalities for all subjects. Finally, participants’ ET could not be 
predicted by their explicit preferences, as grouped in separate clusters.  

 

4.4. Discussion 

Our experiment aimed to understand the effect of visual and haptic object 
complexity on preschoolers’ interest and pleasure judgements. Specifically, we were 
interested in dissociating the two types of preferences, such that interest would be 
related to a learning process (reflected in participants’ exploration time of the 
objects), while pleasure judgements would be explicit statements of preference, 
either regarding participants’ overall liking of an object, or their hypothesized 
interaction with it. We expected the two measures to be affected by object 
complexity, and not to correlate with each other. Furthermore, we were interested in 
the possible differences of both of these preferences between the visual and the 
haptic domain. Participants could be consistent or differ across modalities – we 
refrained from making specific hypotheses here due to the exploratory nature of this 
study on the effect of complexity on the haptic domain. We found evidence for some 
of our initial hypotheses, while some of our findings need further investigation to be 
clarified.  
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Complexity was found to influence participants’ exploration time in the visual 
domain, increasing it in a linear fashion. This suggests that participants could keep 
track of the information available and successfully process it, devoting the time 
needed to understand the structure of each object’s surface. This linear relationship 
between visual complexity and time has previously been documented (Berlyne, 1963; 
Berlyne & Lawrence, 1964; Locher & Nodine, 1978). In contrast, we did not observe 
any significant relationship between haptic complexity and exploration time, 
although the effect resembled an inverted U-shaped curve, approaching a quadratic 
relationship. A linear relationship between haptic complexity and scanning time has 
been documented in an older study with adults (Locher & Simmons, 1978). We 
suspect that, in our case, haptic proficiency likely influenced participants’ time spent 
on touching objects, such that the high-complexity ones were too difficult for 
preschoolers to process in detail, while the simple ones were too easy. Furthermore, 
the not fully developed correspondences between vision and touch might have made 
the processing even harder, as children could not form the image of the very complex 
objects assisted by vision (Gori et al., 2008). That said, other factors might have also 
influenced performance in the haptic trials; these will be discussed in more detail in 
the study limitation section below.  

Participants’ explicit judgements were not consistently influenced by object 
complexity in either of the two modalities (nor in total). The results of the overall 
liking question can be directly compared to previous findings (as these are mostly in 
the visual domain) but is also relevant to the haptic behaviour. Various studies have 
attempted to relate subjective visual complexity and aesthetic judgements (Aitken, 
1974; Day, 1967; Güçlütürk et al., 2016; Nadal et al., 2010; Nath, Brändle, Schulz, 
Dayan, & Brielmann, 2023; Sun & Firestone, 2022), revealing high inconsistency in 
their findings. The seminal suggestion of an inverted U-shaped relationship (i.e., 
intermediate complexity items considered more beautiful) by Berlyne (1971) has 
been replicated by some (e.g., Lakhal, Darmon, Bouchaud, & Benzaquen, 2020) but 
others have documented a linear relationship (e.g., Day, 1967) or no relationship at 
all (e.g., Messinger, 1998). Güçlütürk et al., (2016) showed that the inverted U-
shaped curve results from averaging individual responses, but does not explain 
participants’ individual preferences. Indeed, our findings in the visual domain show 
large individual differences, such that participants are either low-, medium-, or high-
complexity driven; this is even more the case in the haptic domain. Recent studies 
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(Nadal et al., 2010; Nath et al., 2023) have attempted to explain such differences by 
attributing them to three factors: (i) differences in how studies define, measure and 
manipulate objective complexity, (ii) diverse stimuli (often handcrafted) and (iii) 
large individual differences in beauty preferences, likely attributable to other factors 
(e.g., exposure/expertise). Regarding its definition and manipulation, complexity is a 
construct comprised of different aspects (number and variety of elements, 
organization of elements, symmetry). In our study, we only manipulated objects’ 
number, variety and organisation of elements, and only used symmetric objects. 
However beauty judgements are specifically influenced by symmetry (e.g., Day, 1968, 
Eisenman & Gellens, 1968), so possibly the elements we manipulated tapped more 
into the amount of information and less into pleasantness – or at least less 
consistently.  

Furthermore, we crafted our objects based on one of the proposed methods 
for measuring visual complexity (i.e., image compressibility; Marin & Leder, 2013), 
while recent studies have suggested possibly using more general measures. For 
example, Nath et al. (2023), used an algorithmic method (cellular automata) to 
generate visual patterns by systematically arranging squares and measured various 
informational aspects (e.g., entropy, symmetry, density), and dissociated beauty 
from complexity – here, subjective beauty was negatively predicted by disorder 
(asymmetry and entropy). Furthermore, a major limitation of our study was using a 
visual complexity measure to create haptic stimuli. Although we piloted the objects’ 
judged complexity on some participants and they gave consistent answers, the exact 
manipulation during testing could not be controlled – participants also haptically 
scanned the sides of the objects, processing uncontrolled information. In their recent 
studies, Sun and Firestone (2021, 2022) used a method to create shapes that could 
possibly also be used to measure haptic complexity. They used a computational 
geometry approach to extract the skeletal complexity of shapes, which corresponds to 
a specific configuration including variety, organisation and disorder of objects. As 
this skeleton also applies to 3D objects, it could possibly influence manipulation in a 
more predictable way.  

Importantly, we observed differences between participants’ general liking and 
play preferences, suggesting that children had the ability, at least partly, and at least 
some of them, to imagine manipulating the objects, and the possible haptic and 
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proprioceptive information they could get by doing it – dissociating this information 
from the visual ones.  

Consistent with our hypothesis, participants’ explicit preferences did not 
predict their exploration times, supporting a dissociation between interest/learning 
possibilities and pleasantness which has been proposed before (e.g., Day, 1967, 
1968). This was also the case for play preferences, which could hypothetically predict 
haptic exploration time – as this involved manipulating the object. However, the lack 
of visual input likely made this type of exploration less appealing – in naturalistic 
play vision and touch rarely happen in isolation.  

Some limitations of our study involve possible memory components which 
might have influenced especially the answers in the explicit judgment questions. 
Participants were allowed to explore positions previously visited if they wanted to, 
but very often they did not. This might have created recency effects in their answers 
– although the data suggested that the order of exploration played a role in the 
opposite way: participants seemed to explore the first positions for significantly more 
time than the following two.  

Future modifications should be made to clarify our findings. The objects 
should be redesigned to better manipulate complexity differences in the haptic 
domain, and possibly include manipulation of object symmetry, to check for specific 
interactions between symmetry and amount/organization of elements on exploration 
time and judged pleasantness. Furthermore, participants’ proficiency in visual and 
haptic discrimination should be tested with a relevant task. 

In summary, our study compared the effects of visual and haptic object 
complexity on exploration time and pleasantness, in preschoolers for the first time, 
thereby extending existing adult research. Our findings support a dissociation 
between interest and exploration on the one hand and subjective beauty on the other 
hand, and introduce a more quantitative approach to manipulate object complexity, 
previously overlooked in developmental studies that have tended to focus on learning 
and attention.  
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Chapter 5 

 

 General Discussion 

 

 

 

 

 

 

 

 

5.1. Overview of empirical findings 

5.1.1. Object complexity influences the planning and execution of object-fitting 
actions in preschoolers 

In Chapter 2, we investigated the role of object complexity in preschoolers’ 
actual and imagined object manipulation, using an object-fitting paradigm.  Our 
findings suggested that complexity influences the object-fitting process and 
identified possible uses of the hands in directing attention during spatial imagery. 
Based on previous studies on the development of object fitting (e.g., Fragazsy et al., 
2015; Ornkloo et al., 2007), we expected that manipulating object complexity would 
directly influence children’s fitting process and accuracy. We investigated an older 
age range than most previous studies because we were specifically interested in the 
process. As a result, almost all preschoolers were accurate in fitting our objects, but 
their fitting attempts increased in number with more complex objects. However, as 
our objects’ complexity was not varied consistently across the symmetry and 
number/organisation of elements factors, we cannot safely conclude which specific 
factor influenced children’s increasing difficulty.  
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Furthermore, we aimed to expand previous findings by examining the effects 
of object complexity on preschoolers’ spatial imagery; i.e., whether more complex 
objects would decrease accuracy when children had to mentally rotate objects, and 
whether they would use embodied strategies (i.e., representational gestures) to 
support their mental processing. Such strategies have been previously documented in 
adults (e.g., Chu & Kita, 2011), while using pointing gestures to support memory has 
been previously shown in children (Delgado et al., 2014). Our findings showed that 
children did indeed use pointing gestures in a spontaneous fashion when they have 
to mentally rotate objects. They also seemed to use their fingers as a stable 
perceptual anchor in the environment to help them minimise information-gathering 
eye movements. However, this behaviour was not related to children’s visual memory 
abilities and did not result in higher accuracy (children were equally accurate when 
they were not allowed to use their hands). It was also not related to object complexity 
– children seemed to use such strategies equally for all objects.  

Finally, while we did not identify age differences in our sample regarding their 
accuracy, we did observe that participants who planned their fitting movement for 
longer (i.e., they used their eyes to gather information – and possibly imagine the 
object manipulation), were more accurate in their subsequent fitting.  

Overall, these results point towards a flexible system for object-fitting in the 
preschool years. Children are able to keep track of objects’ spatial information and 
use both mental and embodied resources to accurately guide the process of 
manipulating and fitting them.  

 

5.1.2. Exploratory decisions vary across development – time pressure and cognitive 
control influence the balance between exploration and exploitation 

In Chapter 3, we conducted a series of four experiments to investigate how 
people engage in exploitation, uncertainty-driven exploration and novelty-based 
exploration across development. We compared school-aged children, adolescents 
and adults in various versions of a decision-making task, while tracking their mouse 
positions to measure their ongoing decision process. Based on previous findings, 
children were assumed to be more exploratory than adolescents and adults 
(Somerville et al., 2017; Wu et al., 2019), and even further, to differ in the exploratory 
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strategies that they engage in; e.g., children have been shown to engage in more 
random and more directed (or uncertainty-based) exploration than older 
participants. However, the developmental trajectory of novelty-based exploration is 
still unclear so we aimed in clarifying the separate contribution of uncertainty and 
novelty in exploratory choices. We were also interested in explaining why changes in 
this balance across development might occur. To this end, we targeted the 
maturation of cognitive control as a possible mechanism which might underlie the 
shift from exploration to exploitation more generally, as well as the specific 
preference for novelty-based compared to uncertainty-based exploration (Gopnik et 
al., 2017). Our overall findings suggest that children are not more novelty-driven or 
uncertainty-driven than adolescents and adults when allowed to choose in their own 
time. However, when time pressure is applied to the decision process, all the 
different groups’ behaviours are affected, such that children are significantly more 
novelty-driven than the other groups, while adolescents are strongly driven by the 
external reward. As applying time pressure is related to limiting cognitive resources 
and leading participants to faster, more intuitive decisions (Kahneman & Frederick, 
2002), this suggests that, when fewer cognitive resources are available, children 
cannot inhibit their action plans towards the novel option, or they cannot 
successfully calculate the values of options. Furthermore, all groups persevered more 
with their choices in the time-limited version of the experiment; this is also 
consistent with relying on a less cognitively-taxing strategy. The fact that cognitive 
control plays a role in these choices is also supported by the findings of our fourth 
experiment, showing that participants with better EF performance favoured the 
exploitative option compared to the novelty-based one.  

The mouse-tracking analyses were expected to reveal greater decision conflict 
between equally valued options. Such conflict was revealed between the two 
exploratory options for all groups in most of the experiments but, in contrast to 
previous findings (e.g., Scherbaum & Kieslich, 2018), no conflict was evident when 
time pressure was applied. However,more variability was observed in children’s 
movements during greater conflict choices, suggesting that conflict might manifest 
differently in the younger groups.  

Overall, this series of experiments suggests that (i) novelty is an independent 
causal factor in exploratory choices, and (ii) cognitive control should be further 
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investigated as a causal factor involved in value-based decisions across development. 
Furthermore, child-friendly versions of decision-making paradigms accompanied 
with mouse or finger-tracking can be developed to investigate how young 
participants calculate and compare values, an aspect that is often overlooked in 
similar tasks.  

 

5.1.3. Visual and haptic object complexity differentially affects preschoolers’ interest 
and pleasantness judgments 

In Chapter 4, we investigated how objects’ visual and haptic complexity 
influenced preschoolers’ interest and explicit preference judgements, and the 
relationship between the two types of preferences. Our findings suggest that children 
can track changes in complexity and their processing is modulated by it, especially in 
the visual domain. Furthermore, we found no relationship between exploration time 
and explicit liking judgements, in either sensory domain. Previous research has 
reported contradictory evidence regarding the relationship between exploration time 
and visual complexity (e.g., Berlyne, 1967; Day, 1968), as well as between explicit 
beauty judgements and visual complexity (Aitken, 1974; Güçlütürk et al., 2016; Nadal 
et al, 2010). However, studies in the haptic domain are very limited. Moreover, most 
studies focus on adults’ aesthetic judgements, while developmental studies tend to 
focus on the “interest” (related to learning) aspect of exploration, not on the 
liking/pleasantness aspects.  

We measured exploration time as a proxy for participants’ interest/learning 
value, showing that visual complexity linearly increases this time, while haptic 
complexity did not have a significant effect (although it aproached a quadratic 
relationship). In contrast, explicit liking judgments were not affected consistently by 
complexity, but rather, were made by participants based on their individual 
preferences. This adds to the existing literature by providing more evidence that the 
commonly found linear or inverted U-curve relationship between complexity and 
attention or preference is not consistent. Possible explanations of this difference in 
findings include both individual predispositions and sensory experience factors, as 
well as methodological ones. This case is even more apparent in the preschoolers’ 
data, who are still experiencing sensory development (especially in the haptic 
domain and visual-haptic multisensory integration). Furthermore, different studies 
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manipulate complexity by varying different factors (e.g., symmetry, organization of 
elements, see Nadal et al., 2010), which makes comparisons and conclusions hard. In 
our study, we did not manipulate image symmetry, which may have influenced 
participants explicit liking more robustly.   

Overall, our study suggests that (i) interest and explicit preference should be 
dissociated when measuring the effects of complexity and (ii) preschoolers can track 
visual and haptic complexity in objects, but are constrained by their proficiency in 
each modality to identify the most informative ones.    

 

5.2. Theoretical contributions 

 

5.2.1. Increased novelty preference in children compared to older groups – the 
possible role of cognitive control 

Older studies on the effect of novelty on attention and exploration have 
explicitly compared familiar to new stimuli (e.g., toys), while more recent examples 
focusing on learning have measured participants’ ability to track the informativity of 
different options, comparing learnable (or unlearnable) unpredictable stimuli to 
novel stimuli. These more recent paradigms usually have a task goal (e.g., 
maximising rewards) and all stimuli are related to this goal. From this perspective, 
novelty signifies an informational attribute and the experimental question relates to 
whether participants consider it more or less useful in their quest to achieve the final 
goal. Compared to this approach, our studies conceptualise both uncertainty and 
novelty differently: apart from external rewards, the motivation is either perceptual 
uncertainty resolution for specific stimuli or novel stimulation in a much broader 
sense – and, importantly, unrelated to a main external goal. As a result, novelty 
preference in our paradigm is closer to the concepts of sensation-seeking, diversive 
curiosity or broad interest. However, since our tasks included mutually exclusive 
choices, they also bare similarities to the explore-exploit dilemma bandit problems – 
participants needed to sacrifice tokens if they wanted to explore. This implies that 
our results should be interpreted as dilemmas between exploitation and exploration, 
where exploration is either specific uncertainty (“information gap” closing) or 
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sensation-seeking driven – without holding strong views about the continuous or 
discrete nature of such motives.  

Across all four experiments in Chapter 3, children explicitly preferred 
acquiring the external reward and considered uncertainty resolution more valuable 
as compared to novelty. This is consistent with previous findings in this younger age 
group, which show that directed exploration is extensive in school-aged children – 
proof of their increasing ability to identify sources for information gain and to direct 
their exploration towards these. However, our experiments showed that novelty is 
still tempting for children. This was especially evident in their choices when they had 
time constraints – i.e., when they had to choose intuitively, and in the choices of 
participants with better vs. worse EF skills. The fact that such preference for novelty 
still exists in school-aged children suggests a dissociation between the importance of 
the two informational attributes in younger ages, such that novelty is still highly 
valued for learning progress. However, since our novelty option did not help resolve 
any task-specific informational uncertainty, it is more likely that the novelty 
preference reflects children’s broader exploration tendency – the generation of 
learning possibilities which can be resolved is highly valued and adaptive in younger 
ages, as proposed by Gopnik’s  (2015). Based on the same theory, this high valuation 
can also be a by-product of immature cognitive control. It could possibly result from 
an underdeveloped ability to track the exact informational value in the environment, 
and thus favour the novel option that is usually a good, non-specific indicator of new 
information. This inability might result from a tendency towards distributed 
attention (although distributed attention might as well be the outcome of this 
difficulty), but also might reflect memory constraints in remembering the calculated 
values and comparing them. Indeed, our findings show that lower working memory 
capacity results in larger novelty preference, while also clearly showing an effect of 
cognitive constraints leading children to make more choices based on novelty. 
However, an inability to remember the values could result in choosing the novelty 
option randomly, as a “mistake’ when they have to choose quickly and cannot 
incorporate the values of the other options to their action plans, and not necessarily 
because of its appeal. Although we cannot exclude this possibility, especially since we 
did not include a “random”, control option, lower inhibition is also involved in more 
novelty choices, suggesting not only that children could not keep the other options’ 
values in mind as a priority, but that they indeed found the novel options attractive – 
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and tried, even if not successfully, to suppress their distraction. Finally, higher 
novelty valuation could also result from an overestimation of volatility in younger 
ages – as novelty is considered optimal for learning in changing environments, 
although we do not examine this possibility in our studies.  

 

5.2.2. Interaction between goal-following and reward values modulate adult 
decision-making 

Adult participants in our experiments in Chapter 3 have distinct behaviours as 
compared to the younger groups; they seem to prefer both external and 
informational rewards equally. This is the case even when they are under time 
pressure, suggesting that they consider both options equally valuable. However, our 
task design in the first two experiments of Chapter 3 involved following specific steps 
to acquire either an external reward or fully resolve perceptual uncertainty, even 
without explicit instructions to do so (i.e., it presupposed goal-directed action and 
ability to follow steps), while rewarding feelings were only experienced in each trial 
because the goal was approaching (in the external reward case) or due to partial 
perceptual relief of uncertainty. This was not the case in our final experiment, where 
both types of rewards were immediately available and not the result of goal-
following. The fact that adults were no longer attracted by these options more than 
the novelty one is suggestive that the pursuit of a goal was acting as a stronger 
motivation to them, adding value to these options. While in the case of the external 
reward adults were possibly not motivated by the specific secondary reward-by-
association, the fact that perceptual uncertainty was also not that appealing to them 
without a goal is more interesting. This points towards a direction that goals 
themselves hold intrinsic value, often initially associated with other specific (external 
or internal) rewards but then playing an independent role and they can motivate 
humans similarly. Such a point was recently made by Molinaro and Collins (2023), 
who suggest that rewards should be viewed as conditional to goals – even primary 
rewards such as food are not rewarding when a person is not hungry. In our results, 
higher order goals were probably important to adults, such as “winning” as a general 
value, and completing a puzzle – for the sake of completion.    
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5.2.3. Complexity has different effects on preschoolers’ exploration and explicit 
preferences 

As it is evident from Chapters 2 and 4, increasing an object’s visual and haptic 
complexity affects how much time is spent on its visual processing and its 
manipulation, specifically when complexity is manipulated through the number and 
organisation of the object’s elements. This effect seems to be linear in the visual 
domain, but not clear in the haptic one – possibly affected by factors such as haptic 
efficiency and experience. The documented linear relationship in the visual domain 
extends previous findings in the adult and developmental literature, by showing that 
children can track the amount of information held by objects and adjust their 
attention to accurately process them. The fact that we found a linear and not an 
inverted U-shaped curve relationship, as previously suggested in developmental 
studies, probably has to do with the learnability of the specific object characteristics 
for the observers – the high complexity objects were still not too complex for 
preschoolers to process. Furthermore, no previous study in this age group has 
explicitly manipulated visual complexity, instead of predictability or incongruity in 
the temporal or conceptual domain. The fact that the haptic exploration time 
relationship to complexity approximated an inverted U- shaped curve, further 
suggests that preschoolers explore longer only if they can process the available 
information.  

In contrast, complexity did not consistently influence explicit preference – 
participants had large individual differences in preferences and were also not always 
consistent across modalities. This is consistent with recent studies emphasising the 
need for analysing participants’ individual predispositions when it comes to 
complexity preferences. Furthermore, our findings should be considered from a 
methodological perspective too, showing that exploration time and explicit 
preference should be used as separate measures for different processes in 
participants.    
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5.3. Methodological contributions 

 

5.3.1. Mouse-tracking tasks for value-based decisions in children 

Mouse and finger-tracking methodology is becoming increasingly used in 
psychological experiments, providing deeper insights into cognitive processes and 
enabling measures to move away from just accuracy or reaction times. Cognitive 
psychological paradigms are largely still focused on language and reasoning research, 
while value-based paradigms are mostly thriving in marketing and consumer choice 
research. Moreover, both fields are mostly creating adult-focused tasks. To our 
knowledge, value-based mouse-tracking tasks for children only exist in dietary 
research, studying children older than 7 years old (Pearce et al., 2020). 

Our work provides an example of a child-friendly decision-making task, 
applying the classic 2AFC format to value-based decisions. Comparison of kinematics 
results from the mouse-tracking and finger-tracking procedures (the latter of which 
we utilised with younger kids) showed high consistency and thus paves the road to 
study decisions in younger kids who have very noisy mouse data, or cannot use the 
mouse. Importantly, when interested in goal-directed action, value comparison and 
conflict, movement tracking can prove much more suitable than eye-tracking (which 
is the most common process-tracing methodology used with children) as it focuses 
on action plans, while eye movements are largely driven bottom-up by available 
information in the environment – although movement trajectories are not immune 
to such effects either.   

Regarding the kinematics data, our study showed that commonly used 
geometrical and entropy features can convey information about conflict and about 
preferences and valuation of options. However, since the theoretical assumptions 
about kinematic features are mostly based on options being compared on the basis of 
right/wrong answer, the most accurate features are still to be determined in value-
based decisions. While we utilised the most common measures to allow for 
comparisons, analyses of temporal measures or specific hypotheses about stages of 
the decision process should be explored too.  
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5.3.2. Quantitative manipulation of object complexity  

The difficulty in manipulating visual complexity has resulted in great 
inconsistency in studying both psychological and aesthetic aspects of human 
response to this property. Studies have very often created stimuli manipulating the 
amount and organisation of elements in uncontrolled ways (as did we in our Chapter 
2 experiment), or their symmetry, or used richer stimuli such as photos and 
paintings whose complexity has proved even harder to measure consistently. More 
recent studies have attempted to use computational methods to directly manipulate 
visual complexity or classify stimuli based on it. Examples of such methods include 
the compressibility of images, the algorithmic manipulation of the elements’ 
combinations, such as patterns of triangles and squares, or the extraction of the 
skeleton of shapes using computational geometry. We adopted a similar approach to 
our study, using the amount of information of visual stimuli, as quantified in their 
GIF compressibility. While not necessarily a better approach than the other 
computational ones mentioned, such an objective method can provide more reliable 
results and possibly be more comparable to other studies and can generate large 
samples of test stimuli. Indeed, in our case, the visual exploration of objects by 
children seemed consistent with previous findings, suggesting that our complexity 
manipulation was efficient – although even more complex or asymmetric shapes 
might have afforded more interesting observations. However, when haptic 
complexity also has to be quantified simultaneously in the same objects, using visual 
complexity measures might not be optimal because object manipulation makes 
different information available to the hands. As a result, methods such as the internal 
skeleton, applied to 3D shapes, might prove better candidates.  

 

5.4. Limitations 

We discussed the specific methodological limitations to our studies in the 
separate experimental chapters. We therefore discuss limitations here from a 
broader perspective. An important limitation regards the manipulation of 
independent variables in our series of mouse-tracking experiments, which limits the 
conclusions we can draw from comparing the experiments’ results. This issue 
primarily regards the operationalisation of the concepts of external reward and 
perceptual uncertainty, which were confounded with goal-following in our first three 
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experiments. Even the concept of novelty, which was better operationalised, still 
allowed for some level of category prediction (e.g., expectations for cat cartoons, 
albeit a new one every time) in the first two experiments. Thus novelty was probably 
slightly confounded with expectations for uncertainty resolution. The fact that these 
concepts were de-confounded in the final two experiments and still lead to similar 
observations suggests that they adequately captured differences – or that they lead to 
interesting findings such as the effect of goals for adults. However, the simultaneous 
manipulation of other factors such as the decision time-limit, the decision horizon, 
the sample age range (e.g., Experiment 3 only included children) makes final 
conclusions partial and in need for more specific separate experiments to clarify each 
factor’s effect. Similar issues arise from the inclusion of different EF tasks in the 
different experiments, which yielded different results. The lack of a working memory 
task in our final experiment also prevented us from drawing more comprehensive 
conclusions about the role of EF in exploratory choices.  

Furthermore, although our variables captured differences between 
uncertainty- and novelty-based exploration, the concepts themselves were not 
quantified. The fact that they were unrelated to a central external goal allowed us ot 
explore the possible differences between different simultaneous motives of closing 
specific information gaps and sensation-seeking, which are naturalistic and occur in 
everyday life decisions, but cannot directly inform research on the explore-exploit 
dilemma -- especially regarding the separate contribution of uncertainty and novelty 
as informational attributes in a specific problem-solving context. Our experiments 
could possibly make the case that children’s directed exploration is not that 
consistent and they are also switching more, but a fourth option including no motive 
(i.e., not a novelty one) would be needed to dissociate between novelty and random 
choices.  

Moreover, our mouse-tracking task data showed great variability in terms of 
individual participants’ choices in all age groups – but particularly in children and 
adults. Since we only present results at the aggregate level, it is possible that we are 
missing explanatory factors that could affect preferences other than EF proficiency.  

Furthermore, our object complexity experiments’ main limitation was the 
manipulation of complexity in the haptic domain. This was better uncontrolled in 
Chapter 2, but in Chapter 4 the haptic complexity manipulation was based on 
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measured visual characteristics (although piloting allowed for some control on the 
experienced level of complexity). There was no control of other factors that might 
affect haptic expertise, such as multisensory development and working memory (in 
our final experiment).   

  

5.5. Future directions 

 
5.5.1. Novelty as sensation-seeking vs. novelty as information 

Our studies suggested that children are more novelty-driven than adolescents 
and adults in the sense that, apart from aiming to cover information gaps (i.e., 
keeping track of missing information and directing their exploration based on 
learning), they also seek sensory stimulation aiming to derive pleasure from broader 
learning goals or generally to generate arousal. However, novelty is also often 
conceptualised as an informational attribute, capturing whether a stimulus has been 
explored before or how much time has passed since an option has been explored (this 
refers to environments where volatility is known or hypothesised). It becomes 
apparent that the two conceptualisations of novelty-seeking are dependent on its 
instrumentality – if all options in the environment are possible candidates to convey 
information for the acquisition of a reward, novelty is a useful attribute to keep track 
of and follow, and choosing it is subject to previously studied factors, such as the 
observer’s or the environment’s state of knowledge and available information. If 
some options in this environment are novel but not instrumental to the goal, 
choosing them more likely reflects a drive towards the pleasure of learning, broader 
curiosity or boredom from the main quest, and possibly relates to sensation-seeking 
in a more general sense (but this is another possible hypothesis to be tested). An 
attempt to dissociate between these different motives for information-seeking would 
be interesting and can be studied in a task where all the aforementioned variables 
would be present: a main goal, options with different informativity (learnable 
sequences and novel options of the same learnable category) as well as novel options 
with no function apart from new sensory stimuli. A gamified task such as the ones 
used by Nussenbaum et al. (2022) or Poli et al. (2022) would allow for the 
simultaneous presentation of different options (e.g., as different characters 
presenting information with different probabilities and new characters with 
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unknown probabilities, as well as new characters presenting no relevant information 
at all). Different predictions would allow for exploration based on different factors. 
Furthermore, apart from quantifying uncertainty-based exploration, novelty-based 
exploration and sensation-seeking, such a task would allow us to control for random 
exploration, as unpredictable switches between the other options – and therefore 
dissociate between such behaviour and looking for new learning goals. Developing a 
task suitable across different age groups would also allow us to identify both 
developmental and individual differences in exploratory motives.  

 

5.5.2. Neural mechanisms of uncertainty-based and novelty-based exploration across 
development 

Following on from the aforementioned idea, different exploratory motives and 
behaviours have been proposed to be supported by different systems in the brain (the 
dopaminergic system proposedly supports informational reward seeking, while the 
opioid system is responsible for pleasure; see the wanting vs. liking information 
distinction made by Litman, 2005). Furthermore, it has been suggested that 
exploration based on uncertainty is also supported by different brain areas and by 
different neuromodulators, depending on the amount of available information in 
each context. To our knowledge, the neural substrates of these different exploratory 
behaviours have only been studied in adults, consistently showing distinct 
activations of areas of the prefrontal cortex. For example, two recent studies using 
fNIRS and fMRI (Li et al., 2019; Tomov et al., 2020) have shown that relative 
uncertainty leads to activation in the right rostrolateral prefrontal cortex and drives 
directed exploration, while total uncertainty affects the right dorsolateral prefrontal 
cortex and drives random exploration. Different neuromodulators have also been 
shown to influence random vs. uncertainty-based exploration (Dubois, Habicht, 
Michely, Moran, Dolan, & Hauser, 2021). In the relative vs. total uncertainty studies, 
novelty and uncertainty are used interchangeably, as both regard instrumental 
contexts and reflect the informativity of a stimulus. A task usable across different age 
groups which would further dissociate between these variables and non-instrumental 
options would possibly shed light in resolving uncertainty vs. pleasure motives. 
However, since both fNIRS and fMRI task designs have specific methodological 
requirements, a visually rich gamified task with free choice would possibly be 
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unsuitable; a 2AFC tasks comparing between different options would be preferable. 
To also measure the effects of different neuromodulators – especially noradrenaline 
– we could combine pupil dilation tracking to our methodology.  

 

5.5.3. Effects of cognitive control on uncertainty and novelty preference  

Our results from the Chapter 3 show an effect of cognitive control on 
participants’ exploratory preferences. As a further extension of the suggested tasks, it 
would be interesting to include age-specific EF tasks. The more accurate 
measurement of exploratory preferences associated with cognitive control measures 
would clarify whether the effects in our experiments were due to participants with 
lower control being more prone to novelty/sensation-seeking or they could not keep 
track of option values due to memory/general cognitive constraints. 

 

5.5.4. Relationship between imagined object manipulation and motor activation 

Both Chapter 2 and Chapter 4 touch on the topic of spatial and motor imagery 
and how it is affected by object complexity. However, they only indirectly measure it 
(through fitting accuracy) or presuppose its involvement in the tasks. In the 
preschool years, imagined object manipulation is probably greatly affected by 
immature multisensory integration, such that an underdeveloped ability to combine 
visual, haptic and proprioceptive information into coherent schemas might render 
the mental manipulation of objects harder or wrong. This might be even more 
pronounced as object complexity increases, and difficulty to mentally represent an 
object might lead children to activate motor plans to support their imagery. This was 
partially our initial hypothesis in Chapter 2. However, it might also be possible that 
motor activations are subtler than complete representational gestures, so measuring 
hand motor activation through EMG might have been more powerful at revealing 
effects. Incorporating such a methodology would allow us to observe if children 
spontaneously support their imagined manipulation with their hands (as an 
embodied cognition perspective would suggest). Furthermore, a measurement of 
their ability to integrate information from the senses through a suitable task (e.g., a 
reach-to-grasp task accuracy) would show whether the effect of motor activation is 
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stronger in less accurate children. Since multisensory development spans early and 
middle childhood, older participants should also be tested in such an experiment.   

 

5.6. Conclusion 

This thesis proposed new experimental approaches in studying children’s, 
adolescents’ and adults’ exploratory behaviour and relationship with information 
across development.  

Using computerised tasks, we observed that some children show an increased 
preference for perceptual novelty. We suggest that this tendency relates to their 
cognitive control maturation, either as a compromised ability to keep track of more 
specific informative goals, or as a difficulty to inhibit sensation-seeking tendencies. 
We make a more theoretical case for novelty often being treated both as an 
informational attribute to achieve a goal and as an attribute to increase arousal, 
obscuring its effects on decision-making. Moreover, using physical objects, we show 
that young children and preschoolers keep track of visual and haptic object 
complexity and adjust their exploration and manipulation time based on it. We also 
differentiate between exploration time as a measure of informational processing and 
explicit preferences for complex objects. Our thesis also tried to contribute on the 
methodological level, by designing and applying kinematic analyses on child-friendly 
tasks. 

We hope our theoretical, experimental and methodological contributions will 
help future research on exploration across development.  
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Appendices 
 
Appendix A – Chapter 3 complementary tables 
 

A.1. Pairwise comparisons, Option*Experiment, full sample 
 

Option (I) 
Exper
iment 

(J) 
Experim
ent 

Mean 
Differenc
e (I-J) 

Std. 
Error 

Sig.d 95% Confidence 
Interval for Differenced 

Lower 
Bound 

Upper 
Bound 

ER 1.00 2.00 -2.015* .618 .008 -3.663 -.367 

3.00 -1.331b .916 .887 -3.773 1.111 

4.00 -1.618 .680 .110 -3.431 .195 

2.00 1.00 2.015* .618 .008 .367 3.663 

3.00 .684b .920 1.000 -1.768 3.137 

4.00 .397 .685 1.000 -1.430 2.225 

3.00 1.00 1.331c .916 .887 -1.111 3.773 

2.00 -.684c .920 1.000 -3.137 1.768 

4.00 -.287c .963 1.000 -2.854 2.279 

4.00 1.00 1.618 .680 .110 -.195 3.431 

2.00 -.397 .685 1.000 -2.225 1.430 

3.00 .287b .963 1.000 -2.279 2.854 

IR 1.00 2.00 -3.637* .558 <.001 -5.123 -2.150 

3.00 -2.317*,b .826 .033 -4.520 -.114 

4.00 -2.915* .613 <.001 -4.551 -1.280 

2.00 1.00 3.637* .558 <.001 2.150 5.123 

3.00 1.320b .830 .681 -.893 3.533 

4.00 .721 .618 1.000 -.928 2.370 

3.00 1.00 2.317*,c .826 .033 .114 4.520 

2.00 -1.320c .830 .681 -3.533 .893 

4.00 -.598c .869 1.000 -2.914 1.717 

4.00 1.00 2.915* .613 <.001 1.280 4.551 

2.00 -.721 .618 1.000 -2.370 .928 

3.00 .598b .869 1.000 -1.717 2.914 
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NS 1.00 2.00 -2.882* .587 <.001 -4.446 -1.317 

3.00 -2.453*,b .870 .032 -4.772 -.135 

4.00 -3.657* .646 <.001 -5.378 -1.936 

2.00 1.00 2.882* .587 <.001 1.317 4.446 

3.00 .429b .873 1.000 -1.900 2.758 

4.00 -.775 .651 1.000 -2.510 .960 

3.00 1.00 2.453*,c .870 .032 .135 4.772 

2.00 -.429c .873 1.000 -2.758 1.900 

4.00 -1.204c .914 1.000 -3.641 1.233 

4.00 1.00 3.657* .646 <.001 1.936 5.378 

2.00 .775 .651 1.000 -.960 2.510 

3.00 1.204b .914 1.000 -1.233 3.641 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. An estimate of the modified population marginal mean (J). 

c. An estimate of the modified population marginal mean (I). 

d. Adjustment for multiple comparisons: Bonferroni. 

 

A.2. Pairwise comparisons, Age Group* Option* Experiment 
 

Age group Optio
n 

(I) 
Experi
ment 

(J) 
Exp
eri
men
t 

Mean 
Differe
nce (I-
J) 

Std. 
Error 

Sig.d 95% Confidence 
Interval for 
Differenced 

Lower 
Bound 

Upper 
Bound 

Children ER 1.00 2.0
0 

-1.441 1.049 1.000 -4.238 1.357 

3.00 -1.317 1.091 1.000 -4.225 1.591 

4.0
0 

-1.875 1.076 .498 -4.743 .993 

2.00 1.00 1.441 1.049 1.000 -1.357 4.238 

3.00 .124 1.102 1.000 -2.814 3.062 
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4.0
0 

-.434 1.087 1.000 -3.332 2.464 

3.00 1.00 1.317 1.091 1.000 -1.591 4.225 

2.0
0 

-.124 1.102 1.000 -3.062 2.814 

4.0
0 

-.558 1.127 1.000 -3.563 2.447 

4.00 1.00 1.875 1.076 .498 -.993 4.743 

2.0
0 

.434 1.087 1.000 -2.464 3.332 

3.00 .558 1.127 1.000 -2.447 3.563 

IR 1.00 2.0
0 

-3.095* .947 .008 -5.619 -.571 

3.00 -
2.690* 

.984 .041 -5.314 -.066 

4.0
0 

-2.593* .971 .049 -5.181 -.005 

2.00 1.00 3.095* .947 .008 .571 5.619 

3.00 .405 .994 1.000 -2.246 3.056 

4.0
0 

.502 .981 1.000 -2.113 3.117 

3.00 1.00 2.690* .984 .041 .066 5.314 

2.0
0 

-.405 .994 1.000 -3.056 2.246 

4.0
0 

.097 1.017 1.000 -2.614 2.809 

4.00 1.00 2.593* .971 .049 .005 5.181 

2.0
0 

-.502 .981 1.000 -3.117 2.113 

3.00 -.097 1.017 1.000 -2.809 2.614 

NS 1.00 2.0
0 

-5.032* .996 <.001 -7.688 -2.376 

3.00 -2.715 1.036 .057 -5.476 .047 
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4.0
0 

-2.093 1.021 .251 -4.817 .630 

2.00 1.00 5.032* .996 <.001 2.376 7.688 

3.00 2.318 1.046 .168 -.472 5.107 

4.0
0 

2.939* 1.032 .029 .187 5.691 

3.00 1.00 2.715 1.036 .057 -.047 5.476 

2.0
0 

-2.318 1.046 .168 -5.107 .472 

4.0
0 

.621 1.070 1.000 -2.232 3.475 

4.00 1.00 2.093 1.021 .251 -.630 4.817 

2.0
0 

-2.939* 1.032 .029 -5.691 -.187 

3.00 -.621 1.070 1.000 -3.475 2.232 

Adolescents ER 1.00 2.0
0 

-1.500 1.142 .571 -4.257 1.257 

4.0
0 

-1.908 1.375 .500 -5.228 1.412 

2.00 1.00 1.500 1.142 .571 -1.257 4.257 

4.0
0 

-.408 1.375 1.000 -3.728 2.912 

4.00 1.00 1.908 1.375 .500 -1.412 5.228 

2.0
0 

.408 1.375 1.000 -2.912 3.728 

IR 1.00 2.0
0 

-4.548* 1.030 <.001 -7.036 -2.061 

4.0
0 

-3.294* 1.240 .026 -6.290 -.299 

2.00 1.00 4.548* 1.030 <.001 2.061 7.036 

4.0
0 

1.254 1.240 .940 -1.742 4.250 

4.00 1.00 3.294* 1.240 .026 .299 6.290 
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2.0
0 

-1.254 1.240 .940 -4.250 1.742 

NS 1.00 2.0
0 

-3.456* 1.084 .005 -6.074 -.838 

4.0
0 

-4.657* 1.305 .001 -7.810 -1.505 

2.00 1.00 3.456* 1.084 .005 .838 6.074 

4.0
0 

-1.201 1.305 1.000 -4.354 1.951 

4.00 1.00 4.657* 1.305 .001 1.505 7.810 

2.0
0 

1.201 1.305 1.000 -1.951 4.354 

Adults ER 1.00 2.0
0 

-3.105* 1.017 .008 -5.560 -.650 

4.0
0 

-1.071 1.056 .935 -3.620 1.479 

2.00 1.00 3.105* 1.017 .008 .650 5.560 

4.0
0 

2.034 1.076 .180 -.564 4.633 

4.00 1.00 1.071 1.056 .935 -1.479 3.620 

2.0
0 

-2.034 1.076 .180 -4.633 .564 

IR 1.00 2.0
0 

-3.266* .917 .001 -5.482 -1.051 

4.0
0 

-2.859* .952 .009 -5.159 -.559 

2.00 1.00 3.266* .917 .001 1.051 5.482 

4.0
0 

.407 .971 1.000 -1.937 2.751 

4.00 1.00 2.859* .952 .009 .559 5.159 

2.0
0 

-.407 .971 1.000 -2.751 1.937 
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NS 1.00 2.0
0 

-.157 .965 1.000 -2.488 2.174 

4.0
0 

-
4.220* 

1.002 <.001 -6.641 -1.799 

2.00 1.00 .157 .965 1.000 -2.174 2.488 

4.0
0 

-
4.063* 

1.021 <.001 -6.530 -1.596 

4.00 1.00 4.220* 1.002 <.001 1.799 6.641 

2.0
0 

4.063* 1.021 <.001 1.596 6.530 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a. The level combination of factors in (J) is not observed. 

b. The level combination of factors in (I) is not observed. 

d. Adjustment for multiple comparisons: Bonferroni. 
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Appendix B – Chapter 4 complementary results 
 

B.1. Mixed linear models predicting ET from participants’ clusters  
 
Participants’ cluster in Visual Liking did not predict their visual ET of the low-
complexity object (χ2(2) = 1.081, p = .582), the medium complexity object (χ2(2) = 
0.742, p = .690) or the high complexity object (χ2(2) = 2.462, p = .292). Similarly, 
participants’ cluster in Visual Play did not predict their visual ET of the low-
complexity object (χ2(5) = 3.114, p = .682), the medium complexity object (χ2(5) = 
3.252, p = .661) or the high complexity object (χ2(5) = 1.403, p = .924). 
Participants’ cluster in Haptic Liking did not predict their haptic ET of the low-
complexity object (χ2(5) = 0.710, p = .983), the medium complexity object (χ2(5) = 
1.956, p = .855) or the high complexity object (χ2(5) = 0.128, p = .999). In a similar 
pattern, participants’ cluster in Haptic Play did not predict their haptic ET of the low-
complexity object (χ2(5) = 1.442, p = .950), the medium complexity object (χ2(5) = 
2.451, p = .784) or the high complexity object (χ2(5) = 3.311, p = .652). 
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