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ABSTRACT: Flexible tactile sensors show promise for artificial intelligence
applications due to their biological adaptability and rapid signal perception.
Triboelectric sensors enable active dynamic tactile sensing, while integrating static
pressure sensing and real-time multichannel signal transmission is key for further
development. Here, we propose an integrated structure combining a capacitive sensor
for static spatiotemporal mapping and a triboelectric sensor for dynamic tactile
recognition. A liquid metal-based flexible dual-mode triboelectric-capacitive-coupled
tactile sensor (TCTS) array of 4 × 4 pixels achieves a spatial resolution of 7 mm,
exhibiting a pressure detection limit of 0.8 Pa and a fast response of 6 ms.
Furthermore, neuromorphic computing using the MXene-based synaptic transistor
achieves 100% recognition accuracy of handwritten numbers/letters within 90 epochs
based on dynamic triboelectric signals collected by the TCTS array, and cross-spatial
information communication from the perceived multichannel tactile data is realized in
the mixed reality space. The results illuminate considerable application possibilities of dual-mode tactile sensing technology in
human−machine interfaces and advanced robotics.
KEYWORDS: triboelectric-capacitive-coupled, tactile sensor array, neuromorphic computation, human−machine interface, mixed reality

INTRODUCTION
A tactile sensor enabled diverse applications in soft robotics,
human−machine interface, environmental monitoring, health
care, etc.1−3 Triboelectric sensors originating from the Maxwell
displacement current could actively convert mechanical energy
into electricity, providing an effective approach to self-powered
dynamic tactile sensing, which features high sensitivity, broad
material availability, and ease-of-manufacturing.4−6 However,
how to obtain stable static pressure detection on the same
device is a key scientific issue for the application of triboelectric
tactile sensors in the field of artificial intelligence of things
(AIoT).7−9 Conventional passive capacitive sensors could be
utilized to detect static pressures. Based on the intrinsic
capacitor model of TENG, integration of a triboelectric sensor
with the traditional passive capacitive sensor could become an
effective strategy to perceive both static and dynamic tactile
signals, presenting advantages of accurate real-time pressure
monitoring, low power consumption, and simple circuit signal
processing.10,11

Based on tactile sensing systems and the machine learning
method, virtual reality (VR) technology brings users an
immersive experience by establishing a three-dimensional
environment and creating a technique for human−machine
interfaces (HMI).12,13 Human judgment on objects depending
on multiple sensory information from different modalities can
improve estimation accuracy.14−16 Specific to the combined
effect of vision and touch, although visual information can be
obtained directly, obtaining real-time tactile feedback is more
important for remote operation and training in virtual
environments. For instance, F. Wen et al. proposed a sign
language recognition and communication system comprising a
smart triboelectric glove, AI block, and the back-end VR
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interface.17 Furthermore, M. Zhu et al. designed a triboelectric
bidirectional sensor that can be universally applied on different
joints of the exoskeleton arm for capturing and projecting the
motions of the entire upper limbs and playing table tennis
games.18 However, several challenges occur, such as access to
both virtual and real models, multichannel information
perception, and quantitative visualization of the output.
Different from the completely virtual world of VR, mixed

reality (MR) technology presents “real” and “virtual”
interactivity. MR refers to an immersive technology that
combines elements of both VR and augmented reality (AR). It
blends digital content with the real-world environment that
allows users to manipulate virtual objects while still being
aware of and able to interact with the physical world. This
reality technology is enabled by advancements in computer
vision, graphics processing, input systems, and cloud
computing that offers environmental input and perception.
Furthermore, in practical applications of tactile sensors in the
field of AIoT, the processing flow of output signals is
complicated, time-consuming, and inefficient.19 The combina-
tion with the optimized machine learning model based on the
neuromorphic computing method could shorten the signal
processing time and improve the recognition accuracy, which is
expected to be deeply integrated with HMI.20−22 Synaptic
transistors based on 2D materials feature short ion transport
distance, excellent electron transport dynamics, and high

mobility, playing as an important role of neuromorphic
computing.23−25 The working mechanism is coupling of ion
migration and electron−hole pairs generation.26,27

In this work, we propose a dual-mode flexible triboelectric-
capacitive-coupled tactile sensor (TCTS) array enabled by
cross-stacked EGaIn coated stripe electrodes and silicone
rubber encapsulation. The TCTS is composed of 4 × 4 sensing
units with a total of 16 pixels and a spatial resolution of 7 mm
for tactile pressure mapping and recognition. For the capacitive
sensing mode, the capacitance variation of the TCTS unit is
modulated in the range from 5.4 to 19.1 pF (0−80 kPa). By
placing different weights on the sensor array, we can realize a
contour pattern visualization of the pressure-capacitance
mapping. For the triboelectric sensing mode, the TCTS unit
apprehends the output voltage response sensitivity of 7.88
kPa−1 in the small pressure range (0−8.78 kPa). The detection
limit is as low as 0.8 Pa with a fast response of 6 ms. As a
favorable application for AI-enabled tactile sensing, the
synaptic transistor-based neuromorphic-computing method
for artificial neural network (ANN) recognition of complex
handwritten input signals is achieved with a high accuracy of
100%. Toward the feasible application of MR, the TCTS array
can be functionalized as the multichannel tactile sensing for
acupressure intensities, rendering visual instruction of light-to-
dark color transitions. Hence, a comprehensive, realistic, and
immersive three-dimensional mixed-reality sensory interaction

Figure 1. Schematic diagram of the machine-learning-assisted triboelectric-capacitive coupled tactile sensor (TCTS) array enabled MR
interaction. (A) Configuration of the system showing press strength perception feedback on the hand with the TCTS array in the AR space.
(B) Structure of the TCTS array, including the top panel of silicone rubber encapsulated arch-shaped EgaIn electrodes with parallel array
pattern coated on conductive fabric tape and the bottom panel of encapsulated flat electrodes, overlapping to form 16 unit pixels. (C)
Overview of the TCTS enabled acupressure application in MR interfaces. (D) Schematic illustration of synaptic transistor based
neuromorphic computing strategy. (E) t-SNE clustering results of handwriting recognition.
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system is constructed, which can benefit telemedicine,
equipment manufacturing, education, entertainment, etc.

RESULTS AND DISCUSSION
Design of TCTS Array Enabled MR Interaction and

Sensory-Neuromorphic System. MR is expected to realize
AIoT applications by constructing real-object models on the
virtual display and the projection of objects in real scenes
through model tracking technology. Figure 1A depicts the
system showing press strength perception feedback on
different areas of the hand with a triboelectric-capacitive-
coupled tactile sensor (TCTS) array in the MR space. The
virtual model of a real hand and the different areas on the back
of the hand in the real environment are created. As the user
wears the MR device, both the real environment and the
constructed virtual model can be observed on the display. The
virtual model can be tracked to the real human hand and
perfectly overlapped with it. Here, the TCTS is placed on the
real hand, which covers different areas. When the user presses
on one area of the hand, multichannel information about the
area and pressure intensity could be observed, for example,
Area I, mild press. The structural design and optical
photograph of the TCTS array are shown in Figures 1B and
S1, which is composed of the two panels crossly stacked to
form a 4 × 4 matrix of 16 pixels. The fabrication process flow

of the TCTS array is depicted in Figure S2. Four stripe arch-
shaped electrodes coated with EGaIn are wrapped by silicone
rubber to form the up panel. Considering the stability of the
precise cross-alignment and mutual contact of the upper and
lower strip electrodes, the bottom panel adopts flat strip
electrodes. EGaIn features high conductivity and low Young’s
modulus, and the oxide layer formed on its surface serves as an
intermediate layer to further enhance the output, making it a
robust candidate for the flexible TCTS electrode. EGaIn is
sprayed to evenly distribute it on the surface of flexible
conductive tape, which greatly reduces the thickness of the
electrode layer and improves the safety. In addition, the top
striped arch electrode and the hemispherical dielectric
structure design show stretchability and increase the sensitivity
of the sensor unit. To take advantage of the multichannel
tactile sensing property of our flexible artificial skin, we utilized
the TCTS array to create an MR interactive human−machine
interface for perceiving distinct touching areas and different
pressure levels. As a concept flow shown in Figure 1C, tactile
information data are initially captured by the TCTS array and
then cascade-amplified through the signal processing circuit,
converted into a digital signal via a microcontroller unit, and
transmitted to the Unity platform through bluetooth for
displaying the tactile message on the MR device terminal.
Inspired by the biological synapses shown in Figure 1D,

Figure 2. Sensing mechanism and electrical output characteristics of the TCTS array. (A) Proposed TCTS has capabilities to detect static
tactile pressure in capacitive sensing mode and (B) dynamic tactile pressure in triboelectric sensing mode. (C) Simulation showing the
deformation of the TCTS unit before and after mechanical pressure. (D) Capacitive response and recovery at the static detection limit of 0.8
Pa. (E) Cycle test on capacitance variation under a continuous mechanical pressure of 15.34 kPa. (F) Potential simulation results before and
after contact electrification. (G) Voltage response at the dynamic detection limit of 0.8 Pa. (H) Dynamic pressure sensitivity under different
pressure loads varying from 0 to 80 kPa. (I) Comparison of this work to other recent research on tactile sensor arrays on three key metrics of
sensitivity, response time, and detection limit.28−33
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artificial synapses mimic their functions of signal transmission
between neurons for synaptic plasticity and learning behavior,
which serve as core components of neuromorphic computing.
Since the processing flow of the output signals from the tactile
sensor array is complicated, time-consuming, and inefficient, a
combination of perceived tactile information and the
optimized neuromorphic computing strategy could shorten
the signal processing time and improve the recognition
accuracy. Therefore, we establish an ANN based on the
three terminal synaptic transistor with the all-in-one structure
of Al/ZnOx/MXenes/AlOx-Li/Si/Al. Two-dimensional ma-
terial, for example, MXene has the advantages of short ion
transport distance, excellent electron transport dynamics, and
high mobility to form a synaptic device, demonstrating
excellent synaptic plasticity and learning capabilities. The
synaptic weights between artificial neurons are represented by
the conductance values of the synaptic transistor for ANN
training. For demonstration, the TCTS array could be utilized
as a flexible handwriting panel, where the collected
chronological signal data set is accurately categorized into
manual letters through an ANN enabled by the proposed
synaptic transistor and then realizing visualization by t-
distributed Stochastic Neighbor Embedding (t-SNE) dimen-
sional degradation strategy (Figure 1E).

Working Mechanism of Dual-Mode TCTS Array. The
structural design of the dual-mode TCTS array is shown in
Figure 2A,B. The TCTS can be implemented separately as a
capacitive sensor array for static load distribution sensing as
well as a triboelectric sensor for dynamic pressure variation
detection. As a capacitive static sensing unit, the top electrode
layer is a striped arch electrode coated with EGaIn, and the
bottom electrode is a cross-aligned EGaIn planar electrode.
Silicone rubber is employed as the dielectric and encapsulation
layer. The size of the individual sensor array unit is 7 × 7 mm.
The expression for the capacitance of the array unit can be
presented as = +C C C

C C
s a

s a
, where Cs is the capacitance of silicone

rubber and Ca is the capacitance of the air between two
electrodes. Detailed formulas and derivation process of Cs and
Ca are presented in Supporting Information Note S1. In the
absence of pressure, the separation distance between the two
flexible electrodes is at its maximum, and the contact area is at
its minimum. An increase in externally applied pressure causes
a larger shape change in the microstructure, which leads to a
deformation of the embedded electrodes, thus decreasing the
separation distance, increasing the area of the contact area, and
contributing to a larger capacitance value.
Figures 2C and S3 illustrate the simulation result of the

change in deformity about the unit before and after a
mechanical pressure of 15.34 kPa is applied. The increase in
applied pressure driven by the linear motor results in an
increase in the compressed depth of the capacitive sensor unit.
Figure 2D depicts the static capacitive sensing unit with a low
detection limit of 0.8 Pa and a fast response time of 6 ms.
Specifically, the recovery time of the sensor is approximately 5
ms, attributed to the low Young’s modulus and viscoelastic
properties of the Ecoflex elastomer and the absence of external
forces during the recovery process, collectively enabling a more
efficient and rapid restoration of the initial capacitance value. A
cycle test on capacitance variation under a continuous
mechanical pressure of 15.34 kPa shown in Figure 2E reveals
the excellent stability of the sensing unit. Regarding the
triboelectric sensor as the mode of dynamic pressure detection,

electrical outputs can be detected from two EGaIn electrodes
during the process that the finger contacts and separates from
the top silicone rubber layer. As depicted in Figure S4, the
equivalent circuit diagram of the all-in-one TCTS sensing unit
can be represented as the connection of a single-electrode
mode TENG and a variable load capacitance. The upper layer
of silicone rubber wrapping the arched EGaIn electrode forms
a single-electrode TENG, while the upper and lower layers are
stacked to acquire a load capacitive. Therefore, the measured
electrical output voltage is the divided voltage across the
capacitive sensor. A cycle of the electricity generation process
for illustrating the working mechanism of the single-electrode
mode TENG is shown in Figure S5. Based on the coupling
effect of contact electrification and electrostatic induction, an
alternating current signal is generated during the contact
separation of the finger and the TCTS unit, and the outcome
of the simulated potential variation is shown in Figures 2F and
S6. To further investigate the working mechanism of the
TCTS unit, considering the intrinsic capacitor model and
capacitive impedance matching effect of the TENG, various
load capacitances were connected in parallel with the TCTS,
and electrical output voltages at two ends of different load
capacitances were measured, as shown in Figure S7. From
previous research, it can be assumed that the inherent
impedance of TENG is infinitely large and there is no resistor
in the circuit. When the external capacitance value is very
small, it reflects the impedance significantly larger than that of
the TENG. Therefore, almost all of the open-circuit voltage is
loaded on the external capacitance and the TENG works in the
quasi-open circuit condition. Since the capacitance variation
range is lower than 20 pF (Region I), the output voltage
scarcely changes under different pressures of 1.15, 5.22, 15.34,
and 57.68 kPa. In this case, the applied pressure becomes the
critical factor affecting the output of TCTS. When a tiny
pressure of 0.8 Pa is continuously applied, the voltage signal
fluctuates between 0 and 11 mV along with the pressure
loading and releasing, directly reflecting the dynamic pressure
variation process, as represented in Figure 2G. The baseline
noise voltage of the triboelectric sensing mode with no applied
pressure is characterized in Figure S8. The signal-to-noise ratio
(SNR), calculated as the signal power divided by the noise
power, quantifies the sensor output quality. The peak
amplitude squared ratio readily estimates SNR. Considering
the experiment result shown in Figure 2D, the SNR could be
calculated as 15.6 dB for the capacitive sensor, confirming
robust signal levels exceeding intrinsic noise. Figure 2H
illustrates the relationship between pressure and the relative
variation of output voltage. The sensitivity of the TCTS unit
could be presented as (V − V0)/V0. A smooth nonlinear
relationship between the sensitivity and applied pressure is
shown in the whole sensing range (0−80 kPa). However, in
the low-pressure range (0−8.78 kPa), a linear relationship is
observed due to the significant deformation of the TCTS unit.
As a result, a high sensitivity of 7.88 kPa−1 was acquired for the
linear fitting relation with the R2 value of 0.995. Meanwhile, for
a better display of the pressure dynamic variation, the output
voltage profiles under different pressures are illustrated in
Figure S9. Also, the relationship between output voltage and
applied pressure of different sensing units in the pressure range
of 0−80 kPa is depicted in Figure S10, exhibiting repeatability
of TCTS. Considering the possible impact of cross-talk on the
electrical outputs of sensing units, the output voltages of
different surrounding units no 2, 5, 7, and 10 were measured
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when the particular sensing unit of no. 6 is compressed at the
highest pressure of 80 kPa. As a result, there is a slight
enhancement in the output voltage with an average accuracy of
2%, which are depicted in Figure S11 and Table S1. Due to the
dissimilarity in electronegativity, triboelectrification with differ-
ent materials produced specific magnitudes in output voltage,
as shown in Figure S12. In comparison, metrics including
spatial resolution, number of pixels, response time, sensitivity,
and limit of detection, as well as neuromorphic computation
enabled artificial intelligence applications to recognition and
HMI of our work to other recent research on different types of
capacitive or triboelectric tactile sensor arrays are summarized
in Table S2.17,28−35 Figure 2I depicts three key device
capacities related to response behavior. It is obvious that the
TCTS array demonstrates outstanding device performance and
broad application prospects in the field of AIoT.36 To
characterize the reproducibility, three additional TCTS arrays
were fabricated using identical preparation methods and tested
under the same conditions. As shown in Figure S13, the output
voltages for the triboelectric sensing modality exhibit a
standard deviation of 4.4% between devices at a pressure of
78 kPa. Similarly, the initial capacitance value had a standard
deviation of 3.9% between the sensors. The small variability
between different sensors indicates a high level of reproduci-
bility within the fabrication batch. The experimental character-
ization of the sensor output was conducted under controlled
conditions of 25 °C and 40% RH. Figure S14 demonstrates
that the sensor output exhibits dependence on both temper-
ature and humidity, with the magnitude of the influence
varying between the two parameters. At 50% RH, when
increasing the temperature from 0 to 40 °C, the output voltage
of the triboelectric sensor exhibited an approximately 44%

reduction under the maximum applied dynamic pressure of 78
kPa. Additionally, the initial capacitance value of the static
capacitive sensor showed a decrease of around 9%. Under the
condition of 20 °C, the triboelectric sensor exhibited a slight
decrease in output voltage of approximately 13%, while the
initial capacitance value of the static capacitive sensor showed a
small increase of around 7%, with the relative humidity
increases from 10 to 90%. This result demonstrates that the
increase in temperature leads to a certain effect on the output
voltage of the triboelectric sensor, while the increase in
humidity has a smaller influence.37,38 The initial capacitance
value of the capacitive sensor also changes with variations in
the temperature and humidity but to a negligible degree.

Static Pressure Visualization Application Enabled
with Capacitive Sensor Array. The relationship between
capacitance variation and the applied pressure of all 16 sensing
units is illustrated in Figure 3A. The capacitance values
increase from ∼5 to ∼19 pF as the pressure strength generally
raises to ∼80 kPa, demonstrating excellent device consistency.
The capacitive sensor exhibits a high sensitivity of 17% kPa−1

from 0 to 1 kPa (Figure S15). Above 1 kPa, the sensitivity
gradually decreases as the degree of dielectric deformation
reduces. As shown in Figure 3B, the instantaneous change and
the long-time static stabilization of the capacitance value can
be observed by gradually applying pressures on the sensing
unit with a linear motor operating in the same step and
maintaining it for 5 s at a time, showing the static pressure
detection possibility. The inset shows the detailed applied
pressures. Moreover, the flexible capacitive mode pressure
sensor array is capable of detecting static pressure signals
accurately with high resolution. It can display static visual-
ization of the pressure distribution, reflecting slight stress

Figure 3. Application in static tactile pressure sensing. (A) Relationship between capacitance and applied pressure for 16 units of TCTS
array. (B) Capacitance change and static holding by loading pressures via the linear motor every 5 s. The inset shows the corresponding
applied pressures. (C−F) Optical photographs showing the top view of standard weights of 2, 10, 20, and 50 g on the TCTS array. (G−J)
Their pressure mapping statistical distribution matrices for 1−16 pixels shown by capacitance variation values.
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variability of different areas. As shown in Figure 3C−F,
different weights of 2, 10, 20, and 50 g were placed in the top
left corner position of the sensor array. The bottom diameters
of the 2, 10, 20, and 50 g weights are 0.55 0.9, 1.3, and 1.8 cm,
respectively. Since the sensing unit measures 7 mm in diameter
and the rows are positioned 2 mm from the edges, a 2 g weight
can be entirely located on top of one sensing unit, and a 10 g
weight covers one sensing unit and its edges. Moreover, a
weight of 20 g extends to the three nearby sensing units, and a
weight of 50 g concentrates its pressure on the middle two
sensing units and partially dissipates it over the four adjacent
sensing units. Figure 3G describes the capacitance variation
matrix of the sensor array after situating the 2 g weight,
portrayed by a color mapping from blue to red, indicating the
magnitude of capacitance change of each pixel for pressure
perception. The capacitance variation value of sensing unit no.
2 directly under the 2 and 10 g weights are 1.16 and 2.71 pF,
respectively, as represented in Figure 3H. Changes in
capacitance at the relevant locations when putting the 20 g
weight on the sensor array are 3.74 pF (unit no. 2), 2.13 pF
(unit no. 6), and 1.66 pF (unit no. 3) (Figure 3I). The
pressure distribution of the 50 g weight located on the sensor
array is most obvious, with the corresponding 6 pixels
presenting capacitance variations of 4.98 pF (unit no. 2),
3.91 pF (unit no. 6), 2.55 pF (unit no. 5), 2.12 pF (unit no. 1),

1.36 pF (unit no. 7), and 0.90 pF (unit no. 3) (Figure 3J),
realizing the application of static pressure mapping pattern
visualization.

Dynamic Pressure Detection and Its Application in
Neuromorphic Recognition. The development of neuro-
morphic computation mainly involves artificial neural networks
and hardware-based neuromorphic devices, which possess the
advantages of high efficiency, ultralow power consumption,
integrated storage and computation capabilities, etc. At the
biological level, neurons and synapses are essential building
blocks for information processing in the brain. The synapse is
the connection between the axon terminal and dendrites of
another neuron. The synaptic gap allows for the transmission
of neurotransmission from the presynaptic neuron to the
postsynaptic neuron, thus acting on the corresponding
receptors on the cell membrane and generating synaptic
plasticity, which is the most important basis for brain learning
and memory. To mimic biological synaptic behavior at the
device level, changes in ion concentration of artificial synaptic
transistors lead to a channel conductance difference and
generate an excitatory postsynaptic current (EPSC). Chemical
doping leads to a long-term charge retention property, which
results in short-term plasticity gradually shifting to long-term
plasticity (LTP). Neuromorphic computing based on synaptic
devices was employed to verify the application of dynamic

Figure 4. Tactile neuromorphic system for dynamic handwriting and pressure recognition. (A) Output voltage curves and (B) confusion
matrix between actual handwriting input and predicted handwriting output signals after the 80th training epoch of handwriting numbers
from 0 to 9. (C) Visualization of the somatosensory information using the t-distributed stochastic neighbor embedding (t-SNE)
dimensionality reduction method. (D) Output voltage curves, (E) confusion matrix, and (F) t-SNE result for handwriting letters of “X,” “J,”
“T,” “L,” and “U” after 55 training epochs. (G) Output voltages curves, (H) confusion matrix, and (I) t-SNE result identifying different
pressure strengths, namely, “press harder,” “mild,” “moderate,” and “severe”, after the 75th training epoch.
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handwriting to the TCTS array. The all-in-one synaptic device
with the Al/ZnOx/MXenes/AlOx-Li/Si/Al structure is pro-
posed in this work to achieve synaptic plasticity by stimulating
the presynaptic terminal. To verify the synaptic plasticity of
this device, the nonvolatile conductance is recorded when
electrical pulses are applied to the presynaptic terminal,
regularly. The paired-pulse facilitation (PPF) preliminarily
demonstrates the short-term synaptic plasticity, which is the
basic function of biological synapses for processing temporal
information between neurons. The fitting curves indicate that
the PPF stimulated by five different pulse widths (10, 20, 40,
70, and 100 ms) have a wide range of weight adjustment
amplitude (Figure S16). The EPSC behavior of the synaptic
transistor can be analyzed by applying a single electric pulse (2
V, 300 ms) (Figure S17). After passing the peak value, the
initial conductance slowly recovered and stabilized in 7.7 s.
The expression of the PPF index depends on the ratio of the
first and second peak values (A2/A1) of the EPSC (Figure
S18). The interval (Δt) between pulses is 60 ms, and the
amplitude of electric pulses is 2.0 V. The EPSC and IPSC
characteristics obtained by positive/negative pulses are the
core components to raise and decrease the synaptic weight in
the neural network (Figure S19). Significantly, to apply the
synaptic plasticity of the electric synapse to neural networks,
the LTP/LTD process is normalized to simulate the weight

iteration of neuromorphic computing in cross-array. Each row
receives the processed input data, and the conductance
difference of each adjacent two columns in the cross-array
represents one neuron. LTP/LTD is similar to the weight
update manual for neuromorphic computing (Figure S20).
The rules of the simulated weight matrix are updated according
to the periodic trend of LTP/LTD in the synaptic transistor.
Weight is the bridge between two neurons that controls the
speed of information exchange. The trained neural network
with an iterative update array is designed to complete the
identification task (Figure S21). Each weight value in the
synaptic array matrix depends on the normalized LTP/LTD
trend of neural devices. ANN is based on simulated neurons
and synapses, which can be modeled on the synaptic transistor
device. Therefore, a single-layer-perception (SLP)-based ANN
with a back-propagation algorithm using MATLAB software
was established, as shown in Figure S22. A concise 10-category
of identification is performed, where 2500 data points of the
corresponding waveforms for different handwriting numbers
are extracted as input to the ANN. Furthermore, an additional
bias voltage V0 is used as an input to act as a constant term.
The weight on each synapse is continually updated between
the nodes in the ANN to realize the most applicable
association between input data sets and predicted output
classifications. Moreover, each synapse contains two synaptic

Figure 5. Demonstration of acupressure in MR. (A) System-level block flowchart of the MR-based physiotherapy process, including the
acquisition of output voltage signal from TCTS array, analog signal processing, digital converting, and wireless transmission to the custom-
developed application in Unity. (B) Optical photographs of the corresponding four modules, namely, the TCTS put on a 3D-printed foot,
Arduino for data collecting and analog-to-digital processing, bluetooth for signal transmission, and HoloLens as the terminal display. (C)
Output voltage profiles after Arduino processing, presenting four ranges of pressure strengths, especially 0−1.5 V (“press harder”), 1.5−2 V
(“mild”), 2−2.5 V (“moderate”), and 2.5−5 V (“severe”). (D) Multichannel visual color mapping of pressing intensity. Area I is indicated by
blue, and Area II is indicated by red. (E) Demo of acupressure when placing the TCTS array covering the modeling areas. (F) Different
visual colors to distinguish the pressure sensing area and color shades to determine the intensity of pressure.
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transistors, and the difference in conductance between the two
devices is defined as the synaptic weight. For dynamic tactile
recognition applications, the TCTS array can operate as a
flexible handwriting panel to perceive user input signals,
including handwriting numbers, letters, and touch strength.
The upper and lower four electrodes of the TCTS array are
combined to form two input terminals connected to the test
system. The user repeatedly wrote down different numbers
from 0 to 9 on the TCTS array, and the recorded output
voltages were utilized as the data sets. As shown in Figure 4A,
although the tactile strength and frequency of one handwriting
number cannot be exactly controlled the same at each time, the
voltage output curves of the ten handwritten digits from 0 to 9
differ from each other in terms of peak value, peak width, and
peak number. Through the synaptic transistor-based ANN
neuromorphic algorithm, the confusion matrix shown in Figure
4B reveals a classification accuracy of 100%. Moreover, t-SNE
is employed to reduce the dimensionality of complicated data
sets, and a two-dimensional coordinate system of handwritten
numbers is presented in Figure 4C. The same category of data
is aggregated and distinguished from other categories, showing
a high level of visualization. Similarly, the electrical output
voltage curves of different handwriting letters are shown in
Figure 4D, and the top diagrammatic sketch displays the
writing track of “X”, “J”, “T”, “L”, and “U”, respectively. As a
consequence, upon 450 training samples (62.5%) and 270 test
samples (37.5%) of handwriting letters in the data set, a high
recognition accuracy is achieved with the value of 100%, as
shown in the confusion matrix in Figure 4E. The t-SNE results
in Figure 4F show that the clusters of the five handwritten
letters are distinguishable on the two-dimensional spatial
visualization, and there are no overlapping regions. Further-
more, the ANN-based neuromorphic computing method can
be used to recognize different pressure strengths. Figure 4G
depicts the output voltage diagrams of four pressing strengths
of the finger, namely, “press harder” (0−5 kPa), “mild” (5−20
kPa), “moderate” (20−50 kPa), and “severe” (50−80 kPa).
After the 75th training epoch, a high recognition rate of 99.6%
is acquired, as shown in Figure 4H. As depicted in Figure 4I,
the clusters of the four tactile intensities are far from each other
in the 2D spatial distribution, indicating intuitive dimension-
ality reduction and visualization. As illustrated in the
recognition rate curves shown in Figure S23, the recognition
accuracies achieve more than 99% after less than 100
iterations, showing ultrahigh efficiency of the neuromorphic
network computation and great potential for future sensory
storage and computing integrated artificial intelligence. As
shown in Figure S24, the TCTS sensor array also demonstrates
potential applicability as an electronic skin technology for
tactile sensing in robotic hands. The capacitive sensing mode
enables the mapping of pressure distributions when objects are
statically grasped or gripped. Additionally, the triboelectric
sensing mode provides dynamic voltage responses during
manipulator interactions involving contact, sliding, and
friction. This enables real-time recognition of materials, such
as aluminum and copper. The integrated electrode design
achieves high functional density with dual capacitive and
triboelectric sensing modes. Overall, the TCTS array
demonstrates potential suitability as artificial tactile skin to
enabling tactile feedback and perception in human-mimetic
robotic systems.

Demonstration of Physiotherapy on Foot Reflex in
MR. The emerging MR interface has been recently employed

in various applications benefiting from enhanced interaction
and an immersive experience, which would be an ideal
platform for advanced interpretation, visualization, and
communication interfaces. Moreover, the integration of deep
learning with the MR interface brings a broad prospect for
building an intelligent social network. Therefore, a deep
learning-integrated MR interface to realize bidirectional
communication was developed, as shown in Figure 5A. The
system comprises four major blocks, including TCTS for tactile
sensing signals, the printed circuit board (PCB) for signal
preprocessing, the IoT module Arduino and bluetooth for data
acquisition, and an MR interface in Unity for interaction. With
a pretrained machine learning model, models and hands of the
user are recognized and generated as output images. Then the
images are rendered in the HoloLens interface as outputs. The
optical photographs of TCTS put on a 3D printed foot model,
analog signal processing PCB, bluetooth communication, and
HoloLens display terminal are shown in Figure 5B. Signal-
processed output voltage curves at four pressures are illustrated
in Figure 5C, showing four ranges of 0−1.5 V (press harder),
1.5−2 V (mild press), 2−2.5 V (moderate press), and 2.5−5 V
(severe press). Figure 5D interprets the visual color mapping
of the different pressing intensities. The TCTS is placed on the
3D-printed foot model covering different areas for multi-
channel signal perception. Area I is indicated by blue, and Area
II is indicated by red. The colormap deepens as the pressure
increases. The application demonstration of visual acupressure
is shown in Figure 5E. The main purpose of utilizing mixed-
reality technology for this work is to enhance the tactile
perception of acupressure points using visual cues. This
approach is supported by research on the use of object
detection and tracking algorithms and SDKs in mixed-reality
HMDs such as Microsoft HoloLens2. Our prototype enables
the analysis of real-time data to detect and track the real-life
counterpart (i.e., a 3D printed foot model) on a HoloLens 2
headset. Ultimately, it overlays the virtual foot model and
geographically aligned holographic texts and images onto the
detected objects. As illustrated in Supporting Information
Movie S1, the user can simultaneously observe the virtual
projection and real space entity of the 3D foot model through
the HoloLens equipment and easily realize accurate model
tracking. Both the real scenes and the virtual image, including
3D model feet and different area patterns, are presented.
Perfect projection of virtual images on the real 3D foot model
is realized, and the TCTS array is attached to the model,
covering two areas. As presented in Figure 5F, the visual
acupressure effects show different shades in red or blue as
responses to the user’s operations, based on the pressing
strength and the pressing area. From the user interface, an
information board was displayed in front of the user, showing
the strength of the press for the two areas in digits. As shown
in Supporting Information Movie S2, the feedback display
position could be adjusted for a better view via finger control.
As demonstrated in Supporting Information Movie S3, when
the user presses the area gently, the interface will inform the
user to press harder. When the pressure strength grows, the
color becomes brighter, indicating different pressure areas and
pressure intensities of acupressure.

CONCLUSIONS
In summary, a dual-mode 4 × 4 flexible TCTS array with a
spatial resolution of 7 mm is designed, which achieves both
stable static pressure distribution recognition in capacitive
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sensing mode and sensitive dynamic pressure detection in
triboelectric sensing mode. Neuromorphic computing based
on synaptic devices is employed to verify the application of
handwriting on the TCTS array. The difference in the
conductivity between the two synaptic transistors is utilized
as a synaptic weight. Upon 450 training samples (62.5%) and
270 test samples (37.5%) of handwriting letters in the data set
collected by the TCTS array, a high recognition accuracy is
achieved with the value of 100% within 60 epochs, realizing
recognition of complicated tactile input signals. Furthermore,
the neuromorphic computation method can be employed to
recognize four different pressure strengths, namely, “press
harder”, “mild”, “moderate”, and “severe”, acquiring a high
recognition rate of 99.6%. Incorporated with TCTS for tactile
sensing input, the PCB for signal preprocessing, IoT module
Arduino and bluetooth for data acquisition, and a MR interface
in Unity for interaction, the visual color mapping of pressing
intensities in two different areas can be accomplished. Hence, a
promising approach to actualizing the connection between
virtual and reality is developed, forming a multimedia
interactive system integrating vision and touch, breaking
through the constraints of space, time, and reality.

EXPERIMENTAL SECTION
Fabrication of the Triboelectric Capacitive-Coupled Tactile

Sensor Array. The TCTS array is composed of two panels: the top
panel of silicone rubber (Ecoflex 00-30, Smooth-On)-encapsulated
arch-shaped EGaIn (Ga 75.5% and In 24.5%, Sigma-Aldrich)
electrodes with a parallel array pattern and the bottom panel of
silicone rubber-encapsulated flat EGaIn electrodes. To obtain the
down panel layer, first, components A and B of silicone rubber were
mixed evenly in a 1:1 ratio and spin-coated on the silicon wafer,
leaving it at room temperature for about 5 h until fully cured. Second,
a 0.7 cm wide conductive tape (3MCN4190, 3M) was stuck on the
cured silicone rubber surface, covered with a hollow four-row 6 × 0.7
size steel sheet as a template, and used the air pump nozzle to spray
EGaIn liquid uniformly on the surface at a distance of 15 cm for 5 s.
Third, another layer of silicone rubber was placed on it to form the
down panel. Finally, the top panel was then prepared by placing
another silicone rubber layer with EGaIn stripes in the second step
onto the circular array template with a diameter of 7 mm and
vacuuming at negative pressure in the vacuum oven for 30 s. More
silicone rubber was then added to the surface for the up-panel
encapsulation. The up panel and down panel cross stacking to form a
4 × 4 pixels sensor array.

Fabrication Process of the Synaptic Transistor. First, a heavily
doped Si (n+2) substrate was cleaned by deionized water and dried
under a N2 flow. Afterward, the processed substrate was further
treated by plasma for 15 min to allow for the film surface hydrophilic
treatment. Precursor solutions of AlOx [dissolving 2 M Al(NO3)2·
xH2O in 30 mL 2-methoxy ethanol] and AlOx-Li [mixing 2 M
Al(NO3)2·xH2O and 0.20 M lithium hydroxide with 30 mL deionized
water] were spin-coated on the substrate at 4000 rpm for 20 s and
then annealed for 90 min at 300 °C in the air atmosphere. Then, the
MXenes solution was diluted to 1 mg/mL and spin-coated at 4000
rpm for 25 s on the surfaces of AlOx and AlOx-Li films. Substrates
with solution films were then oxidized at 80 °C for 1 min on a hot
plate in air condition. The ZnOx precursor [dissolving Zn(NO3)2·
xH2O into 30 mL of deionized water] was spin-coated at 4000 rpm
for 20 s and then annealed for 2 h at 250 °C in an air atmosphere. The
50 nm thick Al source/drain (S/D) electrodes were fabricated by
thermal evaporation through the shadow mask.

Performance Characterization. The capacitance was measured
by an impedance analyzer (6500B, Wayne Kerr) with a driving
frequency of 15 kHz. For the electrical output measurement of the
TCTS, an external contact force was applied by a commercial linear
mechanical motor (Winnemotor, WMUC512075-06-X), and the

applied force was detected by digital force measurement (Chatillon,
DFS II). A programmable electrometer (Keithley model 6514) was
used to test the output signal. The triboelectric potential distribution
simulation and mechanical deformation were conducted with
COMSOL Multiphysics software. The electrical characteristics of
the synaptic transistor were measured with a semiconductor device
parameter analyzer (Keysight B1500A).

Synaptic Transistor-Based Neuromorphic Computation. For
ANN-based neuromorphic computing, synaptic weights require both
positive and negative values. Therefore, the synaptic weight can be
expressed as the difference between each conductance value of two
synaptic devices

= +W G G (1)

During the weight update process, the output vector (y) obtained
by the sigmoid activation function was utilized for the above
calculation. ΔW was then computed using the difference between the
output value of the output vector and the label value of the input data
set. Then, the positive or negative sign of ΔW determines whether the
synaptic weight is potentiated or suppressed.

In the case of potentiated synaptic weight, G+ increases and G−

simultaneously decreases. Conversely, when in the suppressed
synaptic weight phase, G+ should be decreased while G− should be
increased. When the conductance of the synaptic device reaches its
maximum value (Gmax), both G+ and G− are initialized to Gmin. The
conductance change (ΔG) can be calculated according to the
following formula

= +

= +
+

+

G G G

G G Ge (for or )
n n

n
G G G G

1
/n min max min (2)

= +

=
+

+ +

G G G

G G Ge (for or )
n n

n
G G G G

1
/nmax max min (3)

where Gn and Gn+1 represent the current conductance value and the
updated value after using the equation, respectively. Furthermore,
parameters α and β represent the step size and NL value of
conductance change, respectively.

MR Interface Application in Unity. Unity was used for
developing the application, and the overall functionalities were
divided into three parts shown in Figure S25: bluetooth
communication, input transformation, and computer vision illus-
tration. Data collected from the sensor will be processed into visual
effects as MR content. For bluetooth communication, since the
system uses bluetooth for communication between the Arduino board
and HoloLens, a plugin of Unity, named Arduino bluetooth plugin,
was used for the data transportation. All functionalities were
implemented in Unity with API given by the plugin. When the two
devices are paired, the application records the paired Arduino device
on the HoloLens side and starts to listen to the data sent from that
device while ignoring the others. Data received will be stored in a
queue within the application. For input transformation, data gathered
in the queue will be gathered in order and transformed into visual
components in a Unity game object. Also, since there are multiple
displayed regions, the data are classified into different categories
before the transformation. For computer vision illustration, the
functionality was implemented based on the MR Toolkit (MRTK)
provided by Microsoft, enabling an easier way of developing
applications on Microsoft MR devices. The major use of the toolkit
is for the calculation of coordinators of projected MR content. Before
the projection, images of the environment are captured by cameras
and sensors on HoloLens.
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Tracking and matching of virtual and real models (MP4)
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Adjusting the feedback display position (MP4)
Color mapping of pressure intensity in mixed reality
(MP4)
Detailed formulas and derivation process of dielectric
capacitance, optical photograph and fabrication process
of the TCTS array, simulation of deformation process
under the pressure, equivalent circuit diagram of the
TCTS unit, working principle and surface potential
simulation of TENG, capacitive impedance matching
curve, baseline noise voltage of the triboelectric sensor,
output voltage profiles under different pressure loads,
relationship between output voltage and applied
pressure, cross-talk influence, output voltage curves of
different contact materials, reproducibility, influence of
temperature and humidity, sensitivity of the capacitive
sensor, characteristics of the synaptic transistor, neuro-
morphic computing process, application in robotic
manipulator, and flowchart of application in MR
interface (PDF)
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