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Abstract 18 

In this study, the potential of advanced tree-based models and optimized deep learning 19 

algorithms to predict fluvial bedload transport was explored, identifying the most flexible and 20 

accurate algorithm, and the optimum set of readily available and reliable inputs. . Using 926 21 

datasets for 20 rivers, the performance of three groups of models was tested: (1) standalone tree-22 

based models (Alternating Model Tree (AMT) and Dual Perturb and Combine Tree (DPCT); (2) 23 

ensemble tree-based models (Iterative Absolute Error Regression (IAER), ensembled with AMT 24 

and DPCT; and (3) optimized deep learning models (Long Short-Term Memory (LSTM) and 25 

Recurrent Neural Network (RNN) ensembled with Grey Wolf Optimizer. Comparison of the 26 

predictive performance of the models with that of commonly used empirical equations and 27 

sensitivity analysis of the driving variables revealed that: (i) coarse grain-size percentile D90 was 28 
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the most effective variable in bedload transport prediction, followed by D84, D50, flow discharge, 29 

D16, and channel slope and width; (ii) all tree-based models and optimized deep learning 30 

algorithms displayed ‘very good’ or ‘good’ performance, outperforming empirical equations; and 31 

(iii) all algorithms performed best when all input parameters were used. Thus a range of different 32 

input variable combinations must be considered in optimization of these models. Overall, 33 

ensemble algorithms provided more accurate predictions of bedload transport than their 34 

standalone counterpart. In particular, the ensemble tree-based model IAER-AMT performed 35 

best, displaying great potential to produce robust predictions of bedload transport in coarse-36 

grained rivers based on a few readily available flow and channel variables.  37 

 38 

Keywords: Bedload sediment, Machine learning, empirical equations, deep learning, IAER-39 

AMT, Einstein (1950).  40 

 41 

1. Introduction 42 

Bedload transport is the key driver of morphological change in coarse-grained rivers, 43 

exacerbating flooding (e.g., Nones, 2019) and posingrisks to infrastructure (e.g., Li et al., 2021; 44 

Feeney et al., 2022) and benthic habitats (e.g., Fisher et al., 1982). Predicting bedload transport 45 

rate accurately is a major challenge due to the vast number of flow and channel properties that 46 

control bedload transport, its non-linear relationship with these variables, its stochastic nature, 47 

and high complexity in its spatio-temporal patterns. Influential variables include upstream source 48 

of sediment supply, storage, and delivery (Gao, 2011), river channel characteristics such as 49 

slope, wide, riverbed structure, and roughness (e.g., Zhang et al., 2010), bed material size and its 50 

variation (e.g., Recking et al., 2023), and river flow properties such as discharge and bed shear 51 

stress (e.g., Gomez and Church, 1989). 52 
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Direct measurement of bedload is costly, time-consuming, and associated with high uncertainty, 53 

particularly during flooding (Graf, 1971). To overcome these difficulties, a vast array of 54 

laboratory flume experiments have been conducted under different flow and bed material 55 

conditions, from which many empirical equations have been developed, e.g., those reported by 56 

Meyer-Peter and Müller (1948), Einstein (1950), Bagnold (1966), Wilcock and Crowe, (2003), 57 

and Recking (2013). For example, Poorhosein et al. (2014) developed two types of 58 

empirical/linear equations for bedload transport rate prediction, one based on hydraulic 59 

parameters and one based on geometric parameters, and found good predictive performance for 60 

both types. They also identified Froude number, Shields parameter, and shape factor as the three 61 

most effective hydraulic variables in bedload transport prediction, while grain size distribution 62 

and water channel slope were the most important and effective geometric variables (Poorhosein 63 

et al., 2014). Using 2600 datasets, Hinton et al. (2018) tested a number of empirical equations, 64 

including those developed by Barry et al. (2004), Parker (1990; both calibrated and 65 

uncalibrated), Meyer-Peter and Muller (1948), Wilcock (2001), Rosgen et al. (2006; 66 

‘Pagosa good condition’), Elhakeem and Imran (2016), and Recking (2013). Their results 67 

showed that that the ‘Pagosa good condition’ and Barry et al. equations outperformed the others, 68 

while the Meyer-Peter and Muller (1948) and uncalibrated Parker (1990) equations gave the 69 

lowest predictive power.  70 

Alternatively, bedload transport can be predicted using numerical approaches, which attempt to 71 

mathematically represent the physics behind the processes of entrainment, transportation, and 72 

deposition. For example, Jilani and Hashemi (2013) developed a smoothed 73 

particle hydrodynamic (SPH) model and found it be reliable and efficient, while Barzgaran et al. 74 

(2019) developed and implemented a second-order finite volume method and wave propagation 75 

https://www.researchgate.net/profile/Darren-Hinton?_sg%5B0%5D=2a-WG-KA13T1gYFivZjYtcHxHdxwiubx8zaqlpoCMHYpKxHmlXs-772bFZW5SxV_txSfHdI.418vtZfuTB7j7rrAXpJmZwEaq_t_nUGtvNd6xkrrYVCUC6ls_wz91zTrwW10jte1WAIy1TQ-xYKq-p7JHSbeMw&_sg%5B1%5D=X5j_fQzjKF0K4bHJQCQmuFua_uPXkVIh6wDKzzUc-3sZSDMm1eLd2JEemOTZr2ukqHHUzAE.2EGhpt2qwe3L6dmbtPijlhJjCoEX9z8yNIoQUy0E4ei1yY7eG47QjhqmD983Yc1atF2TJ2NYsd4ZCxMxmIyRhA
https://www.sciencedirect.com/topics/engineering/hydrodynamics
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algorithm and found it to be efficient. Both models have been successfully applied in later 76 

studies, but model implementation is difficult, they require vast amounts of data for calibration 77 

and validation, , and calibration is time-consuming, limiting their wider application. Various 78 

approaches have been employed to simplify these models, including prediction of flow variables 79 

using a depth-averaged method, the Manning’s (1891) equation with estimates of the Manning 80 

roughness coefficient, and using transport capacity equations under unlimited sediment supply 81 

conditions (Shahiri et al., 2016; Mustafa et al., 2017; Wainwright et al., 2015). 82 

Use of machine learning (ML) models in hydrology and river science, and in many other fields 83 

of study, is now increasing. These models seek to find a robust relationship between readily 84 

available input and output parameters. The main advantages of ML models are that they are user-85 

friendly, require only small amounts of data, are simple and fast to calibrate, are able to handle 86 

large amounts of data, and have a non-linear structure that is able to replicate complicated 87 

environmental behavior (e.g., Roushangar and Koosheh, 2015; Kisi and Yaseen, 2019; Khosravi 88 

et al., 2020; Ashehi and Hosseini, 2020; Latif et al., 2023; Hosseiny et al., 2022).  89 

Artificial Neural Network (ANN) is one of the oldest and most widely used ML models in 90 

hydrology and water science. Hosseiny et al. (2022) found an ANN model to be efficient in the 91 

prediction of bedload transport based on 8117 measurements from 134 rivers. However, ANN 92 

algorithms have slow coverage speed during the training procedure, high errors in the modeling 93 

phase, and low convergence and generalization power (Kisi et al., 2012). Thus, ANN algorithms 94 

have poor predictive power when the range of the testing dataset is outside the range of the 95 

training data (Melesse et al., 2011; Kisi et al., 2016), and they require a large dataset to achieve 96 

reasonable results. To overcome this weakness, ANN algorithms have been ensembled with 97 

fuzzy logic algorithms to create Adaptive Neural Fuzzy Inference System (ANFIS) models. 98 
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Riahi-Madvar and Seifi (2018) developed an ANFIS model for bedload transport prediction and 99 

found that it outperformed an ANN model. However, in other environmental fields of study, 100 

ANFIS models have been found to be poor at finding the best weight parameters, heavily 101 

influencing the prediction accuracy (Tien Bui et al., 2016). Furthermore, ANFIS algorithms 102 

suffer from the need for a large number of model operators, each of which must be set 103 

accurately, especially the weights of membership function. Additionally, ANFIS algorithms lack 104 

a systematic approach in the design of fuzzy rules and in the choice of membership functions 105 

variables (Tien Bui et al., 2016; Khosravi et al., 2018). 106 

The ANFIS model is neuron-based and several other algorithms of this type, such as Support 107 

Vector Regression (SVR), have been widely used in river science. For example, Roushangar and 108 

Koosheh (2015) developed a hybridized model, SVR-GA, by combining SVR with the Genetic 109 

Algorithm (GA) approach, and found that it had better predictive power than empirical equations 110 

of bedload transport rate. However, SVR models have many hyper-parameters, making 111 

calibration time-consuming and model implementation difficult (Ahmad et al., 2018). Generally, 112 

the prediction power of neuron-based models to are improved when combined with metaheuristic 113 

models such as GA, heap-based optimizer (HBO), political optimizer (PO), teaching-learning 114 

based optimization (TLBO), backtracking search algorithm (BSA) and jellyfish search 115 

optimization (JFSO) (Vakharia et al. 2023; Moayedi et al. 2024).  116 

New types of neuron-based models, called deep learning (DL) algorithms, have been developed 117 

to overcome the weaknesses of conventional ML models. The two main advantages of DL 118 

models are their greater flexibility, and their ability to handle large and complex data, both 119 

structured and unstructured. Thus DL have higher predictive performance (Ghorbanzadeh et al., 120 

2019),. Convolutional Neural Network (CNN), Recurrent Neural Networks (RNN), and Long 121 

javascript:;
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Short-Term Memory (LSTM) networks are among the most popular and widely used DL 122 

approaches, owing to superior performance. For example, Latif et al. (2023) found that a LSTM 123 

model achieved better performance in prediction of bedload transport rate than SVR and ANN, 124 

while Shakya et al. (2023) found that a different DL algorithm, Deep Neural Network (DNN), 125 

performed better in prediction of total sediment load in rivers than SVR, linear regression (LR), 126 

and extreme learning machine (ELM) models.  127 

Another type of ML model which is widely used in hydrology and water resources, especially for 128 

spatial modeling of natural hazards, are tree-based algorithms such as random forest (RF), 129 

M5Prime (M5P), and Reduced Error Pruning Tree (REPT). Khosravi et al. (2018) applied 130 

several tree-based models, including Logistic Model Trees (LMT), REPT, Naïve Bayes Trees 131 

(NBT), and Alternating Decision Trees (ADT), in flood susceptibility mapping in Iran and found 132 

that all models achieved very good performance, although ADT outperformed the other models. 133 

Rahmati et al. (2019) applied numerous tree-based models, including Rule-Based Decision Tree 134 

(RBDT), Boosted Regression Trees (BRT), Classification And Regression Tree (CART), and a 135 

RF model in land subsidence susceptibility mapping and found that the RF model achieved the 136 

best performance. Hussain and Khan (2020) developed a RF model for monthly river flow 137 

forecasting and found that it achieved around 18% and 34% higher performance (based on root 138 

mean square error, RMSE) than MLP and SVM, respectively. However, there is a significant 139 

knowledge gap regarding the potential of DL algorithms for bedload transport prediction. Thus 140 

the challenge lies in establishing the most flexible and accurate algorithm for this purpose, and 141 

identifying readily available, reliable, and optimum inputs.  142 

The aim of this study was to address this challenge through comparing the performance of 143 

empirical models, standalone and ensemble tree-based models, and optimized DL models in 144 
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prediction of bedload transport rate in coarse-grained rivers. Specific objectives were to 145 

establish, using 926 datasets for 20 rivers: (1) the potential of tree-based and DL algorithms to 146 

provide accurate predictions using a few readily available and measurable river properties, such 147 

as channel size (width and slope), flow discharge, and sediment size; (2) the most effective 148 

variable in bedload transport prediction; (3) the most effective input variable combination in 149 

optimizing predictive power; and (4) the effect of hybridization and ensemble-based approaches 150 

on prediction accuracy. This study is the first to apply a wide range of tree-based and DL models 151 

in prediction of bedload transport and offers new insights into the potential of these algorithms to 152 

provide simple, fast, accurate, and efficient predictions of bedload transport. 153 

 154 

2. Methodology 155 

2.1. Data 156 

The data used in the analysis comprised 926 sets of bedload transport rate for 20 rivers, compiled 157 

from BedloadWeb (http://en.bedloadweb.com) (Recking, 2019) and 158 

https://doi.org/10.5281/zenodo.7641313 (Hosseiny et al., 2023). In addition to measured 159 

bedload sediment transport rate per unit width (qb; g/m/s), the data included river bed slope (S; 160 

m/m), river discharge (Q; m
3
/s), river width (w; m), and bed surface sediment sizes (D16, D50, 161 

D84, and D90, where Dx is the xth percentile of the bed surface grain size distribution in m). 162 

Summary statistics on the dataset are presented in Table 1. 163 

The datasets were split in two in a ratio of 70:30, with 633 datasets used for model development, 164 

calibration, and training (training data), and the remaining 293 datasets used for model validation 165 

and performance comparison (testing data). There is no consensus on how best to split data for 166 

http://en.bedloadweb.com/
https://doi.org/10.5281/zenodo.7641313
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training and testing, but a 70:30 split is the most widely used approach in spatial (e.g., Khosravi 167 

et al., 2018; Ngo et al., 2021) and time series (e.g., Kouadio et al., 2018; Samadianfard et al., 168 

2019) modeling by ML/DP.Although the training and testing datasets were selected randomly, a 169 

manual check was performed to ensure that they were separated correctly in terms of 170 

representing a range of qb values.  171 

Table 1. Summary statistics on the training/testing data  172 

Phase Variable/parameter
1
 Maximum Minimum Mean StD 

Training 

data 

w (m) 128.02 0.70 9.32 13.05 

S (m/m) 0.07 0.00 0.03 0.02 

Q (m
3
/s) 382.28 0.01 8.79 30.13 

D16 (m) 0.03 0.00 0.01 0.01 

D50 (m) 0.16 0.00 0.06 0.04 

D84 (m) 0.45 0.01 0.14 0.08 

D90 (m) 0.52 0.03 0.19 0.10 

qb (g/m/s) 50.00 0.11 6.77 10.08 

      

Testing 

data 

w (m) 128.02 0.70 8.93 11.72 

S (m/m) 0.07 0.00 0.03 0.02 

Q (m3/s) 419.09 0.01 8.14 28.48 

D16 (m) 0.03 0.00 0.01 0.01 

D50 (m) 0.16 0.00 0.06 0.04 

D84 (m) 0.45 0.01 0.14 0.08 

D90 (m) 0.52 0.03 0.19 0.10 

qb (g/m/s) 47.50 0.11 6.79 10.12 

1
River width (w), river bed slope (S), river discharge (Q), bed surface sediment sizes (D16, D50, D84, and 173 

D90), bedload sediment transport rate per unit width (qb). 174 

 175 

2.2. Input/output scenarios 176 

Three main approaches were used to construct different input data scenarios: a manual approach 177 

and two feature selection ML-based models, CfsSubsetEval (CSE) and Principal Component 178 

Analysis (PCA). These are the most common approaches among feature ranking methods, such 179 

as Fisher score, ReliefF, Wilcoxon rank, Gain ratio and Memetic feature (Vakharia et al. 2016).  180 
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2.2.1 Manual approach 181 

Eight different data input scenarios were constructed and explored to find the most effective 182 

input combination (Table 2). First, the parameter/variable with the highest correlation coefficient 183 

was selected as the first input scenario to explore whether the most correlated parameter/variable 184 

was efficient in predicting qb individually. Then other variables with the second, third, fourth, 185 

etc. highest correlation coefficient were added step-by-step to construct the eight different input 186 

combinations. 187 

2.2.2. CfsSubsetEval approach 188 

CfsSubsetEval is a correlation-based feature subset selection and multivariate filter evaluator 189 

approach that embraces the worth of a subset of attributes by considering the individual 190 

predictive ability of each feature and the degree of redundancy between features (Hall, 1999). 191 

Subsets of features that are highly correlated with the class, but have low intercorrelation, are 192 

preferred. CSE is calculated as (Qiao et al. 2022): 193 

1 2

1 2

...
max [ ]

2( ... ... 1)

k

i j k k

cf cf cf

sk

f f f f f f

r r r
CSE

k r r r

  


     
                                                                     (1) 194 

where Sk is feature subset S consisting of k features, rcfi is correlation between input features and 195 

the output target, and rfifj is intercorrelation between input features. This, along with the PCA 196 

approach,, was implemented in Waikato Environment for Knowledge Analysis (WEKA) 3.9 197 

software. The CSE approach produced input No. 3 in Table 2.  198 

2.2.3. Principal Component Analysis approach 199 

Principal Component Analysis is a popular linear feature extractor used for unsupervised feature 200 

selection based on eigenvector analysis to identify critical original features for principal 201 
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components. PCA is a statistical method applied to decrease the dimensionality of a dataset 202 

through linearly transforming the data into a new coordinate system where (most of) the 203 

variation in the data can be described with fewer dimensions than the initial data. The PCA 204 

approach produced input No. 5 in Table 2. 205 

All eight input combinations were implemented, and the resulting RMSE was calculated to assess 206 

the most efficient input combination  207 

Table 2.  Input combination scenarios 208 

 
Input

1
 combination scenario Output

2
 

1 S qb 

2 S, D84 qb 

3 S, D50 = CSE method qb 

4 S, D84, D50 qb 

5 S, D84, D50, Q = PCA method qb 

6 S, D84, D50, Q, D90 qb 

7 S, D84, D50, Q, D90, w qb 

8 S, D84, D50, Q, D90, w, D16 qb 

   
1
River bed slope (S), river width (w), river discharge (Q), bed surface sediment sizes (D16, D50, D84, D90).  209 

2
Bedload sediment transport rate per unit width (qb). 210 

 211 

 212 

2.3. Model hyperparameter tuning 213 

Metaheuristic algorithms were applied for determination of the most effective and optimum 214 

values of DL model hyperparameters, using MATLAB programming software. For tree-based 215 

models, which were implemented in WEKA software, trial and error approaches were utilized 216 

for tuning model hyperparameters. This approach involved calculating the RMSE for the default 217 

values, and then for higher and lower values, to identify the most effective values (see Table A 218 

and B in supplementary material.   219 

 AMT DPCT IAER-AMT IAER-DPCT LSTM-GWO RNN-GWO 

https://en.wikipedia.org/wiki/Coordinate_system
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Time (s) 1.01 0.22 0.62 0.32 180 175 

 220 

 221 

 AMT DPCT IAER-AMT IAER-DPCT LSTM-GWO RNN-GWO 

Bathsize 100 100 100 100 32 32 

NDP 2 2 2 2 -- -- 

NI 20 -- 20 2 -- -- 

Shrinkage 1 --- 1.5 -- -- -- 

Lambda --- 0.001  0.0001 -- -- 

Seed -- -- 1 1 -- -- 

Number of 

LSTM/RNN units 

-- -- -- -- 128 128 

Number of 

LSTM/RNN layers 

-- -- -- -- 5 4 

Learning rate -- -- -- -- 0.001 0.001 

Dropout rate -- -- -- -- 0.2 0.2 

Optimizer -- -- -- -- Adam Adam 

Sequential length -- -- -- -- 50 50 

Activation 

function 

-- -- -- -- Rectified 

Linear Unit 

for 

intermediate 

Rectified 

Linear Unit 

for hidden 

layers to 
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layers, and 

sigmoid for 

output layer 

introduce 

non-

linearity  

Gradient clipping 

threshold 

-- -- -- -- -- 5 

 222 

2.4. Model description 223 

2.4.1. Dual Perturb and Combine Tree (DPCT) 224 

A DPCT model is a regression and classification tree-based model. Perturb and combine 225 

algorithms (PC algorithms) are used to develop and construct different subset models from the 226 

training dataset. All predicted values are then combined to generate the final target value 227 

(Breiman, 1998). Geurts and Wehenkel (2005) showed that the PC model is reliable, and delivers 228 

high accuracy. The DPCT model is a more advanced kind of PC model that only generates one 229 

model for prediction through delays to the prediction stage for generation of multiple prediction. 230 

This delay is produced by perturbing the attribute vector corresponding to a test case.  2.4.2. 231 

Alternating Model Tree (AMT) 232 

Introduced by Frank et al. (2015), AMT is a type of regression tree-based model that uses 233 

forward additive regression (AR) and a cross-validation approach to build the tree model. . This 234 

type of ensemble model benefits from numerous advanced algorithms for development and 235 

growing. AMT models grow based on two nodes; splitter node (divides the quantitative attributes 236 

at the median value) and predictor node (forecasts the system’s response through linear 237 

regression) (Gao et al., 2019).   238 

 2.4.3. Iterative Absolute Error Regression (IAER) 239 

IAER iteratively fits a regression model by attempting to minimize absolute error, using a base 240 

learner that minimizes weighted squared error. Weights are bounded from below by 1.0 / 241 

Utils.SMALL. The algorithm re-samples data based on weights if the base learner is not a 242 

Weighted Instances Handler. More information can be found in Schlossmacher (1973).  243 
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2.4.4. Recurrent Neural Network (RNN) 244 

The RNN model is a popular and robust DL model for sequential data modeling and prediction, 245 

and is a form of advanced bi-directional ANN model (i.e., it feeds back the output from some 246 

nodes to affect subsequent input to the same nodes). This process has a significant impact on the 247 

learning ability of the model. In other words, for each new input, the output is identified and then 248 

fed back as the modified input to the modeling process. This operation is continued until a 249 

constant output has been attained. RNN uses the same weights for each element of the sequence, 250 

decreasing the number of parameters and allowing the model to generalize to sequences of 251 

varying lengths.  252 

2.4.5. Long Short-Term Memory (LSTM) 253 

LSTM is a type of RNN model which is capable of learning long-term dependencies, especially 254 

in time series problems or in processing sequential data (Hochreiter and Schmidhuber, 1997). 255 

LSTM is composed of memory blocks. These blocks are memory cells that are capable of storing 256 

or remembering sequential dataset/information through units called gates (Azzouni and Pujolle, 257 

2017). Input gates, forget gates, and output gates are the three main gates in the LSTM network, 258 

and they control the flow of incoming information, amount of information retained from the 259 

previous memory, and flow of outgoing information, respectively (Vu et al., 2021). When 260 

networks in a LSTM model forget a previous hidden state, they are capable of combining 261 

memory blocks to cause the networks to learn.  262 

2.4.6. Grey Wolf Optimizer (GWO)  263 

GWO is one of the most flexible, popular, strong, and efficient meteoritic algorithms that can be 264 

applied for ML model optimization, mimicking the leadership hierarchy and hunting mechanism 265 

of grey wolves in nature (Mirjalili et al., 2014). The model structure is similar to a pyramid with 266 

https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://www.sciencedirect.com/science/article/pii/S2214581822000039#bib9
https://www.sciencedirect.com/science/article/pii/S2214581822000039#bib9
https://www.sciencedirect.com/science/article/pii/S2214581822000039#bib83
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four levels, of alpha (α), beta (β), delta (δ), and omega (ω) wolves. Alpha wolves are located at 267 

the top of the pyramid and are the optimal and efficient solutions that wolf leaders make. Beta 268 

and delta wolves at the second and third level are responsible for sub-optimal decisions or are 269 

subservient wolves in decision-making (Li et al., 2020). Omega wolves at the bottom of the 270 

pyramid play the role of scapegoat. GWO achieves an efficient solution by updating the 271 

positions of other wolves according to the positions of α, β, and δ wolves.   272 

2.4.7. Einstein (1950) equation 273 

The Einstein (1950) equation considers bedload transport as a probabilistic phenomenon, relating 274 

the flow intensity to the bedload transport rate: 275 

2(0.413/ *) 2

(0.413/ *) 2

1 43.5 *
1

1 43.5 *

t

Bed

q
q e dt

q








 
  


                                                                               (2) 276 

where  ∗ is Shields stress,   is an integral parameter, and  ∗ is the Einstein bedload number. 277 

More information about the Einstein (1950) equation can be found in Hosseyni et al. (2022).  278 

2.4.8. Recking (2013) bedload equation  279 

Recking (2013) developed a bedload transport equation based on 6319 field observations and 280 

1317 flume measurements: 281 

2.5 * * 4

84 8414 * /[1 ( / ) ]Bed mq                                                                                                            (3) 282 

where *

m  is non-dimensional mobility Shields stress related to transition from partial to full 283 

mobility, and *

84  is non-dimensional Shields stress related to bed surface sediment size D84. 284 

 285 

2.5. Model evaluation 286 
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A number of quantitative and qualitative/visual approaches were used for model evaluation and 287 

comparison. The quantitative group included coefficient of determination (R
2
), RMSE, Nash-288 

Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of RMSE to standard deviation of 289 

measured data (RSR). These error metrics were calculated as follows: 290 

2 2 21

2 2

1 1

( )( )

( )            0 1              1

( ) ( )

M M P P

M M P P

n

Bed Bed Bed Bed

i

n n

Bed Bed Bed Bed

i i

q q q q

R R Optimum

q q q q



 

 

   

 



 

                        (4)
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2

1

1
( )                                   0      0

P M

n

Bed Bed

i

RMSE q q RMSE Optimum
n 

                             (5) 292 

2

1

2

1

( )

1                                       1          1

( )

P M

P P

n

Bed Bed

i

n

Bed Bed

i

q q

NSE NSE Optimum

q q







     






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1

1

( )

( )*100                                0
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n
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i

n
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i
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q




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295 

where 
MBedq and 

PBedq  is measured and predicted bedload transport rate, respectively, 
MBedq  and 296 

MBedq is mean measured and predicted qb value, respectively, and n is number of data points.  297 

The qualitative/visual approaches used in the comparison of model performance were scatter 298 

plots, line-variation graphs, Taylor diagrams, and violin plots, allowing the model fit to be seen 299 

across the full range of bedload transport values, particularly at the extreme end of the range. 300 



16 
 

One distinct advantage of the Taylor diagram is that it benefits from the use of two common 301 

correlation statistics: correlation and standard deviation (SD) (Taylor, 2001).. The measured data 302 

point in the Taylor diagram is considered the reference point. The closer the predicted value to 303 

this reference value in terms of R
2
 and SD, the higher the prediction capability.  304 

The Freidman test was applied for  the different model outputs. If the test was significant, then 305 

an additional Wilcoxon signed ranked test was carried out to check for statistically significant 306 

differences between the models. The null hypothesis was that there was a statistically significant 307 

difference between the models at α = 0.05. At p<0.05 and a Z-statistic value exceeding the range 308 

−1.96 to +1.96, the null hypothesis was rejected.  309 

3. Results 310 

3.1. Variable importance 311 

The effectiveness and importance of each potential input variable in qb prediction was explored 312 

through a correlation coefficient and relief attribute evaluator (RAE) approach (Figure 1). RAE 313 

evaluates the worth of an attribute by repeatedly sampling an instance and considering the value 314 

of the given attribute for the nearest instance of the same and different class.  315 

According to the correlation coefficient,  presented in terms of a radar-chart (Figure 1a), river 316 

bed slope (S) had the largest impact on qb prediction, followed by D84, D50, D90, D16, w, and Q. 317 

The results from the RAE approach broadly agreed, with D90 shown as the most effective 318 

variable, followed by D84, D50, Q, D16, S, and w (Figure 1b). 319 

 320 

https://www.sciencedirect.com/science/article/pii/S0029801821010908?via%3Dihub#bib75
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 321 

Figure 1. Radar-chart of variable importance, determined by (a) correlation coefficient and (b) relief 322 
attribute evaluator (RAE). Variables: River bed slope (S), river width (w), river discharge (Q), bed surface 323 
sediment size (D16, D50, D84, D90).  324 
 325 

3.2. Best input combination 326 

On adding more input variables to the input combination, the prediction accuracy of the different 327 

models increased (Figure 2). According to IAER-AMT (the most reliable model), the best input 328 

combination gave 32.9% and 39.3% higher performance (lower RMSE) during the training and 329 

testing phase, respectively, than the worst performing model. The best input scenario (generated 330 

manually) had around 28% and 29% higher predictive power than the scenarios proposed by 331 

CSE and PCA ML-based methods, respectively, in terms of RMSE during the training phase. In 332 

the testing this phase, this equated to 30% and 4% higher predictive power, respectively. These 333 

RMSE values were only used to explore the best input combination, and model hyperparameter 334 

tuning for tree-based models was not implemented in this step; tuning should only occur once the 335 

most efficient input scenario has been determined. 336 
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 337 

Figure 2. Change in model performance with input combination scenarios for (a) training data and (b) 338 
testing data (dashed red boxes show the best input scenario). 339 

 340 

3.3. Model performance evaluation 341 

The scatter plots and R
2 

values showed that the new ensemble tree-based algorithm IAER-AMT 342 

had the highest prediction capability (R
2 

= 0.80), with the data points being more closely 343 

distributed around the line of equality across a fuller range of qb values (Figure 3). The second 344 

best performer was also a new ensemble tree-based model, IAER-DPCT (R
2 

= 0.76), followed by 345 

AMT (R
2 

= 0.73), DPCT (R
2 

= 0.72), LSTM-GWO (R
2 

= 0.69), and RNN-GWO (R
2 

= 0.67). The 346 

two lowest performing models by some margin were the empirical equations, Einstein (1950) (R
2 347 

= 0.09) and Recking (2013) (R
2 

= 0.08). According to the R
2
 values, IAER-AMT, IAER-DPCT, 348 

LSTM-GWO, RNN-GWO, AMT, and DPCT all achieved ‘very good’ performance  349 

( 20.7 1R  ), LSTM and RNN ‘good’ performance ( 20.6 0.7R  ), and Einstein (1950) and 350 

Recking (2013) ‘unsatisfactory’ performance ( 2 0.5R  ).  351 
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 356 

Figure 3. Scatter plot of measured and predicted qb within the testing phase for different modeling 357 
approaches tested. 358 

 359 

According to the line-variation graphs (Figure 4), all tree-based models were able to predict qb 360 

values well. In particular, the ensemble tree-based models predicted extreme values more 361 

accurately than the other models, while the empirical models overestimated the higher range of 362 

qb values (Figure 4).  363 
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 372 

Figure 4. Line variation graph of measured and predicted bedload sediment transport rate per unit width 373 
(qb) within the testing phase for different modeling approaches tested. 374 

 375 

The Taylor diagram (Figure 5) revealed that the IAER-AMT model had the highest correlation, 376 

0.90 , with the predicted standard deviation in qb being closest to the standard deviation of the 377 

observed data, followed by IAER-DPCT. The empirical equations had the lowest performance 378 

and higher standard deviation than the measured data. Although IAER-DPCT showed lower 379 

performance than IAER-AMT, the model produced a standard deviation closer to the measured 380 

value. 381 
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384 

 385 

Figure 5. Taylor diagram displaying statistical comparison with observations of 10 model estimates of 386 
bedload sediment transport rate per unit width. 387 

 388 

An examination of summary statistics of predicted qb revealed that IAER-DPCT predicted the 389 

minimum, first quartile, and median qb most accurately (Table 3). The LSTM-GWO model 390 

performed most strongly in predicting the third quartile and the DPCT model in predicting the 391 

maximum value.  392 
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 393 

Table 3. Summary statistics on predicted bedload sediment transport rate per unit width (qb) 394 

Statistic 
AMT DPCT 

IAER-

AMT 

IAER-

DPCT 

LSTM-

GWO 

RNN-

GWO 

Einstein 

(1950) 

Recking 

(2013) 
Measured 

Minimum -3.58 0.20 -2.08 0.15 -3.53 -4.03 0.00 0.00 0.11 

Q1 1.51 0.94 1.23 0.90 1.87 2.50 0.00 1.20 0.82 

median 3.29 2.33 2.66 2.06 3.93 4.93 0.00 4.89 2.19 

Q3 8.07 9.22 8.11 8.17 6.13 7.13 0.10 26.05 7.37 

maximum 40.28 42.47 39.95 41.40 40.19 37.47 974.73 456.08 47.50 

 395 

All quantitative error metrics showed that the IAER-AMT model had the highest predictive 396 

power (Table 4), followed by IAER-DPCT, LSTM-X, RNN-X, AMT, DPCT, LSTM, RNN, 397 

Einstein (1957), and Recking (2013). According to the NSE values, the IAER-AMT and IAER-398 

DPCT models had ‘very good performance’ ( 0.75 1NSE  ), LSTM-GWO, RNN-GWO, AMT, 399 

and DPCT had ‘good’ performance ( 0.65 0.75NSE  ), and the empirical equations had 400 

‘unsatisfactory’ performance ( 0.5NSE  ). These differences in performance were statistically 401 

significant in most comparisons under the Freidman and Wilcoxon tests (Table 4 and 5). 402 

Table 4. Comparison of performance of the different models, based on root mean square error (RMSE), 403 
Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of RMSE to standard deviation of 404 

measured data (RSR) 405 

Model RMSE NSE PBIAS RSR 

IAER-AMT 4.48 0.80 -0.39 0.44 

IAER-DPCT 4.93 0.76 1.08 0.49 

AMT 5.23 0.73 -2.20 0.51 

DPCT 5.30 0.72 -0.84 0.52 

LSTM-GWO 5.58 0.69 3.51 0.55 

RNN-GWO 5.78 0.67 -6.66 0.57 

LSTM 7.67 0.42 0.14 0.76 

RNN 7.61 0.43 1.54 0.75 

Einstein (1957) 81.37 -63.87 -173.80 8.05 

Recking (2013) 83.30 -67.00 -454.00 8.24 

 406 

Table 5. Results of Friedman test 407 

 N Chi-Square p-value 
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Friedman test 293 453 0.00 

 408 
 409 

Table 6. Results of Wilcoxon signed ranked tests 410 

No. Pairwise comparison Z-value p-value Significance 

1 DPCT and AMT -2.82 0.005 YES 

2 IAER-AMT and AMT -2.43 0.015 YES 

3 IAER-DPCT and AMT -3.30 0.001 YES 

4 LSTM-GWO and AMT -2.61 0.009 YES 

5 RNN-GWO and AMT -4.87 0.00 YES 

6 AMT and Einstein -7.21 0.00 YES 

7 AMT and Recking -6.44 0.00 YES 

8 AMT and Measured -2.93 0.003 YES 

9 IAER-AMT and DPCT -0.91 0.362 NO 

10 IAER-DPCT and DPCT -0.11 0.912  NO 

11 LSTM-GWO and DPCT -1.51 0.130 NO 

12 RNN-GWO and DPCT -4.45 0.00 YES 

13 Einstein and DPCT -7.73 0.00 YES 

14 Recking and DPCT -7.33 0.00 YES 

15 IAER-DPCT and IAER-AMT -1.60 0.10 NO 

16 LSTM-GWO and IAER-AMT -0.24 0.80 NO 

17 RNN-GWO and IAER-AMT -4.73 0.00 YES 

18 Einstein and IAER-AMT -7.69 0.00 YES 

19 Recking and IAER-AMT -7.09 0.00 YES 

20 LSTM-GWO and IAER-DPCT -2.09 0.036 YES 

21 RNN-GWO and IAER-DPCT -4.51 0.00 YES 

22 Einstein and IAER-DPCT -7.81 0.00 YES 

23 Recking and IAER-DPCT -7.46 0.00 YES 

24 RNN-GWO and LSTM-GWO -11.65 0.00 YES 

25 Einstein and LSTM-GWO -7.00 0.00 YES 

26 Recking and LSTM-GWO -7.10 0.00 YES 

27 Einstein and RNN-GWO -7.51 0.00 YES 

28 Recking and RNN-GWO -5.47 0.00 YES 

29 Recking and Einstein -9.55 0.00 YES 

 411 

 412 

4. Discussion 413 

4.1 Comparison of prediction performance achieved by empirical equations, tree-based models, 414 

and optimized deep learning algorithms 415 

A large dataset of bedload transport measurements collected from various field-based studies 416 

was used to investigate model efficiency. The empirical equations performed poorly, particularly 417 

for higher rates of bedload transport in which accurate prediction is most required for 418 
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understanding morphological change and forecasting erosion hazards (Li et al., 2021; Feeney et 419 

al., 2022). This result indicates that these equations should be used with due caution when 420 

applied outside the conditions for which they were developed. The high degree of uncertainty 421 

associated with empirical equations when applied to field-based studies is because most have 422 

been developed based on flume experiments involving simplified flow and bed conditions, such 423 

as steady and uniform flow (Mao, 2012), equilibrium sediment transport conditions (Wainwright 424 

et al., 2015), and non water-water gravel beds (Cooper and Tait, 2009). Problems then arise in 425 

trying to scale flow and sediment properties correctly, and the magnitude of transport that can be 426 

reproduced is limited (Kleinhans et al., 2014). Therefore producing an estimate of bedload 427 

transport rate for a field setting that is within the same order of magnitude as a measured value is 428 

often considered ‘reasonable’ prediction for an empirical equation, and no single empirical 429 

formula can be applied to all datasets (Gomez and Church, 1989). This flaw is because most 430 

empirical equations are linear and unable to capture non-linearity in input and output data. 431 

In contrast, all tree-based models and optimized DL algorithms tested displayed ‘very good’ or 432 

‘good’ performance. Among the standalone models, the tree-based models outperformed the 433 

optimized DL models for a number of reasons: (1) tree-based models have higher accuracy on 434 

tabular data (Schwartz-Ziv and Armon, 2022), because they require less tuning and processing 435 

effort; (2) DL models are biased to overly smooth solutions (Grinsztajn et al., 2022) and fit low-436 

frequency functions (Rahaman et al., 2019), and thus they struggle to fit irregular target 437 

functions, such as those within the bedload datasets, compared with tree-based models; (3) tree-438 

based models can handle data that are not normally distributed and therefore do not require 439 

scaling or normalization; and (4) tree-based models require little data preparation. The best 440 

performing standalone tree-based model was AMT, because the algorithm uses step-wise 441 
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forward cumulative regression (statistical boosting version) and cross-validation techniques to 442 

reduce square error and limit tree development (Moayedi et al., 2020). 443 

In all cases, the ensemble algorithms outperformed their standalone counterpart. This 444 

enhancement of performance occurred because hybridization produces a coupled model with 445 

higher flexibility that is better trained and has a non-linear structure (De’ath and Fabricius, 446 

2000). High flexibility and non-linear structure are particularly important in the prediction of 447 

bedload transport rate because of the non-linearity between variables, the low correlation 448 

between individual variables and bedload transport rate, and the general complexity of bedload 449 

transport. 450 

4.2. Effect of input variables on model prediction performance 451 

The combination of input variables used in the models had a strong effect on predictive power, 452 

confirming that determination of the optimum combination of input variables is one of the most 453 

significant steps in producing accurate ML and DL models. Manual development of input 454 

variable combinations led to a more efficient and practical input scenario than the use of 455 

intelligent approaches (CSE and PCA). This advantage largely stemmed from being able to test 456 

the efficiency of numerous input combinations and the impact of adding each parameter on 457 

model performance. Thus, through this manual approach it was possible to determine the most 458 

sensitive hyperparameters and understand the hyperparameter reaction and trend of a model. 459 

When using this approach, inclusion of all input variables resulted in the highest performance. 460 

The intelligent approaches proposed an input scenario based only on the parameters that were 461 

most highly correlated with qb (S, D50, D84, and Q), while ignoring parameters with a low degree 462 

of correlation (D16, D90, and w). As a result, the intelligence approaches produced models with a 463 

RMSE value in the testing phase that was 30% (CSE) and 4% (PCA) higher than the optimal 464 

https://www.sciencedirect.com/science/article/pii/S0029801821010908?via%3Dihub#bib83
https://www.sciencedirect.com/science/article/pii/S0029801821010908?via%3Dihub#bib83
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input combination identified in the manual approach. This aspect further highlights the complex, 465 

non-linear nature of the interaction of bedload transport with flow mechanics and channel 466 

conditions, and the requirement for multiple input parameters to represent this interaction, even 467 

when some might have a low degree of correlation. 468 

 469 

4.3 Applying ensemble tree-based models to predict bedload transport rate in rivers 470 

Overall, the results showed that ensemble tree-based models have great potential to produce 471 

robust predictions of bedload transport in coarse-grained rivers. Unlike empirical equations, 472 

these models performed well over a range of flow and channel conditions, while also remaining 473 

simple, and easy and inexpensive to build and run, unlike theoretical and numerical models. 474 

Although other parameters, such as Shields stress and turbulent kinetic energy, have a significant 475 

impact on bedload transport rates, the aim was to find a model that could produce high-accuracy 476 

estimates of bedload transport based on a few readily available and measurable river properties, 477 

such as channel size (width and slope), flow discharge, and sediment size. Given that inclusion 478 

of all input variables produced the highest performance, addition of more variables can be 479 

expected to further improve performance. However, while a model with a high degree of 480 

complexity might be able to capture more of the variation in the data (reduce the training error), 481 

it will be more difficult to train and more prone to overfitting (model fitting to the noise in the 482 

data rather than the underlying pattern). Overfitting can be a significant issue for bedload 483 

prediction because measured data are noisy due to the stochastic behavior of bedload 484 

entrainment and transport, the difficulty in obtaining representative samples, and the highly non-485 

linear relationship of bedload with river properties. Thus, a higher-complexity model could 486 

perform poorly when applied to new and unseen data, causing loss of model generalization. With 487 
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these considerations in mind and noting the very good performance of the ensemble tree-based 488 

models using readily available parameters, the models developed in this study appear to strike 489 

the correct balance between model complexity, generalization, and performance. 490 

The major disadvantages of the types of model developed here are two-fold. First, like all 491 

statistical methods, they only relate directly to the rivers considered, and their application to 492 

other rivers may prove inappropriate. The input parameter range will also likely be wider than 493 

the range examined in this paper, despite using datasets composed from a large variety of 494 

sources. Thus future studies should develop and apply ensemble tree-based model to rivers with 495 

differing flow and channel conditions, to test their wider applicability. Second, due to their 496 

‘black-box’ structure, these models provide poor explanatory power, and are thus unable to 497 

improve understanding of the physical processes that determine bedload entrainment and 498 

transport. 499 

This study has shown that incorporating just seven controlling parameters (channel slope, 500 

channel width, flow discharge, and four key bed surface grain size percentiles) can produce very 501 

good predictions of bedload transport rate. Future studies should examine the potential of other 502 

tree-based models, such as Random Forest and M5 model tree, as well as models that combine 503 

ML methods with the seasonal adjustment method (Li and Yang, 2022). Where data are 504 

available, future studies should assess how other factors affect the performance of these models, 505 

such as grain-size sorting (e.g., Recking et al., 2023) and grain shelter-exposure (armor ratio 506 

Dx/D50; Fu et al., 2023), whilst trying to not make the developed model overly complex, and 507 

continuing to use readily available and easily measured data. Such an approach would help 508 

determine the most influential parameters in bedload transport and why they vary between rivers 509 

with differing flow and channel properties. 510 
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 511 

 512 

5. Conclusions 513 

The morphodynamics of coarse-grained rivers depend predominantly on bedload transport rate. 514 

Due to the non-linear interactions between channel and flow mechanics, tree-based models and 515 

optimized deep learning algorithms have great potential to produce accurate predictions of flow 516 

velocity. Using 926 datasets from 20 rivers, this study explored this potential by examining the 517 

predictive power of (1) standalone tree-based models (alternating model tree (AMT) and Dual 518 

Perturb and Combine Tree (DPCT)); (2) ensemble tree-based models (Iterative Absolute Error 519 

Regression (IAET) ensembled with AMT and DPCT (IAER-AMT and IAER-DPCT); and (3) 520 

optimized deep learning models (Long Short-Term Memory (LSTM) and Recurrent Neural 521 

Network (RNN), ensembled with Grey Wolf Optimizer (LSTM-GWO and RNN-GWO). Their 522 

performance was benchmarked against two commonly used empirical equations. The main 523 

findings were as follows: 524 

1) Sensitivity analysis identified D90 as the most effective variable in bedload transport 525 

prediction, followed by D84, D50, Q, D16, S, and w.  526 

2) All algorithms tested performed best when all input parameters were used in building the 527 

model. Variables with low correlation coefficient with bedload transport rate enhanced 528 

the predictive power. Thus a range of different input variable combinations must be 529 

considered in the optimization of tree-based and optimized deep learning models. 530 

3) Assessment of model performance showed that all tree-based models and optimized deep 531 

learning algorithms displayed ‘very good’ or ‘good’ performance and outperformed 532 
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empirical equations, which had ‘unsatisfactory’ performance. The tree-based algorithms 533 

were more efficient and reliable than the deep learning models. 534 

4) In all cases, ensemble algorithms outperformed their standalone counterpart, with the 535 

ensemble tree-based model IAER-AMT being the best performing model overall. 536 

Together, these findings reveal that ensemble tree-based models have great potential for 537 

predicting bedload transport rates based on a few readily available and easily measured flow and 538 

channel variables. These algorithms could play a particularly important role in predicting 539 

morphological change and assessing erosion hazards in coarse-grained rivers where an 540 

understanding of the physical processes may be lacking. Thus, investigating the potential of 541 

other tree-based models across a wide range of different flow and channel conditions can be an 542 

important future research direction for river scientists. In addition, the results obtained in the 543 

present study indicate that tree-based models can be a promising tool for decision makers and 544 

beneficial for stakeholders that manage the impacts of river erosion. 545 
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