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Abstract 

Background Enhancing Local Control (LC) of brain metastases is pivotal for improving overall survival, which makes 
the prediction of local treatment failure a crucial aspect of treatment planning. Understanding the factors that influ-
ence LC of brain metastases is imperative for optimizing treatment strategies and subsequently extending overall 
survival. Machine learning algorithms may help to identify factors that predict outcomes.

Methods This paper systematically reviews these factors associated with LC to select candidate predictor fea-
tures for a practical application of predictive modeling. A systematic literature search was conducted to identify 
studies in which the LC of brain metastases is assessed for adult patients. EMBASE, PubMed, Web-of-Science, 
and the Cochrane Database were searched up to December 24, 2020. All studies investigating the LC of brain metas-
tases as one of the endpoints were included, regardless of primary tumor type or treatment type. We first grouped 
studies based on primary tumor types resulting in lung, breast, and melanoma groups. Studies that did not focus 
on a specific primary cancer type were grouped based on treatment types resulting in surgery, SRT, and whole-brain 
radiotherapy groups. For each group, significant factors associated with LC were identified and discussed. As a second 
project, we assessed the practical importance of selected features in predicting LC after Stereotactic Radiotherapy 
(SRT) with a Random Forest machine learning model. Accuracy and Area Under the Curve (AUC) of the Random For-
est model, trained with the list of factors that were found to be associated with LC for the SRT treatment group, were 
reported.

Results The systematic literature search identified 6270 unique records. After screening titles and abstracts, 410 full 
texts were considered, and ultimately 159 studies were included for review. Most of the studies focused on the LC 
of the brain metastases for a specific primary tumor type or after a specific treatment type. Higher SRT radiation dose 
was found to be associated with better LC in lung cancer, breast cancer, and melanoma groups. Also, a higher dose 
was associated with better LC in the SRT group, while higher tumor volume was associated with worse LC in this 
group. The Random Forest model predicted the LC of brain metastases with an accuracy of 80% and an AUC of 0.84.

Conclusion This paper thoroughly examines factors associated with LC in brain metastases and highlights the trans-
lational value of our findings for selecting variables to predict LC in a sample of patients who underwent SRT. The 
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prediction model holds great promise for clinicians, offering a valuable tool to predict personalized treatment out-
comes and foresee the impact of changes in treatment characteristics such as radiation dose.

Keywords Local control, Brain metastases, SRT dose, Tumor volume, Local control factors

Introduction
Brain metastases represent the most common intracra-
nial tumor in adults [1]. An estimated 20% of all patients 
with cancer will develop brain metastases [2]. Although 
brain metastases can occur from any cancer, the three 
most common primary tumors associated with brain 
metastases are lung (20–56% of patients), breast (5–20%) 
and melanoma (7–16%) [3]. Advances in the treatment 
of primary tumors have led to prolonged life expec-
tancy and therefore increased the probability of devel-
oping brain metastases [1]. Although some patients who 
develop brain metastases remain asymptomatic, many 
patients show neurological symptoms including head-
aches, nausea, vomiting, dizziness, focal neurological 
deficits, epileptic seizures, behavioral changes, and cogni-
tive impairment [3, 4]. The overall prognosis for patients 
with brain metastases remains poor [5]. Brain metasta-
ses account for a disproportionately high percentage of 
morbidity and mortality among patients with cancer [6], 
with dismal 2- and 5-year survival rates of 8.1% and 2.4% 
respectively after diagnosis [3].

Conventional local treatment options for brain metas-
tases include surgical resection, Whole Brain Radio-
therapy (WBRT), Stereotactic Radiotherapy (SRT), or a 
combination of these. Surgery is a treatment option for 
large metastatic brain lesions [7]. With WBRT, the entire 
brain, including healthy brain tissue, is irradiated with a 
fractionated treatment regimen. WBRT used to be the 
standard of care for multiple brain metastases. Since 
long-term adverse cognitive decline is a common neu-
rotoxic effect in patients who have undergone WBRT, 
and SRT has become increasingly available, SRT is cur-
rently generally performed to avoid these cognitive side 
effects of WBRT [8, 9]. Some studies found SRT to be 
an effective treatment option for patients with multiple 
brain metastases [10–14]. As per the joint practice guide-
lines from the European Association of Neuro-Oncology 
(EANO) and the European Society for Medical Oncol-
ogy (ESMO), SRT is recommended for patients with a 
limited number (1–4) of brain metastases and SRT may 
be considered for patients with a higher number of brain 
metastases (5–10) with a cumulative tumor volume < 15 
ml [191]. SRT to the surgical cavity is a reasonable option 
for patients with one to two resected brain metastases 
[15]. The clinical trial of Brown et al. [192] showed that 
postoperative SRT is a superior alternative to WBRT for 
patients with a single brain metastasis.

Irrespective of the treatment type, LC of brain metas-
tases remains an important clinical endpoint [16]. LC 
is defined as the freedom from the development of new 
lesions within the field treated with SRT or the absence 
of progression in preexisting metastases [17, 18]. The 
prediction of the LC of brain metastases after treatment 
has important practical implications for patients and cli-
nicians. A predictive capability of the treatment outcome 
of brain metastases may provide a decision tool to clini-
cians for the effective management of patient care with 
the most desirable treatment outcome. If LC can be pre-
dicted, the treatment plan can be modified to improve LC 
by, for example, increasing the dose [19]. The complexity 
of predicting LC post-treatment remains, however, a crit-
ical challenge.

Machine learning, which entails a set of tools and 
structures to acquire information from data [20], has 
emerged as a promising avenue for predicting treatment 
outcomes [21, 22]. Machine learning presents important 
advantages in predictive performance and in the ability 
to account for complex interactions among inputs while 
scaling to data sets of very large sizes [23]. These mod-
els have shown great success in disease risk predictions 
based on historical clinical data. Recently, several stud-
ies relied on machine learning techniques to predict the 
response of brain metastases to SRT with high accuracy. 
Kawahara et al. [19], for instance, proposed a neural net-
work model for predicting the local response of meta-
static brain tumors to SRT. The study of Jaberipour et al. 
[24] investigated the effectiveness of pre-treatment quan-
titative Magnetic Resonance Imaging (MRI) and clini-
cal features with machine learning techniques to predict 
local control in patients with brain metastasis treated 
with SRT. Jalalifar et  al. [187] introduced a novel deep 
learning architecture to predict the LC in brain metasta-
sis treated with SRT using pre-treatment MRI and stand-
ard clinical attributes.

However, the complexity of machine learning models 
and their limited interpretability pose challenges, par-
ticularly in biomedical and clinical areas where interpret-
ability is crucial [27]. The inclusion of redundant features 
for training a machine learning model for the prediction 
of the local control of brain metastases will also degrade 
the performance of the model and increase the compu-
tation time. Additionally, the inclusion of redundant and 
irrelevant features reduces the model’s ability to general-
ize to unseen datasets. Feature selection is a crucial step 
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in minimizing the problem of excessive and irrelevant 
features and enhancing model interpretability [28]. How-
ever, currently, there is lack of insight into the factors 
influencing local control of brain metastases irrespective 
of primary tumor types and treatment types. A system-
atic review of the factors influencing local control may 
provide the clinical insights needed to select the relevant 
factors.

Recognizing the importance of understanding the pre-
dictors of LC, our paper systematically reviews factors 
associated with LC of brain metastases. Unlike previ-
ous reviews confined to specific primary tumor types 
or treatment modalities [25, 26], our approach aims to 
provide a holistic overview of factors associated with 
LC, encompassing all treatment types, all primary tumor 
types and all characteristics associated with LC. The 
comprehensive nature of this review provides the foun-
dation for machine learning model development.

Our study leverages the findings from our comprehen-
sive review to perform feature selection for a Random 
Forest machine learning algorithm to predict LC spe-
cifically for the brain metastases patients treated with 
SRT group. Experimental results comparing different 
approaches showed that the Random Forest machine 
learning algorithm has better prediction performance 
than logistic regression in approximately 69% of the 243 
real datasets [29], including 77 biological datasets, and 
the experiment compared the prediction performance of 
the Random Forest algorithm with that of logistic regres-
sion for a wide range of prediction outcomes. Also, the 
Random Forest algorithm performed better than other 
classification algorithms like support vector machines, 
K-nearest neighbors, and linear discriminant analysis 
[30]. Hence, we chose the Random Forest machine learn-
ing algorithm to find the importance of the factors and to 
predict LC for the SRT treatment group.

Our paper strives to bridge the gap between clinical 
insights and machine learning applications by providing 
a comprehensive overview of candidate predictors for LC 
of brain metastases. We use the Random Forest model as 
an illustrative example, highlighting the potential integra-
tion of machine learning in understanding and predict-
ing treatment outcomes. This approach underscores the 
importance of unraveling predictors to pave the way for 
future advancements in personalized and effective cancer 
care.

Methods
Literature search
We conducted this systematic literature review according 
to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA) guidelines [190]. A system-
atic literature search was conducted to identify studies in 

which the LC of brain metastases was assessed for adult 
patients. EMBASE, PubMed, Web-of-Science, and the 
Cochrane Database were searched up to December 24, 
2020. Inclusion criteria were studies investigating fac-
tors associated with LC of brain metastases. All studies 
investigating the LC of brain metastases were included 
irrespective of the primary tumor type. Also, there were 
no limitations based on the types of treatment.

Eligible studies were research papers, clinical studies, 
clinical trials, controlled trials, comparative studies, eval-
uation studies, journal articles, meta-analyses, and case 
series published since 2010, written in English. System-
atic reviews and narrative reviews were also included in 
the search criteria.

Broad search terms were used to ensure that all stud-
ies investigating LC would be covered in the search. The 
studies were screened to select all those that included LC 
of brain metastases as an endpoint. Studies that did not 
have LC as an endpoint were excluded.

The inclusion and exclusion criteria in terms of PICOs 
(population, intervention, comparison, outcome) are pre-
sented in Supplementary Table  1 The search terms are 
presented in Supplementary Table 2 The inclusion, exclu-
sion, and search terms were built by the first and second 
authors and reviewed by the other authors.

Study selection
All studies were screened by the first (HK) and second 
author (WDB) based on title and abstract. The full text 
was screened if it was unclear from the abstract whether 
the study met the inclusion criteria. Screening results 
from both authors were compared and cases of doubt 
were discussed. Consensus was reached in all cases.

Assessment of included studies
The important factors that were critically reviewed were 
the aim of the study, primary tumor type, primary and 
secondary endpoints, treatment type, and the factors 
associated with the LC of brain metastasis. From the 
papers that met the inclusion criteria, the significant fac-
tors associated with LC were noted. If both univariate 
and multivariate results were reported, all factors reach-
ing significance in at least one of the two analyses were 
recorded. We also looked at non-significant univari-
ate factors (neither significant in the univariate analysis 
nor the multivariate analysis) to report on contradictory 
findings about the association of a factor across differ-
ent studies, as some significant factors in some studies 
might not be significant in others. If the outcome of the 
analysis was not clear (e.g., direction of the effect was not 
reported), the corresponding study was excluded.
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Presentation of results
We first grouped studies based on primary tumor types. 
The three groups we created based on the primary tumor 
types were lung, breast, and melanoma. Studies that did 
not focus on a specific primary tumor type but included 
heterogeneous groups of patients with diverse primary 
cancer types were grouped based on treatment type. The 
groups we created based on the brain metastases treat-
ment type were a surgery, an SRT, and a WBRT group. 
The results section visually depicts the significant factors 
associated with better and worse LC in each group. The 
factors not associated with LC and the factors for which 
there are mixed findings are not included in these figures 
but are added as text in the results section.

In the results section, we combined all results in the 
same direction for continuous variables like radiation 
dose, tumor volume, tumor size, and age. For example, 
some papers mention that a higher dose is associated 
with better LC whereas others mention that a lower dose 
is associated with worse LC. In the visual depictions, we 
have included higher dose under the list of factors associ-
ated with better LC and added the reference of all these 
papers.

Machine learning use case
We retrospectively collected the clinical data from 200 
brain metastases patients from the Gamma Knife Center 
of the Elisabeth-TweeSteden Hospital (ETZ) at Tilburg, 
The Netherlands. The patients underwent Gamma Knife 
Radiosurgery (GKRS) at the Gamma Knife Center. This 
study was approved by the ETZ science office and by the 
Ethics Review Board at Tilburg University. We aimed to 
look for data on all the factors identified from the litera-
ture for the SRT group. Out of these factors, we collected 
the data for the variables for which data was available for 
analysis at ETZ. The patients for whom there was incom-
plete data for this subset of variables were excluded from 
the data set. The data were randomly split into training 
and testing data sets. For the treatment dose, we took the 
average value from the dose range. Similarly, we took the 
mean tumor volume across the metastases for patients 
with more than one brain metastasis. The data was nor-
malized and supplied to the Random Forest classifier. The 
model was trained with the training data set and then 
tested with the test data set.

The performance of the model was evaluated by meas-
uring the following metrics: classification accuracy, 
precision, recall, and Area Under the Receiver Oper-
ating Characteristic (ROC) Curve (AUC). The ratio of 
the number of correct predictions to the total number 
of input samples determines the accuracy of a machine 
learning algorithm. The precision is the ratio of true 
positive predictions to the total number of positive 

predictions made by the model, while recall is the ratio 
of true positive predictions to the total number of actual 
positives in the dataset. ROC is a graphical plot created 
by plotting the true positive rate vs. the false positive 
rate at various threshold settings. AUC refers to the area 
under the ROC curve.

K-fold cross validation was applied to the model. It pro-
vides a robust estimate of a model’s performance by par-
titioning the dataset into k subsets (folds) and iteratively 
training and evaluating the model on different combi-
nations of training and validation sets. Cross-validation 
helps in obtaining a more reliable performance metric 
than a single train-test split. The different values used 
for K were 3, 5, and 10. The average accuracy, precision, 
recall and AUC across the different folds was calculated. 
We also extracted the importance of the various factors 
for predicting the LC from the trained model.

Results
Selected studies
The systematic literature search identified 6270 unique 
records (Fig.  1). After screening the  title and abstract, 
410 full texts were considered, and ultimately 159 studies 
were included in the review (Fig. 1).

Study characteristics
The included 159 studies were heterogeneous, covering 
a wide range of primary cancer types and were distrib-
uted across the different treatment types available for 
brain metastases. The three groups that we created based 
on the primary tumor types were melanoma, breast can-
cer, and lung cancer. The significant factors associated 
with LC in these groups are presented as flowcharts in 
Figs.  2,  3, and 4. The different groups that we created 
based on the treatment types were a surgery, an SRT, 
and a WBRT group. The significant factors associated 
with LC in these groups are visually depicted in Figs. 5, 
6, and 7. Within these figures, the factors are aggregated 
based on their characteristic type. The findings per group 
are discussed below. The studies which did not find any 
significant factors [31–43] were not included in these 
groups. Also, comparative studies that did not find any 
significant factors other than the treatment type [44–54] 
were not included in these groups and are not further 
discussed.

Primary tumor histology
Lung cancer brain metastases
Lung cancer is the leading cause of cancer-related death 
[16]. In addition, lung cancer is the most common 
malignancy giving rise to brain metastases, accounting 
for 40 to 60% of all cases of brain metastases [55]. Fig. 2 
summarizes the factors associated with the LC of brain 
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metastases from lung cancer. We distinguished the fac-
tors for Non-Small Cell Lung Cancer (NSCLC) from 
those for Small Cell Lung Cancer (SCLC).

NSCLC The factors associated with LC for brain metas-
tases from NSCLC after treatment with SRT are included 
in Fig. 2. There are no papers that discuss the LC factors 
after treatment with WBRT. The factors that were not 
associated with LC for NSCLC brain metastases after 
SRT are gender [16, 18, 57, 59, 60], chemotherapy [57, 
60], Graded Prognostic Assessment (GPA) score [16, 18], 
and Recursive Partitioning Analysis (RPA) class [16, 18].

There are also factors for which there are contrasting 
findings: some studies found them to be associated with 
LC, whereas others showed that they are not associated 
with LC. In contrast with the studies reported in Fig. 2, 
other studies did not find an association with LC for loca-
tion [16, 18, 60, 83], extracranial metastases [18], Karnof-
sky Performance Scale (KPS) score [18, 60], prior WBRT 
[57, 59], tumor volume [57], and prior craniotomy [57].

SCLC Figure  2 also includes the factors that are asso-
ciated with LC for brain metastases from SCLC after 
treatment with SRT or WBRT. In contrast with the study 
[67] reported in Fig.  2 that suggested that uncontrolled 
extracranial metastases are associated with worse LC, 
another study [68] suggested that presence of extracra-
nial metastases are not associated with LC.

Breast cancer brain metastases
Breast Cancer (BC) is the second most common cause of 
brain metastases in approximately 30% of all women with 
brain metastases [69]. The incidence of brain metastases 
appears to be increasing, likely due to earlier diagnosis 
and prolonged survival with contemporary treatments 
of BC [69]. Fig. 3 summarizes the factors associated with 
the LC of brain metastases from BC.

For treatment with SRT, the factors that are not asso-
ciated with LC are prior WBRT [25, 70, 71, 76], surgery 
prior to SRT [25, 70, 76], and age [25, 70, 73]. There are 
mixed findings about the association of Her2 positivity 

Fig. 1 PRISMA flowchart of the study selection
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with the LC of brain metastases from BC [70, 71, 74]. 
There are also mixed findings about the association of 
the number of metastases with LC [25, 69].

In contrast with the studies reported in Fig.  3, one 
other study did not find an association with LC for 
radiation dose [76].

Only one study examined LC for BC brain metastases 
treated with WBRT. This study reported that a higher 
KPS score, and higher RPA class are associated with 
better LC.

Melanoma brain metastases
Thirty-four percent of patients with melanoma developed 
brain metastases in clinical studies [77]. With a median 
overall survival of 4.6 months, brain metastases are the 
leading cause of death in melanoma patients [77]. In 
addition, the management of melanoma brain metastases 
remains challenging because of its resistance to radio-
therapy and chemotherapies [77].

The factors associated with the LC of melanoma brain 
metastases are shown in Fig.  4. Gender [81], age [81], 

Fig. 2 The factors associated with LC of Lung cancer brain metastases
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location of brain metastases [81], and WBRT [79, 80] do 
not seem to be associated with LC of melanoma brain 
metastases after treatment with SRT.

In contrast with the studies reported in Fig.  4, other 
studies did not find an association with LC for tumor 
volume [79], tumor size [79], and SRT dose [80, 81] for 
treatment with SRT. There are mixed findings about the 
association of BRAF mutation with LC [78, 79, 82].

Treatment type
Surgery
Surgery is a treatment option for large metastatic brain 
lesions [7]. Fig. 5 summarizes the factors associated with 
LC after surgery.

The factors that are not associated with LC after surgi-
cal resection are gender [86], and KPS score [86].

Stereotactic radiotherapy
Figure 6 summarizes the factors associated with LC after 
treatment with SRT. The term SRT is used for both single 
fraction (also called Stereotactic Radiosurgery (SRS)) and 
fractionated stereotactic radiotherapy. Single fraction 
SRT (SRS) is a specialized radiation therapy that deliv-
ers a single, high dose of radiation directly to the tumor. 
Fractionated stereotactic radiotherapy delivers multiple, 
smaller doses of radiation over time. The studies on the 
factors associated with LC after SRT are sub-grouped 
into three categories namely: single fraction SRT (SRS), 
fractionated SRT, and SRT with surgery.

Single fraction SRT(SRS) The factors that are associated 
with better LC after SRS are shown in Fig. 6, along with 
the factors that are associated with worse LC after SRS. 
The factors that are not associated with LC are chemo-
therapy [97, 98, 100, 126, 166], primary tumor status 
[100, 104, 124], GPA [127, 167], systemic treatment [95, 
99, 106], time interval from primary tumor diagnosis to 
brain metastases [100, 110], use of targeted agents [106], 
energy index [8], DS-GPA [95, 110], and laterality [121, 
167].

In contrast with the studies reported in Fig.  6, other 
studies did not find an association with LC after single 
fraction SRT (SRS) for dose [89, 102, 124, 125, 127, 166–
168], tumor location [97, 98, 105–107, 109, 113, 121, 125, 
129, 167], KPS [95, 96, 99, 101, 104, 110, 124, 126, 166, 
167], primary tumor type [95–97, 99, 101, 107, 109, 111, 
125, 127, 167, 168], tumor volume [8, 98, 100, 102, 104, 
112, 128, 166, 167, 169], extracranial metastases [95–97, 
99, 100, 166, 167], tumor size [95, 101, 168], WBRT [97, 
100, 103, 104, 124], RPA class [95, 96, 100, 167], primary 
tumor location [105, 110, 117], breast cancer primary 
tumor type [103], conformity index [102, 119], number 
of fractions [100], presence of systemic metastases [110], 
and NSCLC primary tumor type [89].

There are mixed findings about the association of the 
number of metastases [95–98, 100, 103, 110, 112, 135, 
166, 167], Paddick’s conformality index [113, 139, 169], 
prior WBRT [98, 99, 102, 107, 110, 111, 117, 121, 126, 
166, 170], lung cancer primary tumor type [102, 103, 108] 
and age [89, 90, 95–99, 101–107, 110, 121, 124, 126, 127, 
135, 166, 167, 170] with LC. There are also contrasting 
findings about the association of gender [95, 96, 98–103, 
105, 106, 127, 133, 138, 166, 167] and melanoma histol-
ogy [89, 98, 102, 103, 112, 120, 121, 126, 138] with LC.

Fig. 3 The factors associated with LC of breast cancer brain 
metastases
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Fractionated SRT The factors that are associated with 
better LC after treatment with fractionated SRT are 
shown in Fig. 6. The figure also includes the factors that 
are associated with worse LC. The factor that is not asso-
ciated with LC is systemic treatment [140].

There are mixed findings about the association of 
primary tumor histology with the LC of brain metas-
tases [140, 146]. There are also mixed findings about 
the association of number of fractions with the LC of 
brain metastases [147, 171]. In contrast with the studies 
reported in Fig. 6, other studies did not find an associa-
tion with LC for dose [158, 172].

SRT with surgery Figure 6 also includes the factors that 
are associated with better and worse LC after treatment 
with SRT after surgery.

The factors that are not associated with LC are gen-
der [150, 160], piecemeal excision [156], radioresistant 
primary tumor type [160, 163], and the time interval 
between surgery and SRS [152, 160].

There are mixed findings about the association of GPA 
score [155, 156] and the margin around the resection 
cavity [157, 173] with the LC of brain metastases.

Fig. 4 The factors associated with LC of melanoma brain metastases
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In contrast with the studies reported in Fig.  6, other 
studies did not find a significant association between LC 
and tumor location [152, 160, 165], histology [150, 156, 
165], age [150, 160], residual tumor [150], GPA [150], 
dose [165], number of metastases [160], tumor volume 
[165], and tumor size [165].

Whole brain radiation therapy
Figure  7 shows the factors associated with LC of brain 
metastases after treatment with WBRT. The WBRT treat-
ment group is classified into two subgroups, namely: 
treatment with WBRT alone, and combination of WBRT 
with SRT.

In contrast with the studies reported in Fig.  7, other 
studies did not find an association with LC for age 
[175–180, 185], gender [174–176, 178–180], extracer-
ebral metastases [174, 177, 179, 180, 185], extracranial 
metastasis [178], number of metastases [177, 178, 185], 
the interval from first diagnosis to WBRT [174, 177, 179], 
KPS [178, 185], primary tumor type [177, 179] and RPA 
class [185] for treatment with WBRT alone.

Combining WBRT with SRS was found to be associ-
ated with better LC when compared to treatment with 

WBRT alone. For this treatment combination, the factors 
not associated with LC are age [184], and gender [184].

Summary of results
Higher SRT radiation dose was found to be associated 
with better LC in lung cancer, breast cancer, and mela-
noma primary tumor groups. Also, in the SRT group (in 
which multiple primary tumor types were included), a 
higher dose was reported to be associated with better LC. 
Although few studies did not find any association of SRT 
radiation dose, many studies in the literature suggest that 
a higher SRT radiation dose is associated with better LC.

Table 1 summarizes the factors for which there is uni-
vocal evidence from the literature (meaning there is 
neither mixed nor contrasting findings) to suggest their 
association with better LC.

On the other hand, higher tumor volume seems to be 
associated with worse LC in the SRT group. Table 2 sum-
marizes the factors for which there is univocal evidence 
from the literature to suggest their association with 
worse LC.

This review showed that some of the significant fac-
tors in some studies are found to be non-significant in 
others. The factors for which there is such mixed evi-
dence of their association with LC are a higher number 
of brain metastases for the breast cancer group, the pres-
ence of extracranial metastases and prior WBRT for the 
lung cancer group, a larger tumor size for the melanoma 
group, gender, and number of metastases for WBRT 
treatment group and prior WBRT, multifraction and 
number of metastases for SRT group.

Some factors are significant in some studies but found 
to be non-significant in a higher number of other studies. 
These factors for which there is only such weak evidence 
of their association with LC are female gender, older age 
for the WBRT treatment group, and breast cancer pri-
mary type, NSCLC primary tumor histology, a higher 
number of metastases, melanoma histology, and older 
age for the SRT group.

Machine learning use case
The list of all factors associated with LC after SRT for 
brain metastases from a diversity of primary cancers is 
illustrated in Fig.  6. Out of these factors, the variables 
for which data was available for analysis at ETZ were 
age, KPS score, number of brain metastases, average 
brain metastases volume, primary tumor type, presence 
of extracranial metastases, average treatment dose, prior 
WBRT, prior surgery, and prior SRS. The patients with 
incomplete data for this subset of variables were excluded 
from the data set. After this filtering, we had 135 patients 
with complete data. Table 3 summarizes the characteris-
tics of these patients. The patient cohort was randomly 

Fig. 5 The factors associated with LC after surgery



Page 10 of 19Kanakarajan et al. BMC Medical Informatics and Decision Making          (2024) 24:177 

Fig. 6 The factors associated with LC after SRT
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Fig. 7 The factors associated with LC after WBRT

Table 1 Factors that are associated with better LC

Primary tumor/treatment group Factors

Lung cancer (NSCLC) Higher SRT radiation dose, larger conformality index, presence 
of EGFR mutations

Lung cancer (SCLC) Higher SRT radiation dose

Breast cancer Higher SRT radiation dose

Melanoma Higher SRT radiation dose

WBRT Higher KPS score, breast cancer primary tumor type, WBRT boost

SRT Higher radiation dose, higher KPS score

Surgery Adjuvant WBRT
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partitioned into training and testing datasets, compris-
ing 121 and 14 patients, respectively. A Random Forest 
model was trained iteratively on the training dataset and 
evaluated on distinct validation sets within the train-
ing data. The assessment of its classification accuracy 
revealed an average accuracy of 80% across the diverse 
folds utilized in the cross-validation procedure. The aver-
age precision and recall across the folds were 75% and 
81.6% respectively. The AUC across the folds is depicted 
in Fig.  8. The average AUC across the three folds was 
0.84. The most important factor as per the algorithm was 
the tumor volume followed by age and average SRT dose. 
The presence of prior WBRT was the least significant fac-
tor as per the algorithm (Fig. 9).

Discussion
The aim of this study was to conduct a comprehensive 
review of factors associated with LC of brain metastases, 
categorizing them across various primary tumor types 
and treatment modalities. By systematically analyzing a 
wide array of literature, we aimed to identify and present 
factors associated with LC, offering a holistic perspective. 
Additionally, we explored the translational potential of 
this knowledge in the context of machine learning, dem-
onstrating its practical utility by applying insights to the 
stereotactic radiotherapy group.

One hundred and fifty-nine studies were included in 
the review. All the factors associated with LC of brain 
metastases were explored without restrictions on the pri-
mary tumor types, treatment types and study methodol-
ogy. Also, we reviewed all the characteristics associated 
with LC and did not limit them to one type of character-
istics, for instance treatment, patient, brain metastases or 
primary tumor characteristics. The studies were grouped 
based on primary tumor type. Studies that did not focus 
on a specific primary tumor type or included heteroge-
neous groups of patients with different primary cancers 
were grouped based on treatment type.

The results showed numerous significant factors for 
each group, underscoring the complexity of LC determi-
nants. Notably, some factors showed significance in cer-
tain studies but not in others, highlighting the need for 

further investigation into factors contributing to these 
discrepancies, including patient, tumor, and treatment 
characteristics and their potential interactions. Addition-
ally, differing international guidelines may have contrib-
uted to variations in study outcomes. The data from older 
studies show that a wide variety of SRT doses was used 

Table 2 Factors that are associated with worse LC

Primary tumor/
treatment group

Factors

Lung cancer (NSCLC) Larger tumor size, number of radiation shots

Breast cancer Presence of triple-negative breast cancer subtype

Melanoma Presence of intratumoral hemorrhage

WBRT Higher RPA class

SRT Higher tumor volume, larger tumor size, recurrent 
lesion

Table 3 Patient characteristics

Age (years)
 Average 63

 Minimum 39

 Maximum 85

Sex
 Male 58

 Female 77

KPS
 60 3

 70 17

 80 32

 90 42

 100 41

Number of tumors
 1 33

 2-3 51

 4-10 44

 >10 7

Primary cancer
 Lung 89

 Melanoma 7

 Breast 5

 Others 34

Presence of extracranial metastases
 Yes 61

 No 74

Prior SRS
 Yes 15

 No 120

Prior surgery
 Yes 9

 No 126

Prior WBRT
 Yes 8

 No 127

Tumor volume(mm3)
 Average 16752

 Minimum 88

 Maximum 88029

Average SRS dose(Gy)
 Average 22.018

 Minimum 14

 Maximum 25
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in the past [194, 195]. However, recently, national and 
international guidelines were developed to increase the 
homogeneity of the treatment [188, 189, 193]. Despite 
these recent guidelines, there are still minor differences 
between dosage guidelines across the countries. For 
instance, for a tumor with a volume of 20 cm3, the dosage 
guideline in US and UK is 15 Gy, while in Netherlands it 
is 18 Gy [188, 189, 193].

To illustrate the practical utility of our findings, we 
used the factors generally associated with LC for feature 
selection in a Random Forest machine learning algorithm 
for the SRT group. The list of factors identified in this 
review served as an input for us to extract the features 
for the algorithm. The resulting Random Forest model 
predicted the LC of brain metastases with an accuracy 
of 80% and an AUC of 0.84. The neural network model 
proposed by Kawahara et al. [19] for predicting the local 
response of metastatic brain tumors to SRT, built with 45 
patient samples, provided a prediction accuracy of 78% 
for the evaluation dataset. The machine learning model 
trained with the clinical features of 100 patients in the 

study of Jaberipour et al. [24] reached a prediction accu-
racy of 63%. The prediction model developed by Jalalifar 
et al. [187] with clinical features of 99 patients had a pre-
diction accuracy of 67.5%. The higher prediction accu-
racy of the Random Forest algorithm trained with the 
features selected from the systematic review utilized in 
this study suggests that our feature selection could help 
to increase the prediction accuracy of the machine learn-
ing algorithms. This prediction model holds promise for 
clinicians, offering a valuable tool to predict personalized 
treatment outcomes and to foresee the impact of changes 
in treatment characteristics such as dose, and prior brain 
treatments. As per the algorithm, the most important 
factor was tumor volume, while presence of prior WBRT 
was the least important factor.

Understanding the factors associated with LC is cru-
cial, given its link to improved overall survival [186]. 
Our study advocates extending this approach for the 
SRT group to the other treatment and primary tumor 
groups described in this review. This could be the scope 
of a future study on this topic. Knowing the factors 

Fig. 8 ROC curve for the prediction model

Fig. 9 Variable importance for LC in decreasing order of significance
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associated with the LC of brain metastases is impera-
tive to predict the overall survival of the patients and in 
some cases to prolong survival if the factors are control-
lable. Moreover, the streamlined approach of using the 
identified factors has the potential to significantly facil-
itate and enhance efficiency in future machine learning 
studies, reducing time and computational costs during 
the data extraction and feature selection process. Lim-
iting the number of features could also improve the 
interpretability of machine learning algorithms.

A limitation of this study is that we included only 
the clinical features for training the machine learning 
algorithm. The addition of imaging features from the 
pre-treatment MRI scans could increase the predic-
tion performance of the machine learning algorithm. 
Also, for a more rigorous evaluation of the efficacy and 
robustness of the models, further investigations should 
be performed on larger patient cohorts, preferably with 
multi-institutional data. An external validation data set 
could also improve the generalizability of the predic-
tion model.

In conclusion, our study expands clinical insights into 
LC in brain metastases and bridges a gap between tra-
ditional clinical understanding and advanced machine 
learning applications. The identified factors are a foun-
dation for future advancements in predictive modeling 
and treatment optimization, fostering a more personal-
ized and effective approach to cancer care.
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