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Background: Ménière’s disease (MD) is a chronic inner ear disorder with a

multifactorial etiology. Decreased visualization of the endolymphatic duct (ED)

and sac (ES) is thought to be associated with MD, although controversy exists

about whether this finding is specific toMD. Recent literature has revealed that two

distinct ES pathologies, developmental hypoplasia and epithelial degeneration,

can be distinguished in MD using the angular trajectory of the vestibular

aqueduct (ATVA) or ED-ES system as a radiographic surrogate marker. It has

been suggested that these two subtypes are associated with distinct phenotypical

features. However, the clinical di�erences between the ATVA subtypes require

further validation.

Research objective: The objective of this study is to investigate whether (1)

non-visualization of the ED-ES system is a discriminative radiological feature for

MD in a cohort of vertigo-associated pathologies (VAPs) and whether (2) di�erent

angular trajectories of the ED-ES system in MD are associated with distinguishable

clinical features.

Setting: The study was conducted in the Vertigo Referral Center (Haga Teaching

Hospital, The Hague, the Netherlands).

Methods: We retrospectively assessed 301 patients (187 definite MD and 114

other VAPs) that underwent 4h-delayed 3D FLAIR MRI. We evaluated (1) the

visibility of the ED-ES system between MD and other VAP patients and (2)

measured the angular trajectory of the ED-ES system. MD patients were stratified

based on the angular measurements into αexit ≤ 120◦ (MD-120), αexit 120◦-

140◦ (MD-intermediate), or αexit ≥ 140◦ (MD-140). Correlations between ATVA

subgroups and clinical parameters were evaluated.

Results: Non-visualization of the ED-ES system was more common in definite

MD patients compared with other VAPs (P < 0.001). Among definite MD patients,

the MD-140 subtype demonstrated a longer history of vertigo (P = 0.006), a

higher prevalence of bilateral clinical disease (P = 0.005), and a trend toward a

male preponderance (p = 0.053). No significant di�erences were found between

ATVA subgroups regarding the presence or severity of auditory symptoms, or the

frequency of vertigo attacks.

Conclusion: Non-visualization of the ED-ES system is significantly associatedwith

MD. Among MD patients with a visible ED-ES system, we demonstrated that the

MD-140 subtype is associated with a longer disease duration, a higher prevalence

of bilateral MD, and a trend toward a male preponderance.
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Introduction

Ménière’s disease (MD) is a chronic condition affecting the

inner ear, that is diagnosed clinically by a constellation of cochlear

and vestibular symptoms (1, 2). The heterogeneity of MD poses a

diagnostic andmanagement challenge: the disease is widely variable

regarding the age of onset, symptom manifestation, disease course,

and the development of bilateral involvement (3, 4).

Despite extensive research, a thorough understanding of the

pathophysiological processes in MD is currently lacking (5).

Previous literature has supported genetic, autoimmune, and allergic

factors as possible contributing factors (6). Endolymphatic hydrops

(EH) remains at the heart of MD’s pathophysiology since its first

description on temporal bone studies in 1938, although controversy

exists over its role in the disease process (7–9). Application of

delayed gadolinium-enhanced inner ear MRI in living patients

has established EH as a radiographic marker for MD, as well

as increased perilymphatic enhancement, which is thought to

reflect disruption of the blood–labyrinthine barrier (BLB) (10).

Research indicates that the regulation of endolymph homeostasis is

complex and likely dominated by ionic transport systems (11). The

endolymphatic duct (ED) and the endolymphatic sac (ES) are non-

sensory components of the membranous labyrinth and are believed

to be involved in endolymph volume regulation (11, 12). The ED

leads to the blind-ending ES through the vestibular aqueduct (VA),

a bony canal extending from the medial wall of the vestibule to

the posterior surface of the temporal bone. The ES is located partly

within the VA (intra-osseous part) and partly between the layers of

the dura mater in the posterior cranial fossa (extra-osseous part)

(13). The VA can be visualized on computed tomography (CT),

whereas the ED-ES system can be delineated on MRI (13–15).

Previous authors have explored morphological variations of

the ED-ES system in MD patients that may theoretically act as

precipitating factors to the formation of EH. The VA and ED-

ES system have been reported to be significantly smaller or non-

visible in MD patients compared with healthy controls (16–22).

However, narrowing of the VA has also been described in other

inner ear diseases, such as chronic infection, vertigo, and (sudden

or progressive) sensorineural hearing loss (SSNHL) (23, 24). Some

authors have therefore argued that non-visualization of the VA is a

non-specific sign of temporal bone pathology rather than specific

for MD (25).

Currently, MD is assumed to be a multifactorial condition,

and increasing efforts are made to subtype MD patients based

on specific etiologies (5, 26). In 2018, Eckhard et al. first

described two etiologically different pathologies of the ES in

human temporal bone studies that were almost consistently present

in patients with idiopathic EH with or without clinical MD:

epithelial degeneration and developmental hypoplasia (27). In

2019, Bächinger et al. published a method to distinguish these

ES pathologies using the angular trajectory of the vestibular

aqueduct (ATVA) as a radiographic surrogate marker. This

method was initially developed for ATVA measurement on

histological temporal bone specimens and thereafter adapted for

high-resolution computed tomography (HRCT) and gadolinium-

enhanced magnetic resonance imaging (Gd-enhanced MRI) in

living patients (28, 29). The importance of their research is noted

by the phenotypical differences they described between the two ES

endotypes regarding age of onset, gender distribution, frequency of

vertigo attacks, and bilateral involvement (27–30). The recognition

of etiologically and clinically distinct subgroups within MD may

lead to a better understanding of its pathophysiology, provide

prognostic information, and can potentially aid in the development

of personalized or tailored treatment strategies. However, the

ATVA method of Bächinger et al. has not been widely applied and

the phenotypical differences between the MD endotypes require

further validation.

Therefore, this study aimed to investigate to what extent

non-visualization of the ED-ES system on delayed Gd-enhanced

FLAIR MRI is a feature of MD in a cohort of vertigo-associated

pathologies, and, if visible, whether different angular trajectories

of the ED-ES system in MD are characterized by distinguishable

clinical features.

Materials and methods

Study population

We retrospectively assessed 386 consecutive patients

presenting to our vertigo referral center (Haga Teaching

Hospital, The Hague) with symptoms suspected of inner ear

pathology, most commonly MD, that underwent 4 h-delayed

Gd-enhanced MRI at our institution from February 2017

to March 2019. Patients with a technically inadequate MRI

examination, unavailable medical data, previous temporal

bone surgery, or intratympanic treatment with gentamycin

prior to MRI were excluded, as well as those with secondary

hydropic ear disease (HED) or a probable MD diagnosis. We

also excluded six patients who were initially referred to our

Otorhinolaryngology department with non-specific complaints,

but whose symptoms could not be confirmed after clinical

evaluation. Finally, 301 patients were statistically analyzed

(Figure 1).

MRI protocol

Imaging examinations were carried out on a 3T MRI

scanner (Magnetom Skyra; Siemens, Erlangen, Germany) with

a 20-channel array head coil, 4 h after intravenous gadolinium

administration (30mL gadoterate meglumine, Dotarem; Guerbet,

Aulnay-sous-Bois, France). Patients were evaluated in the supine

position with additional fixation between the patient’s head

and receiver coil to reduce motion artifacts. We acquired a

three-dimensional fluid-attenuated inversion recovery (3D FLAIR)

sequence with the following parameters: field of view, 190mm;

section thickness, 0.8mm; repetition time, 6,000ms; echo time,

177ms; a number of excitations, 1; inversion time 2,000ms; flip

angle, 180◦; matrix, 384 × 384; bandwidth, 213 Hz/pixel; turbo

factor, 28; voxel size, 0.5 × 0.5 × 0.8mm; acquisition time,

14min. High-resolution T2 sampling perfection with application-

optimized contrasts using different flip angle evolution (SPACE

sequence; Siemens) images of the inner ear were obtained for

anatomic reference of the entire labyrinthine fluid space. The

scan parameters for the T2 SPACE sequence were as follows:
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FIGURE 1

Inclusion flowchart. ATVA, angular trajectory of the vestibular

aqueduct; ED, endolymphatic duct; ES, endolymphatic sac; Gd,

gadolinium; HED, hydropic ear disease; MD, Ménière’s disease; MRI,

magnetic resonance imaging; VAP, vertigo-associated pathology.

field of view, 160mm; section thickness, 0.5mm; repetition

time, 1,400ms; echo time, 155ms; number of excitations, 1;

flip angle, 120◦; matrix, 320 × 320; bandwidth, 289 Hz/pixel;

turbo factor, 96; voxel size, 0.5 × 0.5 × 0.5; acquisition time,

5 min.

Inner ear evaluation

Visualization of the ED-ES system
The visibility of the ED-ES system was evaluated on a 4

h-delayed 3D FLAIR MRI. Visibility of the ED-ES refers to

the visualization of either a clear linear or punctate region of

enhancement in the expected course of the ED and ES from the

posteromedial part of the vestibule through the vestibular aqueduct

to the opercular region of the temporal bone, on more than one

MRI section. Ears were stratified into either of two groups: visible

ED-ES or non-visible ED-ES. Examples are presented in Figure 2.

Angular measurements and stratification of the
ED-ES system

In total, 249 patients with a visible ED-ES system were

evaluated for ATVA analysis. In 39 definite MD and other

VAP patients, the ED-ES system was visible, but its angular

trajectory could not be measured reliably due to either motion

artifacts or an uncertain course of the ED-ES system in the

opercular region, and these patients were excluded from further

ATVA analysis (see inclusion chart, Figure 1). For the remaining

210 patients (114 definite MD and 96 other VAPs), angular

measurements of the ED-ES system were performed by one PhD

student (LP), who was blinded to the patient’s clinical data, using

the software provided by Bächinger et al. (28). This program

provides a precustomized shape representing the vestibule and

horizontal semicircular canal of the vestibular organ. The proximal

trajectory of the ED at its origin from the vestibule is below the

spatial resolution of current imaging techniques; to overcome this

limitation, the software provides a red line I1 that is attached

to the vestibular shape at a fixed angle of 14◦, representing the

average entrance angle (αentrance) of the ED in the temporal bone

(as determined by a previous histopathological study in humans)

(28). By fitting the shape into the boundaries of the corresponding

anatomy and a second line parallel to the most distal part of

the ED-ES system in the opercular region, the exit angle (αexit)

is calculated.

Following the classification proposed by Bächinger et al.,

114 MD patients were stratified into αexit ≤ 120◦ or αexit

≥ 140◦ based on the angular measurements of the ED-ES

system in their symptomatic ear (28). In addition, ears with

αexit between 120◦ and 140◦ were considered intermediate.

Representative cases are presented in Figure 3. Hereafter,

subgroups are collectively referred to as “ATVA subgroups”

and independently referred to as “MD-120” (αexit ≤ 120◦),

“MD-intermediate” (αexit 120–140◦), or “MD-140” (αexit ≥

140◦). In the case of discordant ATVA subgroups between

both ears from bilateral MD patients, we primarily stratified

patients based on the presence of at least one MD-140 ear.

After the exclusion of the MD-140 endotype, patients were

stratified to the MD-120 subgroup if present. Otherwise, they were

considered MD-intermediate.

The level of internal consistency of the MRI-based

stratification process was tested by reassessing the MRI data

from a randomly selected 20% of cases. The observer (LP)

was blinded to the previous measurements when repeating the

αexit measurements and stratified the patients to either one of

three ATVA subgroups (MD-120, MD-intermediate, MD-140)

as aforedescribed. The intraobserver reliability of the ATVA

subgroup allocation was determined using Cohen’s kappa (κ)

coefficient. A κ-value of 0.88 was determined, indicating excellent

intraobserver agreement.

EH and perilymph signal intensity
The methods for evaluating EH and perilymphatic

enhancement have been reported previously (31). Briefly, EH

was scored as a blinded consensus reading by one head and neck

radiologist (SH) and one PhD student (LP) on a 4-point scale
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FIGURE 2

Morphology of the ED-ES complex on axial contrast-enhanced FLAIR images. The visibility of the ED-ES system was evaluated from the

posteromedial aspect of the vestibule to the opercular region. (A) Normal visualization of the ED-ES system (long arrow) in a patient diagnosed with

vestibular migraine. (B) Non-visualization of the ED-ES system in patient with definite MD. (C, D) Corresponding schematic depiction of the MR

images. The visible parts of the cochlea, vestibule, and semicircular canals are depicted in orange. In (C), the saccule and utricle are depicted in blue

and green, respectively. Note the presence of vestibular hydrops (depicted in blue) in (D).

for vestibular hydrops and a 3-point scale for cochlear hydrops,

respectively. Quantitative measurements of the perilymph signal

intensity were performed by one observer (LP) blinded to the

clinical data. A freehand region of interest (ROI) was drawn on an

axial section in the basal cochlear turn of both ears. An additional

circular ROI of 0.6 mm2 was placed in the left middle cerebellar

peduncle. The signal intensity ratio (SIR) of the basal cochlear turn

to that of the middle cerebellar peduncle was calculated.

Clinical data

Methods for clinical data collection have been reported

previously (31). Briefly, clinical diagnoses were evaluated as a

consensus reading by two otorhinolaryngologists (HB and CB),

who were blinded to the MRI results, according to the latest

AAO-HNS criteria (2). Patients who did not fulfill the clinical

criteria for MDwere assigned the clinical diagnosis of other vertigo-

associated pathology, which was considered an umbrella term

for other vertigo-associated diseases (e.g., vestibular neuritis and

vestibular migraine) and non-classifiable cases. Data on symptoms

and audiovestibular function tests were collected from electronic

medical records. Age was defined as age at the time of MRI.

Disease duration was calculated as the time elapsed from the first

appearance of vertigo or hearing loss until MRI at our hospital. For

hearing loss and vestibular function analysis, we selected the most

recent pure-tone audiometry (PTA) and electronystagmography

(ENG) seen from the moment of MRI with a maximum time

interval of 1 year. We documented hearing function in the form

of low and high Fletcher indexes (the average hearing loss at the

frequencies 0.5–1.0–2.0 kHz and 1.0–2.0–4.0 kHz, respectively).

Statistical analysis

Statistical analyses were performed using SPSS Statistics

(version 28.0.1.0 and version 25.0., IBM, Chicago, Illinois, USA).

The Kolmogorov–Smirnov test was used to test the data for normal

distribution. Data are presented as median (min; max) or mean

± standard deviation. For binary variables, a chi-square test was

performed if all category frequencies were >5; otherwise, Fisher’s

exact test was performed.Means andmedians were compared by an

independent t-test or Mann–Whitney U-test. A Fisher–Freeman–

Halton test, one-way ANOVA, and Kruskal–Wallis H-test were

used to compare binary variables, means, and medians among

different ATVA subgroups. The level of significance was set at P

< 0.05. In all contingency tables where significant differences were

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1239422
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


de Pont et al. 10.3389/fneur.2023.1239422

FIGURE 3

Angular trajectory of the ED-ES system in definite MD cases with MD-120 (A, B), MD-intermediate (C, D), and MD-140 (E, F) morphologies. (A, C, E)

axial 4 h-delayed Gd-enhanced 3D FLAIR MRI, the long arrows indicate the ED-ES system in the opercular region. The ED-ES system lies in close

proximity to the posterior semicircular canal (long arrow head). (B, D, F) show the corresponding ATVA by fitting a predefined shape (magenta shape)

into the bony boundaries of the vestibule and horizontal semicircular canal. The red line (I1) is attached to this shape at a fixed angle of 14◦,

representing the entrance angle (αentrance) of the proximal ED in the temporal bone at its origin from the vestibule. The green line (I2) was fitted

parallel to the trajectory along which the ES exits the temporal bone. The exit angle (αexit) of the ED-ES system was calculated by the software as the

angle between I1 and I2. Note the presence of vestibular hydrops in all cases (dashed arrow in A, C, E), cochlear hydrops in the MD-intermediate and

MD-140 cases (short arrowhead in C, E), as well as increased perilymphatic enhancement in the MD-intermediate case (thick arrow in C).

detected between the three groups, we performed post-hoc testing

for pairwise comparison.

Ethics

This institutional board-approved retrospective study was

performed with a waiver of informed consent.

Results

Baseline characteristics

In total, 301 subjects were included in the final

sample. The baseline characteristics of these subjects

are summarized in Table 1. The most common clinical

diagnoses of other VAP patients were vestibular migraine

(17.5%), sudden sensorineural hearing loss (SSNHL) (15.8%),

unspecified vertigo (15.8%), and vestibular neuritis (10.5%)

(Table 2).

Visibility of the ED-ES system

Among definite MD patients, the ED-ES system was visible

bilaterally in 141 (75,4%) patients, unilaterally in 29 (15,5%)

patients, and bilaterally deficient in 17 patients (9,1%).

Non-visualization of the ED-ES system was significantly

TABLE 1 Baseline characteristics of included patients (n = 301).

Male/female, n (%) 126/175 (41.9/58.1)

Mean age at MRI, y 54.8± 13.1

Mean age of onset, y 47.7± 13.9

Median disease duration, y 3.2 (0.0; 45.9)

MRI, magnetic resonance imaging.

correlated with the symptomatic ears from MD patients

(P = 0.038) and the presence of EH (P < 0.001). The

latter was demonstrated in 192 (94.1%) symptomatic ears

vs. 14 (8.2%) asymptomatic contralateral ears from definite

MD patients.

Among other VAP patients, the ED-ES system was

visible bilaterally in 108 (94.7%) patients, unilaterally

in four (3.5%) patients, and bilaterally deficient in two

(1.8%) patients. Other VAP patients with a deficient ED-

ES system had a clinical diagnosis of vestibular migraine

(n = 2), cerebellar vertigo (n = 1), hyperventilation-

associated vertigo (n = 1), or unspecified vertigo (n = 1).

Additionally, non-visualization of the ED-ES system was

observed in two asymptomatic contralateral ears from two other

VAP patients.

Based on these data, non-visualization of the ED-ES system

showed a significant correlation with a clinical diagnosis of definite

MD (P < 0.001, Table 3) with a positive predictive value of 87.5%.
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TABLE 2 Diagnosis of other VAP patients (n = 114).

N (%)

BPPD 4 (3.5)

Cerebellar vertigo 1 (0.9)

Functional symptoms 2 (1.8)

Hearing loss

Fluctuating low-frequency hearing loss 1 (0.9)

Low-frequency hearing loss 1 (0.9)

Presbycusis 1 (0.9)

Sudden SSNHL 18 (15.8)

Unspecified hearing loss 3 (2.6)

Hyperventilation 7 (6.1)

Inconclusive clinical diagnosis 7 (6.1)

Labyrinthitis (acute) 1 (0.9)

Labyrinthitis (chronic) 1 (0.9)

Mixed phenotype∗ 10 (8.8)

Orthostasis 1 (0.9)

Schwannoma 1 (0.9)

Tinnitus and aural fullness 1 (0.9)

Vascular loop 1 (0.9)

Vertigo, unspecified 18 (15.8)

Vestibular hypofunction and BPPD 1 (0.9)

Vestibular migraine 20 (17.5)

Vestibular neuritis 12 (10.5)

Vestibulopathy 2 (1.8)

BPPD, benign paroxysmal positional vertigo; SSNHL, sensorineural hearing loss.
∗Mixed phenotype indicates multiple clinical diagnoses: BPPD, hyperventilation and/or

vestibular migraine.

Angular trajectory of the ED-ES system

The angular trajectory of the ED-ES system was evaluated in

114 definite MD patients (103 unilateral MD and 11 bilateral MD)

and 96 other VAP patients (50 unilateral and 46 bilateral).

Definite MD vs. VAP
In general, the ED-ES system from symptomatic ears in

definite MD patients demonstrated a larger αexit compared with

symptomatic ears from other VAP patients (p < 0.001; Table 4).

Clinical-radiological correlations in definite MD
Of the 114 included MD patients, 69 patients (60.5%)

demonstrated an αexit ≤ 120◦, 29 patients (25.4%) had an αexit

between 120◦ and 140◦, and the remaining 16 patients (14.0%)

demonstrated an αexit ≥ 140◦. The clinical and radiological features

of these patients are summarized in Table 5.

Among the 18 variables tested, two clinical variables

demonstrated significant differences between ATVA subgroups.

TABLE 3 Visibility of the ED-ES system.

Definite MD (n
= 204

symptomatic
ears)

Other VAP (n
= 167

symptomatic
ears)

P

Visibility of
the ED-ES
system

<0.001

Visible, n (%) 162 (79.4) 161 (96.4)

Non-visible,
n (%)

42 (20.6) 6 (3.6)

ATVA, angular trajectory of the vestibular aqueduct; deg, degrees; ED, endolymphatic duct;

ES, endolymphatic sac; MD, Menière’s disease; VAP, vertigo-associated pathology.

TABLE 4 Angular trajectory of the ED-ES system.

Definite MD Other VAP P

Median αexit , deg 117.0 (88.3; 173.8) 109.5 (86.3; 156.3) <0.001

αexit , exit angle of the ED-ES complex; deg, degrees; ED, endolymphatic duct; ES,

endolymphatic sac; MD, Menière’s disease; VAP, vertigo-associated pathology.

There was strong evidence for a different rate of bilateral clinical

MD (p = 0.0045), with bilaterality being more prevalent among

MD-140 patients compared with MD-120 and MD-intermediate

patients (post-hoc pairwise analysis: p = 0.029 and p = 0.004).

Within the MD-140 group, five patients had unilateral αexit ≥

140◦ and 11 patients had bilateral αexit ≥ 140◦, hereafter referred

to as MD-140uni and MD-140bilat, respectively. Bilateral MD was

observed in twoMD-140uni patients and threeMD-140bilat patients

(p = 1.000). There was further evidence for a longer history of

vertigo for MD-140 patients compared with MD-120 patients (p =

0.006). Notably, the average age of onset of vertiginous symptoms

did not differ between ATVA subgroups (p = 0.483). The initial

analysis revealed a trend toward a different sex distribution

among the three subgroups, with a female predominance in the

MD-120 subgroup, a nearly balanced female:male ratio in the

MD-intermediate subgroup, and a male predominance in the

MD-140 subgroup. However, these results were just above the

level of significance (p = 0.053). No significant differences were

found regarding the onset or history of hearing loss, the presence

or frequency of vertigo attacks, or the presence of tinnitus, aural

fullness, migraineous symptoms, or drop attacks.

Pure-tone audiometry (PTA) was performed in 97 (85.1%)

definite MD patients with an average time interval between MRI

and PTA of 39 days (0; 365). The average low- and high-frequency

hearing loss of all clinically affected ears was 48 (2; 120) dB and

50 (5; 120) dB, respectively. There were no significant differences

regarding the average low- or high-frequency hearing loss between

the ATVA subgroups (p= 0.900 and 0.977).

ENG was performed in 39 of 114 (34.2%) definite MD patients

with an average time interval between MRI and ENG of 56.5 days

(0; 328). Of these 39 patients, 20 (51.3%) demonstrated vestibular

hypofunction in their symptomatic ear. The rate of vestibular

hypofunction did not differ between the ATVA subgroups (P

= 0.694).

In total, 106 (95.5%) patients demonstrated EH in their

symptomatic ear. No significant differences were noted in the
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TABLE 5 Correlations between ATVA subgroups in definite MD patients (n = 114).

Data available, n MD-120 (n = 69) MD-intermediate (n = 29) MD-140 (n = 16) P

Female: male ratio 114 44:25 15:14 5:11 0.053

Unilateral: bilateral MD
ratio

114 63:6 29:0 11:5 0.0045

Mean age at MRI, y 114 54.7± 13.2 59.2± 13.1 61.4± 10.5 0.144

Tinnitus, n (%) 83 39 (83.0) 24 (96.0) 10 (90.9) 0.121

Aural fullness, n (%) 64 33 (89.2) 17 (89.5) 8 (100) 1.000

Headache, n (%) 77 20 (44.4) 14 (58.3) 4 (50.0) 0.526

Hearing loss

Mean age of onset, y 44 48.7± 14.6 56.8± 14.3 50.5± 18.8 0.495

Median disease
duration, y

44 4.5 (0.0; 17.0) 5.7 (1.6; 12.9) 8.5 (0.3; 29.0) 0.522

Median low Fletcher, dB 97 48. (2; 108) 53 (13; 75) 45 (23; 120) 0.900

Median high Fletcher, dB 97 49 (5; 108) 52 (18; 75) 50 (28; 120) 0.977

Vertigo

Mean age of onset, y 80 48.9± 14.2 50.8± 12.9 45.4± 11.6 0.483

Median disease
duration, y

80 2.8 (0.1; 30.7) 4.9 (1.1; 11.0) 16.0 (0.4; 29.0) 0.006

Mean vertigo attack
frequency, nr per month

70 6.3± 6.9 8.2± 10.8 5.0± 8.8 0.486

Drop attacks, n (%) 49 2 (6.3) 1 (11.1) 1 (12.5) 0.432

ENG hypofunction, n
(%)

39 15 (55.5) 3 (42.9) 2 (40.0) 0.694

EH

Cochlear EH grade 114 1 (0; 2) 1 (0; 2) 1 (0; 2) 0.409

Vestibular EH grade 114 2 (0; 3) 2 (0; 3) 2 (1; 3) 0.589

Perilymph enhancement

Median SIR 114 1.45 (0.68; 5.0) 1.64 (0.71; 5.52) 1.48 (0.93; 3.66) 0.742

EH, endolymphatic hydrops; ENG, electronystagmography; MRI, magnetic resonance imaging; SIR, signal intensity ratio.

degree of cochlear or vestibular EH, or the intensity of perilymph

enhancement between the ATVA subgroups (p = 0.409, p =

0.589, and p = 0.742). In unilateral MD patients, EH was noted

in asymptomatic contralateral ears from two MD-120 patients,

one MD-intermediate patient, and one MD-140 patient. Silent

contralateral EH was not associated with a specific ATVA subtype

(p= 0.560).

Discussion

In the current study, we evaluated the appearance of the ED-

ES system on 4 h-delayed Gd-enhanced 3T MRI in a spectrum

of vertigo-associated disorders. We demonstrated that deficient

visualization of the ED-ES system is associated with MD and EH

and that, in cases of asymmetry between ears of MD patients, the

symptomatic ear demonstrated poorer visualization of the ED-

ES system compared with the asymptomatic ear. These findings

are in accordance with previous authors investigating the visibility

of the ED and ES in MD patients on non-contrast-enhanced

1.5 T MRI and support the hypothesis that obliteration of the

ED-ES system may predispose to, or be associated with, the

development of EH and MD (22, 32). We assume that a non-

discernable ED-ES system could be explained by a reduced caliber

of the VA, which is a well-described phenomenon in CT studies

from MD patients (18, 33–35). A previous temporal bone study

reported that the sizes of the ED and ES depend upon the size

of the VA, which further supports this hypothesis (36). Although

we cannot exclude that deficient visibility of the ED-ES system

may also result from reduced vascularization or increased fibrotic

changes in the surrounding connective tissue, this does not seem a

likely explanation as previous histopathological studies revealed no

differences in the perisaccular vascularization or degree of fibrosis

between MD and healthy controls (37–39).

The morphology of the ED-ES system in other vertigo-

associated diseases has scarcely been investigated. Leng et al.

demonstrated poorer visibility of the ED-ES system in MD

compared with vestibular migraine (VM) on non-contrast-

enhanced MRI, though the authors reported that this finding was

of low diagnostic value (40). In the present study, non-visualization
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of the ED-ES system was significantly associated with an MD

diagnosis and only present in 5.3% of other VAP patients, which

does not seem to diverge significantly from the reported prevalence

in healthy controls (range 0–12.5%) (21, 22, 32). Therefore, lack of

a visible ED-ES system may potentially serve as a discriminating

radiological marker for MD with a high positive predictive value

(88%). A visible ED-ES system, however, does not rule out an

MD diagnosis.

The angular morphology of the VA/ED-ES system was first

investigated by Eckhard et al. in 2019, and a custom-made

open-source web application was subsequently developed (27,

41). In our experience, the use of the ATVA software on MRI

was easily applicable and reproducible, as evidenced by the

excellent intraobserver agreement (0.88). We performed angular

measurements of the ED-ES system on 4 h-delayed 3D FLAIR

images; an MRI technique that is increasingly used to detect EH

and relies upon the selective enhancement of perilymph (42).

Note that the ED and ES are membranous structures that are not

surrounded by a perilymphatic space. They are however bounded

by a relatively voluminous vascular network of supportive tissue

(13). The enhancing structures in the region of the VA at Gd-

enhanced FLAIR MRI therefore likely represent the periductal and

perisaccular stroma, which we used as an indirect measure to

delineate the ED-ES system in our study. Compared with other

portions of the labyrinth, the ED-ES system harbors a relatively

small volume of endolymph, which was not visible on our FLAIR

sequence, probably due to insufficient spatial resolution.

According to previous studies from Bächinger et al., a

radiological αexit ≥ 140◦ of the ED-ES system corresponds to

a hypoplastic (underdeveloped) ES that lacks an extraosseous

portion, which has been suggested to be prenatally determined

given its resemblance to the fetal configuration of the ED-ES system

during gestational weeks 6 to 38 (29). In our cohort, the MD-140

endotype was present in 14.0% (16 from 114) of MD patients. This

percentage is lower than the prevalence found in the MRI study

from Bächinger et al. (17 from 72 patients, 23.6%), which may be

explained by differences in sample sizes (29).We demonstrated that

the MD-140 endotype is associated with bilateral clinical disease

and a trend toward a male predominance, which is in accordance

with previous studies (27, 29). Generally, MD symptoms manifest

in the fourth decade of life (31). The presumed congenital origin of

the MD-140 subtype raises the question of whether these patients

would manifest symptoms earlier in life compared with the rest of

the MD population. Compared with the other ATVA subgroups,

MD-140 patients demonstrated a longer history of vertigo and

an earlier disease onset, although the latter was not statistically

significant. Notably, other authors have hypothesized that other

epithelia in the inner ear may adjust and compensate for the early

loss of ES function over a long period of time, which may explain

the lack of a statistically significant earlier disease onset (43). These

findings (longer disease duration, bilaterality, trend toward male

predominance) may support the hypothesis from Bächinger et al.

that genetic/developmental malformations of the ED-ES system

underlie this MD subtype, although the multifactorial character of

MD underlines the possibility that additional precipitating factors

are necessary to elicit MD. Among the general MD population,

familial clustering has been reported in 5–20% of cases, which also

supports a genetic origin as a contributing factor in the etiology of

MD (5). In the study from Bächinger et al., MD as well as isolated

hearing loss/vertigo symptoms were significantly more prevalent in

relatives of MD-140 patients compared with MD-120 patients (29).

In our study, data on family medical history were not available.

The unpredictable clinical course of MD creates difficulties for

patients and clinicians. One of the major concerns for unilateral

MD patients is the progression to bilateral disease, which is

associated with bilateral SSNHL and loss of vestibular function

(44). In the case of bilateral affection, non-invasive therapy is

preferred over ablative treatments with the intent to preserve as

much inner ear function as possible (45). Similar reservations are

relevant when considering destructive therapy in unilateral MD

without knowing the probability of future bilaterality. However,

identifying patients at risk for bilateral affliction is difficult due

to the lack of a prognostic biomarker and delay of contralateral

involvement, which may take up to 20 years or more to develop

(46, 47). Bächinger et al. previously reported that, among MD-140

patients, conversion to bilateral MD is more common in patients

with the MD-140bilat endotype and can basically be excluded in

MD-140uni patients. Accordingly, based on their data, Bächinger

et al. rendered MD-140uni patients as the most suitable candidates

for unilateral ablative therapy (29). However, in our study, bilateral

clinical disease was observed in both MD-140uni and MD-140bilat
patients. Although the sample sizes are small, we can conclude that

a unilateral MD-140 endotype does not preclude the development

of bilateral MD and we hypothesize that factors other than the

ED-ES complex must be involved in its disease pathogenesis—a

possibility that was also acknowledged by Bächinger et al. (30).

The normal homeostasis of the inner ear is dependent on various

regulatory mechanisms, such as fluid secretion and absorption,

ionic transport, blood supply, and the integrity of the membranous

labyrinth barrier system (48). MRI allows for the evaluation of the

ED-ES system, EH as well as the permeability of the BLB, which is

reflected in the degree of perilymphatic enhancement (10, 31, 49–

51). There are scarce data on the morphology of the ED-ES system

in relation to the severity of EH. Grosser et al. reported a correlation

between the visibility/width of the VA on CT and the severity

of cochlear EH on subtraction MR images (52). In addition, da

CostaMonsanto et al. investigated histological specimens fromMD

patients and found that subjects with profound EH had smaller

VA/ED-ES systems compared with patients with slight or moderate

EH, although their findings were not statistically significant (20).

To the best of our knowledge, the correlation between ATVA, EH,

and BLB impairment has not yet been investigated. In our study, we

did not observe a correlation between these MRI parameters.

TheMD-120 subtype in our cohort was present in 61.3% ofMD

cases. For this group, we found no relevant clinical associations

besides a trend toward a female preponderance. This finding

seems to correspond to the gender distribution in the general

MD population, in which a slight female preponderance has also

been reported (6, 29, 53). According to previous studies, this MD

subtype corresponds to a degenerative pathological process where

the extraosseous portion of the ES epithelium showed pycnotic

nuclei, shrunken or expelled cells, and fibrotic replacement (27).

The degenerative ES endotype as described by Bächinger et al. is

radiologically “diagnosed” by excluding the hypoplastic endotype.

However, it cannot be differentiated from a normal ES, which also

demonstrates an αexit ≤ 120◦ onMRI (29). Bächinger et al. revealed
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an association between MD-120 and “silent” (asymptomatic) EH

in the contralateral ear. In our study, we did not find such an

association. However, the prevalence of silent contralateral EH

was scarce (4%) in our cohort, and therefore, reliable conclusions

regarding this putative association probably cannot be drawn from

our data.

In total, 29 (26.1%) MD patients in our cohort demonstrated

exit angles between 120◦ and 140◦, which we referred to as

“intermediate”. Bächinger et al. found intermediate angles in 21.7%

of their cohort and excluded these patients from further analysis as

they regarded the values inconclusive (i.e., not indicative of either

a degenerative or hypoplastic ES endotype). The histopathological

study from Eckhard et al. reported the presence of either ES

degeneration or ES hypoplasia in most (95.8%) MD patients, but

not all MD patients. Therefore, we chose not to exclude the MD-

intermediate group as we aimed to evaluate clinical-radiological

correlations from a broad perspective without the assumption

regarding the associated ES pathologies. Nevertheless, the MD-

intermediate group is a vaguely classified group, merely defined by

the exclusion of ≤120◦ or ≥140◦ angles, that (in literature so far)

does not correspond to a specific underlying pathology. The lack

of significant findings in the MD-intermediate group was therefore

not an unexpected result.

There are several limitations to our study. Despite our large

study cohort, few patients with an MD-140 subtype (n = 16) were

available for statistical analysis. A larger sample size is required to

verify the reported radiological–clinical associations. In addition,

data on family history were unavailable in our study. We could

therefore not evaluate the aggregation of MD among relatives

from MD-140 patients, which would further support the suggested

genetic origin of this subtype. Third, the fact that our hospital

is a referral center for vertigo may cause an underrepresentation

of cochlear symptoms in our cohort, in particular tinnitus and

aural fullness. Fourth, the retrospective nature of this study is

prone to information bias, especially regarding the history of

auditory symptoms, which may be subtle at the beginning of

the disease and often overshadowed by debilitating vestibular

symptoms. Prospective studies are needed to further investigate the

radiological appearance of the ED-ES system in correlation with

cochleovestibular symptoms and other clinical parameters, which

could have a significant impact on our understanding of the disease,

as well as the diagnosis and counseling of MD patients.

Conclusion

In summary, our data corroborate morphological changes

of the ED-ES system as a factor in the pathophysiology of

MD. Additionally, we demonstrated that the MD-140 subtype is

associated with bilateral clinical disease, a longer history of vertigo,

and a trend toward a male predominance.
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