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When electromagnetic radiation interacts with molecules, elastic and inelastic scattering processes occur. In contrast to elastic scattering, the wavelength and the state of polarization of scattered
photons may change when they are scattered inelastically. In this abstract we will focus on the inelastic scattering processes, the so-called Raman scattering. In particular, we investigate the effect of
atmospheric temperature on the molecular rotational-vibrational (ro-vibrational) Raman backscatter cross-section which may occur after transmission of the backscattered radiation through narrow-
pand interference filters (IF). To analyze the consequence of the changing temperature we apply the equations published by M. Adam [1] to calculate the temperature dependent ro-vibrational
Raman backscatter cross-section for the N, molecule at 387 nm (laser wavelength of 355 nm). These equations have been implemented and evaluated as part of the Algorithm for Rayleigh and

Raman calculations (ARC) that has been developed within ACTRIS [5].
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« Temperature dependence of the effective backsc
IF applied to the N, Stokes ro-vibrational Rame

* For filters with narrow bandwidth (< 1 nm) ¢
vibrational backscatter cross-section Is affe
changes from the atmosphere (temperature re

« Wavelength shifted IF (see Fig. 2 and Fig. 6
of the backscatter cross-section up to 11%
are small (y < 0.5%) for IF with bandwidth

« The transmission curve of the IF leads to
backscatter cross-section

Future work

* Include more real IF bandwidths

» Use all three common lidar wavelengths
« Consider effect on the systematic error on lidar proc
» Conclude to recommendations for IF usage
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