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Abstract: This work considers the existence of solutions for a mixed fractional-order boundary value
problem at resonance on the half-line. The Mawhin’s coincidence degree theory will be used to prove
existence results when the dimension of the kernel of the linear fractional differential operator is
equal to two. An example is given to demonstrate the main result obtained.
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1. Introduction

Fractional calculus has become increasingly popular lately as a result of some inter-
esting properties of the fractional derivative. For instance, the fractional derivative has a
memory property that enables its future state to be determined by the current state and all
the previous states. This makes fractional differential equations applicable in various fields
of science and engineering [1-3].

When the corresponding homogeneous equation of a fractional boundary value prob-
lem (FBVP) has a trivial solution then the FBVP is a non-resonance problem and its solution
can be obtained using fixed point theorems, see [4—7] and the references cited therein. When
the homogeneous equation of a FBVP has a non-trivial solution then the problem is a reso-
nance problem and the solution can be obtained using topological degree methods [8-15].

In [16], the authors consider a higher-order fractional boundary value problem involv-
ing mixed fractional derivatives:

(~1)"CDY_DF + f(Lu(t) =0, 0<t<1,

w(0) = u®(0)=0,i=1,...,m+n—2, DS u(1) =0,

where CD{_ is the left Caputo fractional derivative of order & € (m —1,m) and Df o is the
right Caputo fractional derivative of order g € (n —1,n), where m, n > 2 are integers.

Guezane Lakoud et al. [17] obtained existence results for a fractional boundary value
problem at resonance on the half-line:

—CDS_DP x(t) + f(t,x(1)) =0, te01],
u(0) = u'(0) = u(1) =0,

where —CDSL is the left Caputo fractional derivative of order « € (0,1], and Dg . is the
right Caputo fractional derivative of order g € (1,2].
Zhang and Liu [15] considered the following FBVP

DY, x(t) = f(t, x(t), D% 2x(t), DI 'x(t)), te (0,1),
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~+o0
x(0) =0, D§ 'x(0 Z ;D x(8), Dy tx(1) = ) Dt
1=

where 2 < a < 3, Dj 4 1s the Riemann-Liouville derivative ofordera, f € [0,1] x R3 — Ris
a Caratheodory function, &;, 7; € (0,1) and {¢;}%, {7:};"% are two monotonic sequences
withlim; & =a, lim;_, Y =0b,a,b € (O 1) a;, Bif € R.

Imaga et al. [18] obtained existence results for the following fractional-order boundary
value problem at resonance on the half-line with integral boundary conditions:

D" ¢,(D§, u(t)) +e w(t,u(t), Dy u(t)) =0, t € (0,00), 1)

13:7u(0) = 0, ¢ (D u(+e0)) = ¢p(Df, u(0)), ¢)

where D? is the left Caputo fractional derivative on the half line and D} . the right
Riemann-Louville fractional derivative on the half-line, 0 < a,b < 1,1 < a+b < 2,
Pp(r) = |r|P~2, p > 1, with ¢, = 4>;1 and1/g+1/p=1. w:[0,4) x R? - Risa
continuous function.

Chen and Tang [9] established existence of positive solutions for a FBVP at resonance
in an unbounded domain:

Do u(t) = f(t,u(t), tel0,+o0),

u(0) = u'(0) = u"(0) =0, D 'u(0) = lim D lu(t),
—+o0

where Dy, is Riemann-Liouville fractional derivative, 3 < « < 4and f : [0, +00) x R — R
is continuous.

Motivated by the results above, we will use the Mawhin coincidence degree theory [19]
to study the solvability of the following mixed fractional-order m-point boundary value
problem at resonance on the half-line:

CD8+D3+u(t) = f(t,u(t),nglu(t),Dg+u(t)), t € ]0,+o0) ©)]
I5:Pu(0) =0, D§'u(0) = Y a;Dh u(g;), Dfsu(+o0) Z BkDS () (4)
& =

where f : [0,+00) x R> — R is a continuous function, CDS+ is the Caputo fractional
derivative, Dg+ is the Riemann-Liouville fractional derivative, 0 < a < 1,1 < b < 2,
0<a+b<30<f << <fm<+00,0<m << - <fm<+oo,a; €R,
j=12---,mand B € R, k = 1,2,--- ,n. The resonant conditions are )} ; By =
Y aj=land Y Bupy ' = Ty a6t =0,

In Section 2 of this work the required lemmas, theorem, and definitions will be given,
while Section 3 is dedicated to stating and proving the main existence results. An example
will be given in Section 4.

2. Materials and Methods

In this section, we will give some definitions and lemmas that will be used in this work.
Let U, Z be normed spaces, L : dom L C U — Z a Fredholm mapping of zero index
and A: U — U, B: Z — Z projectors that are continuous, such that:

ImA=%ker L, ker B=ImL, U=ker L&oker A, Z=1Im L& Im B.

Then,

L|dom Loker 4 : dom LNker A — Im L
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is invertible. The inverse of the mapping L will be denoted by K : Im L — dom L Nker A
while the generalized inverse, Ky g : Z — dom L Nker A is defined as K4 5 = Ka(I — B).

Definition 1. Let L : dom L C X — Z be a Fredholm mapping, E a metric spaceand N : E — Z
a non-linear mapping. N is said to be L-compact on Eif BN : E — Z and Ky gN : E — X are
continuous and compact on E. Additionally, N is L-completely continuous if it is L-compact on
every bounded E C U.

Theorem 1 ([19]). Let L be a Fredholm map of index zero and let N be L-compact on Q) where
O C U is an open and bounded. Assume that the following conditions are satisfied:

(i)  Lx # ANx for every (x,A) € [(dom L ker LN QY x (0,1);

(ii) Nx ¢ Im L for every x € ker LN oY

(iii) deg(BN|yer ., ker L,0) # 0, where B : Z — Z is a projection with Im L = ker B.

Then, the abstract equation Lu = Nu has at least one solution in dom L N Q.

Definition 2 ([20]). Let & > 0, the Caputo and Riemann—Liouville fractional integral of a function
x on (0, +o0) is defined by:

18, x(t) = r(llx) /Ot (rx%)l_adr, telo1]

Definition 3 ([20]). Let « > 0, the Caputo (“Dg ,x(t)) and Riemann—Liouville (Dg, x(t))
fractional derivative of a function x on (0, +o0) is defined by:

1 ar gt x(7)
CDg+x(t):Dg+x(t):mﬁ/0 et € (0,4)

where n = [a] + 1.

Lemma 1 ([21]). Let a € (0,+o0). The general solution of the Riemman—Liouville fractional
differential equation:
Dg.g(t) =0

isg(t) = byt" L byt? 2 - byt where b; € R, j=1,2...,nwhile, the general solution
of the Caputo fractional differential equation:

Dj+8(t) =0

is g(t) =do+dit+ -+ dut", whered; € R, i =0,1,...,nand n = [a] + 1 is the smallest
integer greater than or equal to a.

Lemma 2 ([21]). Leta € (0,+c0)andi=1,2,...,n,n = [a] + 1 then
(16 DG+ 8) (1) = g(t) +dyt™ ot 2 4 -+ 4 dyt* "
holds almost everywhere on [0, 4+c0) for some d; € R. Similarly,
(I8.CDE.g)(t) = g(t) +do + dit' +dat? + - - - + dpt"
holds almost everywhere on [0, +o0) for some d; € R,i=0,1,...,n.

Lemma 3 ([21]). Leta >0, p > —1, t > 0, g(t) € C[0, +c0), then:
(i) 180 = T(p+1) pat+e,

T(p+1+a)
(ii) DS+ th = %t”’f’,for o > —1, in particular for Dg+ 7k =0,k=1,2,...,N, where

N is the smallest integer greater than or equal to a;
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(iii) Dg,Ig, g(t) = g(t), g(t) € C[0, +o0);
(iv) Ig+lg+g(t) = Igibg(t).

Let

b—1 b
_ R (0] | Do+ u(t)] . |Dgru()]
u= {u € C[0,+o0) : tgrﬂm T et AT e and tll>r—il:loo BT exists

with the norm ||u||; = max{||ul|o, ||Dg:1u||1, \|Dg+u\|2} defined on U where:

|Dg ()]

| DG u(t)]
14 potl '

b
and [Dfula = sup P

te€[0,+c0]

b—1
||D0+ u”l = Ssup
te€[0,+c0]

Let Z = {z : C[0, +00) : sup;c[g .0 [2(t)| < +o0} equipped with the norm ||z]|z =
SUP;¢ [0+ 00) |z(t)|. The spaces (U, || - ||i7) and (Z, || - ||z) can be shown to be Banach Spaces.
Additionally, define Lu = ©D§, DY, u(t), with domain

domL = {u eu:ns, D8+u(t) € Z, boundary conditions (4) is satisfied by u},
and the non-linear operator N : U — Z will be defined by
(Nu)t = f(t,u(t), D u(t), D5 u(t)), te[0,+o0),

hence, Equations (3) and (4) may be written as

Lu = Nu.

Definition 4. The set Y C U is said to be relatively compact if

Yl—{ u(t) :ueY}, Yz—{Dg;lu(t):ueY}, y3—{w:uelf}

14 tatb 14 ta+l 1+t

are uniformly bounded; equicontinuous on any compact subinterval of [0, +c0) and equiconvergent
at: +-oo.

Definition 5. The set Y C U is said to be equiconvergent at +oco if given € > 0 there exists a
T(€) > 0, such that:

u(h) __u(b) D 'u(t)  Dglu(t)| D u(h)  Dult)
b a+b a1l a1 | < €4 a a
1+ 640 14148 144 144 1+4 1+6

where ty, th > T.

Lemma 4. ker L = {cit’ + cot’™1: ¢cj,c0 €R, t € [0,40)}and ImL = {z € Z : Biz =
BzZ = 0}

n 7 1 gj
where Biz =) ﬁk/o k(’?k — )" 'z(r)drand Byz = Y| (Xj/o ](éj —7)%z(r)dr.
k=1 =1

Proof. Consider “D§ . Dg+u(t) = 0 for u € ker L, then by Lemma 1

u(t) = et + et 14 e3th72, ¢y, 03 €R.



Axioms 2022, 11, 630

50f13

Applying the boundary condition Igj bu(0) = 0, gives c3 = 0. Thus, u(t) = c1t’ +
cot?~1. Next, consider CD8+D8+u(t) =z(t) for z(t) € Im L and u € dom L, then

u(t) = I8102(t) + crt” + cot? 1 4 c3t" 2.
From Ig;hu(O) = 0 we obtain c3 = 0. Therefore,
Db u(t) = I8, z(t) +c1 +cat ™! (5)

By boundary condition D8+M(+oo) =Y7i ,BkD&u(iyk) and the conditions } j_; Bx =1,
Y1 Bt 1 =0, (5) gives

1 Mk
Biz= Y B [ (m—n""z(rdr =0,
k=1
Similarly,

ngrlu(t) = Igfz(t) + o1t + oo, (6)

by boundary condition Dg;lu(O) =Y ochgI 1u(§j) and resonant conditions ;" ; aj =1
and Z]m:l ocjéj_l =0, (6) gives

Byz = ]; ocj/o ’(gj —1)*z(r)dr.

O

Let A = (Bltb_le_t . thbe_t) — (thb_le_t . Bltbe_t) = (gll -gzz) — (ng . 812) 75 0.
Let the operator B : Z — Z be defined as

Bz = (A1) + (Agz) - ¥

where , ,
Az = K(‘sllBlZ + 512322)6_t, Npyz = K(§2131Z + 522322)€_t,

and §;; is the algebraic cofactor of g;;.

Lemma 5. The following holds:

(i) L:dom L C U is a Fredholm operator of index zero;
(i) the generalized inverse K4 : Im L — dom L Nker A may be written as

Kaz = I§T02(1).

Additionally,
IKaz| = izl z.

Proof. (i) For z € Z, it is easily be seen that A;((A1z)) = (A1z), A((Ax2)t?) = 0,
Ay((A1z)) = 0,and A ((Azz)t?) = (Ayy). Hence, B>z = Bz, thus Bz is a projector.

We now prove that kerB = Im L. Let z € kerB, since Bz = 0 then z € Im L.
Conversely, if z € Im L, then by Bz = 0, z € ker B. Therefore, ker B = Im L.

Letz € Z, thenz € ImL and z € kerB, hence, Z = Im L 4 ker B. Assuming
zZ=0C =1 4 5t then since z € Im L, then from equation

A1C1tb_16_t + AzCztb_le_t =0,
Aqcitbe + AjertPet = 0.

@)
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gives ¢y = ¢y = 0, since A # 0. Therefore Im LNIm B = {0} and A = Im L & Im B. Thus
dimker L = codim Im L = 2 implying L is a Fredholm mapping of index zero.
(ii) Let A : U — U a continuous projector be defined as:

_ D(b)+”(0) -1 D(bJ+”(0) b
() T(b+1)

For z € Im L, we have

(LKa)z(t) = CD8+D8+(KAZ) = CD3+D8+18+13+Z(t) =z(t).

Similarly, for u € dom L Nker A, we have

(KaL)u(t) = (Ka)D§, Dg u(t)
= 1616, “Dg. Dg, u(t)
= 1§, (Df, u(t) +dy)
—u(t) - ngrl”(o)thq _ 15:"u(0) b2 _ Dg (O)tb
r'(b) r(b-1) (b+1)

Since u € dom LNkerA, Au(t) = 0 and Igju(o) = 0, then (KaoL)u(t) = u(t).
Therefore, Ko = (L|qom 1nkera) .- Furthermore,

Kl BE=01_ g, 1
AZll0 = sup =
te0,400) 1T A4 te(0,+00) L+ TP

1
< WHZ”Z < lzllz,

F(a)ll"(b) /Ot(t — )1 () dr

||Db*1K z|| sup |Iﬂ+1 ()] 1 1 /t(t r)*z(r)dr
pzZ|l1 = su = -
0+ re[0,+00) 1+ta+1 te[0,+oo)1+tu+l r(a+1) 0
1
< m”znz <|zlz
and
115, z(t)] o lzllz
DY Kzl = sup —2H-2 = sy —
H 0+ ” te[O,—iI-)oo) 1+ ta te[O,-iI-)oo)1+ta F(ﬂ—l—l)
1
< WHZHZ <|zlz-

Thus,
IKaz]| = max{[|Kazllo, | Dg; ' Kazll1, | DG Kazll2} < ||z]lz-
Proof of Lemma 5 is complete. [

Lemma 6. The operator N is L-compact on Q, where QO C U is open and bounded with dom
LNQ # Q.

Proof. Let u € Q) then

INul|z = sup |f(t,u(t),Dg;lu(t),Dngu(t))\ < 400, t€]0,+0). 8)
te[0,+c0)
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It follows that

1k _ Nu
BNl = | 1 pe [ O | < I S g < v 0
and
[ a [Nullz x| 1 zat1
|BoNu| = Z"‘]’/ (&j — )" Nu(r)drds| < @t 1) Z‘“}‘Mj < +o0. (10)
j=1 70 j=1
Then,
IBNullz = sup [(AiNu(t)) + (A2Nu(t))]
te[0,+00)
Nu " (11)
< WAL Qo+ b 32 il + a;@ﬂ < oo

Therefore, BN (Q) is bounded. In addition, || Nu||z + || BNu||z < +oc. In the following
steps, we show that K4 (I — B)N(Q) is compact. Let u € Q and m(t) = (I — B)Nu(t), then:

[Ka(I—B)Nu(t)| _ |Ig"m(1)] < sup tth [[m]|z

14 tatb L tth = ey 1+ 1970 (a+0)0(a)T(b) (12)
S P I ONOLAE

Dy ' Ka(I—B)Nu(t)]  |I§T'm ()I ap [[m||z

14 fatl 14t tG[O,fw)1+tu+l (a+1I'(a+1) (13)
< o m
I'(a+2)
and

DG, Ka(I—B)Nu(t)] _ |Ilg,m(t)| _ sup tt |mllz

1+ TH8 = e L+ T(a+1) 1

1
< —— .

From (8), (11)—(14), we see that K4 (I — B)N(Q) is bounded. Next, the equi-continuity
of K4o(I — B)N(Q) will be proved. For u € O, t;, to € [0,M] with t; < t; and
M € (0, +00), then:

‘KA(I —B)Nu(t1) Ka(I—B)Nu(tp)

1 ty (tl _ r)a-i—b—l t (tl _ r)a-&-b—l
F(a—i—b)[ T m(r dr—/o T m(r)dr
+h 1 (15)
l[mllz [/tl (L =r)t (=)t 1 (- fl)Hb]
“T(@+b)[Jo | 1440 14 44+0 a+b 14 4t+h

— 0ast] — tp,



Axioms 2022, 11, 630 80of 13

’ Dg; ' (Ka(I—B)Nu)(t)  Dg;'(Ka(I—B)Nu)(t)
1+t 1+t

< mllz {/tl (=) (—1) 1 (b-h)”“] (16)
TT@+1) o (1440 1t a+1 144571
—Qast] — tp,
and
‘D3+(KA(I —B)Nu)(t1)  Dg, (Ka(I — B)Nu)(t2)
[ 6 1 ny 47
m|z 1 (ty — 1) ty —r)" th — 11
< _ ST L gast s by
= T(a) [/0 1+ 118 a 1+8 } —rash = h

Thus, (15)-(17) shows that K4 (I — B)Nu(Q)) is equi-continuous on the compact set
[0, M]. Finally, we show equi-convergence at +co. Let T > 0 be a constant such that
lg(r)| =|(I-B)Nu(r)|<r, ueQ.
In addition, since lim;_ 4« % = limy 4o 147[;“ = lim¢— 40 % = 0, then for
same € > 0, there exist M > 0, such that for M < t; < tp, we have
(tl _ r)u+b—1 (fz _ r)a+b—1
+b +b
1+# 1+t

a+b—1 a+b—1
tl t2

< — <
1+ 470 144470

t )

(th—7)" (t2—1)" B
Tl 14t

+1 +1
144 144

7

and
(tl _ ;,)afl B (tz _ r)afl tiz—l B tgfl .
1+ T+t |~ 1+8 1445
Hence,
‘KA(I —B)Nu(t;) Ka(I = B)Nu(ty)
1470 14 12+
1 ho(t — r)a+b—1 ho(ty — r)a—&-b—l }
S T 77df—/7rdr 18
r<a>r<b>[/o PR L e a8)
1 M i — 7 a+b—1 tr — 71 a+b—1
= / ( : >a+b - ( . )ll+b |g(7’)|d1’
L@T®) Jo | 1+ 1+
1 ho(t —r)atb-1 1 2 (tp — r)o+b-1
+ / r)|dr + / r)|dr
F@r® b 17 e SOMEEEEy fy g 80

< Mrte n 2T€e
~ (a+b)T(a)L(b) (a+b)T(a)l(b)
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‘ Doy (Ka(I=B)Nu)(t1) Dy (Ka(I = B)Nu) (L) 1)
1+t 1+
1 Mi(th—r)"  (a—1)"
< —
—r(a+1)Uo T+# 14t g(r)dr
1 (tp—7r)" b (ty —r)"
+r(a+1)[/M 1+t““g +/ 1+t”+1 g(r)dr
< Mrte n 2T€
“Ta+1) T(a+2)
and
D§, (Ka(I— B)Nu)(t;) B D§, (Ka(I — B)Nu)(ty) (20)
1+ 1+t
1 Ml (tg =)t (tp—r)* !
< _
= T(a) Uo 1+£ 1—|—t“ (r)ldr
1 (tl—r t2 tz—i’)a 1
+ﬂr(ﬂ)[/M 1+ d7+/ 118 g(r)dr

Lt

u(t), DY u(e), DY, u(t)] < p(0) DL 4 (o)

< Mrte n 2T€
~T(a) T(a+1)

Hence, K4(I — B)Nu(Q) is equi-convergent at 4co. Therefore, by Definition 1,
K4 (I — B)Nu(Q)) is compact, therefore, the non-linear operator N is L-compact on Q).
This concludes proof of Lemma 6. [

3. Results and Discussion

Here, the conditions for the existence of solutions to problem (1.1) subject to (1.2)
is proved.

Theorem 2. Let f be a continuous function. If (¢1) and (¢p1) holds, then, the following conditions
also hold:

(Hy) There exists functions p(t), u(t), v(t), o € C[0,+o0), such that for all (j,k,1) € R? and
t€[0,+00),

K] ]

1+ tatb 1+ o+l 1+ ¢4

(Hp) There exist constants M > 0, such that for u € dom L if |D8+u(t)| > Mfort € [0,+00),
then either

+u(t) + o). 1)

BiNu(t) #0 or ByNu(t) #0.
(Hj3) There exists a constant C > 0, such that if |c1| > C or |cp| > C, then either

BiN(c1t"™1 4 cpt?) + BoN(eyt' 71 4 e0t%) <0 (22)
or
B1N(C1fb_1 + szb) + BzN(Cltb_l + Cztb) >0 (23)
where c1, 3 € R satisfying ¢z + c3 > 0.
Then, the boundary value problem (3) and (4) has at least one solution provided:

I'(a+1)

lellz +lkllz +vliz < Fo3y375

Proof. The proof will be completed in four stages.
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Stage 1. We will establish that Oy = {u# € dom L\kerL : u = ANu, for A € [0,1]}
is bounded. Let u € O then u = (u — Au) + Au € dom L\ ker L. This means that
(I —A)u € dom LNker A and Au € ker A, hence, LAu = 0. By Lemma 5, we have

11— Ayul| = [KaL(I — Ayu]| < |IL(I = A)u]| = [[Lu]l = | Nu]l. 4)

Since u € )y, then Lu = ANu. Additionally, by (H;) there exists t; € [0, +c0), such
that |D} Lu(t)] < M, therefore

A t _ B
|D8+u(0)| < |D8+u(t1)|+m/0 (t1 — )" 1|f(r,u(r),Dg+1u(r),D8+u(r))|dr
(25)
1
< —_— .
In addition,
||Au||0<|D8+u(0)<1 sp L P ) 2ot wo)
- L) 1000y LHETE T T(b+1) jepg ooy LH17F0 )
IDY Aully < D u(O) [ o sup L sup L) <2k, u(0)]
+ - T(b>te[o,+oo>1+f““ T(b+1)te[o,+oo)1+f”“ -
and
||D8+Au||z<|D8+u(0)l<l sup L g ><2|D3+u<o>|.
N L) tepprony 1T T(041) (i 141 ) 7

Therefore, from (25), we have

1Au]| < max{]fullo, DGy w1, [|D§ ull2} < 2|D§,u(0)] < 2M + INullz  (26)

2
F'(a+1)
and from (24) and (26), we have

lullu < lAullu + (11 = Allu

2
< -
< 2M + (1+ F(a—i—l)) INul|z

2 2
<2M+ (14 gy ) Il + Dl + Ilz) + (1 + gy ) el

2M + (14 i o)

(14 ) lelluCllellz + Nl + 1vll2)

lullu <

Thus, () is bounded.
Step 2. Let Oy = {u € ker L : Nu € Im L}. For u, Nu € Qy, then u(t) = c;t'~! + co#’. and
BNu = 0. Thus, from (H3), we have |¢1| < C and |c2| < C. Hence, (), is bounded.
Step 3. For c1,c; € R, t € [0, +00), the isomorphism | : ker L — Im B is as

_ 1 _
J(ert? ™ 4 opt?) = X [(51101 + 01202) + (62101 + 6202t e (27)



Axioms 2022, 11, 630 11 of 13
Suppose (22) holds, let
Q3 ={ueckerL:AJu+(1—A)BNu=0,A € [0,1]}.
Let u € O3, then u(t) = c1t'~1 4 c»t?. Since A # 0, then
A+ (1 =A)BiN(cit? 1+ cpt?) =0,
-1 b (28)
A+ (1 —)\)BzN(le +ct?) = 0.

When A = 1, we obtain ¢; = ¢; = 0. When A = 0, BiN(cit*~1 + cpt?) = BoN (et~ +
cot? ) = 0,which contradicts (22) and (23). Hence, from (H3), we obtain |¢;| < C, and
lc2] < C.For A € (0,1),if [c1| > Cor|Cy| > Aby (22) and (28), we have

AMcA+c3) = —(1 =N [BIN(ct? 1+ eat?) + BaN (et 1+ ept?)] <0,

which is a contradiction. Hence, ()3 is bounded.

Similarly, if (23) holds and Q3 = {u € kerL : AJu — (I —A)BNu =0,A € [0,1]}, Q3
can be shown to be bounded by similar argument.
Step 4. Let Q) D U?Zlﬁi. Finally, we will show that a solution of (3) and (4) exists in
dom L N ). We have shown in Steps 1 and 2 that (i) and (ii) of Theorem 1 hold. Finally, we
show that (iii) also holds. Let H(u, A) = £AJu + (1 — A) BNu, then following the arguments
of Step 3, it follows that for every (u,A) € (ker LN0QY) x [0,1], H(u, A) # 0. Therefore, by
the homotopy property of degree

deg(BN|yerr, QNkerL,0) = deg(+],Q2NkerL,0)
— +1 £0.

Therefore, by Theorem 1 at least one solution of (3) and (4) existsin U. O

4. Conclusions

This work considered a mixed fractional-order boundary value problem at resonance
on the half-line. The Mawhin’s coincidence degree theory was used to establish existence
of solutions when the dimension of the kernel of the linear fractional differential oper-
ator is two. The result obtained is new and an example was used to demonstrate the
result obtained.

5. Example
Example 1. Consider the following boundary value problem:

1 3
—5t o3 2 —tP2 _2t
P2 DZ u(t) = ° sin Dy, u(t) |, e D°+”3(t) . te0,4c)  (29)
M 17(1 +2) 9(1+t3)  15(1+t2)
! ! 11y 1.1 (1
I5, u(0) =0, Dg, u(0) 3D0+u r —5D0+u )

(30)

W1

Here a :2§rb = % a1 = %r“Z = %rgl ?4152 :121,81 :2%152 = 411/171 :5/772 =
n=m=2.37, vcjéj_ =0, 4 =LY B =0, L P =1

1 _ 1 1 _ 1
HPHZ = WsuptE[O,JrOO) ‘6 N = 177 ”‘u”Z = §supte[o,+oo) ‘6 t‘ = 9
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vllz = {5 SUP}c[0,-+0) le®| = {5. Then, |jpl|z + |lullz + [[vllz = & + § + 1z = 0.2367

3
T(a+1) =T(}+1) =1 Then, r(rgf)Ziz = 0.3071. Hence,
2

F'(a+1)

lellz + llullz +viiz < Ta+1)+2

Finally, conditions (H;) - (H3) can also be shown to hold. Therefore (29) and (30) has
at least one solution.
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