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Abstract: Analysis of an electrically conducting two-dimensional Maxwell fluid flowing through an 

inclined stretching sheet is considered in this work. Incorporating the viscous dissipation and Ohmic 

heating effects on the time-dependent optically dense fluid, and using the required similarity 

transformation variables, the equations governing the flow are deduced and converted into a coupled 

system of ordinary differential equations. Runge-Kutta fourth order scheme with shooting technique is 

applied to solve the derived equations. Plots and tables are employed to explain the flow parameters for 

fluid velocity, temperature, and concentration profiles as well as the skin friction, local Nusselt number, 

and local Sherwood number. Increase in the angle of inclination parameter, Hartmann number, Prandtl 

number and Schmidt number reduce the magnitude of the fluid velocity, while radiation parameter, 

Grashof and Eckert numbers increase it. However, fluid temperature is significantly moderated by 

Grashof and Prandtl numbers.   

Keywords: Transient flow, stretching surface, Maxwell fluid, magnetohydrodynamic (MHD), thermal 

radiation, Runge-Kutta method. 

Introduction 

 In recent years, the dynamics of non-Newtonian fluids have received considerable attention due to 

their divergent areas of applications, such as in biological sciences, medical sciences, geophysics, 

chemical and petroleum industries. The non-linearity ratio between the shear stress and shear rate 

distinguishes non-Newtonian fluid from Newtonian fluid. In addition, it possesses more complex 

rheological properties than Newtonian fluid models. Numerous industrially important fluids captured 

as non-Newtonian are molten plastics, polymers, pulps, mud, pasta, personal care products, ice cream, 

paints, oils, cheese, asphalt, etc. Due to the complexity of the rheological properties of non-Newtonian 

fluids, Navier-Stokes' equation has difficulty capturing their mathematical models. Hence, several 

mathematical models have been developed to account for the divergent features of these fluids. A few 

of these features include shear thinning, shear thickening, yield stress, stress relaxation etc. The power 

law model is usually applied to exhibit both the shear thinning and shear thickening effects, the yield 

stress is addressed by Casson fluid model and the elasticity effect is modeled by grade fluids. Others 

are micropolar stagnation flows (Odelu and Naresh [1]), Walter’s viscoelastic flows (Hussain and Ullah 

[2]), Jeffrey’s viscoelastic boundary layers (Gaffar et al.[3]), Williamson fluids (Megahed.[4]), 

nanofluid transport from a sphere (Prasad et al. [5]), Eyring–Powell fluid (Gaffar et al. [6]), tangent 

hyperbolic fluid (Gaffar et al.[7]), and Jeffery nanofluid (Mehmood et al. [8]). 

However, these models do not address the effects of stress relaxation, and because a rate-type fluid 

subclass known as the Maxwell model can predict stress relaxation, it has gained prominence. This 

model also eradicates the complex impacts of shear-dependent viscosity, making it ideal for 

concentrating on the effects of a fluid's elasticity on the features of its boundary. Aliakbar et al. [9] 

investigated the effect of thermal radiation on MHD Maxwell fluid flow over a stretching surface. The  

effects of thermal radiation and Joule heating on the MHD flow of Maxwell fluid above a stretching 

sheet were examined by Hayat and Qasim [10]. Heat transfer analysis of time-dependent Maxwell fluid 

flow over a stretching sheet was studied by Mukhopadhyay [11]. Furthermore, the impact of mass 

transfer on the Maxwell fluid flow passing through an unsteady stretching sheet was discussed by 

Mukhopadhyay and Bhattacharyya [12]. 

Meanwhile, investigations into fluid flow over a stretching surface have experienced a surge in recent 

decades as a result of its diverse industrial and technological applications, such as metal formation 

(Altan et al.[13]), polymer extrusion (Fisher [14]) and drawing of plastic films (Tadmor and Klein [15]). 

Others are metal spinning, glass-fibre production, solidification of liquid crystals, paper production, 



petroleum production, exotic lubricants and suspension solutions. Crane [16] initiated the stretching 

surface flows and obtained the closed form solution of viscous flow over a linearly stretching surface. 

Cane's work has since been addressed by a number of researchers in a bid to incorporate various aspects 

of fluid flows and flow configurations. Ishak [17] considered the effect of unsteadiness. Grubka and 

Bobba [18] studied the impact of variable temperature. Sharidan et al. [19] obtained the similarity 

solutions for the unsteady boundary layer flow. Chamkha et al. [20] considered porosity, 

suction/injection and chemical reaction effects, while Eldabe et al. [21] considered three-dimensional 

flow over a stretching surface. Yusuf et al. [22] investigated Williamson nanofluid over a stretching 

surface with chemical reaction. Mustafa et al. [23] analysed the unsteady boundary layer flow of a 

Casson fluid. 

 It is worth mentioning that interest in the investigation of thermal radiation effect in a stretching sheet 

has grown rapidly in the last few decades; due to its relevance in the design of critical equipment such 

as fins, ceramic and glass manufacturing units, and various propulsion devices for aircraft, missiles, 

satellites, and space vehicles. In view of the aforementioned applications, Rosseland [24] developed the 

optically thick approximation for radiation flux. Thereafter, several researchers have since incorporated 

it into various fluid flows. Hossain and Takhar [25] presented radiation effects on mixed convection 

flow, and Hossain et al. [26] studied the effect of radiation on free convection from a vertical porous 

plate. Furthermore, Hossain et al. investigated the effect of radiation on free convection flow. Bataller 

[27] analysed the radiation effects on the Blasius and Sakiadis flows. Sajid and Hayat [28] investigated 

the effect of thermal radiation on the boundary layer flow. Gbadeyan and Yusuf [29] examined the 

effect of nonlinear partial slip and thermal radiation on Oldroyd 8‐constant fluid, and thermal radiation 

effect on hydromagnetic steady asymmetric flow was considered by Makinde [30]. 

Despite the numerous benefits of viscous effect in several fields like tribology, instrumentation, 

food processing, lubrication, polymer manufacturing, etc., it has not been taken into account by several 

researchers in a variety of hydromagnetic heat and mass transfer flows. However, many fluids' 

viscosities, vary with temperature. For instance, the viscosity of dry air is 21.94 x 10-6 kg/ms at 100°C 

and 26.94 x 10-6 kg/ms at 200°C. As a result, it is inappropriate to ignore these vital impact when 

analyzing fluid flows since doing so could give rise to conclusions that are either under-or over-

determined, depending on the situation from using constant viscosity. In view of its significance, 

Vajravelu and Hadjinicolaou [31] analyzed boundary layer flow over a stretching sheet, taking viscous 

dissipation into account. Partha et al. [32] examined viscous dissipation effect on the mixed convection 

flow with heat transfer over an exponentially stretching surface. Sanjayanand and Khan [33] discussed 

viscous dissipation effect on boundary layer fluid flow over an exponentially stretching surface. Cortell 

[34] considered the effects of viscous dissipation and thermal radiation on boundary layer flow over a 

non-linearly stretching sheet. Aziz [35] studied viscous dissipation effect on micropolar fluid over an 

exponentially stretching sheet. Pavithra and Gireesha [36] presented the effect of viscous dissipation on 

hydromagnetic fluid flow in a porous medium. 

An Ohmic heating (Joule heating) effect is produced when an electrically conducting fluid interacts 

with an externally applied magnetic field. In other words, it is a process that produces heat when an 

electric current flows through a conductor. Ohmic heating is used in a variety of industrial and 

technological processes, which include electric stoves, heaters, incandescent light bulbs, electric fuses, 

electronic cigarettes, thermistors, food processing, and many others. Devi and Ganga [37] have 

considered the impacts of viscous and Ohmic heating on hydromagnetic flow problem. Megahed [38] 

research work considered joule heating and viscous dissipation on magnetohydrodynamic flow past a 

stretching sheet, and recently, Swain et al. [39] studied viscous dissipation and joule heating effect on 

hydromagnetic flow past a porous stretching surface. Others are Muhammad et al. [40], Adegbie et al. 

[41], Osalusi et al. [42], Goud and Nandeppanavar [43], Hasan et al. [44] and Gireesha et al. [45]. 

The current analysis focuses on the investigation of thermal radiation, viscous dissipation, and Ohmic 

heating effects on transient hydromagnetic Maxwell fluid over an inclined stretching surface. The 

findings of this research will be immensely beneficial in the industry for engineers and scientists to 

boost the efficiency of Maxwell fluid flow during industrial processes. 

Description of Model 



Consider a two-dimensional incompressible transient hydromagnetic Maxwell fluid over a stretched 

surface inclined from the vertical with the inclination angle  , which is coinciding with the plane 0y = . 

It is assumed that at 0t  the flows are steady, however the unsteady heat and mass flows begin at 0t =

with the velocity ( ) ( ), 1U x t cx t= − , such that c and  are positive constants with dimensions ( ) 1
time

−
. 

Note that c and ( )1 −c t are the initial stretching and effective stretching rates respectively and are 

increasing with time. Further assumption is that, a magnetic field with constant strength 0B is applied 

in the direction normal to the flow direction, as depicted in Figure 1. The flow is induced by the 

stretching of the sheet, due to the application of two equal and opposing forces simultaneously along 

the x -axis. Keeping the origin constant, the sheet is stretched with a speed that varies linearly with 

distance from the slit. ( ),wT x t and ( ),wC x t are the sheet surface temperature and concentration 

respectively while the constants free stream temperature and concentration are T  and  C respectively, 

such that w TT and wC C . It is assumed that both ( ),wT x t and ( ),wC x t vary along the sheet and with 

time as ( ) ( ) 2
, 1WT x t T bx t −

= + − , and ( ) ( ) 2
, 1WC x t C bx t −

= + − . 

 

 
 

Fig. 1: Flow Configuration 

 

Under the aforementioned assumptions, the boundary layer equations of a Maxwell fluid can be stated 

as (Mukhopadhyay [11]; Mukhopadhyay and Bhattacharyya [12]): 
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Since the modelled Maxwell fluid is flowing past a stretching surface, the appropriate boundary 

conditions are: 
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Note that in the expression above, u  and v are fluid velocity components along −x axis and y − axis 

respectively. 

Introducing the Rosseland approximation for the radiative heat flux which appears in the energy 

equation as 
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In Eq. (6), T is highly non-linear in the energy equation which makes its solution very difficult, hence 

an assumption of small temperature differences within the flow is taken which helps to linearize the 

Rosseland formula about the ambient temperature T . This means 3
T in Eq. (6) is substituted with 3

T . 

Invoking Eq. (6) in Eq. (3) yields 
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The following relations are introduced for u , v  ,  and : 
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where is a stream function. Furthermore, the following similarity transformation variables are 

introduced 
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Employing the relations (9), converts Eqs. (2), (4) and (7) to the following system of coupled ordinary 

differential equations 
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Then the boundary conditions in (5) take the form 
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Next are expressions for the skin friction coefficient, heat and mass transfer fluxes at the wall in 

dimensionless form, these are expressed as: 



( ) ( ) ( ) ( )
1

1 1
2 2 2Re 0 ;Re 1 0 ;Re 0f x x xC f Nu Nr Sh − −  = = − + = −            (15) 

Method of Solution Via Runge-Kutta/Shooting Technique 

 

To apply the Runge-Kutta/Shooting technique, the model Eqs. (10) - (12) together with the boundary 
conditions (13) are converted to a set of first order initial value problems. Let, 
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Then in view of Eq. (16), Eqs. (10)-(13) assume the form: 
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The fourth-order Runge-Kutta method is employed on Maple 18 see Rana and Shukla [46] and El-Aziz 

and Nabil [47] for more on MAPLE software) to obtain the solutions to Eqs (17). A step size of 0.001 

is used to calculate the equations' solutions. At a distance where the influence of boundary layers is less 

substantial, the results are truncated. To verify the validity of the current numerical method, the results 

have been compared to previously published works in the literature. Thus, in Tables 1, 2 and 3 the 

results are compared with Grubka and Bobba [18], Ishak [17], Sharidan et al. [19] and Chamkha et al. 

[20] respectively. In all these, the results demonstrate excellent agreement. 

 

Results and Discussion 

Transient MHD Maxwell fluid flow over a stretching surface with thermal radiation, viscous dissipation 

and Ohmic heating effects has been investigated. For some dimensionless physical values, computed 

results are presented in Tables 1-3 and Figs. 2-10. The values of the pertinent flow parameters are fixed 

throughout the analysis except otherwise stated in the figures and tables. These are 1=A , 0.1 = , 

0.1=Nr , 1=Gr , 1=Gc , 6 = , 0.62=Sc , Pr 1= , 0.5=Ha , 0.1=Ec , 0=wf . 

 

Table 1: Comparison of ( )0 − for various values of A , H , Pr for 0 = , 090 =  

A  H  Pr  Grubka and  

Bobba [18] 

Ishak [17] Present 

0 0 0.01 0.0197 0.0197 0.1122 

  0.72 0.8086 0.8086 0.8088364017 

  1 1.0000 1.0000 1.0000083024 

  3 1.9237 1.9237 1.9236723873 

  6.7  3.0003 3.0002573873 

  10 3.7207 3.7207 3.7206520234 

  100 12.2940 12.2940 12.294080769 



 1 0.01  0.0140 0.1092151587 

  0.7  0.68967 0.6915395368 

  1  0.8921 0.8924194639 

  10  3.6170 3.6169754359 

  100  12.194 12.194108365 

1 0 0.7  1.0834 1.0833883410 

  7  3.7682 3.7682403394 

 1 0.7  1.0500 1.0499871879 

  7  3.7164 3.7164750608 

 

Table 2: Comparison of ( )0− f with Sharidan et al. and Chamkha et al. [20] 00, 0, 90 ,Pr 1H = = = =  

A  Sharidan et al. [19]            Chamkha et al.[20]   Present 

0.8 1.261042 1.261512 1.2610468 

1.2 1.377722 1.378052 1.3777344 

 

Table 3: Comparison of ,  and for various values of , and at 1 = , / 1K H =

, 1Gr = , 2Gc = ,  

   Chamkha et al. [20]  Present 

  

    
 

  

 

0 0.71 0.22 0.27377 1.158393 0.74014  0.273514 1.157477 0.739461 

  0.60 0.49677 1.101087 1.312248  0.496533 1.100159 1.311761 

  0.94 0.59941 1.076931 1.713443  0.599134 1.076292 1.713094 

 0.3 0.62 0.38639 0.62198 1.355045  0.386548 0.621810 1.354616 

 0.71  0.50438 1.099032 1.337571  0.505057 1.098321 1.337270 

 1  0.55244 1.384875 1.331027  0.552362 1.394657 1.330859 

 3  0.69042 2.966999 1.316710  0.690086 2.965405 1.316382 

0 0.71 0.62 0.50438 1.099032 1.337571  0.504057 1.098321 1.337270 

1   0.88473 1.324178 1.496687  0.884328 1.323532 1.496483 

2   1.215097 1.526933 1.648849  1.214068 1.526815 1.648229 

10   2.830195 2.656791 2.599922  2.829416 2.656700 2.599545 

 

Figures 2a, 2b and 2c indicate a reduction in fluid velocity near the wall while a rise is registered away 

from the wall. The momentum and thermal boundary layer thicknesses as well as mass transfer rate 

decrease as depicted by the plots, which causes the reduction in fluid velocity, temperature, and 

concentration. In addition, the unsteadiness parameter is a function of fluid thermal diffusivity, that is,

=A c . Increasing the unsteadiness parameter, the fluid thermal diffusivity increases, hence the 

velocity, temperature and concentration profiles decrease.  It is further observed that an opposing trend 

is displayed in the figures for the free stream region. Next is the influence of inclination parameter ( ) , 

fluid motion is lessened while the temperature and concentration profiles receive a boost as displayed 

in Fig. 3. Varying the inclination angle as10 , 45 , 75  reduces the impact of gravitational force on the 

flow, resulting in a drastic reduction in buoyancy force effect, hence the reduction in the fluid motion. 

This can be compared to when the stretching sheet is vertically downward at 0 = , which allows the 

maximum impact of gravitational force and fluid maximum flow motion. However, fluid temperature 

and concentration profiles increase due to thermal and concentration boundary layer thicknesses. 

 

( )0f − ( )0 − ( )0 − A Pr Sc
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w

f =

A Pr Sc ( )0− f ( )0 − ( )0− ( )0− f ( )0 − ( )0 −



      

Fig. 2a Velocity, for various values of A    Fig. 2b Temperature for various values of A  

 

    

Fig. 2c Concentration for various values of A .   Fig. 3a Velocity for various values of 

 

   



Fig. 3b Temperature for various values of     Fig. 3c Concentration for various values of   

Response of velocity, temperature and concentration profiles to variation in radiation parameter is 

presented in Figs. 4a, b and c. An increment in fluid velocity and temperature is noticed while fluid 

concentration is lowered. This happens as a consequence of a decrease in the mean absorption 

coefficient, c
k  as the radiation parameter ( )316 3C C

Nr T k k = receives a boost. Consequently, the fluid's 

rate of radiative heat transfer is rising, leading to a decline in fluid velocity and temperature. However 

mass concentration is lowered due to a reduction in concentration boundary layer thickness.  

Figures 5 and 6 depict the effects of Grashof numbers ( Gr , Gc -thermal and concentration buoyancy 

forces, respectively) on fluid velocity, temperature and concentration profiles. Since Grashof number 

expresses the buoyant-to-viscous force ratio, physically speaking, Gr > 0 denotes heating of the fluid 

or cooling of the wall, whereas Gr < 0 implies cooling of the fluid or heating of the sheet surface. 

Therefore, increasing the values of Grashof numbers reduces fluid viscosity. This in effect raises fluid 

motion but cools the fluid temperature and concentration profiles. 

 

    
Fig. 4 Velocity for various values of Nr    Fig. 4c Concentration (c) for various values of Nr . 

    
Fig. 5a Velocity for various values of Gr .   Fig. 5b Temperature for various values of Gr . 

 



    

Fig. 5c Concentration for various values of Gr .  Fig. 6a Velocity for various values of Gc . 

 

    
Fig. 6b Temperature for various values of Gc .   Fig. 6c Concentration for various values of Gc . 

 

In Fig. 7, magnetic field parameter effects on fluid velocity, temperature and concentration are 

respectively displayed. Fluid velocity drops as the magnetic field parameter value is enhanced. An 

opposing Lorentz force is generated in an electrically conducting fluid when a magnetic field in a 

transverse direction to the flow is introduced. As the magnetic field value increases, the fluid velocity 

decreases as a result of this resistive force's tendency to slow the flow, as displayed in Fig. 7a. However, 

in Figs. 7b and 7c, an increase is observed in fluid temperature and concentration. This is because Ohmic 

heating (or Lorentz heating resulting from a magnetic field), which is present in the energy equation, 

acts as an additional heat source for the flow system, raising the fluid's temperature.  

As depicted in Fig. 8, Prandtl number variation has a significant impact on fluid velocity, 

temperature and concentration profiles. It is observed that a reduction in fluid velocity and temperature 

is registered while species concentration is enhanced. Physically speaking, this is correct since Prandtl 

number relates fluid momentum diffusivity to thermal diffusivity. Increasing the value of the Prandtl 

number from 0.71 to 2 leads to a drop in fluid motion. This is due to a reduction in momentum boundary 

layer thickness, hence the momentum diffusivity, leading to a reduction in fluid velocity as depicted in 

Fig. 8a. Furthermore, in Fig. 8b fluid temperature is observed to have significantly reduced. There is a 

massive increase in fluid thermal conductivity for smaller values of Prandtl number. Therefore, more 



heat diffuses away from the sheet for reducing values of Prandtl than for its increment. However, species 

concentration is observed to have improved, as displayed in Figure 8c. 

 

    

Fig. 7a Velocity for various values of Ha .                              Fig. 7bTemperature for various values of Ha . 

 

     

Fig. 7c Concentration for various values of Ha .   Fig. 8a Velocity for various values of Pr . 



   
Fig. 8b Temperature for various values of Pr .   Fig. 8c Concentration for various values of Pr . 

The Eckert number improves fluid velocity and temperature while the concentration profile is 

reduced, as displayed in Fig. 9. Eckert number describes the interaction between the fluid's enthalpy 

and kinetic energy in the flow. It depicts the process by which kinetic energy is transformed into internal 

energy as a result of work done against viscous fluid stresses. Therefore, fluid velocity and temperature 

increase while concentration boundary layer thickness decreases as viscous dissipative heat increases. 

In Fig. 10, fluid motion and species concentration are observed to have reduced while the temperature 

increases as Schmidt number is enhanced. The relationship between fluid kinematic viscosity and mass 

diffusivity is the quantity that is designated as Schmidt number (Sc) in the concentration equation. It 

explains the association between the relative thickness of the mass-transfer boundary layer and the 

hydrodynamic boundary layer. Consequently, a rise in the Schmidt number renders the fluid more 

viscous, resulting in a reduction in fluid motion and concentration while the temperature is raised. 

  

Fig. 9a Velocity for various values of Ec .    Fig. 9b Temperature for various values of Ec . 



     
Fig. 9c Concentration for various values of Ec .   Fig. 10a Velocity for various values of Sc  

 

     

Fig. 10b Temperature for various values of Sc    Fig. 10c Concentration for various values of Sc  

 

CONCLUSIONS 

The current study presents the electrically conducting two-dimensional Maxwell fluid flow through a 

stretching sheet. Viscous dissipation, inclination angle, Ohmic heating and unsteadiness parameter are 

incorporated in the optically dense fluid. By applying Runge-Kutta/Shooting technique, numerical 

solutions are obtained for the ordinary differential equations. Comparing the current findings with the 

literature that is already available, it is demonstrated that there is good agreement. The following are 

the key findings: 

• Flow motion is decelerated by inclination angle, magnetic field parameters and Prandtl number. 

However, radiation parameter, Grashof and Eckert numbers accelerated it, 

• Fluid temperature is heightened by inclination, radiation and magnetic field parameters. 

However, Grashof and Prandtl numbers cool the system, 

• Concentration of species is enhanced by inclination angle parameter, magnetic field parameter 

and Prandtl number, 

• Heat transfer rate is enhanced by Prandtl number and unsteadiness parameter. 
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NOMENCLATURE 

a, b, c constants 

A unsteadiness parameters 
2

0B  uniform transverse magnetic field 

p
C  specific heat of the fluid at constant temperature (J/kg·K) 

Cw concentration of sheet surface 

C  free-stream concentration 

D coefficient of mass diffusivity 

Ec Eckert number 

f dimensionless stream function 

g  acceleration due to gravity  

Gr local Grashof number due to temperature differences 

Gc local Grashof number due to concentration differences 

Ha2 Hartman number 

k  thermal conductivity (W/m·K) 

kc  absorption coefficient 

Nr radiation parameter 

Pr Prandtl number 

rq  Relative heat flux 

Re Local Reynolds number 

T temperature of the fluid (K) 

Tw temperature of the sheet surface 

T  free-stream temperature 

Sc Schmidt number 

u  velocity component along x direction 

v velocity component along y direction 

Greek Symbols  

αc thermal diffusivity 

β Maxwell parameter  

βc solutal expansion coefficient 

βT thermal expansion coefficient 

γ inclination angle 

η similarity variable 

θ dimensionless temperature  

λ relaxation time parameter of the fluid 

0  constant 

μ dynamic viscosity 

ν kinematic viscosity 

ρ fluid density (kg/m3) 

σ electrical conductivity 

σc Stefan Boltzmann constant 

ψ stream function 
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