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Abstract The geometric Brownian motion (GBM) model is a mathematical model that has been

used to model asset price paths. By incorporating Hurst parameter to GBM to characterize long-

memory phenomenon, the geometric fractional Brownian motion (GFBM) model was introduced,

which allows its disjoint increments to be correlated. This paper investigates the accuracy of GBM

and GFBM in modelling Malaysia’s crude palm oil price simulation, and to see display of persistent

or anti-persistent behaviour across different periods. Results show that the GFBM model is more

accurate than the GBM model in simulating future price path for the given data set.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

According to [5], financial assets can be divided into risk-free
assets, such as government-issued bonds, and risky assets, such
as stocks and commodities. The efficient market hypothesis

(EMH) states that current price of a stock reflects the historical
prices of the stocks [6]. Hence, the price of a stock is uncertain
and unpredictable. This property of a stock price attracts stud-
ies on modeling of stock prices, such as the regression method

[7,8]. Prediction models reflect the behaviour of the stock
prices and conform to historical prices in order to generate
future price paths that a stock may follow. Modeling and pre-
dicting stock price paths have been an important topic in

financial studies. Prediction models are important for investors
to guarantee minimum investment risk and to provide with an
overlook of the price paths to make financial and investment

decision. This is the motivation behind many studies that have
developed and constructed prediction models.

Geometric Brownian motion (GBM) model is a stochastic

process that assumes normally distributed and independent
stock returns. The GBM model is known for its application
in stock price modeling [4], and option pricing [1]. In the for-

mer application, many studies have modelled stock price paths
using the GBM model, such as [11] simulates stock price paths
for Australian companies and shows that the simulated prices
are aligned with actual prices. While most of these studies

model stock prices, others discovered that commodity prices
also exhibit randomness which can be explained mathemati-
cally via the GBM model, such as oil, petroleum product
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and natural gas [9], rice and coffee [10], rubber [13], gold [53],
and iron ores [41]. However, the major discrepancy in GBM
modeling is that it assumes real stocks increments to be mutu-

ally independent which contradicts practical investigation of
real data that mostly exhibit dependency known as self–simi-
larity or long memory [2]. Although the GBM model is proven

to be cheaper and an efficient method in time series modelling
[12], this assumption cannot be relaxed. In order to character-
ize this behaviour, the geometric fractional Brownian motion

(GFBM) was introduced by [2] by incorporating the Hurst
exponent in the stock price dynamics to improve the accuracy
of stock price modelling by providing information on the level
of self-similarity in a given time series. It has been used prior to

stock price modelling in other fields, such as hydrology [17,30]
and communication technology [14–16]. Recently, the work of
[44] associated the SIRS model with fractional Brownian

motion to model epidemic diseases such as the Coronavirus.
The Hurst exponent indicates the intensity of long-range

dependence in a time series, and it can be estimated heuristi-

cally using various methods as mentioned in [20], while [39]
considered GFBM to develop a method for Hurst parameter
estimation in high frequency financial time series data. More-

over, [37] using real data on a variety of stock prices to esti-
mate Hurst parameter and obtained the option price driven
by fractional Brownian motion. The most straightforward
method used to estimate the Hurst exponent is the rescaled

range (R/S) [42,19] analysis method because no assumptions
are needed for the underlying process of the times series, and
it uses simple statistics. Other methods are the Higuchi method

[26], the periodogram method [28], and the variance method
[27]. The work of [51,52] introduced the complete maximum
likelihood estimation method to estimate the unknown param-

eters in GFBM for constant volatility case, while [51] extended
this method for stochastic volatility case.

The GFBM model is more general than the GBM model,

and it can explain more behaviours of stock price changes.
Past studies have tried to analytically estimate the parameters
of this model, however, the adaptation of such estimates
proved to be mathematically and timely expensive [53,35,36],

thus in this paper, readily available heuristic methods to esti-
mate the Hurst exponent will be employed. The GFBM model
is analyzed in the stock market [3,4,29], and many considers

the GFBM model for option pricing [32–34]. In another
instance, [38] used quadratic variation coupled with maximum
likelihood approach to solve the problem with estimating

unknown parameter of GFBM in pricing the option based
on Chinese financial market performance. Given its tractabil-
ity and similarity with the classical Brownian motion, where
both are self-similar with similar Gaussian structure, the

GFBM model is suitable to capture volatility persistence via
long memory process to keep the pricing framework largely
intact. Moreover, [21,22] overcame arbitrage opportunity in

GFBM models, and [19,23] developed stochastic calculus for
GFBM which enables wider applications of the GFBM model,
such as in [2,24,25].

The fractional differential equations can be used to describe
various fields of natural science than the differential equations
with integral order [49,49]. There are many mathematical

methods for solving nonlinear fractional differential equations,
see [45]. Other methods that have been applied on nonlinear
models can be found in [44,46,47].
In this study, the authors apply the GBM and GFBM to
simulate and evaluate the crude palm oil price paths in Malay-
sia market. To the authors’ best knowledge, no studies on the

application of GFBM model can be found for Malaysian com-
modity market. The focus is on simulating and testing the
model to assess the accuracy of the simulation with compar-

ison to the actual prices by computing the mean absolute per-
centage error (MAPE) taken relative to the simulated prices, as
well as to see display of persistent and anti-persistent beha-

viour of the given data set.
The organization of the study is as follows: Section 2

describes the GBM and GFBM models. Section 3 reviews
some of the existing preliminary methods for estimating the

Hurst exponent, the mean and volatility. Section 4 presents
the numerical results and analysis, and Section 5 concludes
the study.

2. Modeling commodity price by using GBM and GFBM

In this section, we give a brief description of the geometric

Brownian motion (GBM) and geometric fractional Brownian
motion (GFBM) models, and the price path dynamics driven
by these two models. Some definitions used in this study can

be found in [2,20,19], which are as follows:

Definition 1. A stochastic process B tð Þ is a Brownian motion if
it satisfies the following:

(1) For any t > s; v > u and u > t, the increments
B tð Þ � B sð Þ and B vð Þ � B uð Þ are independent.

(2) Each increment is a zero-mean Gaussian random vari-

able such that for all t > s;B tð Þ � B sð Þ � N 0; t � sð Þ.
(3) B 0ð Þ ¼ 0.

Definition 2. Let H be a constant belonging to 0; 1ð Þ. A geo-

metric fractional Brownian motion (GFBM), BH tð Þð ÞtP0, with

the Hurst index H is a continuous and centred Gaussian pro-
cess with covariance function:

E BH tð ÞBH sð Þ½ � ¼ 1

2
t2H þ s2H � jt� sj2H
� �

; ð1Þ

where the following properties hold:

(i) BH 0ð Þ ¼ 0 and E BH tð Þ½ � ¼ 0 for all t P 0.
(ii) BH has homogeneous increments, i.e., for

s; t P 0; BH t þ sð Þ � BH sð Þ has the same law as that of
BH tð Þ.

(iii) BH is a Gaussian process and E BH tð Þ½ �2 ¼ t2H ; t P 0, for
all H 2 0; 1ð Þ.

(iv) BH has continuous trajectories.

The following theorems present the asset price dynamics
that follows GBM and GFBM [19, see].

Theorem 1. A stochastic process S tð Þ follows a geometric
Brownian motion (GBM) if the asset price follows the

following dynamics:

dS tð Þ ¼ lS tð Þdtþ rS tð ÞdB tð Þ; ð2Þ
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where B tð Þ is a Brownian motion, l is the constant drift, and r
is the constant volatility. The solution to Eq. (2) for any arbi-
trary initial value S 0ð Þ is given as follows:

S tð Þ ¼ S 0ð Þ exp lt� 1

2
r2tþ rB tð Þ

� �
: ð3Þ

Theorem 2. A stochastic process S tð Þ follows a geometric frac-

tional Brownian motion (GFBM) if the asset price follows the
following dynamics:

dS tð Þ ¼ lS tð Þdtþ rS tð ÞdBH tð Þ; ð4Þ
where BH tð Þ is an FBM with H 2 0; 1ð Þ; l is the constant drift,
and r is the constant volatility. By using the Wick Itô Skoro-
hod integrals for GFBM as in [19], the solution to Eq. (4) for

any arbitrary initial value S 0ð Þ is given as follows:

S tð Þ ¼ S 0ð Þ exp lt� 1

2
r2t2H þ rBH tð Þ

� �
: ð5Þ
3. Parameters estimation

In this section, we briefly describe the methods used in this
study to estimate the parameters required to simulate the asset

price paths under GBM and GFBM models.
Given a series of logarithmic returns rDt tið Þ for i;¼ 1; . . . ;N

for the GBM model, we need to estimate the sample mean and

volatility, respectively, as follows:

l ¼ 1

N

XN
i¼1

rDt tið Þ;

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN
i¼1

rDt tið Þ � lð Þ2
vuut :

On the other hand, for the GFBM model, we need to first esti-
mate the Hurst parameter in order to obtain the sample mean
and volatility. The value of the Hurst parameter may explain

three situations [19, see]:

(i) If H 2 0; 1
2

� �
, this implies that the disjoint increments are

positively correlated, and is known as exhibiting short
memory dependency.

(ii) If H ¼ 1
2
, this is the classical Brownian motion.

(iii) If H 2 1
2
; 1

� �
, this implies that the disjoint increments are

negatively correlated, and is known as exhibiting long

memory dependency.

In this study, the aggregated variance method, the absolute

moment method, and the Higuchi method are implemented to
estimate the Hurst parameter, H, which are briefly described
here. For more details, one may refer to [20,19].

The aggregated variance method is based on the self-
similarity property of a sample. Following [20], the logarithmic

returns X are divided into N
m
blocks of size m, then calculates:

X mð Þ kð Þ ¼ 1

m

Xkm
i¼ k�1ð Þmþ1

X ið Þ
for k ¼ 1; 2; . . . ;N=m, and its sample variance is obtained as

such:

Var X mð Þ� � ¼ 1

N=m

XN=m

k¼1

X mð Þ kð Þ� �2 � 1

N=m

XN=m

k¼1

X mð Þ kð Þ
 !2

; ð6Þ

where a straight line with slope, b ¼ 2H� 2, is formed. Mean-
while, following [19], the absolute moment method similarly

divides the logarithmic returns X into N
m
blocks of size m, then

calculates:

X mð Þ kð Þ ¼ 1

m

Xkm
i¼ k�1ð Þm

X ið Þ

for i ¼ 1; 2; . . . ;N=m, and

bXN ¼ 1

N

XN
i¼1

X ið Þ:

Then it calculates the absolute moment of the series as such:

AM X mð Þ kð Þ� � ¼ 1

N=m

XN=m

k¼1

X mð Þ kð Þ � bXN

			 			: ð7Þ

On the other hand, the Higuchi method [26,20] takes the par-
tial sums of the logarithmic returns X as such:

Y nð Þ ¼
Xn
i¼1

Xi;

and find the normalized length of the curve as follows:

L mð Þ¼N�1

m3

Xm
i¼1

N� i

m


 ��1 XN�ið Þ=m½ �

k¼1

Y iþkmð Þ�Y iþ k�1ð Þmð Þj j;

ð8Þ
where N is the length of the logarithmic returns, m is a block

size and N�i
m

� 
is the greatest integer function. A straight line

with slope, D ¼ 2�H, is formed, and the estimation of
parameter H is obtained by plotting L mð Þ versus m on a
log–log scale.

Using the estimated Hurst parameter and adapting to [29],
the sample volatility and mean of the returns under GFBM
can be estimated, respectively, as follows:

r̂ ¼ rffiffiffiffiffiffiffiffiffiffiffiffi
jDtj2H

q ;

and

l̂ ¼ l
Dt

þ r̂2

2
;

where Dt ¼ t2 � t1 ¼ . . . ¼ tN � tN�1.

4. Numerical results

This section illustrates the modeling of the commodity prices
using the GBM and GFBM models that are described in Sec-

tion 2 and parameters estimation using methods presented in
Section 3.

According to [20], the fractional Gaussian noise (FGN) is

the increment process of a GFBM, such that:

X tð Þ ¼ BH tþ 1ð Þ � BH tð Þ:



Table 1 Mean l and volatility r.

Period GBM GFBM

l r l̂ r̂

3 years 0.0067 0.0606 0.0086 0.0606

4 years �0.0010 0.0587 0.0007 0.0587

5 years �0.0058 0.0558 �0.0043 0.0558
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For the simulation of the fractional Gaussian noise (FGN), we
choose an exact method, which is the Cholesky decomposition
that decomposes the covariance matrix into a product of a
lower triangular matrix and its conjugate-transpose

C nð Þ ¼ L nð ÞL nð Þ�. If the covariance matrix is proven to be
positive-definite, then L nð Þ will have real entries and

C nð Þ ¼ L nð ÞL nð Þ0. A detailed description can be found in [18].

In 2014–2018, the economy of Malaysia was recovering
from the world economic downturn and there was a fall in glo-
bal demands of palm oil. The data that is used in this study is

the monthly average price (MYR/tonne) for crude palm oil
(local delivered) from January 2014 until December 2019,
which was obtained from the official website of the Economics

and Industry Development Division, Malaysian Palm Oil
Board [31].

We firstly estimate the Hurst parameter using the methods

described in the previous section, which then be used to esti-
mate the standard deviation and mean of the crude palm oil
prices under GBM and GFBM models from January 2014 to
January 2017 (3 years), January 2014 to January 2018 (4 years),

and January 2014 to January 2019 (5 years)1. Then, using Eqs.
(3) and (5), we simulate three corresponding price paths with
the estimated parameters and compare these with the actual

price paths.
Given three periods with sample size, N ¼ 36; 48; 60,

respectively, the estimated values of the sample mean l and

volatility r for the GBM dan GFBM models are documented
in Table 1.

Fig. 1 plot the actual prices and simulated prices using

GBM model for a period of 3, 4 and 5 years, respectively.
The estimated values of the Hurst parameter for the periods

are given in Table 2. Anti-persistence in the series implies that
the series is mean-reverting; hence future values have a ten-

dency to return to a long-term mean. By the absolute moment
analysis, the Hurst values are smaller than 0:5 for all three
periods which indicate that the logarithmic returns are nega-

tively correlated. For the aggregated variance and Higuchi
analysis, the Hurst values are higher than 0:5 for the 4-year
period which indicate positively correlated logarithmic returns,

whereas the 3-year period and 5-year period show negatively
correlated logarithmic returns for the estimated Hurst values.

Moreover, by the absolute moment method, the series of
the logarithmic returns of the given data set displays slight

anti-persistent behaviour for the 3-year period and 4-year per-
iod, where H ¼ 0:4043 and H ¼ 0:3657, respectively. The plots
are as shown in Figs. 2(a) and 3(a). Meanwhile, strong anti-

persistent behaviour is displayed for the 5-year period, where
H ¼ 0:2343, as depicted in Fig. 4(a).
1 The estimations were implemented in MATLAB and conducted on

an Intel(R) Core(TM) i5-4590T CPU @ 2.00 GHz machine running

under Windows 10 with 8 GB RAM
Following that, by using the aggregated variance method,
the series shows slight anti-persistent behaviour for the 3-

year period, where H ¼ 0:4286. The plot can be seen in
Fig. 1 Price path simulation using GBM.



Table 2 Estimated Hurst values, H.

Period Hurst parameter, H

Absolute Moment Aggregated Variance Higuchi

3 years 0.4043 0.4286 0.4574

4 years 0.3657 0.5203 0.5001

5 years 0.2343 0.4999 0.4643
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Fig. 2(b). As for the rest of the simulation, the Hurst parame-
ters estimated using the aggregated variance method, are close
Fig. 2 Price path simulation for a 3-year period using GFBM.
to half for the 4-year period and 5-year period, as well as using
the Higuchi method for all three periods. The plots are
depicted in Figs. 3(b), 4(b), 2(c), 3(c) and 4(c).

To compare the accuracy of the GBM and GFBM models
in terms of forecasting or simulating the price path of the
monthly palm oil price, we compute the mean-average percent-

age error (MAPE). The results are provided in Table 4.
From Table 4, the MAPE value obtained via the GBM

model is 10:6587, on average. As for the GFBM models, the

MAPE values are obtained separately correspond to the Hurst
estimator method that was used. Using the absolute moment
method to estimate the Hurst parameter, the MAPE value
Fig. 3 Price path simulation for a 4-year period using GFBM.



Fig. 4 Price path simulation for a 5-year period using GFBM.

Table 3 Forecast Accuracy Judgement Scale.

� Forecast Accuracy

< 10% Very accurate

11� 20% Accurate

21� 50% Inaccurate

> 50% Very inaccurate

Source: [40]

Table 4 MAPE values, �.

Period GBM GFBM

Absolute

Moment

Aggregated

Variance

Higuchi

3 years 10.4471 9.0557 8.9717 9.5434

4 years 10.5903 9.2198 8.4206 8.3658

5 years 10.9386 9.5844 7.6137 9.0929
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for the GFBM model is 9:2866, on average. While using the
aggregated variance method, it is 8:3353, on average. Lastly,
the Higuchi method returns an average of 9:0007 MAPE value.

Therefore, using the judgement scale given in Table 3, it can be
seen that overall, the GBM and GFBM models produce highly
accurate forecast price. However, the results show higher accu-

racy in the forecast that is produced by the GFBM models.

5. Conclusions

This study tests the accuracy of two mathematical models, geo-
metric Brownian motion (GBM) and geometric fractional
Brownian motion (GFBM) models in simulating the future

price paths of Malaysia’s crude palm oil prices. In order to
use these models, unknown parameters need to be estimated
using historical prices of the commodity. The accuracy of the

simulations is determined by computing the mean-average per-
centage error (MAPE), where we conclude that both models
are able to produce highly accurate forecast prices. However,
the GFBM model is more accurate than the GBM models

for three different Hurst estimators.
Future work can consider to simulate the fractional Gaus-

sian noise using methods such as fast Fourier transform (FFT)

which reduces the computation time taken by the Cholesky

method, O N3
� �

, even though the Cholesky method is more

straightforward to implement. Moreover, more factors can
be incorporated to the GBM and GFBM models such as
mean-reversion with jumps models, or seasonality to replicate
the commodity market more closely.
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[4] S. Rostek, R. Schöbel, A note on the use of fractional Brownian

motion for financial modeling, Econ. Model. 30 (1) (2013) 30–

35.

[5] M. Capinski, T. Zastawniak, Mathematics for finance: an

introduction to financial engineering, Springer, 2006.

[6] E.F. Fama, Efficient Capital Markets: A Review of Theory and

Empirical Work, J. Finance 25 (2) (1969) 383–417.

[7] T.C.E. Cheng, Y.K. Lo, K.W. Ma, Forecasting stock price

index by multiple regression, Manage. Finance 16 (1) (1990) 27–

31.

[8] M.M. Rounaghi, M.R. Abbaszadeh, M. Arashi, Stock price

forecasting for companies listed on Tehran stock exchange using

multivariate adaptive regression splines model and semi-

parametric splines technique, Phys. A 438 (2015) 625–633.

[9] J. Chan, A. Grant, Modeling energy price dynamics: GARCH

versus stochastic volatility, Energy Econ. 54 (2016) 182–189.

[10] T.N.T. Nguyen, N.T.A. Tran, Methodology to forecast

commodity prices in Vietnam, Int. J. Econ. Finance 7 (5)

(2015) 44–49.

[11] K. Reddy, V. Clinton, Simulating Stock Prices Using Geometric

Brownian Motion: Evidence from Australian Companies,

Austral. Account., Bus. Finance J. 10 (3) (2016) 23–47.

[12] M.A. Djauhari, S.L. Li, R.M. Salleh, Modeling Positive Time

Series Data: A Neglected Aspect in Time Series Courses, Am. J.

Appl. Sci. 13 (7) (2016) 860–869.

[13] S.N.I. Ibrahim, Modeling Rubber Prices as a GBM Process,

Indian J. Sci. Technol. 9 (28) (2016).

[14] J. Beran, R. Sherman, M.S. Taqqu, W. Willinger, Long-range

dependence in variable-bit-rate video traffic, IEEE Trans.

Commun. 43 (1995) 1566–1579.

[15] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the

self-similar nature of Ethernet traffic (extended version), IEEE/

ACM Trans. Network. 2 (1994) 1–15.

[16] W. Willinger, M.S. Taqqu, R. Sherman, D.V. Wilson, Self-

similarity through high variability: statistical analysis of

Ethernet LAN traffic at the source level, IEEE/ACM Trans.

Network. 5 (1997) 71–86.

[17] B.B. Mandelbrot, Une classe de processus homothgtiques a soi;

Application a la loi climatologique de H.E. Hurst, C.R. Acad.

Sci. Paris 260 (1965) 3274–3277.

[18] M. Kijima, C.M. Tam, Fractional Brownian motions in

financial models and their Monte Carlo simulation, in: W.K.

Chan (Ed.), Theory and Applications of Monte Carlo

Simulations, Rijeka, Croatia, InTech, 2013, pp. 53–85.

[19] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus

for Fractional Brownian Motion and Applications, Springer-

Verlag, London Ltd, 2008.

[20] M.S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-

range dependence: an empirical study, Fractals 3 (4) (1995) 785–

798.

[21] Y. Hu, B. Øksendal, Fractional white noise calculus and

applications to finance, Infinite Dimens. Anal., Quant. Probab.

Related Top. 6 (1) (2003) 1–32.

[22] R.J. Elliot, Van der Hoek, J.A general fractional white noise

theory and applications to finance, Math. Finance 13 (2) (2003)

301–330.

[23] Y. Mishura, Stochastic calculus for fractional Brownian motion

and related processes, Springer, 2008.

[24] S. Rostek, Option Pricing in Fractional Brownian Markets,

Springer, 2009.

[25] A.N. Shiryaev, Essentials of Stochastic Finance. Facts, Models,

Theory, World Scientific, Singapore, 1999.

[26] T. Higuchi, Approach to an irregular time series on the basis of

the fractal theory, Physica D 31 (2) (1988) 277–283.

[27] V. Teverovsky, M. Taqqu, Testing for long-range dependence in

the presence of shifting means or a slowly declining trend, using

a variance-type estimator, J. Time Ser. Anal. 18 (3) (1997) 279–

304.
[28] Y. Liu, Y. Liu, K. Wang, T. Jiang, L. Yang, Modified

periodogram method for estimating the Hurst exponent of

fractional Gaussian noise, Phys. Rev. E 80 (6) (2009),

0662070662014.

[29] Z. Feng, Stock-price modeling by the geometric fractional

Brownian motion: A view towards the Chinese financial market

(Identifier diva2:1257290) [Bachelor’s Dissertation, Linnaeus

University]. Retrieved from http://urn.kb.se/resolve?urn=urn:

nbn:se:lnu:diva-78375, 2018..

[30] F.J. Molz, H.H. Liu, J. Szulga, Fractional Brownian motion and

fractional Gaussian noise in subsurface hydrology: A review,

presentation of fundamental properties, and extensions, Water

Resour. Res. 33 (10) (1997) 2273–2286.

[31] Economics and Industry Development Division, Malaysian

Palm Oil Board (MPOB). (2020). Monthly prices of palm oil

products traded 2014 - 2019 [Data file]. Retrieved from: http://

bepi.mpob.gov.my.

[32] Y. Ouyang, J. Yang, S. Zhou, Valuation of the Vulnerable

Option Price Based on Mixed Fractional Brownian Motion,

Discrete Dynam. Nat. Soc. 2018 (4047350) (2018).

[33] W.L. Xiao, W.G. Zhang, X.L. Zhang, Y.L. Wang, Pricing

currency options in a fractional Brownian motion with jumps,

Econ. Model. 27 (5) (2010) 935–942.

[34] K. Xiang, Y. Zhang, X. Mao, Pricing of Two Kinds of Power

Options under Fractional Brownian Motion, Stochastic Rate,

and Jump-Diffusion Models, Abstract Appl. Anal. 2014

(259297) (2014).

[35] M. Alhagyan, M. Misiran, Z. Omar, Estimation of geometric

fractional Brownian motion perturbed by stochastic volatility

model, Far East J. Math. Sci. 99 (2) (2016) 221–235.

[36] M. Alhagyan, M. Misiran, Z. Omar, Geometric fractional

Brownian motion perturbed by fractional Ornstein-Uhlenbeck

process: Application on KLCI option pricing, Open Access

Library J. 3 (2016) 1–12.

[37] A. Lahiri, R. Sen, Fractional Brownian markets with time-

varying volatility and high-frequency data, Econ. Stat. (2018),

https://doi.org/10.1016/j.ecosta.2018.10.004.

[38] W. Xiao, W. Zhang, X. Zhang, Parameter identification for the

discretely observed geometric fractional Brownian motion, J.

Stat. Comput. Simul. 85 (2) (2015) 269–283.

[39] E. Bayraktar, H.V. Poor, K.R. Sircar, Estimating the fractal

dimension of the S&P 500 index using wavelet analysis, Int. J.

Theoret. Appl. Finance 7 (05) (2004) 615–643.

[40] K.D. Lawrence, R.K. Klimberg, S.M. Lawrence, Fundamentals

of Forecasting using Excel, Industrial Press, New York, 2009.
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