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Abstract: Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops
adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative
traits that show high environmental influence. In this study, a recombinant inbred line population
(RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments.
A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM.
Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified sev-
enteen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW)
and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65%
phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and
pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene,
TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl
transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily
gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to
72.61%, highlighted their significant role in determining the yield- and quality-related traits. The
significant G × E interaction revealed the existence of the major role of the environment in determin-
ing the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the
vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW
in peanut breeding. This study provides understanding of the genetic factor governing peanut traits
and valuable insights for future breeding efforts aimed at improving yield and quality.

Keywords: yield; phenotype; genes; markers; epistatic

1. Introduction

Peanuts (A. hypogaea L.) hold a prominent position among oilseed crops due to their
numerous nutritional attributes. They are widely recognized as an excellent source of edible
oil, providing a high-quality oil that is widely used in cooking and food preparation. In
addition to their oil content, peanuts are also valued for their protein content. Furthermore,
peanuts offer dietary fiber, which aids in proper digestion and therefore is considered
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crucial for digestive health. Peanuts pack a range of essential minerals and vitamins,
including magnesium, phosphorus, potassium, and B vitamins like niacin and folate. These
nutrients play vital roles in various bodily functions, such as energy production, bone
health, and nerve function [1]. Their shells are used in the animal feed, fuel, and fertilizer
industries [2]. The haulm, typically utilized as animal feed, serves the dual purpose of
providing fodder while also contributing to nitrogen fixation in the soil. The nitrogen
fixation capability of the haulm can range from 100 kg ha−1 to 152 kg ha−1 [3]. Peanuts
are grown in more than 100 countries worldwide, producing 53.9 million metric tons
(mt) from 32.7 million ha area [4]. The crop is grown commercially between 40◦ N and
40◦ S latitudes; the largest producer in the world is China (17.9 mt), followed by India
(9.9 mt) and Nigeria (4.5 mt). Peanut production is confronting severe biotic and abiotic
stresses due to climate change, which emphasizes the necessity of climate-resilient crop
production considering global food security. Agronomic traits such as biomass, pod weight,
seed weight, and shelling percentage largely influence the yield and play a major role
in the domestication, breeding, and selection of new peanut cultivars [5]. Cultivated
peanut around the world has a narrow genetic base. The linkage drag of desirable and
undesirable traits often imposes biological constraints in developing improved cultivars
by conventional crossing and selection [6]. The crucial factors that affect the yield are the
100-pod weight (HPW), 100-seed weight (HSW), haulm yield, and shelling percentage
(SP) [7]. Traditional breeding methods face challenges when dealing with these quantitative
traits. Moreover, these traits are typically governed by several genes, each with a relatively
modest impact, which adds to their complexity and makes the breeding process laborious
and time-consuming. Utilizing genomics-assisted breeding (GAB) plays a vital role in
enhancing peanut yields substantially. Through the application of GAB, researchers can
pinpoint and choose particular genes linked to yield-attributing traits, facilitating the more
efficient development of high-yielding varieties compared to relying solely on traditional
breeding methods [8].

Furthermore, genotype by environment interaction (G × E) plays a significant role in
determining the cultivar performance, imposing constraints in identifying the traits needed
to improve productivity. The last decade has witnessed an increased demand for peanuts
compared to other oilseed crops due to the increased use of peanuts in confectionary,
health-sensitive consumers, and benefits to traders. Notably, the phenotypic selection of
lines having significantly higher seed weight is difficult in standing crops. The availability
of linked markers to seed weight will unfurl the scope of marker-based early-generation
selection. The sequenced diploid ancestors have provided insights into understanding the
genome of cultivated type [9]. Evolutionary studies report low levels of genetic variation
and polymorphism between the two sub-genomes [10,11].

Over the past five years, the increasing availability of genomic resources for wild
species in peanut has opened up new avenues for the exploitation of genetic potential [12].
Several studies were carried out to construct a genetic map to identify quantitative trait
loci (QTL) associated with yield and its attributing traits [13–15]. To date, a few SSR-
based genetic maps are available for peanuts [16–18]. However, the use of SSR markers
is time-consuming and labor-intensive. It has low throughput [19], while the presence
of abundant genome-wide single-nucleotide polymorphisms (SNPs) can be exploited
for map construction and for identifying genomic regions that control target traits [20].
Various approaches, including genome-wide association studies, GWASs [21], bulked
segregant analyses, BSAs [16], and specific-locus amplified fragment sequencing, SLAF-
seq [22] have been experimented upon for the identification and narrowing of the genomic
regions/QTLs associated with yield- and quality-related traits in peanuts [5,23]. Recently,
it has been shown that the QTL-seq approach could help in identifying a 1.89 Mb region
on chromosome B06 linked to seed weight [24] and overlapped regions on A09 and B02
for shelling percentage [25]. Similarly, the identification of 36 marker–trait associations
(MTAs) for pod length, pod length–width ratio, and 100-pod weight [21] and six QTLs
for seed weight [23] added significantly to the understanding of the genetic basis of these
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traits. A total of three overlapping QTL hotspots were identified for haulm weight, pod
weight, 100-seed weight, and SP, indicating the significant impact of these traits on peanut
yield [26].

Additionally, mapping minor alleles and their interactions is key to understanding
their role in genomic-assisted breeding for improving yield-related traits [27]. Most studies
have targeted only the additive effects of genetic components, whereas minor alleles
and epistatic interactions have remained unaddressed. Apart from additive QTLs, the
phenotype of a plant is also regulated by epistatic QTLs and, therefore, should be considered
in QTL analysis studies [28,29]. The intricate polygenic nature of the yield-attributing traits,
its low heritability, minor allele interactions, and the substantial G × E interactions pose
limitations on developing high-yielding cultivars that can perform well across diverse
locations [30]. Therefore, the objective of the current study was to use a recombinant inbred
line (RIL) population (Valencia-C × JUG-03) to address the minor alleles’ interactions and
identify the genomic regions and candidate genes associated with yield- and quality-related
traits. GBS-based genotyping data were used to construct a dense genetic map. The genetic
map, genotyping data, and multi-environment phenotyping data were used to identify the
genomic regions associated with yield- and quality-related traits in peanuts.

2. Materials and Methods
2.1. Phenotyping RIL Population for Yield and Quality Traits

An RIL population comprising 288 lines derived from a cross between Valencia-C
× JUG 03 was developed and advanced by a single-seed descent method [31,32]. ‘New
Mexico Valencia-C’ is a drought-susceptible and high-yielding Valencia-type cultivar with
a higher percentage of 3–4 seeded pods and relatively early yielding compared to other
Valencia cultivars [33]. JUG 03 is a drought-tolerant, relatively low-yielding cultivar derived
from the cross ICGS 76 × CSMG 84-1 released in Gujarat, India. RILs were phenotypically
assessed for yield and quality traits across two environments in India, ICRISAT-Patancheru
(E1) (17.51◦ N, 78.27◦ E, 920 m), and Kadiri (E2) (14.11◦ N, 78.16◦ E, 2572 m) during the
rainy season of 2019, with two replications in randomized block design. The plants were
planted in the field with a spacing of 30 × 10 cm. All recommended agronomical practices
were followed when conducting experimental procedures at each location.

2.1.1. Phenotyping for Yield-Related Traits

The RIL population was evaluated across two locations for yield-related traits, in-
cluding pod yield, haulm yields, HPW, HSW, and SP. The pod yield was calculated by
multiplying the pod weight per plant and the number of plants in one ha area and measured
in kg ha−1 [34]. Similarly, haulm yield was calculated by multiplying the haulm weight
per plant and the number of plants in one ha area and measured in kg ha−1. HSW was
measured as the weight of one hundred seeds in grams (g), and HPW was calculated as the
weight of one hundred pods in g. Shelling percentage was measured as the percentage of
the ratio of kernel weight to the total pod weight.

2.1.2. Phenotyping for Physiological Traits

A soil plant analytical development (SPAD) chlorophyll meter provides a dimension-
less measurement which is determined by comparing the amount of light absorbed at
430 nm (the optimal wavelength for chlorophyll a and b) with the amount absorbed at
750 nm (near-infrared) with no transmittance. As a result, the readings obtained from an
SPAD chlorophyll meter (SCMR) indicate the concentration of chlorophyll in a leaf. The
SCMR was measured using Minolta SPAD 502 (Tokyo, Japan) from the third completely
expanded leaf from the top of the main stem as per the procedure described by [35].

2.1.3. Phenotyping for Oil Content, Fatty Acids, and Protein Content

The oil content, protein estimation, and fatty acids such as linoleic acid and oleic acid
were phenotypically assessed in a population of 288 RIL individuals using near-infrared
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reflectance spectroscopy (NIRS) (Model XDS RCA, FOSS Analytical AB, Sweden, Denmark)
and measured in percentages [36].

2.2. Phenotypic Analysis

The analysis of phenotypic data was carried out by using the packages “doebioresearch
version 0.1.0” and “Variability version 0.1.0” in R software [37]. Analysis of variance
(ANOVA), estimation of phenotypic and genotypic coefficient of variation (PCV and GCV),
and broad sense heritability values were found for both environments.

2.3. DNA Isolation and Sequencing

The leaf samples were taken from the plants 25–30 days after being sown from the
RIL population and two parents for DNA isolation. The Nucleospin Plant II kit (Macherey-
Nagel, Düren, Germany) was used for isolating the DNA from the collected leaf sam-
ples [38]. The DNA quality was checked on 0.8% agarose gel. Genotyping-by-sequencing
(GBS) [39] was performed for the 288 RILs to identify the SNP. For this, 10 ng of DNA from
each line was digested using restriction endonuclease ApeKI. This enzyme recognizes the
site G/CWCG followed by the ligation of barcode adapters to digested products. An equal
proportion of adapter-ligated fragments was used for library construction. These libraries
were filtered by amplifying to remove additional adapters. These libraries were sequenced
on the HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA) to produce numbers of
sequence reads.

2.4. SNP Calling and Filtering

TASSEL v4.0 [40] was used for SNP discovery from the FASTAQ files of raw sequence
reads of the RILs and parents. For SNP calling, the draft genome sequences of diploid
progenitors (A. ipaensis and A. duranensis) were used as the reference genome assembly [9].
Perfectly matched barcodes with four base remnants of the digestion site of the restriction
enzyme in sequencing reads generated for RIL and parental genotypes were detected using
in-house script. The sorting and de-multiplexing of the sequence reads was carried out
using the above information on barcoding. Trimming was carried out on available reads up
to the first 64 bases, starting from the restriction site of the endonuclease enzyme. The reads
containing ‘N’ within the first 64 bases were identified and filtered. The remaining sequence
reads (tags) were aligned on draft genome sequences of progenitors using the Burrows–
Wheeler Alignment (BWA) tool [41]. None of the lines had >50% missing information and
≤0.3 minor allele frequency (MAF). The FSFHap algorithm was executed in TASSEL v4.0
throughout the mapping population to identify and impute missing data. Further, the
filtrations of MAF with a yardstick of 0.2 were applied to remove missing SNPs, and the
resultant SNPs were used for genetic mapping and QTL analysis [42].

2.5. Construction of Genetic Linkage Map and QTL Analysis

Usually, the markers had a segregation ratio of 1:1 for the RIL population. Those
SNPs were said to be distorted, which were not as per the expected segregation ratio.
The Chi-square (χ2) values calculated for each SNP marker were used to determine the
goodness of fit to the expected 1:1 segregation ratio; highly distorted and unlinked markers
were filtered out and not considered for the linkage map construction The linkage map
was constructed using JoinMap v4 [43]. The regression mapping algorithm was used for
the grouping and ordering of markers. The recombination frequency was converted into
map distance (cM) using Kosambi’s mapping function. Those markers that had zero cM
intervals had zero recombination frequency. Based on LOD scores ranging from 3 to 10 and
a minimum recombination frequency threshold of 50%, the markers were arranged in
an orderly manner in 20 linkage groups (LGs). The package “LinkageMapView” version
2.1.2 was used to draw final linkage map in R-studio [44]. The genotypic and phenotypic
data, along with the linkage map, were used for composite interval mapping (CIM) in
QTL Cartographer Version 2.5_011 [45]. The presence of a QTL was declared based on the
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threshold LOD determined by permutation at 1000 times for each trait separately. LOD
threshold value ≥3 and PVE >10% were considered as major QTLs.

2.6. Identification of Candidate Genes from Identified QTL Regions and Expression Analysis

The genomic region of a marker located in close proximity to the identified QTL peak
spanning 2 Mb upstream and downstream was used to study the candidate genes in peanut
base (https://Peanutbase.org/ accessed on 24 December 2021) through GBrowse (A. duranensis
and A. ipaensis) aradu.V14167.gnm1.ann1.cxSM version 1 and araip.K30076.gnm1.ann1.J37 m
version 1. The investigation of tissue-specific expression patterns of the identified candidate
genes was conducted using the A. hypogaea gene expression atlas (AhGEA) specific to the
fastigiata sub-species (BioProject ID: PRJNA484860) [46].

2.7. Identification of Epistatic (Q × Q) Effect

It is well established that the inheritance of yield- and quality-related traits is complex;
therefore, epistatic QTLs were also evaluated for identifying the effect of two or more
genomic regions on the trait expression using inclusive composite interval mapping for
epistatic (ICIM-EPI) with a step of 5 cM and 0.001 probability in ICIMapping version
4.1 [47]. The LOD threshold was determined by permutation at 1000 times as the minimum
significance level for epistatic QTLs for each trait separately.

3. Results
3.1. Phenotypic Data Analysis

ANOVA revealed significant variation among RILs for all the traits in both envi-
ronments, except for haulm yield and oleic acid in Kadiri (E2) (Supplementary Table S1).
Pooled ANOVA revealed highly significant G × E interactions for pod yield, HPW, HSW, SP,
and SCMR. However, significant variation between environments was found only for pod
and haulm yields. Among genotypes (G), significant variation was found for haulm yield,
oil content, protein content, linoleic acid, and oleic acid (Table 1) (Supplementary Table S2).

Table 1. Summary of pooled ANOVA for yield- and quality-related traits in Valencia-C × JUG-03 RIL
population.

Trait/Source of Variation
Mean Sum of Squares

Environment Replication Genotypes G × E Pooled Error

Degrees of freedom 1 1 143 143 286
Pod yield (kg ha−1) 9,047,419.28 * 207,621.32 40,307.69 61,125.05 *** 27,562.89

Haulm yield (kg ha−1) 38,793,685.30 * 227,604.46 56,512.90 * 55,332.65 36,921.52
HPW (g) 680.68 1676.18 120.94 107.35 *** 66.61
HSW (g) 1040.53 665.70 31.87 31.657 *** 17.71

SP 7696.37 2031.01 53.69 66.38 *** 39.92
SCMR 1948.92 439.82 46.98 44.46 *** 24.82

Oil content (%) 470.49 1130.28 31.43 *** 12.79 9.51
Protein content (%) 2.08 194.32 5.22 *** 2.68 1.48

Linoleic acid (%) 23.66 77.20 99.13 *** 26.02 17.11
Oleic acid (%) 526.32 867.12 137.77 *** 30.62 18.65

* and ***: significant at 5 and 0.1 percent level of probability, respectively; G × E: genotype × environment inter-
action; HPW: 100-pod weight (g); HSW: 100-seed weight (g); SP: shelling percentage; SCMR: SPAD chlorophyll
meter reading.

Among RILs, Patancheru (E1) has a broader range for traits, HPW, HSW, and SCMR
compared to E2, whereas a narrow range was observed in E1 for the traits of pod yield,
haulm yield, SP, oil content, linoleic acid, and oleic acid when compared to E2. In the
comparison between E1 and E2, the pod yield, HSW, SCMR, protein content, and linoleic
acid levels showed numerically higher values in E1 for both parents and RILs, but these
differences were not statistically significant. However, the mean of haulm yield was higher
at E2 for both parents and RILs (Table 2).

https://Peanutbase.org/
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Table 2. Mean, range, and variability components in individuals and pooled across two environments
for yield- and quality-related traits in Valencia-C × JUG-03 RILs.

Traits Environment
Parental Means

CD (5%)
Recombinant Inbred Lines

JUG-03 Valencia-C
RIL Range PCV GCV H2

Mean

Pod yield E1 580.00 890.00 266.72 675.24 580–960 25.73 16.20 39.67
E2 299.16 690.75 371.78 420.84 121.75–725.16 51.37 25.29 24.25

Haulm yield E1 465.07 297.90 171.44 434.71 229.67–608.5 24.98 15.03 36.20
E2 991.50 654.5 509.05 953.75 646.5–1418 9.22 28.53 10.45

HPW
E1 66.61 94.62 22.09 78.09 61.62–102.06 16.37 7.95 23.57
E2 74.50 82.00 6.14 75.93 73–86 5.50 3.67 44.56

HSW
E1 30.00 39.50 11.69 34.48 28–44 20.23 10.74 28.15
E2 30.05 32.60 1.33 31.79 29.9–33.2 2.78 1.79 41.58

SP
E1 47.00 58.49 14.63 53.07 45.5–63.11 15.28 6.23 16.61
E2 52.11 66.85 9.79 60.41 50.87–71.5 9.54 4.86 26.03

SCMR
E1 42.50 55.35 11.44 45.32 37.5–59.2 15.39 8.59 31.13
E2 37.60 46.15 7.94 41.64 34.9–48.35 11.23 5.75 26.24

Oil content
E1 46.23 42.47 7.62 44.26 38.41–48.94 10.11 5.14 25.87
E2 49.28 40.41 5.73 46.08 39.21–55.33 8.04 5.00 38.66

Protein
content

E1 30.50 25.98 2.52 28.91 23.03–31 5.04 2.43 23.21
E2 30.22 25.75 2.27 28.78 23.03–30.22 5.08 3.13 38.08

Linoleic acid
E1 24.47 33.10 9.46 27.91 17.01–36.23 20.35 10.96 29.02
E2 22.55 30.73 9.94 27.84 12.05–34.59 24.74 16.9 46.65

Oleic acid
E1 42.21 52.92 11.98 49.15 38.51–60.86 14.3 7.24 25.65
E2 44.14 50.32 12.9 47.24 35.59–60.15 17.39 10.56 36.92

CD: critical difference at 5% level of significance; H2: broad sense heritability; PCV: phenotypic coefficient of
variance; GCV: genotypic coefficient of variance; HPW: 100-pod weight (g); HSW: 100-seed weight (g); SP: shelling
percentage; SCMR: SPAD chlorophyll meter reading.

The parent, Valencia-C, had significantly higher pod yield, HPW, and SCMR than JUG-
03 in both environments. However, Valencia-C showed a marginal advantage over JUG-03
in terms of HSW, SP, linoleic acid, and oleic acid. It is important to note that these differences
were not statistically significant, indicating that the observed superiority of Valencia-C in
these traits may be minimal or due to random variation. As compared to Valencia-C, JUG-03
was significantly higher in magnitude for protein content only. However, when considering
haulm yield and oil content, JUG-03 only displayed a numerical superiority over Valencia-C
without reaching statistical significance. None of the traits had high heritability (>60%) in
either environment. The frequency distribution of pooled data for all the traits revealed a
normal distribution, showing their inheritance’s quantitative nature. For all the traits, the
majority of the RILs were within the parental limit, and few transgressive segregants were
observed in either direction (Figure 1).

3.2. Identification of Marker Polymorphism and Genotyping

A total of 78,614 SNPs on 288 RILs were generated to construct the linkage map.
SNPs carrying more than 80 percent missing information were filtered out. Further, a total
of 33,245 SNPs were filtered to remove monomorphic and heterozygous loci. Thereby,
distorted markers were removed using chi-square to end the disturbance produced during
linkage map construction. Therefore, a total of 3393 polymorphic SNPs remained and were
used for the construction of the linkage map.

3.3. Construction of Genetic Linkage Map

A total of 1323 loci were mapped on 20 linkage groups, spanning 2003.13 cM. In total,
558 SNP loci were mapped in the A-subgenome spanning 1079.47 cM, whereas 749 SNP
loci in B-subgenome covered 923.66 cM distance. The number of mapped loci among
chromosomes varied from 20 (B09) to 124 (B05), with map length ranging from 55.0 cM
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(A07) to 167.1 cM (A08), and the average inter-marker distance ranged from 0.60 cM (B05)
to 3.71 cM (A08) (Table 3).
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Table 3. Summary of genetic map constructed using single-nucleotide polymorphism (SNP) markers.

Chromosome Mapped Loci Map Distance (cM) Inter-Marker
Distance (cM)

Map Density
(loci/cM)

A01 58 99.50 1.72 0.58
A02 42 134.70 3.21 0.31
A03 82 142.69 1.74 0.57
A04 61 88.70 1.45 0.69
A05 67 129.80 1.94 0.52
A06 42 75.30 1.79 0.56
A07 22 55.00 2.50 0.40
A08 45 167.12 3.71 0.27
A09 47 87.30 1.86 0.54
A10 92 99.36 1.08 0.93
B01 51 112.02 2.20 0.46
B02 99 137.54 1.39 0.72
B03 89 101.21 1.14 0.88
B04 61 71.10 1.17 0.86
B05 124 74.85 0.60 1.66
B06 91 126.80 1.39 0.72
B07 98 119.96 1.22 0.82
B08 21 74.00 3.52 0.28
B09 20 72.50 3.63 0.28
B10 111 70.28 0.63 1.58

Grand Total 1323 2003.13 1.89
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3.4. QTLs for Yield and Quality Traits

Phenotypic and genotypic information on yield- and quality-related traits were used
to identify QTLs across the two environments. The threshold LOD was estimated for each
trait separately based on permutation run 1000 times (Supplementary Table S3). A total
of 17 QTLs for nine traits were detected, with the PVE ranging from 4.46% (oil content) to
14.65% (HSW). Of these seventeen QTLs, three QTLs were identified for pod yield, two for
haulm yield, one for SCMR, three for HSW, two for SP, two for oleic acid, two for oil, and
one for protein and one for linoleic acid. Four major QTLs, two for HSW and two for SP,
are mapped on chromosomes B06 and B02, respectively. (Table 4) (Figure 2).

Table 4. List of the QTLs for different traits across two environments, identified by QTL Cartographer.

QTLs Traits Env. Chr. Pos. (cM) Marker Interval LOD PVE
(%)

Additive
Effect

qPODYLD18E1 Pod yield E1 B08 28.17 S18_51822496-S18_134813874 4.88 6.87 −155.85
qPODYLD12.2E2 Pod yield E2 B02 99.71 S12_93246314-S12_100066236 4.6 6.27 −65.62
qPODYLD12.3E2 Pod yield E2 B02 106.01 S12_110782372-S12_112245066 4.78 6.53 −65.04
qHAULMYLD18E1 Haulm yield E1 B08 28.61 S18_51822496-S18_134813874 4.34 6.09 −64.16
qHAULMYLD6E1 Haulm yield E1 A06 29.16 S6_1562649-S6_1630272 3.64 9.55 149.88

qHSW12E1 HSW E1 B02 57.21 S12_42838843-S12_73270208 4.06 5.89 9.39
qHSW16E1 HSW E1 B06 120.57 S16_2332048-S16_8231918 6.65 14.65 −5.38
qHSW16E2 HSW E2 B06 120.55 S16_2332048-S16_8231918 6.11 13.87 −3.31

qSP12E1 SP E1 B02 57.23 S12_42838843-S12_73270208 4.36 10.98 13.95
qSP12E2 SP E2 B02 57.21 S12_42838843-S12_73270208 4.43 11.65 5.44

qSCMR17E2 SCMR E2 B07 22.21 S17_32203546-S17_66864943 4.27 5.9 −6.28
qOIL12E1 Oil content E1 B02 57.21 S12_42838843-S12_73270208 3.05 4.49 10.65
qOIL12E2 Oil content E2 B02 57.23 S12_42838843-S12_73270208 3.02 4.46 10.67

qPROTEIN12E2 Protein content E2 B02 57.21 S12_42838843-S12_73270208 3.15 4.66 6.79
qLINOLEIC12E2 Linoleic acid E2 B02 64.11 S12_36421620-S12_118023921 3.43 5.15 −3.41

qOLEIC17E1 Oleic acid E1 B07 22.21 S17_32203546-S17_66864943 5.76 8.09 −9.09
qOLEIC17E2 Oleic acid E2 B07 22.21 S17_32203546-S17_66864943 6.14 8.5 −9.16

Env.: environment; Pos.: position; Chr.: chromosome; LOD: logarithm of odds; PVE: phenotypic variance
explained (%); HPW: 100-pod weight (g); HSW: 100-seed weight (g); SP: shelling percentage; SCMR: SPAD
chlorophyll meter reading.

3.4.1. QTLs for Yield-Related and Physiological Traits

For pod yield, a QTL (qPODYLD18E1) with LOD- 4.88 and PVE of 6.87% was de-
tected on the B08 chromosome under the E1 environment, whereas two QTLs, namely
qPODYLD12.2E2 (LOD- 4.6 and PVE- 6.27%) and qPODYLD12.3E2 (LOD- 4.78 and PVE-
6.53%), were found on the B02 chromosome in the E2 environment. A total of two QTLs,
named qHAULMYLD18E1 (LOD- 4.34 and PVE- 6.09%) and qHAULMYLD6E1 (LOD- 3.64
and PVE- 9.55%), were detected on chromosome B08 and A06, respectively, in E1 for haulm
yield. Two QTLs, named qHSW12E1 (LOD- 4.06 and PVE- 5.89%) and qHSW16E1 (LOD-6.65
and PVE- 14.65%), for HSW, were located on chromosome B02 and B06, respectively, in E1.
However, only a single QTL, qHSW16E2 (LOD- 6.11 and PVE- 13.87%), was found in E2 on
chromosome B06. The genomic region of S16_2332048-S16_8231918 harbored two consis-
tent QTLs (qHSW16E1 and qHSW16E2) with favorable alleles contributed by Valencia-C. A
QTL, qSP12E1 (LOD- 4.36 and PVE- 10.98%), was found on chromosome B02 in E1, and
another QTL, qSP12E2 (LOD- 4.43 and PVE- 11.65%) was found on chromosome B02 in E2.
These two QTLs were found in the same marker interval (S12_42838843-S12_73270208) of
chromosome B02 with favorable alleles contributed by JUG-03. For SCMR, a single QTL,
qSCMR17E2 (LOD- 4.27 and PVE- 5.90%), was detected on chromosome B07 in E2.
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3.4.2. QTLs for Oil Content, Fatty Acids, and Protein Content

The two QTLs, qOIL12E1 (LOD- 3.05 and PVE- 4.49%) and qOIL12E2 (LOD- 3.02 and
PVE- 4.46%), were found within the same genomic region (S12_42838843-S12_73270208) of
chromosome B02 in E1 and E2, respectively. A QTL, qPROTEIN12E2 (LOD- 3.15 and PVE-
4.66%), was detected within the genomic region, S12_42838843-S12_73270208, located on
chromosome B02 in E2. For oleic acid, a QTL named qOLEIC17E1 (LOD- 5.76 and PVE-
8.09%) was found on chromosome B07 in E1, whereas another QTL, qOLEIC17E2 (LOD-6.14
and PVE- 8.50%), was detected on chromosome B07 in E2. However, for linoleic acid, a
single QTL, qLINOLEIC12E2 (LOD- 3.43 and PVE- 5.15%), was found in the marker interval
of S12_36421620-S12_118023921, located on chromosome B02 in E2 (Table 4).

3.5. Epistatic (QTL × QTL) Interaction for Yield- and Quality-Related Traits

A summary of epistatic interactions is provided in Table 5, and pairwise detailed
information is presented in Supplementary Table S4. A total of 77 epistatic QTLs with PVE
between 9.31and 72.61% were detected for nine traits. Among these 77, 76 epistatic QTLs
had PVEs of more than 10%, indicating their major effect on the traits.
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Table 5. Summary of epistatic QTLs (E-QTLs) for yield- and quality-related traits identified
by ICIMapping.

Traits No. of QTLs LOD Range PVE %

Pod yield 9 3.08–4.18 24.96–38.48
Haulm yield 15 3.00–5.97 11.86–54.84

HSW 4 3.04–4.17 9.31–20.48
SP 14 3.00–5.72 11.72–72.61

SCMR 8 3.00–4.10 11.85–22.85
Oil content 7 3.04–4.77 11.63–28.23

Protein content 11 8.54–19.99 48.31–61.59
Linoleic acid 2 3.02–3.30 18.75–26.73

Oleic acid 7 3.08–4.38 13.07–50.08
LOD: logarithm of odds; PVE: phenotypic variance explained (%); SP: shelling percentage; SCMR: SPAD chloro-
phyll meter reading; HSW: 100-seed weight.

3.5.1. Digenic Interaction

For pod yield, nine pairs of epistatic interactions with significant additive effects
(p ≤ 0.0001) involving 13 loci mapped on A01, A03, A04, A05, A07, B01, B02, B03, B04, and
B09 were detected—the epistatic interaction, 3–130/5–25, produced an effect larger than
other significant interactions. Most of the digenic interactions were between minor-effect
QTLs. For haulm yield, 15 pairs of epistatic interactions with significant additive effects
(p ≤ 0.0001) involving 27 loci distributed in chromosomes A02, A03, A04, A07, A08, A10,
B01, B02, B07, B04, and B08 were detected. The epistatic interaction, 17–85/18–65, had
the largest effect of all interactions. Four pairs of epistatic interactions were identified
for HSW that involved eight loci in chromosomes A02, A05, A08, B03, B06, and B10. All
the pairs showed significant additive effects, which indicated that the combined effect
of specific genetic loci on different chromosomes influenced the HSW more significantly
than the individual effects of each locus alone. However, pair 2–5/5–35 had the largest
additive effects. This indicated that when the alleles at locus 5 cM on chromosome A02
interacted with the alleles at locus 35 cM on chromosome A05, there was a substantial
increase in the HSW. This specific epistatic interaction played a crucial role in determining
HSW, highlighting the importance of these genetic regions in influencing the HSW. For
SCMR, eight pairs of interactions were found with 14 significant additive effects, showing
loci in the chromosomes A03, A04, A05, A06, A08, B01, B02, B03, B04, and B09. For
SP, 14 significant interaction pairs were detected, involving 25 loci mapped on all the
chromosomes except A01, B04, B05, B06, B08, and B10. All the loci had significant additive
effects at the 0.0001 probability level. The digenic interaction 3–20/3–125 had the largest
effect of all interactions. Seven pairs of digenic interactions that had significant effects
were detected for oil content, including 12 loci dispersed on chromosomes A01, A02,
A03, A08, A10, B02, B07, B08, and B10. All the loci showed significant additive effects
(p < 0.0001), and only the parental genotype had positive effects for all the pairs of
interactions. Eleven epistatic interactions were identified for protein content, including
19 loci located on all chromosomes except A03, A05, A08, B02, and B09. All the loci had
significant additive effects; however, the 9–80/11–100 pair showed the largest additive
effect (Figure 3).
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3.5.2. Trigenic Interaction

For haulm yield, the QTL chromosomal interval 3–130 on chromosome A03 interacted
with two different loci, 17–15 on chromosome B07 with PVE- of 51.05% and 8–105 on chro-
mosome A08 with PVE- of 43.05%, showing the trigenic interaction. The parent Valencia-C
had a positive effect on the haulm yield. Moreover, the genomic region 3–130 interacted
with locus 5–25, had PVE- of 38.48%, and influenced the pod yield. For pod yield, three
trigenic interactions were observed. The locus 1–95 located on chromosome A01 interacted
with loci 3–115 on chromosome A03 with PVE- of 34.09% and 5–20 on chromosome A05
with PVE- of 25.47%. Similarly, another locus 4–55 on chromosome A04 influenced two loci,
13–85 on chromosome B03 with PVE- of 28.38% and 14–60 on chromosome B04 with PVE-
of 24.96%. The locus 7–30 on chromosome A07 interacted with loci 12–40 on chromosome
B02 with PVE- of 27.23% and 19–5 on chromosome B09 with PVE- of 25.16%. In all three
cases, favorable unfavorable alleles were contributed by JUG-03. However, locus 1–95 also
interacted with two other loci 11–90 on chromosome B01, showing PVE- of 61.59%, and
16–120 on chromosome B06 with PVE- of 61.22%, which influenced protein content. The
parent Valencia-C had a positive effect on protein content. Other locus-governing protein
content was 2–90 on chromosome A02 which interacted with two loci, 14–60 with PVE- of
60.97% and 7–20 with PVE- of 50.04% on chromosome A07. The locus 1–5 on chromosome
A01 influenced the loci 17–15 with PVE-28.23% on chromosome B07 and 3–90 with PVE-
of 21.85% on chromosome A03 for oil content. For SP, locus 3–125 on chromosome A03
interacted with two loci, 8–25, showing PVE- of 72.61% on chromosome A08 and 10–15 on
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chromosome A10 with PVE- of 69.46%. Moreover, the favorable allele was contributed
from Valencia-C (Supplementary Table S4).

3.6. Identification of Candidate Genomic Regions for HSW and SP

The major QTLs for HSW and SP were further investigated for putatively governing
genomic regions because of the comparatively higher phenotypic variance than other
traits (Table 4). A total of ten candidate genes were identified in the major QTL region
(S16_2332048-S16_8231918) on the B06 chromosome for HSW, and four genes were identi-
fied in the major QTL region of S12_42838843-S12_73270208 on B02 for SP (Table 6). These
genes had functional annotation directly or indirectly related to HSW and SP. The gene
expression atlas (AhGEA) of A. hypogaea ssp. fastigiata was used to identify the tissue-
specific expression of these genes [46]. Based on functional annotations, the genes and
transcription factor located in the major QTL region for HSW and SP were involved in the
signaling cascade, biotic and abiotic stress mechanism, and flavonoid synthesis, e.g., the
seed maturation protein (Araip.GWR7V) and serine-threonine phosphatase-encoding gene
(Araip.DH675) were highly expressed on seeds and pod walls (Figure 4), suggesting their
role in seed development, and they can be positively correlated with the increase in HSW.
Similarly, TIR-NBS-LRR (Araip.6MG4Z), the protein kinase superfamily (Araip.49T7Y),
the bHLH transcription factor (Araip.5E3CZ), isopentyl-transferase (Araip.UY42T), the
CBS-domain-containing protein (Araip.CXF88), the ethylene-responsive transcription factor
(Araip.LE5CL), and the cytochrome P450 superfamily gene (Araip.WM0UU) were found in
the genomic region and showed tissue-specific expression (Figure 4).
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Table 6. Fourteen putative genes identified in the genomic region associated with SP and HSW.

Traits QTL Name Gene Location Gene Model Nearest SNP (bp) Functional Annotation

SP
qSP12E1 and

qSP12E2
Araip.B02

Araip.6MG4Z 67,500,914 Disease resistance protein
Araip.DH675 42,817,549 Serine/threonine-protein phosphatase
Araip.5HJ7H 67,500,914 Protein MIZU-KUSSEI 1
Araip.7QC0C 42,817,549 Actin-related protein

HSW
qHSW16E1 and

qHSW16E2
Araip.B06

Araip.49T7Y 8,393,784 Protein kinase superfamily protein
Araip.5E3CZ 1,562,649 Transcription factor bHLH68
Araip.CXF88 271,015 CBS domain-containing protein

Araip.GWR7V 2,818,988 Seed maturation protein
Araip.LE5CL 1,562,649 Ethylene-responsive transcription factor
Araip.UY42T 2,697,960 Isopentenyltransferase 3

Araip.WM0UU 7,821,084 Cytochrome P450 superfamily protein
Araip.60J6J 2,818,988 GTP binding elongation factor

Araip.CY9QC 8,393,784 Ribosomal protein L19e family protein
Araip.SKT5W 1,562,649 NAD+ ADP-ribosyltransferase

HSW: 100-seed weight; SP: shelling percentage.

4. Discussion

On a global scale, the adverse effects of climate change on crop productivity are
evident, as they amplify various biotic and abiotic stresses, highlighting the urgency to
improve existing cultivars. Consequently, strategies to exploit genetic variation become
essential for peanut breeding as resistance against biotic and abiotic stresses directly impact
peanut production. The utilization of genomics helps in targeting complex traits such
as yield for improvement and utilizing novel alleles from wild species. Key traits like
pod and seed weight are directly reflective of yield and have been widely studied in
peanuts and other crops [48–51]. Initially, five SSR markers associated with pod- and
kernel-related traits were identified through bulk segregant analysis [16]. Subsequently,
in the F2 population (Zhonghua 10 × ICG12625), twenty-four QTLs (PVE- 1.69–18.70%)
for HPW, HSW, SP, main stem height, pod length, seed length, pod length, and pod width
were identified [52]. Additionally, for shelling percentage, 25 QTLs were identified in the
RIL population (Yuanza 9102 × Xuzhou 68-4) [53]. These findings not only offer insight
into gene discoveries but also help in the identification of functional markers for breeding.

In this study, a wide range of yield- and quality-related traits was observed for the RILs
evaluated in two different environments, confirming the existence of genetic variability for
different yield- and quality-related traits in peanuts [27,52,53]. The population exhibited
significant variation among the lines for haulm yield, oil content, protein content, linoleic
acid, and oleic acid, indicating high variability among the tested RILs for the respective
traits. A G × E interaction study is typically conducted to assess the adaptability and
stability of lines or cultivars across different environments for quantitative traits. The
higher the environmental variance, the higher the differential expression of lines across
the environments. The environments used in the current study showed the inconsistency
of RILs for some traits. Information on G × E interaction for yield- and quality-related
traits is essential to develop effective selection strategies to improve yield in variable
environments. The significant G × E interaction for pod yield, HPW, HSW, SP, and SCMR
in the present study indicates inconsistent lines across environments, which was reported
earlier [54], emphasizing the importance of examining the lines in different environments.
The performance of RILs varied significantly between environments due to large G × E
interactions for pod yield, HPW, HSW, SP, and SCMR.

Yield-attributing traits have a complex interaction pattern, elucidated through the
information of quantitative trait loci (QTL). These QTLs influence traits through cumulative
effects. Moreover, epistatic interactions among minor loci affect multiple traits and must
be incorporated along with QTLs’ introgression in the breeding program. Efforts were
made to identify QTLs/genes associated with yield- and quality-related traits, followed
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by developing the lines by introgressing the selected genomic regions such as biotic and
abiotic stresses through MAS [55–57]. Using a high-density 58K “Axiom_Arachis” array [58]
and RILs from a cross between TAG 24 and ICGV 86031, 1205 SNP loci spanning 2598.3 cM
were mapped, with an average marker distance of 2.2 cM [38]. The current work developed
a linkage map comprising 1323 SNP loci, covering a total map length of 2003.13 cM, with
an average marker distance of 1.89 cM between adjacent loci using the RIL mapping
population. QTL analysis revealed that, except for four QTLs (two for HSW and two for
SP), the phenotypic variance explained by the remaining QTL was <10%. It showed the
complex nature of inheritance in peanuts. These observations support the previous report
of multiple QTLs with minor effects associated with flowering date and maturity period in
peanuts [27]. Similarly, an RIL population (JH5 × M130) was used to construct a genetic
map using 3130 markers, detecting QTLs for 100-pod weight and 100-seed weight on
chromosomes A03, A04, A08, B04, B05, B06, and B08 of peanuts. A new genomic region of
0.36 Mb on chromosome A08 was detected as a hotspot, including 18 candidate genes [48].
Moreover, the genomic regions for 100-seed weight and shelling percentage were also
identified using the RIL population (Chico × ICGV 02251). QTL analysis identified three
consistent QTLs on chromosomes A05, A08, and B10, whereas seven QTLs were found on
chromosomes A01, A02, A04, A10, B05, B06, and B09 for 100-seed weight [59]. In a study
utilizing an RIL population derived from the cross between JH6 and KX01-6, two stable
QTLs (qHYF_A08 and qHYF_B06) were identified across six different environments. The
QTL qHYF_A08 showed a predominant association with variations in shelling percentage
and 100-pod weight, exhibiting PVE values ranging from 5.78% to 23.20%. Conversely,
qHYF_B06 was primarily linked to variations in 100-pod weight and 100-seed weight, with
PVE values ranging from 13.38% to 31.29% [60].

The phenomenon of consistent QTLs detected under different environments with
significant G × E interaction was reported in peanuts [61,62]. Two major QTLs mapped
for HSW and two for SP were on B06 and B02, respectively. Thus, chromosomes B02
and B06 harbored important regions for SP and HSW, respectively. Similarly, the major
and consistent QTL, cqSPB02, was identified on chromosome B02 for shelling percentage,
with phenotypic variance explained being 10.47–17.01% across four different environments
in the RIL population (Yuanza 9102 × Xuzhou 68-4) [53]. Moreover, three major QTLs
(q100SW16a, q100SW16a, and q100SW16a) were found on chromosome B06 for 100-seed
weight having PVE of 29.81–35.39% across four different seasons [63], indicating stable
genetic effects independent of environments. The primary influence of a QTL cannot be
solely attributed to the genetic background; in certain cases, it could be influenced by
environmental factors or a combination of both. One notable QTL for HSW was located on
chromosome B05, as well as two significant QTLs for shelling percentage which were found
on chromosomes B06 and B10, which demonstrated substantial additive effects influenced
by the environment [59].

The common QTL regions governing different traits suggest the relationship between
these traits, pleiotropy effects, and/or tightly linked genes [5]. The genomic region associ-
ated with HSW between the marker interval of S16_2332048 and S16_8231918 on chromo-
some B06 harbored ten genes. These genes encoded the protein kinase superfamily protein,
transcription factor bHLH68, the GTP binding elongation factor Tu family protein, the CBS
domain-containing protein, the ribosomal protein L19e family protein, the seed maturation protein,
the ethylene-responsive transcription factor, NAD + ADP-ribosyltransferase, isopentenyltrans-
ferase and the cytochrome P450 superfamily protein. Similarly, the genomic region associated
with SP (S12_42838843-S12_73270208) on chromosome B02 harbored four genes. These
genes encoded protein MIZU-KUSSEI 1, the actin-related protein, serine/threonine-protein
phosphatase and the disease resistance protein (TIR-NBS-LRR). Nine of the fourteen genes had
annotations directly or indirectly related to yield-related traits.

The disease resistance protein coding gene (Araip.6MG4Z) was highly expressed in
seeds and detected in the major genomic region of shelling percentage (Figure 4). This
reveals that the disease resistance protein, TIR-NBS-LRR, may be indirectly involved in
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pod and seed development in addition to providing resistance to the plant against disease
infestation. This gene is a part of receptor-like kinase gene family, known for salt tolerance
and low temperature resistance induced by ABA [38]. The serine-threonine phosphatase-
encoding gene (Araip.DH675) was highly expressed on pod walls and found to be associated
with signal transduction for cell division and differentiation. The serine-threonine phosphatase
protein-encoding gene was also reported in the B02 chromosome associated with shelling
percentage in peanuts [61]. In rice, the serine-threonine phosphatase gene contains the Kelch
motif, which determines the larger grain size and thus contributes to yield increment [64].
Similarly, the serine-threonine phosphatase gene also identified in the major QTL region was
associated with pod length in soybean [65]. In maize, the role of the serine/threonine protein
kinase-encoding gene KNR6 was reported for ear length, and the overexpression of this
genomic region resulted in significantly increased yield [66].

The gene protein kinase superfamily (Araip.49T7Y) is expressed in cotyledons and
seeds. A kinase protein such as mitogen-activated protein kinase (MPK3) regulates the mi-
totic activities in the integumental cells through phosphorylation. These proteins may be in-
volved in pod and seed development through protein–protein interactions [67]. The role of
calcium dependent protein kinase (CDPK) was evaluated in developing peanut pods [68]. The
higher expression of CDPK in early pod development might suggest that the absorption of
Ca2+ occurs directly through the epidermal layer of pods in addition to via the xylem route.
This argument was supported by the transcriptional upregulation of CDPK only in the
development of seeds in Ca2+-deficient zones [68]. The seed maturation protein coding gene
(Araip.GWR7V) is expressed higher in seed tissues than other vegetative tissues, indicating
its role in seed maturation and development. The upregulation of the seed maturation
protein [69] in seed tissues is consistent with the high activity of protein synthesis in seeds.
Genes related to seed maturation, such as those involved in the seed storage protein and the
accumulation of lipids, are usually regulated by the interaction of cis-acting elements in the
promoter region and transcriptional regulators [70]. These regulatory networks promote
the accumulation of seed storage reserves and thus lead to an increase in seed weight.
Further, the expression pattern of the Araip.GWR7V gene was preferentially higher in seeds,
which indicated that the promoter region of Araip.GWR7V can function in a seed-specific
manner [71]. The isopentyltransferase (IPT) gene (Araip.UY42T) is one of the critical enzymes
involved in cytokinin biosynthesis. The IPT-expressing peanut plant was identified with
higher biomass in a dryland condition in the field [72]. This significant positive correlation
of the higher yield of IPT-expressing plants with an increase in photosynthesis indicated
the role of the cytokinin-mediated regulation of photosynthesis in transgenic plants. The
differential expression pattern of the IPT gene showed that the regulatory function of the
IPT gene in cytokinesis biosynthesis was one of the prime factors for determining pod
size in peanuts [73]. The ethylene-responsive transcription factor (Araip.LE5CL) is highly
expressed in seeds, and previously, it was reported in associated genomic regions of haulm
weight [37]. The important role of ethylene-responsive transcription factors in the early
development of peanut pods has also been identified [74]. Generally, Ca2+ ions promote
pod maturation and development; however, the downregulation of genes encoding the
ethylene-responsive transcription factor was reported in the presence of Ca2+ [75]. This in-
dicated that ethylene-responsive transcription factors have a negative correlation with pod
formation and development. Moreover, the ethylene-responsive element-binding factor
family has a large number of transcription factors which are involved in abiotic and biotic
stresses in plants [76,77]. The ethylene-responsive transcription factor superfamily genes,
namely GmAP2-1, GmAP2-2, GmAP2-3, GmAP2-4, GmAP2-5, GmAP2-6, and GmAP2-7, had
important roles in the regulation of seed length and seed width in overexpressed transgenic
lines of Arabidopsis [78]. The members of the family of the cytochrome P450 protein-encoding
gene (Araip.WM0UU) are involved in brassinosteroid biosynthesis. The CYP72C1 gene
(a cytochrome P450 monooxygenase family) regulates cell elongation and therefore results
in short petioles and shortened seeds along the longitudinal axis [79]. This study sup-
ports that members of the cytochrome P450 gene affect the seed size and its elongation by
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regulating the brassinosteroid level [79]. The CBS-domain-containing protein (Araip.CXF88)
was expressed at relatively higher levels in cotyledons than in other tissues (Figure 4).
Similarly, the expression of the CBS-domain-containing protein in cotyledons and floral
tissues in addition to anthers was reported in the proCBSX1:GUS-expressing transgenic line
of Arabidopsis [80]. The overexpression of the CBS-domain-containing protein was reported
to increase the soybean’s low nitrogen stress tolerance [81]. The bHLH transcription factor
(Araip.5E3CZ) is specifically expressed only in cotyledon tissues, which may explain its role
in seed development (Figure 4). In addition, it also participates in other developmental
processes such as the proper growth of axillary meristems, root hair, and anthers [82].
The higher expression of bHLH TFs in peanut seed tissues signifies its importance in seed
development and maturation [38,83] and its pleiotropic role in plant growth and develop-
ment as well as in stress responses [84,85]. Similarly, a bHLH transcription factor (TaPGS1)
was specifically overexpressed in wheat and rice lines, which resulted in increased grain
weight [86]. In addition, a yeast one-hybrid assay showed that the overexpression of the
bHLH transcription factor AhbHLH121 resulted in the increased activity of antioxidant
enzymes under stress by facilitating the expression of the genes for peroxidase, catalase,
and superoxide dismutase in peanuts [87].

In addition, epistatic effects (the interaction of different loci in a population) play a
significant role in determining trait expression [88,89]. A total of 91 pairs of QTL interactions
were detected for all traits, suggesting that apart from environmental effects, epistatic QTLs
also play a non-additive role in the inheritance of these traits. Such results are not surprising
given that epistasis is more important for traits governed by several QTLs with small effects
than for those governed by a few large major QTLs [90]. Epistatic QTLs affecting more
than one trait were also reported in peanuts for pod number per plant [91]. Likewise, a
total of 73 pairs of epistatic interactions involving 92 loci were discovered for pod length,
pod width, length–width ratio, pod roundness, beak degree, and constriction degree.
These interactions collectively accounted for phenotypic variations ranging from 0.94% to
6.45% [92].

5. Conclusions

A SNP-based genetic map consisting of 1323 loci and spanning 2003.12 cM was
constructed. A total of 17 QTLs were detected for nine yield- and quality-related traits.
Out of four, two each for HSW and SP were major QTLs. Notably, the major QTLs for
HSW, detected on the B06 chromosome, exhibited a PVE of up to 14.65%. Similarly, major
QTLs for SP, identified on the B02 chromosome, had a PVE of up to 11.65%. These major
QTLs harbored genes and TFs which could affect the yield. The study demonstrated the
significant impact of both individual- and multiple-effect epistatic QTLs in influencing the
phenotype of various traits by interacting with genomic regions on different chromosomes.
Within the identified major QTL regions, a total of ten candidate genes were pinpointed
for HSW and four candidate genes for SP. Further investigation into the genomic region
associated with the seed maturation protein is recommended. This exploration could aid
in the development of markers important for enhancing peanut breeding efforts geared
towards increasing productivity.
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