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Chapter 1

Introduction

1.1 Definitions and notations

We start this thesis by fixing some common notation used throughout the arguments.

Some of these notations may be recalled in the individual chapters if necessary, in order

to facilitate easy reading. We made an effort to unify notations. However, the reader

may notice that some objects are sometimes denoted in slightly different ways in the

individual chapters of this dissertation. The reason for this lies in the different setup and

circumstances of the particular problem we investigate.

In this dissertation we work in d-dimensional Euclidean space Rd, in particular, most

frequently in the plane, that is, in R2. Points (and vectors) of space are denoted by

lowercase letters while we use capitals for sets. The Euclidean distance of points x, y ∈ Rd

is denoted by |x− y|. For a set S ⊂ Rd, the boundary is denoted by the symbol ∂S. The

origin of space is o. The unit radius origin centred closed ball is Bd = {x ∈ Rd : |x| ≤ 1},

and its boundary, the origin centred unit sphere is Sd−1 = ∂Bd = {x ∈ Rd : |x| = 1}. We

introduce special notation for the open ball, if necessary, in the individual sections where

it is used. In general, for r > 0 and c ∈ Rd, the radius r closed ball centred at the point

c is

rBd + c = {x ∈ Rd : |x− c| ≤ r}.

The volume (Lebesgue measure) of a (measurable) set S ⊂ Rd is denoted by Vd(S). If

there can be no confusion about the dimension of space, then may omit the subscript d
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and write simply V (S) for the volume. Furthermore, if d = 2 (in the plane) we use the

notation A(S) = V2(S) for the area. In particular, the volume of Bd is denoted by

κd = Vd(B
d) =

π
d
2

Γ
(
d
2
+ 1
) ,

where Γ(·) is Euler’s gamma function defined as

Γ(x) =

∫ +∞

0

tx−1e−t dx, for x > 0.

If f is a measurable function in Rd, then its integral with respect to volume (Lebesgue

measure) is generally denoted by
∫

Rd f(x) dx, or
∫

Rd f dλ. More specialized notations for

individual cases may be defined in certain sections.

The symbol ωd denotes the surface volume (spherical Lebesgue measure) of the d-

dimensional unit sphere. It is known (see, for example, Schneider [Sch14]) that

ωd = dκd = d
π

d
2

Γ
(
d
2
+ 1
) .

In the plane, when no confusion is possible, we may use the simplified notations

B = B2 or S = S1. If this is the case, then it is indicated clearly at the beginning of such

a use.

In this dissertation, we mostly deal with convex sets of Rd. A set S ⊂ Rd is convex

if for any x, y ∈ K, the closed segment [x, y] with endpoints x and y is also contained in

K, that is [x, y] ⊂ K. The theory of convex sets is a rich subject that has an enormous

literature. We do not attempt here to give an introduction to the general properties of

convex sets as this would be way beyond the scope of a dissertation. Instead, we refer the

interested reader to consult the following two classical monographs of the field: Gruber

[Gru07] and Schneider [Sch14].

By a d-dimensional convex body K ⊂ Rd we always mean a compact, convex set K

that has non-empty interior (thus K is full dimensional). We note that the term convex

body is also used in the literature without this last condition (the non-empty interior)

in which case, for example, a closed segment would also be considered a convex body in

the plane. However, in our setting the definition requiring non-empty interior is more

appropriate, so for us, a segment in the plane is not a convex body (although it is a

compact convex set). In particular, when d = 2 (in the plane) the term convex disc is
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often used to designate a convex body, similarly to the common usage of the words circle

for 2-dimensional unit sphere and unit circular disc for B2.

It is known that convex bodies are Lebesgue measurable. For d = 2, the boundary ∂K

of a convex disc is rectifiable, meaning that it has finite arc-length. In some sections we

will integrate functions along the boundary of a convex disc with respect to the arc-length

(one can view this as the 1-dimensional Hausdorff measure on ∂K). Such integration of

a measurable function f will be denoted by
∫
∂K
f(x) dx, where the fact that integration

is with respect to arc-length is indicated in the domain of integration.

We introduce the more specialized notations in the individual chapters as the need

arises. Some of these notations may not be uniform as they slightly vary between chapters

as the different situations require.

1.2 Brief overview of history and results

In a nutshell, Stochastic Geometry studies properties of random geometric objects (points,

lines, planes, etc.). The field of stochastic geometry can be traced back at least to three

problems: Buffon’s needle problem (1733), Sylvester’s four-point problem (1864), and

Bertrand’s paradox (1888). The mathematical problems mentioned above are the first

records of the use of geometric tools to calculate probabilities.

However, these three problems are also interesting on their own. In this brief historical

overview, we focus on Sylvester’s four-point problem because it can be considered as the

origin of Random Polytope Theory. We suggest the interested reader to consult, for

example, Mathai’s book [Mat99] for a detailed discussion of the other two problems.

Sylvester published the following problem in the journal Educational Times [Syl64]:

”Show that the chance of four points forming the apices (vertices, in modern language)

of a reentrant quadrilateral is 1/4 if they be taken at random in an indefinite plane, but

1/4 + e2 + x2, where e is a finite constant and x a variable quantity if they be limited by

an area of any magnitude and of any form.”

We should note that Sylvester does not mention any particular distribution in the

problem. This omission has led researchers to assume that Sylvester formulated the

problem in terms of the uniform distribution, cf. [Bár08].
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The assumption of uniformity, although meaningful, nullifies the first part of the

problem which asks to calculate probabilities in an indefinite space (the whole plane R2).

The reason is that there is no uniform probability distribution on the entire space R2.

Nonetheless, the problem can be formulated in terms of other distributions, such as the

normal distribution, see, for example, [ES11].

Another natural reformulation of the original question is when one selects the random

points from a container, for example, a compact convex set. This makes it possible to

choose the points according to the uniform distribution. It quickly turned out that the

probability that the points are (or are not) in convex position does depend on the shape

of the container.

Thus, Sylvester’s problem can be formulated both in terms of a particular density

function, as well as a particular convex domain (e.g. circle, triangle, etc.). We advise

the interested reader to consult Pfiefer’s paper [Pfi89] for a more detailed history of the

earlier formulations of the problem.

Sylvester’s original question restricts the dimension and the number of points. How-

ever, the problem can be generalized to d-dimensional space as follows: what is the prob-

ability that d+ 2 independent and identically distributed (i.i.d.) random points selected

according to the uniform probability distribution from a convex body K in d-dimensional

Euclidean space are in a convex position? Results on this question have been obtained

only for a quite restricted set of bodies. For a more in-depth treatment of the problem,

we advise the reader to consult the surveys [Rei10], [Sch17].

Another offspring of Sylvester’s problem is about the maximal and minimal proba-

bilities. This variational type problem, instead of asking for the probability in a specific

domain, seeks to find the domain in which it is maximal or minimal. Blaschke (1917,

1923) [Bla17, Bla23] proved in the plane that the probability that four i.i.d. random

points are in non-convex position is minimal for the circle and maximal for the triangle.

Blaschke’s result has been partially extended to d-dimensional space by Groemer

[Gro73] who proved that the d-dimensional ball gives the minimum probability that d+2

i.i.d. random points are in non-convex position. However, Blaschke’s argument for the

triangle does not generalize to higher dimensions. It is conjectured that the regular

simplex in Rd provides the maximum in this sense. This latter conjecture, often called
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the Simplex Conjecture, is still open, and it is one of the major unsolved problems in

geometric probability and convex geometry.

In the 1960s, three classical papers by Rényi and Sulanke [RS63,RS64,RS68] opened

a new line of research about the convex hull of random points. They laid the foundations

of the asymptotic analysis of approximations of convex bodies by random polytopes. In

particular, one of the models Rényi and Sulanke studied is in which a random polygon

is generated as the convex hull of n i.i.d. random points chosen in a fixed convex disc K

with a sufficiently smooth boundary according to the uniform probability distribution.

Objects of interes include the expected number of edges, the missed area (the difference

between the areas of the convex disc K and the random polygon), and the perimeter

difference, as n→ ∞.

In their original paper [RS63], Rényi and Sulanke calculated the expected number of

edges and the missed area independently. Nonetheless, a classical result due to Efron

[BE65] (which had been unknown in the times of the papers [RS63,RS64]) allows one to

obtain one quantity from the other: the expected number of edges (vertices) from the

missing area, and vice versa.

Due to the importance of Efron’s equality and its simplicity, we provide a short proof:

Let Kn be the convex hull of n i.i.d. uniform random points x1, . . . , xn from a convex

body K ⊂ Rd, and let f0(Kn) be the number of vertices of Kn. The symbol P(·) denotes

the probability of an event, and E(·) the expectation of a random variable in this model.

Efron’s equality states that

Ef0(Kn) = n(Vd(K)− EVd(Kn−1)).

The proof is the following simple sequence of equalities:

Ef0(Kn) =
n∑
i=1

P(xi is a vertex ofKn)

= nP(xn is a vertex ofKn)

= nP(xn /∈ [x1, ..., xn−1])

= nP(x /∈ Kn−1)

= n((Vd(K)− EVd(Kn−1)).
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The first equality is due to the independence of the random points. The second equality

holds because a particular random point is a vertex of Kn if and only if it is not contained

in the convex hull of the other points, which happens exactly when it is in the missed

part K \Kn of K by Kn.

A possible research path in random polytope theory concerns reformulations of the

problems listed above using other notions of convexity. This subject has been investigated

intensively in the last decade. One of the most frequently considered alternative to the

usual (linear) concept of convexity is the so-called spindle convexity.

The notion of spindle convexity was (probably) first introduced by Mayer [May35] in

1935 as a generalization of linear convexity. However, due to the naturality of this idea,

its origins may go further back in time. We note that Mayer phrased the definition in the

(much) wider context of Minkowski geometry, but this does not concern us in this thesis.

It is a basic fact in convexity, that in the Euclidean space Rd, a closed convex set, that

is not equal to Rd, is the intersection of closed half-spaces. Let R > 0. In the definition

of a compact R-spindle convex set, radius R closed circular discs play a similar role to

closed half-spaces (a precise definition will be stated later). One may say informally that

the R = ∞ (or rather R → ∞) limiting case corresponds to linear convexity.

We note that our use of the term spindle convexity is not exclusive to this concept.

There are various terms in the literature used for R-spindle convex sets: Mayer used the

(German) word “Überkonvexität” in [May35]. László Fejes Tóth in [FT82a], [FT82b]

called such sets R-convex. Bezdek et al. [BLNP07] used the expression spindle convex.

There are also papers where it is called ball-convex, λ-convex, etc. Since the notion of

spindle convexity is very natural, it was reinvented several times in different contexts,

which explains why so many different names are used for it. Its prevalence in the literature

also points to its importance.

Fodor, Kevei and Vı́gh [FKV14] generalized the classical asymptotic formulas of Rényi

and Sulanke [RS63,RS64] to random disc-polygons. In their probability model, the ran-

dom disc-polygons are the intersection of all closed unit circles containing n i.i.d. uniform

random points from a suitable convex disc K.

In this dissertation, we focus our attention on the one hand, the spindle convex version

of Wendel’s equality, in Chapter 2. On the other hand, we investigate the consequences
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of strengthening and weakening the smoothness conditions in the asymptotic formulas

of Fodor, Kevei, and Vı́gh [FKV14] for the approximation of convex discs by random

disc-polygons, see Chapters 3 and 4.

Wendel’s equality gives the probability that the convex hull of n > d i.i.d. random

points in Rd with an origin-symmetric distribution does not contain the origin. Wendel’s

result has been extended by Wagner and Welzl [WW01] who proved that the symmetrical

distributions are extremal in this sense. Wendel’s result is an important tool in the Theory

of Random Polytopes.

In Chapter 2, we consider the spindle convex analog of Wendel’s problem in the plane

and in higher dimensions, both for the uniform density in a ball and the Gaussian density

in d-space.

The Gaussian case involves an interesting aspect of spindle convexity that is not often

used, namely, we also allow random points to be farther away from each other than the

diameter of the circular discs used in the definition of spindles resulting in their spindle

convex hull covering the whole space.

The motivation behind the study of the spindle convex version of Wendel’s equality

is twofold. On the one hand, it is of special interest that the spindle formulation of the

problem has positive probabilities already for two points in any dimension, while the

original problem requires at least d + 1 points Rd. The reason behind the difference in

the number of points necessary to have non-zero probabilities is the type of convexity

involved in each problem. The classical convex hull of two points is a line segment with

zero area. Thus, the probability that the convex hull of two points taken at random

contains the origin is zero. While the spindle convex hull of two points is a spindle (a set

bounded by two circular arcs through the two points), which is a non-zero measure set

(the probability that the two random points coincide is zero).

On the other hand, Wendel’s equality is a useful tool to obtain results about random

polytopes in the classical convex case. Given that many problems in classical convexity

can be reformulated in terms of spindle convexity, having a Wendel-type equality in the

spindle convex setting may prove very useful to solve problems in that realm.

In Chapter 2, we obtaine a Wendel-type equality for spindle convexity, see Theorem 1,

which, similarly to the classical equality, can be evaluated for a fixed dimension and a
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fixed number of points. In Theorem 1, we also calculated the actual probabilities in the

2 and 3-dimensional case for two points, and in Theorem 2 for three random points in

the plane. Nonetheless, evaluating our result for specific cases is more computationally

demanding than the classical Wendel formula.

However, as a corollary of our results, one can observe that a theorem about the

extremality of symmetric distributions, similar to one Wagner and Welzl proved for the

classical convex case, is not attainable in spindle convexity. The reason is that we get

different probabilities for our Wendel-type formula when evaluated for the uniform and

normal distributions.

The difference in computability is explained by the tools used in each proof. Wendel’s

original proof relies on the distribution being symmetric with respect to the origin and

Schläfli’s formula for the number of cells into which h hyperplanes in general position

divide Rd.

Wendel’s proof is essentially a combinatorial argument that delivers a formula easy to

compute. Unfortunately, the same combinatorial argument cannot be used in the spindle

convex case. Instead, we must follow an analytical reasoning and evaluate the actual

probabilities through integration. The main tool is a type of integral transformation often

used in connection with problems on random polytopes: the linear Blaschke-Petkantschin

formula.

One major difference compared to the classical convex case, which partly explains

the need for an analytical argument, is that even if the random points can be separated

from the origin by a hyperplane, they may not be separated from it by a supporting ball.

Thus, one has to take into account their positions more precisely. We note that the use

of the linear Blaschke-Petkantshin formula reduces the argument to lower dimensions in

the case of two points.

In Chapters 3 and 4, we investigate the differentiability conditions of the asymptotic

formulas of Fodor, Kevei and Vı́gh[FKV14] and the consequences of changing them. One

motivation is to clarify the necessary and sufficient conditions for the formulas to hold

and understand the relationship between smoothness and the behaviour of functionals

such as the number of vertices and missed area.

We note that such investigations have been carried out in the classical case. For
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gradually weaker differentiability conditions, see, for example the results of Wieacker

[Wie78], Bárány [Bár92], Schütt [Sch94] and Böröczky, Fodor and Hug [BFH10]. Under

stronger differentiability conditions, Reitzner [Rei01,Rei04] obtained finite power series

expansions (the length of the expansion depends on the degree of differentiability) for the

expected number of vertices, missed volume, and also for other quantities, as the number

of generating random points tends to infinity. The problem has not yet been explored to

the same extent in the spindle convex case.

In Chapter 3, we obtain finite length asymptotic series expansions for the expected

vertex number (and also the missed area) of random disc-polygons as n tends to infinity

under the condition that the generating random point are from a convex domain whose

boundary is k + 1 times differentiable and has positive curvature everywhere, see Theo-

rem 5 (vertex number) and Theorem 6 (missed area). The main tools are the argument

following. We use the local representation of the boundary of the convex disc using a

suitably differentiable function, see Lemma 7. We apply a statement on the inversion

of certain functions by Gruber [Gru96], see Lemma 8. Finally, we use an asymptotic

expansion of the incomplete beta function, see Lemma 9.

In Chapter 4, we examine the asymptotic behaviour of the expectations of the same

quantities (number of vertices and missed area) under weaker smoothness assumptions.

We prove that the asymptotic formulas of Fodor, Kevei and Vı́gh [FKV14] hold under the

assumption that the convex domain slides freely in a circular disc, and a circle rolls freely

in it. These conditions guarantee, on the one hand, that the disc is smooth (the boundary

is C1), on the other hand, that it is strictly convex. Moreover, Hug [Hug00] proved that

the so-called spherical image map and the reverse spherical image map (which are both

well-defined in this case and are inverses to each other) are both Lipschitz continuous,

so differentiable almost everywhere. We also use the concept of generalized second order

differentiability. Having a rolling circle and sliding freely in a circle also guarantee that

the disc is spindle convex for all radii larger than or equal to the radius of the circle in

which the disc slides freely. However, second order differentibility (and thus the existence

of the usual curvature) does not necessarily hold. This is why we need a generalized

notion of differentiability. We say that the boundary of the disc is differentiable twice

in the generalized sense at a boundary point if the boundary can be approximated in a
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neighbourhood of this point by a parabola (like a second order Taylor polynomial). It is

known (Alexandrov’s theorem) that the boundary of a convex body is differentiable twice

in the generalized sense almost everywhere with respect to the surface area measure. This

defines a generalized curvature in a natural sense that coincides with the usual curvature

at points where the boundary is differentiable twice, see precise definitions in Chapter 4.

We prove, cf. Theorem 11, that the argument of Fodor, Kevei and Vı́gh can be carried out

under these weaker assumptions with minor modifications, thus, extending the validity

of their asymptotic formulas.
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Chapter 2

Wendel’s equality for intersections of

balls

This chapter of the dissertation is based on the following published paper of the author:

[FMV23] F. Fodor, P. N. A. Montenegro, and V. Vı́gh, On Wendel’s equality for

intersections of balls, Aequationes Math. 97 (2023), no. 2, 439–451, DOI

10.1007/s00010-022-00912-3. MR4563622

2.1 Introduction and results

Wendel’s equality [Wen62] is one of the classical results in geometric probability: it states

that if x1, . . . , xn are i.i.d. (independent and identically distributed) random points in

Rd whose distribution is (centrally) symmetric with respect to the origin o, and the

probability measure of hyperplanes are 0, then the probability that o is not contained in

the convex hull [x1, . . . , xn] is

P(o /∈ [x1, . . . , xn]) =
1

2n−1

d−1∑
i=0

(
n− 1

i

)
. (2.1)

One can find a simple proof of (2.1) in Bárány [Bár07, pp. 94–95], which is independent

of the distribution (under the above conditions) and essentially combinatorial in nature,

using the Schläfli formula for the number of parts into which n independent hyperplanes

divide the space.
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It was proved by Wagner and Welzl [WW01], that o-symmetric distributions are

extremal in this sense, meaning that if the distribution is absolutely continuous with

respect to the Lebesgue measure, then the probability that the origin is not contained

in the random polytope is at least the quantity in (2.1). Thus, (2.1) is essentially a

lower bound. For more information on similar statements and further references, see also

[SW08, Section 8.1.2].

Recently, Kabluchko and Zaporozhets [KZ20] investigated the related problem of find-

ing the probability that the convex hull of n i.i.d. normally distributed random points in

Rd contains a fixed points of space; they called these absorption probabilities. For more

information we refer to the recent survey paper by Schneider [Sch17] and the book by

Schneider and Weil [SW08].

In this chapter we study the following spindle convex variant of the above problems.

Let x, y ∈ Rd be two points and R > 0. If |x − y| ≤ 2R, then let the spindle [x, y]R

determined by x and y be the intersection of all radius R closed balls that contain both

x and y. If |x − y| > 2R, then we define [x, y]R = Rd. We say that a convex body

K ⊂ Rd (compact convex set with non-empty interior) is spindle convex with radius R,

or R-spindle convex if together with any two points x, y ∈ K, it contains the spindle

[x, y]R. It is known ([BLNP07]) that if a convex body K ⊂ Rd is spindle convex with

radius R, then K is the intersection of all radius R closed balls that contain K. This

latter property is called radius R ball-convexity.

Let X ⊂ Rd. If X ⊂ RBd + v for some v ∈ Rd, then the radius R spindle convex

hull [X]R of K is defined as the intersection of all radius R closed balls containing X.

If X ̸⊂ RBd + v for any v ∈ Rd, then let [X]R = Rd. If K ⊂ Rd is spindle convex with

radius R, and X ⊂ K, then [X]R ⊂ K. For more information on spindle convexity, see,

for example, the paper [BLNP07] by Bezdek et al. and the book [MMO19] by Martini,

Montejano and Oliveros and the references therein.

First, we describe the o-symmetric R-spindle convex uniform model. Let R > 0, and

let K ⊂ Rd be an o-symmetric convex body that is R-spindle convex. Let x1, . . . , xn

be i.i.d. uniform random points from K. The uniform distribution in K is the unique

probability distribution that is concentrated on K and whose density is equal to 1/A(K).

We denote the radius R spindle convex hull of x1, . . . , xn by KR
n = [x1, . . . , xn]R. By the
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R-spindle convexity of K, the random ball-polytope KR
n is contained in K. We ask the

same question as in the classical convex case: what is the probability that o ∈ KR
n (or

equivalenty, o /∈ KR
n )? We note that in this model we may always achieve by scaling

(simultaneously K and radius R balls) that R = 1. Henceforth, in the following two

theorems we assume that R = 1.

We study the special case when K = rBd with 0 < r ≤ 1. Then K is clearly spindle

convex with radius R = 1. We wish to determine the probability

P (d, r, n) := P(o ∈ [x1, . . . , xn]1).

In Section 2.2 we prove the following theorem:

Theorem 1 ([FMV23, Theorem 1.1]). Let K = rBd. Then

P (d, r, 2) =
ωd−1ωd
(rdκd)2

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 φdφdr2dr1,

where φ(r1, r2) = arcsin(r1/2) + arcsin(r2/2). In particular,

P (2, 1, 2) =

√
3

π
− 1

3
= 0.2179 . . . ,

P (3, 1, 2) =
1

64
(23 + 12

√
3π − 8π2) = 0.1459 . . . .

Furthermore, for the case of three points, we prove the following statement in Sec-

tion 2.3.

Theorem 2 ([FMV23, Theorem 1.2]). Let K = B2. Then

P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .

Finally, in Section 2.4, we study the Gaussian R-spindle convex model. Let x1, . . . , xn

be i.i.d. random points from Rd distributed according to the standard normal distribution.

The question is the same, what is the probability that o ∈ KR
n ? We note that in this

second case, it may, and does, happen that KR
n = Rd. We give an integral formula for

the probability that a Gaussian unit radius spindle contains the origin and evaluate it

numerically in the plane, see (2.6).
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2.2 Proof of Theorem 1

Note that it is the simplest case of the model when n = 2, and K = rBd, where 0 < r ≤ 1

is a fixed number. This, of course, is of no interest in the classical version of Wendel’s

problem as P(o ∈ [x1, x2]) since [x1, x2] is a segment.

We note that the argument of the original proof of Wendel’s equality based on Schäfli’s

formula cannot be used in the spindle convex setting. This is due to the fact that in order

for o not to be in the (random) spindle [x1, x2]1, the spindle has to be separated from o

by a line. This is a geometric property that heavily depends on the actual positions of

x1 and x2.

Let us examine what it means geometrically that o ∈ [x1, x2]1. Let M(x1) denote

the union of all open unit balls that contain o and x1 on their boundary. Let K(d, r, x1)

be the part of rBd \M(x1) that is in the closed half-space bounded by the hyperplane

through o and orthogonal to x1 which does not contain x1. Furthermore, let V (d, r, x1) :=

Vd(K(r, x1)), that is the d-dimensional volume of K(d, r, x1). We depicted this region in

Figure 2.1 when d = 2. We will only use K(2, r, x1) in our calculations, so, in order to

simplify notation, we will denote it by K(r, x1) = K(2, r, x1) and V (r, x1) = V (2, r, x1).

Figure 2.1: The region K(r, x1).
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In order to evaluate P (d, r, 2), we use the linear Blaschke-Petkantschin formula. Let

G(d, 2) denote the Grassmanian manifold of 2-dimensional linear subspaces of Rd, and ν2

be the unique rotation invariant Haar probability measure on G(d, 2). The 2-dimensional

special case of the linear Blaschke-Petkantschin formula (see, for example, [SW08, The-

orem 7.2.1 on p. 271]) says the following: If f : (Rd)2 → R is a nonnative measurable

function, then ∫
(Rd)2

f dλ2 =
ωd−1ωd
ω1ω2

∫
G(d,2)

∫
L2

f∇d−2
2 dλ2L ν2(dL), (2.2)

where ∇2 denotes the area of the parallelogram spanned by the vectors x1, x2 in L. The

symbol λ denotes the Lebesgue measure in Rd, and λL the (2-dimensional) Lebesgue

measure in L.

Next, using polar coordinates for x1, x2 ∈ L, that is, x1 = r1u1, x2 = r2u2, where

u1, u2 ∈ S1, r1, r2 ∈ R+, we may write the right-hand-side of (2.2) as follows.

ωd−1ωd
ω1ω2

∫
G(d,2)

∫
L2

f∇d−2
2 dλ2L ν2(dL)

=
ωd−1ωd
ω1ω2

∫
G(d,2)

∫
(S1×R)2

f(r1u1, r2u2)∇d−2
2 r1r2dr1du1dr2du2 ν2(dL)

=
ωd−1ωd
ω1ω2

∫
G(d,2)

∫
(S1×R)2

f(r1u1, r2u2)r
d−1
1 rd−1

2 ×

× |u1 × u2|d−2dr1du1dr2du2 ν2(dL). (2.3)

Now, from (2.3) and the rotational symmetry of the rBd, we obtain that

P (d, r, 2) =
1

(rdκd)2

∫
rBd

∫
rBd

1(o ∈ [x1, x2]1) dx1dx2

=
1

(rdκd)2
ωd−1ωd
ω1ω2

∫
G(d,2)

∫
S1

∫ r

0

∫
S1

∫ r

0

1(o ∈ [r1u1, r2u2]1)r
d−1
1 rd−1

2

× |u1 × u2|d−2dr1du1dr2du2 ν2(dL)

=
1

(rdκd)2
ωd−1ωd
ω1ω2

∫
S1

∫ r

0

∫
S1

∫ r

0

1(o ∈ [r1u1, r2u2]1)r
d−1
1 rd−1

2

× |u1 × u2|d−2dr1du1dr2du2

=
1

(rdκd)2
ωd−1ωd
ω1ω2

∫
S1

∫ r

0

∫
S1

∫ r

0

1(x2 ∈ K(r, x1))r
d−1
1 rd−1

2

× |u1 × u2|d−2dr2du2dr1du1

=
2π

(rdκd)2
ωd−1ωd
ω1ω2

∫ r

0

∫ r

0

∫ φ(r1,r2)

−φ(r1,r2)
rd−1
1 rd−1

2 |u1 × u2|d−2du2dr2dr1,
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where

φ(r1, r2) = arcsin(r1/2) + arcsin(r2/2).

Let φ be the angle of u2 and −u1, as shown on Figure 2.1. Then

P (d, r, 2) =
2π

(rdκd)2
ωd−1ωd
ω1ω2

∫ r

0

∫ r

0

∫ φ(r1,r2)

−φ(r1,r2)
rd−1
1 rd−1

2 | sinφ|d−2 dφdr2dr1

=
4π

(rdκd)2
ωd−1ωd
ω1ω2

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 φdφdr2dr1

=
ωd−1ωd
(rdκd)2

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 φdφdr2dr1

The above integral can be evaluated by for any specific value of d using multiple integra-

tion by parts. In particular,

P (2, r, 2) =
4

πr4

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

r2r1dφdr2dr1

=
4

πr4

∫ r

0

∫ r

0

r2r1(arcsin(r1/2) + arcsin(r2/2)) dr2dr1

=
4

πr4

(
r2

4
(r
√
4− r2 + 2(r2 − 2) arcsin(r/2))

)
=

1

πr2

(
r
√
4− r2 + 2(r2 − 2) arcsin(r/2)

)
, (2.4)

and

P (3, r, 2) =
9

2r6

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

r22r
2
1 sinφdφdr2dr1

=
9

2r6

(
r2

288
(−72 + 90r2 − 4r4 + 9r6)

+
1

4
arcsin(r/2)(R

√
4− r2(r2 − 2) + 4 arcsin(r/2))

)
.

In particular,

P (2, 1, 2) =

√
3

π
− 1

3
= 0.2179 . . . ,

P (3, 1, 2) =
1

64
(23 + 12

√
3π − 8π2) = 0.1459 . . . .

This finishes the proof of Theorem 1.

We conclude this section with the following statements.

Corollary 3 ([FMV23, Corollary 2.1]). For any fixed d ≥ 2, it holds that

lim
r→0+

P (d, r, 2) = 0.
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Furthermore, for any fixed 0 < r ≤ 1, it holds that

lim
d→∞

P (d, r, 2) = 0.

Proof. Note that, using arcsinx ≤ πx/2 for x ∈ [0, π/2] and sinx ≤ x for x ∈ [0, π/2],

we get that

P (d, r, 2) ≤ C(d)

r2d

∫ r

0

∫ r

0

∫ r1+r2

0

rd−1
1 rd−1

2 (r1 + r2)
d−2 dφdr2dr1

≤ 2d−1C(d)

r2d

∫ r

0

∫ r

r1

∫ 2r2

0

r3d−4
2 dφdr2dr1

=
2dC(d)

r2d

∫ r

0

∫ r

0

r3d−3
2 dr2dr1

=
2dC(d)

r2d
r3d−1

3d− 2
,

where the constant C(d) depends only on the dimension d. From this it follows that

lim
r→0+

P (d, r, 2) = 0

for d ≥ 2, as claimed.

In the proof of the second statement we use the fact that φ(r1, r2) ≤ π/3. Thus

P (d, r, 2) ≤ ωd−1ωd
r2dκ2d

∫ r

0

∫ r

0

rd−1
1 rd−1

2

(√
3

2

)d−1

dr2dr1

=
ωd−1ωd
d2κ2d

(√
3

2

)d−1

=
d− 1

d

κd−1

κd

(√
3

2

)d−1

.

Since κd−1/κd ∼ c ·
√
d as d → ∞, thus P (d, r, 2) → 0 as d → ∞. (Here the symbol ∼

means the asymptotic equality of sequences, that is, f(k) ∼ g(k) if limk→∞ f(n)/g(n) =

1.)

2.3 Proof of Theorem 2

The case when n = 3, can be treated, at least in the plane, as follows. We only consider

when r = 1, that is, K = B2. Let x1, x2, x3 be i.i.d. uniform random points from B2. Let

P (2, 1, 3) : = P(o ∈ [x1, x2, x3]1)
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Figure 2.2: The case of three points

= P(o ∈ [x1, x2]1) + P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1)

= P (2, 1, 2) + P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1).

Let

P (2, 1, 3) = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1).

Due to the rotational symmetry ofB2, we may assume that x1 = (0, r1). Let x2 = r2u2,

where φ is the angle of u2 and the negative half of the y-axis. Making use of the previously

introduced notation, we write K(x1) = K(1, x1) and, similarly, K(x2) = K(1, x2). The

ray oxi divides K(xi) into two congruent parts. The part that is on the positive side of

oxi is denoted by K+(xi), and the negative part is K−(xi), as shown on Figure 2.2.

Let V +(xi) = V2(K
+(xi)) and V

−(xi) = V2(K
−(xi)) for i = 1, 2. Then it holds that

V +(xi) = V −(xi) =

∫ 1

0

∫ φ(ri,r)

0

r dφdr =

∫ 1

0

(arcsin(ri/2) + arcsin(r/2))r dr

=
1

12

(
3
√
3− π + 6arcsin(ri/2)

)
.

We distinguish four cases according to the relative position of x1 and x2.

Case 1. r2 ≤ r1 and x2 /∈ [x1, o]1.
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In this case, φ ∈ [φ(r1, r2), π − arcsin(r1/2) + arcsin(r2/2)]. Then

P1 = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 /∈ [x1, o]1 and r1 ≥ r2)

=
2π

π3

∫ 1

0

∫ r1

0

∫ π−arcsin(r1/2)+arcsin(r2/2)

φ(r1,r2)

(
V +(x1) + V −(x2) +

π − φ

2

)
r1r2dφdr2dr1

=
1

π2

∫ 1

0

∫ r1

0

∫ π−arcsin(r1/2)+arcsin(r2/2)

φ(r1,r2)

(√
3− π

3
+ arcsin(r1/2)

+ arcsin(r2/2) +
π − φ

2

)
r1r2dφdr2dr1

= − 5

72
− 1

π2
+

5

4
√
3π
.

Case 2. r2 ≥ r1 and x1 /∈ [x2, o]1. By the symmetry of x1 and x2,

P2 = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x1 /∈ [x2, o]1 and r1 ≤ r2)

= P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 /∈ [x1, o]1 and r1 ≥ r2)

= − 5

72
− 1

π2
+

5

4
√
3π
.

Case 3. x2 ∈ [x1, o]1.

In this case r1 ≥ r2 and φ ∈ [π−arcsin(r1/2)+arcsin(r2/2), π]. Then K(x2) ⊂ K(x1),

thus

P3 = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 ∈ [x1, o]1)

=
2π

π3

∫ 1

0

∫ r1

0

∫ π

π−arcsin(r1/2)+arcsin(r2/2)

V (x1)r1r2dφdr2dr1

=
1

π2

∫ 1

0

∫ r1

0

∫ π

π−arcsin(r1/2)+arcsin(r2/2)

(√
3

2
− π

6
+ arcsin(r1/2)

)
r1r2dφdr2dr1

=
99− 24

√
3π + 4π2

576π2
.

Case 4. x1 ∈ [x2, o]1. Again, by the symmetry of x1 and x2,

P4 = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x1 ∈ [x2, o]1)

= P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 ∈ [x1, o]1)

=
99− 24

√
3π + 4π2

576π2
.

Thus, taking into account the symmetry with respect to the line ox1, we obtain that

P (2, 1, 3) = 2(P1 + P2 + P3 + P4) =
−36π2 − 477 + 216

√
3π

144π2
.
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Thus,

P (2, 1, 3) = P (2, 1, 2) + P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .

We note that the actual calculation can be carried out, at least numerically, for any

0 < r ≤ 1. Furthermore, the cases of n = 4, 5, . . . are essentially similar, although the

case analysis grows significantly more complicated as n increases.

Finally, we note that according to Wendel’s equality (2.1),

P(0 ∈ [x1, x2, x3]) =
1

4
< P (2, 1, 3).

The above inequality is expected as the spindle convex hull is strictly larger than the

classical spindle convex hull and thus the corresponding probabilities must behave the

same way.

2.4 The case of normally distributed random points

In this subsection we consider the model in which R = 1 and x1, . . . , xn are i.i.d. random

points in Rd that are distributed according to the standard normal distribution with

density function

f(x) =
1

(2π)
d
2

e−
|x|2
2 , x ∈ Rd.

Here we need to use the part of the definition of the spindle convex hull that normally

does not come into play when the random points are chosen from a convex body that is

spindle convex with radius less than or equal to 1. Namely, if x, y ∈ Rd are such that

|x− y| > 2, then [x, y]1 := Rd.

We are interested in the following probability

PN(d, 1, n) := P(o ∈ [x1, . . . , xn]1).

It is clear that

P(o ∈ [x1, . . . , xn]) ≤ P(o ∈ [x1, . . . , xn]1)

as [X] ⊂ [X]1 for any X ⊂ Rd.

Let E be the event that |x1 − x2| ≤ 2. Then

PN(d, 1, 2) = P(o ∈ [x1, x2]1 and E) + P(Ec),
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where Ec is the complement of E, as Ec automatically implies that o ∈ [x1, x2]1.

Let l denote the length of the random segment [x1, x2]. It is known (see [Mat99, p.

438] and the historical references therein) that the density of s := l2/4 is

g(s) =
s

d
2
−1e−s

Γ(d/2)
, 0 < s <∞. (2.5)

Thus,

P(Ec) =

∫ ∞

1

g(s) ds =
γ(d/2, 1)

Γ(d/2)
,

where Γ(·) is Euler’s gamma function, and γ(d/2, x) denotes the lower incomplete gamma

function.

Using the linear Blaschke–Petkantschin formula (2.3) and the rotational invariance of

the standard normal distribution we obtain that

P(o ∈ [x1, x2]1 and E)

=
1

(2π)d

∫
Rd

∫
Rd

1(o ∈ [x1, x2]1 and E) e−
|x1|

2+|x2|
2

2 dx1dx2

=
1

(2π)d
ωd−1ωd
ω1ω2

∫
G(d,2)

∫
L2

1(o ∈ [x1, x2]1 and E)∆d−2(x1, x2) e
− |x1|

2+|x2|
2

2 dx1dx2 ν2(dL)

=
1

(2π)d
ωd−1ωd
ω1ω2

∫
L2

1(o ∈ [x1, x2]1 and E)∆d−2(x1, x2) e
− |x1|

2+|x2|
2

2 dx1dx2.

In order to evaluate the above integral, we use polar coordinates x1 = r1u1 and

x2 = r2u2, r1, r2 ≥ 0, u1, u2 ∈ S1. Let φ be the angle of −u1 and u2, as before. For

2− r1 ≤ r2 ≤
√

4− r21, let

ψ(r1, r2) = π − arccos

(
r21 + r22 − 4

2r1r2

)
.

We distinguish two cases according to r2. When 0 ≤ r2 ≤ 2 − r1, then −φ(r1, r2) ≤

φ ≤ φ(r1, r2), and when 2 − r1 ≤ r2 ≤
√

4− r21, then −φ(r1, r2) ≤ φ ≤ −ψ(r1, r2) and

ψ(r1, r2) ≤ φ(r1, r2), see Figure 2.3.

By the rotational symmetry of the normal distribution, integration with respect to u1

is a just a multiplication by 2π. Then, we obtain that

P(o ∈ [x1, x2]1 and E)
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Figure 2.3: Integration bounds in φ according to r2

=
2

(2π)d−1

ωd−1ωd
ω1ω2

∫ 2

0

∫ 2−r1

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2(φ) e−
r21+r22

2 dφdr2dr1

+
2

(2π)d−1

ωd−1ωd
ω1ω2

∫ 2

0

∫ √
4−r21

2−r1

∫ φ(r1,r2)

ψ(r1,r2)

rd−1
1 rd−1

2 sind−2(φ) e−
r21+r22

2 dφdr2dr1.

The above integrals can be evaluated, at least numerically, for any specific value of d.

In particular, for d = 2, we obtain for the first integral

1

π

∫ 2

0

∫ 2−r1

0

∫ φ(r1,r2)

0

r1r2 e
− r21+r22

2 dφdr2dr1

=
1

π

∫ 2

0

∫ 2−r1

0

(arcsin(r1/2) + arcsin(r2/2))r1r2 e
− r21+r22

2 dr2dr1

≈ 0.079214.

The second integral is

1

π

∫ 2

0

∫ √
4−r11

2−r1

∫ φ(r1,r2)

ψ(r1,r2)

r1r2 e
− r21+r22

2 dφdr2dr1

=
1

π

∫ 2

0

∫ √
4−r21

2−r1

(
arcsin(r1/2) + arcsin(r2/2)− π + arccos

(
r21 + r22 − 4

2r1r2

))
× r1r2 e

− r21+r22
2 dr2dr1

≈ 0.01866.
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For d = 2,

P(Ec) =
γ(1, 1)

Γ(1)
=

1

e
= 0.367879 . . . ,

thus, in summary,

PN(2, 1, 2) = 0.465753 . . . . (2.6)
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Chapter 3

Series expansions for random

disc-polygons

This chapter of the dissertation is based on the following publication of the author:

[FMP24] F. Fodor and N. A. Montenegro Pinzón, Series expansions for random disc-

polygons in smooth plane convex bodies, J. Appl. Probab. 61 (2024), no. 4,

Published online May 16, 2024, DOI 10.1017/jpr.2024.27.

3.1 Introduction and results

Reconstructing a possibly unknown set, or some of its characteristic quantities, from

a random sample of points is a classical and a much investigated problem that arises

naturally in various fields, like stereology (see, for example, Baddeley and Jensen [BJ05]),

computational geometry (see Goodman, O’Rourke and Tóth [GOT18], statistical quality

control (see Devroye and Wise [DW80]), etc. Estimating the shape, volume, surface area,

and other characteristic quantities of sets is of interest both in geometry and statistics,

although the investigated aspects are in many cases different in the respective fields. For

an overview of set estimation see, for example, Cuevas and Rodŕıguez-Casal [CRC03].

The set may be quite arbitrary but often various restrictions are imposed on it. One

common such restriction that received much attention is when the set is required to be

convex. In such a setting polytopes spanned by random samples of points from the set
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form a natural estimator. The theory of random polytopes is a rich and lively field

with numerous applications. For a recent review and further references see, for example,

Schneider [Sch17]. The convex hull is an optimal estimator if no other restrictions are

imposed on the set other than convexity. However, in this chapter we study another

estimator under further assumptions on K, namely, that the degree of smoothness of the

boundary of K is prescribed to be Ck+1 and it also assumed that the curvature is positive

everywhere. Under these circumstances, using congruent circles to form the hull of the

sample yields better performance than the classical convex hull.

Since the case when the number of random points is fixed is notoriously difficult, it

has become common to investigate the asymptotic behaviour of functionals associated

with random polytopes as the number of points in the sample tends to infinity. The

investigations of the asymptotic behaviour of random polytopes started with the classical

papers by Rényi and Sulanke [RS63,RS64] in the 1960s. They studied the following model

in the plane. Let K be a convex body (a compact convex set with nonempty interior) in

d dimensional Euclidean space Rd and let x1, . . . , xn be independent random points from

K selected according to the uniform probability distribution.

The convex hull Kn = [x1, . . . , xn] of x1, . . . , xn is called a (uniform) random polytope

in K. Rényi and Sulanke [RS63, RS64] proved asymptotic formulas for the expected

number f0(Kn) of vertices of Kn and the expectation of the missed area A(K \ Kn)

under the assumption that the boundary ∂K of K is sufficiently smooth, and also in

the case when K is itself a convex polygon. Wieacker [Wie78] extended this to the d-

dimensional ball Bd, and Bárány [Bár92] for d-dimensional convex bodies with at least

C3
+ smooth boundary (three times continuously differentiable with everywhere positive

Gauss-Kronecker curvature). Schütt [Sch94] removed all smoothness conditions, and

Böröczky, Fodor and Hug [BFH10] extended the results for nonuniform distributions and

weighted volume difference.

Let Vi(·), i = 1, . . . , d denote the i-th intrinsic volume of a convex body. In partic-

ular, Vd(·) is the volume (Lebesgue measure), Vd−1(·) is the surface volume, and V1(·)

is a constant multiple of the mean width. Reitzner [Rei04] established a power series

expansion of the quantity E(Vi(K)−Vi(Kn)) for all i = 1, . . . , d as n→ ∞ under stronger

smoothness conditions on the boundary of K.
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Theorem 4 ([Rei04]). Let K be a convex body in Rd with Vd(K) = 1 whose boundary

∂K is Ck+1
+ for some integer k ≥ 2. Then

E(Vi(K)− Vi(Kn))

= c
(i,d)
2 (K)n− 2

d+1 + c
(i,d)
3 (K)n− 3

d+1 + . . .+ c
(i,d)
k (K)n− k

d+1 +O(n− k+1
d+1 ) (3.1)

as n → ∞. Moreover, c
(i,d)
2m+1 = 0 for m ≤ d/2 if d is even, and c

(i,d)
2m+1 = 0 for m if d is

odd.

Under the same conditions as in Theorem 4, one can obtain from (3.1) a series ex-

pansion for the number of vertices E(f0(Kn)) via Efron’s identity [BE65]

E(f0(Kn)) = d2(K)n
d−1
d+1 + d3(K)n

d−2
d+1 + . . .+ dk−2(K)n

d−k+1
d+1 +O(n

d−k+2
d+1 )

as n→ ∞.

Gruber [Gru96] proved the case of Theorem 4 when i = 1. Using properties of the

convex floating body, Reitzner established the planar case for area (d = 2, i = 2) of

Theorem 4 in [Rei01]. In particular, Reitzner proved that

d4(K) = c
(2,2)
4 (K) = −Γ

(
7

3

)
1

5
3

√
3

2

∫
∂K

k(x)κ
1
3 (x) dx,

where Γ(·) is Euler’s gamma function, k(x) is the affine curvature (for information about

the affine curvature see, for example [Bla23, pp. 12–15].) and κ(x) is the curvature of

∂K at x, and integration on the boundary ∂K of K is with respect to arc-length.

For more information about approximations of convex bodies by classical random

polytopes we refer to the book by Schneider and Weil [RSWW08], and the survey articles

by Bárány [Bár08], Reitzner [Rei10], and by Schneider [Sch17], and by Weil and Wieacker

[WW93].

When estimating a planar convex body under curvature restrictions, naturally, it may

be more advantageous to use suitably curved arcs to form the boundary of the approxi-

mating set that fit K better than line segments. One of the simplest such constructions

uses radius R circular arcs and the resulting (convex) hull is called, among other names,

the R-spindle convex hull, for precise definitions see below. The radius should be chosen

in such a way that the (generalised) random polygon is still contained in K. This imposes
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the condition on R that it should be at least as large as the maximum radius of curvature

of ∂K. However, similarly to the classical convex case, difficulties arise when R is equal

to the maximal radius of curvature, so this case usually needs a separate treatment using

different methods.

In this chapter, we study the R-spindle convex variant of the above probability model

in the Euclidean plane R2. Let R > 0 be fixed, and let x, y ∈ R2 be such that their

distance is at most 2R. We call the intersection [x, y]R of all closed circular discs of

radius R that contain both x and y the R-spindle of x and y. A set X ⊆ R2 is called

R-spindle convex if from x, y ∈ X it follows that [x, y]R ⊆ X. Spindle convex sets are

also convex in the usual linear sense. In this chapter we restrict our attention to compact

spindle convex sets. One can show (cf. Corollary 3.4 on page 205 in [BLNP07]) that a

convex disc (compact convex set in R2 with nonempty interior) is R-spindle convex if it

is the intersection of (not necessarily finitely many) closed circular discs of radius R. The

intersection of finitely many closed circular discs of radius R is called a convex R-disc-

polygon. Let X be a compact set which is contained in a closed circular disc of radius

R. The intersection of all R-spindle convex discs containing X is called the R-spindle

convex hull of X, and it is denoted by [X]R. If X ⊂ K for an R-spindle convex disc K,

then [X]R ⊂ K. A prominent class of R-spindle convex sets that are directly relevant

in this paper is provided by convex discs whose boundary is C2
+ smooth with curvature

κ(x) ≥ 1/R for all boundary points x ∈ ∂K (see [Sch14, §2.5 and 3.2]). For more detailed

information about spindle convexity we refer to Bezdek et al. [BLNP07] and Martini,

Montejano and Oliveros [MMO19].

We note that there exist further generalisations of spindle convexity, most notably,

the concept of L-convexity in which the translates of a fixed convex body L play the role

of the radius R closed disc, for more information see, for example, Lángi, Naszódi and

Talata [LNT13]. Another further generalisation is H-convexity introduced by Kabluchko,

Marynych and Molchanov [KMM22], where the hull of a set is generated by intersections

of transformed copies of a fixed convex set C by a set H of affine transformations. A

similar concept (see, for example, Mani-Levitska [ML93]) to R-spindle convexity, called

α-convexity, also exists, where the α-convex hull of a set is defined as the complement

of the union of all radius r open balls disjoint from the set. The α-convex hull of a

32



finite sample is different from its R-spindle convex hull as it is nonconvex while the R-

convex hull is always convex. We note that the α-convex hull can be used to estimate

not necessarily convex sets as well, see, for example, Paterio-Lopez and Rodŕıguez-Casal

[PLRC08], Rodŕıguez-Casal [RC07] and Pateiro-López [PL08], where several such results

are proved about random samples chosen from the set according to an absolute continuous

probability distribution.

A convex R-disc-polygon is clearly R-spindle convex. We consider a single radius R

disc and a single point also R-disc-polygons, albeit trivial ones. The non-smooth points

of the boundary of a nontrivial convex R-disc-polygon are called vertices. The vertices

divide the boundary into a union of radius R circular arcs of positive arc-length, we

call edges. Thus, a nontrivial convex R-disc-polygon has an equal number of edges and

vertices, just like a classical convex polygon, except the sides are radius R circular arcs.

The radius R disc has one edge and no side, and a single point has one vertex and no

side.

Our probability model is the following. Let K be convex disc with at least C2
+ smooth

boundary and let R be such that κ(x) > 1/R for all x ∈ ∂K. Let x1, . . . , xn be indepen-

dent random points in K chosen according to the uniform probability distribution. The

R-spindle convex hull KR
n = [x1, . . . , xn]R is called a uniform random R-disc-polygon in

K., which is a convex R-disc-polygon. It is clear that KR
n has an equal number of vertices

and sides with probability one, and its vertex set is formed by some of the random points

x1, . . . , xn. Let f0(K
R
n ) denote the number of vertices of KR

n . We note that in [PL08] the

radius rn of the discs used in the estimation of an α-convex set tends to zero as n→ ∞.

In our model, we use suitable fixed radius discs in order to guarantee that the R-spindle

convex hull of the random sample is contained in K. However, after the statements of

our main results, we briefly discuss what happens to the quality of the approximation

when the radius R tends to the limits of its possible range.

Fodor, Kevei and Vı́gh proved [FKV14, Thm 1.1 on p. 901] that under the above

conditions the following hold.

E(f0(K
R
n )) = z1(K)n

1
3 + o

(
n

1
3

)
, (3.2)

E(A(K \KR
n )) = A(K)z1(K)n− 2

3 + o
(
n− 2

3

)
, (3.3)
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as n→ ∞, where

z1(K) = 3

√
2

3A(K)
· Γ
(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx.

In the above formula Γ(·) is Euler’s gamma function, A(K) denotes the area of K, and

integration on ∂K is with respect to arc-length.

We note that (3.2) and (4.2) are connected by an Efron-type [BE65] identity (see

[FKV14, (5.10.) on p. 910]), which states that

E(f0(K
R
n )) = n

E(A(K \KR
n−1))

A(K)
.

In this chapter we prove following theorems that provide a power series expansion

of E(f0(KR
n )) and E(A(K \KR

n )) in the case when ∂K satisfies stronger differentiability

conditions.

Theorem 5 ([FMP24, Theorem 2]). Let k ≥ 2 be an integer, and let K be a convex disc

with Ck+1
+ smooth boundary. Then for all R > maxx∈∂K 1/κ(x) it holds that

E(f0(K
R
n )) = z1(K)n

1
3 + . . .+ zk−1(K)n− k−3

3 +O(n− k−2
3 )

as n→ ∞. All coefficients z1, . . . , zk can be determined explicitly. In particular,

z1(K) = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

) 1
3

dx,

z2(K) = 0,

z3(K) = −Γ

(
7

3

)
1

5

3

√
3A(K)

2

∫
∂K

κ′′(x)

3(κ(x)− 1
R
)
4
3

+
2R2κ2(x) + 7Rκ(x)− 1

2R2(κ(x)− 1
R
)
1
3

− 5(κ′(x))2

9(κ(x)− 1
R
)
7
3

dx.

By the spindle convex version of Efron’s identity we obtain the following corollary.

Theorem 6 ([FMP24, Theorem 3]). Let k ≥ 2 be an integer, and let K be a convex disc

with Ck+1
+ smooth boundary. Then for all R > maxx∈∂K 1/κ(x) it holds that

E(A(K \KR
n )) = z′1(K)n− 2

3 + . . .+ z′k−1(K)n− k
3 +O(n− k+1

3 )

as n→ ∞, where z′i(K) = A(K)zi(K) for i = 1, . . . , k.
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We note that we only evaluate zi(K), i = 1, 2, 3 explicitly in this paper because the

calculation, although possible, becomes more complicated as i increases, even when K is

a closed disc. The coefficients zi(K) depend only on R, the area of K, and on the power

series expansion of the local representation of the boundary of K, see (3.8), in particular,

the derivatives of κ up to order i− 1.

Although Theorems 5 and 6 are only valid for R > RM = maxx∈∂K 1/κ(x), it may

also be interesting to look at the behaviour of the coefficients zi(K) at the limits of the

range of R. When R → ∞, the integral in z1(K) tends to the affine arc-length of ∂K,

see [FKV14]. For z3(K), direct calculation yields that

lim
R→∞

κ′′(x)

3(κ(x)− 1
R
)
4
3

+
2R2κ2(x) + 7Rκ(x)− 1

2R2(κ(x)− 1
R
)
1
3

− 5(κ′(x))2

9(κ(x)− 1
R
)
7
3

= k(x)κ
1
3 (x),

where k(x) is the affine curvature of ∂K at x, cf. also (3.1).

On the other hand, when R → R+
M , then

lim
R→R+

M

z1(K) = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

RM

) 1
3

dx, (3.4)

where the integrand is bounded, nonnegative, and zero in exactly those points

where κ(x) = 1/RM . We conjecture that the right-hand-side of (3.4) is equal to

limn→∞ Ef0(KR
n ))n

−1/3 when R = RM and K is not a closed disc. However, this asymp-

totic expectation is not known.We also note, that z1(K) is a monotonically decreasing

function of R, which shows that it is indeed more advantageous to use circular arcs to

form the hull of the random sample of n point in order to approximate K better. Al-

though the order of magnitude in n of the approximation is the same as in the linearly

convex case, the main coefficient is smaller.

Furthermore, we note that in the particular case when K = B2 and R > 1, then

z1(B) =
3

√
2

3π
Γ

(
5

3

)
2π

(
1− 1

R

) 1
3

, z2(B) = 0,

z3(B) = −Γ

(
7

3

)
1

5
3

√
3π

2
2π

2R2 + 7R− 1

2R2(1− 1
R
)
1
3

.

If R → 1+, then z1(B) → 0, and z3(B) → −∞, and both are monotonically increasing

functions showing that the quality of approximation improves as R tends to 1. This

behaviour comes as no surprise as the expected number of vertices behaves fundamentally
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differently from the previously discussed situation when K ̸= B; the order of magnitude

in n is different if K = B as we will see below. Finally, we note that we also suspect that

z3(K) behaves similarly as z3(B) when R → R+
M but this is not clear from its current

form.

It was proved in [FKV14] that

E(f0(B(R)Rn )) =
π2

2
+ o(1),

E(A(B(R) \B(R)Rn )) =
R2π3

2

1

n
+ o

(
1

n

)
as n → ∞. The unusual behaviour of E(f0(B(R)Rn )), i.e. that it tends to a finite

constant, was explained by Marynych and Molchanov [MM22]. They proved, in the much

wider context of L-convexity (see also Fodor, Papvári, Vı́gh [FPV20]) that E(f0(B(R)Rn ))

tends to the expectation of the number of vertices of the polar of the zero cell of a

Poisson line process whose intensity measure on R is the A(B(R))−1 = 1/(R2π) times

the Lebesgue measure, and whose directional distribution is uniform on S1, see [MM22,

(6.1)]. In Section 4, we calculate the (the first three terms of) the power series expansion

of E(f0(B(R)Rn )) for the sake of completeness. This gives the speed of convergence of

E(f0(B(R)Rn )) to π2/2. We note that here we only quoted the result of Marynych and

Molchanov in the plane, however, they proved in Rd.

The rest of the chapter is organized as follows. In Section 3.2, we briefly recall from

[FKV14] the necessary background and describe how E(f0(B(R)Rn )) can be calculated. In

Section 3.3, we provide the power series expansions of the involved geometric quantities.

In Section 3.4, we quote a power series expansion of the incomplete beta function from

Gruber [Gru96]. We prove Theorem 5 in Section 3.5. Finally, in Section 3.6, we treat the

case when K = B(R).

3.2 Expectation of the number of vertices

Our arguments are based on the methods of Rényi and Sulanke [RS63] and Gruber

[Gru96].We also note that, compared to those of [PL08], our methods essentially depend

on the higher regularity and smoothness of the boundary of K and the explicit local

power series expansion of ∂K. Notice note that it is enough to prove the theorem for
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R = 1, from that the statement for general R follows by a scaling argument. Therefore,

we omit R from the notation in the proof.

Due to the Ck+1
+ condition, K is both smooth, i.e. has a unique supporting line at

each boundary point, and strictly convex. Let ux ∈ S1 denote the unique outer unit

normal vector to K at x, and for u ∈ S1 let xu be the (again) unique boundary point

where the outer unit normal is equal to u.

We use B◦ to denote the interior of B. A subset D of K is a disc-cap of K if

D = K \ (B◦ + p) for some point p ∈ R2. It was proved in [FKV14] that for a disc-

cap D = K ∩ (B◦ + p) there exists a unique point x0 ∈ ∂K ∩ D and t ≥ 0 such that

B + p = B + x0 − (1 + t)ux0 . We call x0 the vertex and t the height of D.

We may assume that o ∈ intK. Let A = A(K) = V2(K). Let Xn = {x1, . . . , xn} be

a sample of i.i.d. uniform random points from K. For xi, xj ∈ Xn, we denote by xixj

the shorter unit circular arc connecting xi and xj with the property that xi and xj are

in counterclockwise order on the arc. Let

E(Kn) = {xixj : xi, xj ∈ Xn and xixj is an edge of Kn}

the set of directed edges of Kn. For xi, xj ∈ Xn, let Cij be the disc-cap determined by

the disc of xixj, and Aij = A(Cij). Note that xixj ∈ E(Kn) exactly when all the other

n− 2 random points of Xn are in K \Cij. Thus, due to the independence of the random

points,

E(f0(K
1
n)) =

∑ 1

An

∫
K

. . .

∫
K

1{xixj ∈ E(Kn)} dx1 . . . dxn

=

(
n

2

)
1

A2

∫
K

∫
K

(
1− A12

A

)n−2

+

(
1− A21

A

)n−2

dx1dx2, (3.5)

where in the first line summation extends over all ordered pairs of distinct points from

Xn. Now, we use the same re-parametrization for the pair (x1, x2) as in [FKV14]. Let

(x1, x2) = Φ(u, t, u1, u2),

where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u) are chosen such that

C(u, t) = C12,

and

(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2). (3.6)
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The vectors u1 and u2 are the unique outer unit normals of ∂B + xu − (1 + t)u at

x1 and x2, respectively. For fixed u and t, both u1 and u2 are contained in the same arc

L(u, t) of S1 whose length is denoted by ℓ(u, t). The uniqueness of the vertex and height

of disc-caps guarantees that the map Φ is well-defined, bijective, and differentiable on a

suitable domain of (u, t, u1, u2). The Jacobian of Φ is

|JΦ| =
(
1 + t− 1

κ(xu)

)
|u1 × u2|.

Let A(u, t) denote the area of the disc-cap with vertex xu and height t. For each u ∈ S1,

let t0(u) be maximal such that A(u, t0(u)) ≥ 0. Then, after the change of variables we

get from (3.5) that

E(f0(K
1
n)) =

(
n

2

)
1

A2

∫
S1

∫ t0(u)

0

∫
L(u,t)

∫
L(u,t)

(
1− A(u, t)

A

)n−2

×
(
1 + t− 1

κ(xu)

)
|u1 × u2|du1du2dtdu

=

(
n

2

)
1

A2

∫
S1

∫ t0(u)

0

(
1− A(u, t)

A

)n−2

J(u, t)dtdu,

where

J(u, t) =

(
1 + t− 1

κ(xu)

)∫
L(u,t)

∫
L(u,t)

|u1 × u2|du1du2

= 2

(
1 + t− 1

κ(xu)

)
(ℓ(u, t)− sin ℓ(u, t)).

We note that due to the C2
+ property of ∂K, J(u, t) ≤ C for some 0 < C ≤ 6(2π + 1)

that depends only on K.

Let 0 < δ < A be an arbitrary but fixed small number. Let 0 < t1 be such that for

arbitrary t ∈ [t1, t0(u)] and u ∈ S1 it holds that A(u, t) ≥ δ.

Then ∫
S1

∫ t0(u)

t1

(
1− A(u, t)

A

)n−2

J(u, t)dtdu

≪
∫
S1

∫ t0(u)

t1

(
1− A(u, t)

A

)n−2

dtdu

≪
∫ 2

t1

(
1− δ

A

)n−2

dt

≪
(
1− δ

A

)n−2
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≪ e−
δ(n−2)

A ,

thus with the choice of a suitably small δ,

E(f0(K
1
n)) =

(
n

2

)
1

A2

∫
S1

∫ t1

0

(
1− A(u, t)

A

)n−2

J(u, t) dtdu+O(e−n). (3.7)

In the following sections we evaluate the integral (3.7) under different smoothness

assumptions on ∂K.

3.3 Power series expansions

Let k ≥ 2 be an integer and K ⊂ R2 a convex disc with a Ck+1
+ boundary (k + 1 times

continuously differentiable with everywhere positive curvature). We will use the following

statement which originates from Schneider [Sch81], later generalized by Gruber [Gru96].

We state it in the form used by Reitzner [Rei04], but only for d = 2.

Lemma 7. Let K be a convex disc with Ck+1
+ boundary for some integer k ≥ 2. Then

there exist constants α, β > 0 depending only on K such that the following holds for every

boundary point x of K. If x = 0 and the (unique) tangent line of K at x is R, then there

is an α neighbourhood of x in which the boundary of K can be represented by a convex

function f(σ) of differentiability class Ck+1 in R. Moreover, all derivatives of f up to

order k + 1 are uniformly bounded by β.

Let u ∈ S1 and let x = xu ∈ ∂K. Assume that K is in the position described in

Lemma 7. Let f be the function that represents the boundary ofK in an α neighbourhood

of x. Then f is of the form

f(σ) = b2(u)σ
2 + . . .+ bk(u)σ

k +O(σk+1),

where the coefficients bi = bi(u), i = 2, . . . , k depend on u. In the foregoing we will

suppress the dependence of coefficients on u (and thus on x) when we work with a fixed

u. We will only indicate dependence when u is used in the argument.

We recall the following facts from the differential geometry of plane curves. Let r(s)

be the arc-length parametrization of ∂K with r(0) = x in the neighbourhood of x such

that the following hold. With the above assumptions on K, let the vector r′(0), and the
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unit normal vector r′′(0)/κ(0) = −u form the basis of a Cartesian coordinate system, in

which we denote the coordinate along the r′-axis by σ, and the r′′-axis by η. Then

σ = σ(s) = s− κ2(0)

3!
s3 − 3κ(0)κ′(0)

s4

4!
+O(s5),

η = η(s) = κ(0)
s2

2
+ κ′(0)

s3

3!
+ (κ′′(0)− κ3(0))

s4

4!
+O(s5). (3.8)

From the equality f(σ(s)) = η(s) we can identify the coefficients b2, . . . , bk. In particular,

b2 =
κ(0)

2
, b3 =

κ′(0)

6
, b4 =

κ′′(0) + 3κ3(0)

24
.

With a slight abuse of notation, in the above formulas we use κ to denote the curvature

as a function of s, which is different from previous usage. Later, we will also use the same

letter when the curvature is a function of the outer unit normal u. Moreover, when u (s

or x) is fixed, we suppress the dependence of κ on u (s or x, respectively). It will always

be clear from the context which function we consider.

We will also use the following statement due to Gruber [Gru96], see also Reitzner

[Rei04] (we state it again only for d = 2, so this is a simpler version of the original

theorem):

Lemma 8. Let

η = η(σ) = bmσ
m + . . .+ bkσ

k +O(σk+1)

for 0 ≤ σ ≤ α, 2 ≤ m ≤ k be a strictly increasing function. Then there are coefficients

c1, . . . , ck−m+1 and a constant γ > 0 such that the inverse function σ = σ(η) has the

following representation

σ = σ(η) = c1η
1
m + . . .+ ck−m+1η

k−m+1
m +O(η

k−m+2
m )

for 0 ≤ η ≤ γ. The coefficients c1, . . . , ck−m+1 can be determined explicitly in terms of

bm, . . . , bk. In particular,

i) c1 =
1

b
1
m
m

,

ii) c2 = − bm+1

mb
m+2
m

m

,

iii) c3 = − bm+2

mb
m+3
m

m

+
(m+3)b2m+1

2m2b
2m+3

m
m

.
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For t ≥ 0, let the unit radius lower semicircle with centre (0, 1 + t) be represented by

the function

gt(σ) = t+ 1−
√
1− σ2 = t+ 1−

∞∑
i=0

(−1)i
(

1
2

i

)
σ2i

= t+ g2σ
2 + . . .+ g2iσ

2i + . . . ,

for σ ∈ [−1, 1], where

g2 =
1

2
, g3 = 0, g4 =

1

8
.

Let σ+ = σ+(t) > 0 and σ− = σ−(t) < 0 such that

f(σ+) = gt(σ+), and f(σ−) = gt(σ−).

For sufficiently small σ > 0, it holds that

t = t(σ) = f(σ)− 1 +
√
1− σ2 = u2σ

2 + . . .+ ukσ
k +O(σk+1),

where, in particular,

u2 = b2 − g2, u3 = b3, u4 = b4 − g4.

We note that, subsequently, we express coefficients in terms of the ui’s (as long as it

does not become too complicated) as they carry all information about ∂K and the circle.

We will only substitute their values when we determine our final answer.

Since u2 > 0 by the conditions on ∂K, Lemma 8 yields

σ+ = σ+(t) = c1t
1
2 + . . .+ ck−1t

k−1
2 +O(t

k
2 ), (3.9)

where

c1 = u
− 1

2
2 , c2 = − u3

2u22
, c3 =

5u23 − 4u2u4

8u
7
2
2

.

Similarly, we obtain that

σ− = σ−(t) = c̃1t
1
2 + . . .+ c̃k−1t

k−1
2 +O(t

k
2 ), (3.10)
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where the coefficients c̃1, . . . , c̃k−1 can be determined explicitly. In particular,

c̃1 = −c1, c̃2 = c2, c̃3 = −c3.

Thus, using (3.9) and (3.10), the area of the disc cap C(u, t) is

A(u, t) =

∫ σ+

σ−

gt(σ)− f(σ) dσ =

∫ σ+

σ−

t− u2σ
2 − . . .− ukσ

k +O(σk+1) dσ

=

[
tσ − u2

3
σ3 − . . .− uk

k + 1
σk+1 +O(σk+2)

]σ+
σ−

= a1t
3
2 + a2t

2 + . . .+ ak−1t
k+1
2 +O(t

k+2
2 ). (3.11)

where the coefficients a1, . . . , ak−1 can be expressed explicitly. In particular,

a1 =
4

3
u
− 1

2
2 , a2 = 0, a3 =

5u23 − 4u2u4

10u
7
2
2

.

Now we turn to expressing the Jacobian J(u, t) in the form of a series expansion in t.

Using (3.9) and (3.10), we get

ℓ(u, t) =

∫ σ+

σ−

√
1 + (g′t(σ))

2 dσ =

∫ σ+

σ−

√
1

1− σ2
dσ = [arcsinσ]σ+σ−

= h1t
1
2 + h2t+ . . .+ hk−1t

k−1
2 +O(t

k
2 ), (3.12)

where the coefficients h1, . . . , hk−1 can be expressed explicitly. In particular,

h1 = 2u
− 1

2
2 , h2 = 0, h3 =

15u23 + 4u2(u2 − 3u4)

12u
7
2
2

.

We note that the coefficients c1, c2, c3 (also c̃1, c̃2, c̃3), a1, a2, a3 and h1, h2, h3 were

calculated in [FKV14, pp. 911–912] with a different notation.

Now, using (3.12), we get that

ℓ(u, t)− sin ℓ(u, t) =
∞∑
i=0

(−1)i
ℓ2i+1(u, t)

(2i+ 1)!
= l1t

3
2 + . . .+ lk−1t

k+1
2 +O(t

k+2
2 ),

where the coefficients l1, . . . , lk−1 can be calculated explicitly. In particular,

l1 =
4

3
u
− 3

2
2 , l2 = 0, l3 =

25u23 + 4u2(u2 − 5u4)

10u
9
2
2

. (3.13)

Then

J(u, t) = 2

(
1 + t− 1

κ(xu)

)
(ℓ(u, t)− sin ℓ(u, t))
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= j1t
3
2 + . . .+ jk−1t

k+1
2 +O(t

k+2
2 ), (3.14)

where, where the coefficients j1, . . . , jk−1 can be calculated explicitly. In particular,

j1 =
8u

− 3
2

2 (κ− 1)

3κ
, j2 = 0, j3 =

8u
− 3

2
2

3
+

25u23 + 4u2(u2 − 5u4)

5u
9
2
2

(κ− 1)

κ
.

For a fixed n, let y = y(u, t) be defined by

y

n− 2
=
A(u, t)

A
.

Then, by (3.11) and using Lemma 8 for
√
t and then squaring, we obtain that

t = p1

(
y

n− 2

) 2
3

+ . . .+ pk−1

(
y

n− 2

) k
3

+O

((
y

n− 2

) k+1
3

)
, (3.15)

where the coefficients p1, . . . , pk−1 can be calculated explicitly. In particular,

p1 =

(
3A

4

) 2
3

u
1
3
2 , p2 = 0, p3 =

9A(−5u23 + 4u2u4)

320u22
.

Then, substituting (3.15) into (3.14), we obtain

J

(
u,

y

n− 2

)
= q1

(
y

n− 2

)
+ . . . + qk−1

(
y

n− 2

) k+1
3

+ O

((
y

n− 2

) k+2
3

)
, (3.16)

where the coefficients q1, . . . , qk−1 can be calculated explicitly. In particular,

q1 = j1p
3
2
1 , q2 = 0, q3 = j3p

5
2
1 +

3j1p3p
1
2
1

2
.

In the coefficients q1, q3 we used j1, j3 and p1, p3 instead of the ui’s in order to simplify

notation.

3.4 The incomplete beta function

In evaluating the integral (3.7), we use the following expansion of the incomplete beta-

function from Gruber [Gru96].

Lemma 9 (Gruber [Gru96]). Let β ∈ R. There are coefficients γ1, γ2, . . . ∈ R depending

on β which can be determined explicitly such that for a fixed l = 1, 2, . . . and 0 < α ≤ 1∫ αn

0

(
1− t

n

)n
tβ dt = Γ(β + 1) +

γ1
n

+ . . .+
γl
nl

+O

(
1

nl+1

)
, as n→ ∞.
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In particular,

γ1 = −Γ(β + 3)

2
, γ2 = −Γ(β + 4)

3
+−Γ(β + 5)

8
.

If α is chosen from a closed subinterval of (0, 1], then the constant in O(·) can be chosen

independent of α.

In our calculations, we need the following corollary of Lemma 9.

Lemma 10 ([FMP24, Lemma 4]). Under the same assumptions as in Lemma 9, it holds

that∫ α(n−2)

0

(
1− t

n− 2

)n−2

tβ dt = Γ(β + 1) +
γ′1
n

+ . . .+
γ′l
nl

+O

(
1

nl+1

)
, as n→ ∞.

In particular,

γ′1 = −Γ(β + 3)

2
, γ′2 = −Γ(β + 4)

3
− 2Γ(β + 3).

If α is chosen from a closed subinterval of (0, 1], then the constant in O(·) can be chosen

independent of α.

Proof. Using (9) and
n

n− 2
=

1

1− 2
n

= 1 +
2

n
+

4

n2
+ . . .

we obtain ∫ α(n−2)

0

(
1− t

n− 2

)n−2

tβ dt

= Γ(β + 1) +
γ1
n

n

n− 2
+ . . .+

γl
nl

nl

(n− 2)l
+O

(
1

nl+1

nl+1

(n− 2)l+1

)
= Γ(β + 1) +

γ′1
n

+ . . .+
γ′l
nl

+O

(
1

nl+1

)
,

from which we can get the coefficients γ′1, . . . , γ
′
l by simple calculation.

3.5 Proof of Theorem 5

Substituting (3.16) in the integral (3.7) and using (3.15), we obtain that

E(f0(K
1
n)) =

(
n

2

)
1

A2

∫
S1

∫ t1

0

(
1− A(u, t)

A

)n−2

J(u, t) dtdu+O(e−n)

=

(
n

2

)
1

A2

1

n− 2

∫
S1

∫ τ(n−2)

0

(
1− y

n− 2

)n−2
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× J

(
u,

y

n− 2

)
t′
(

y

n− 2

)
dydu+O(e−n).

We evaluate the inner integral as follows. Collecting the terms according to the

exponent of y/(n− 2) and also the error term yield(
n

2

)
1

A2

1

n− 2

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

J

(
u,

y

n− 2

)
t′
(

y

n− 2

)
dy

= v1

(
n

2

)
1

A2

1

(n− 2)
5
3

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

y
2
3 dy + . . .+ (3.17)

+ vk−1

(
n

2

)
1

A2

1

(n− 2)
k+3
3

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

y
k
3 dy

+O

(
1

(n− 2)
k−2
3

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

y
k+1
3 dy

)
.

as n→ ∞. The coefficients v1, . . . , vk−1 can be determined explicitly. In particular,

v1 =
2

3
p1q1, v2 = 0, v3 =

4

3
q1p3 +

2

3
p1q3.

Here we use p1, p3 and q1, q3 to express v1, v3 for the sake of brevity. Of course, they can

also be expressed explicitly in terms of the ui’s.

We evaluate the above integrals one-by-one using Lemma 10. In particular, the first

integral is as follows:

v1

(
n

2

)
1

A2

1

(n− 2)
5
3

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

y
2
3 dy

=
3

√
2

3A

(κ− 1)
1
3

κ

n(n− 1)

(n− 2)
5
3

(
Γ

(
5

3

)
−

Γ
(
10
3

)
2

1

n
+ . . .

)

=
3

√
2

3A

(κ− 1)
1
3

κ

(
Γ

(
5

3

)
n

1
3 +

(
7

3
Γ

(
5

3

)
−

Γ
(
10
3

)
2

)
1

n
2
3

+ . . .

)
,

where in the last line we used the binomial series expansion

n(n− 1)

(n− 2)5/3
= n

1
3 +

7

3
n− 2

3 + . . . .

The second (nonzero) integral is the following:

v3

(
n

2

)
1

A2

1

(n− 2)
7
3

∫ τ(n−2)

0

(
1− y

n− 2

)n−2

y
4
3 dy
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=
v3
2A2

n(n− 1)

(n− 2)
7
3

(
Γ

(
7

3

)
−

Γ
(
13
3

)
2

1

n
+ . . .

)

=
v3
2A2

(
Γ

(
7

3

)
n− 1

3 +

(
11Γ

(
7
3

)
3

−
Γ
(
13
3

)
2

)
n− 4

3 + . . .

)
,

where we used the binomial series expansion

n(n− 1)

(n− 2)
7
3

= n− 1
3 +

11

3
n− 4

3 + . . . .

Evaluating the k − 1 integrals in (3.17) and collecting the terms, including the error

term, we obtain that(
n

2

)
1

A2

∫ t1

0

(
1− A(u, t)

A

)n−2

J(u, t)dt

= w1n
1
3 + w2n

0 + . . .+ wk−1n
− k−1

3 +O(n− k
3 ),

where, in principle, all coefficients w1, . . . , wk−1 can be calculated explicitly. In particular,

w1(u) =
3

√
2

3A
Γ

(
5

3

)
(κ(u)− 1)

1
3

κ(u)
,

w2(u) = 0,

w3(u) = −Γ

(
7

3

)
1

5
3

√
3A

2

(
κ′′(u)

3(κ(u)− 1)
4
3κ(u)

+
2κ2(u) + 7κ(u)− 1

2(κ(u)− 1)
1
3κ(u)

− 5(κ′(u))2

9(κ(u)− 1)
7
3κ(u)

)
,

where we recall that κ is a function of u.

Finally, integration with respect to u yields that

E(f0(K
1
n)) =

∫
S1

w1(u)n
1
3 + w2(u)n

0 + . . .+ wk−1(u)n
− k−1

3 +O(n− k
3 ) du

= z1(K)n
1
3 + z2(K)n0 + . . .+ zk−1(K)n

k−1
3 +O(n− k

3 ),

where, again, all coefficient can be found explicitly. In particular,

z1(K) =

∫
S1

w1(u) du =
3

√
2

3A
Γ

(
5

3

)∫
∂K

(κ(x)− 1)
1
3 dx,

z2(K) = 0,

z3(K) =

∫
S1

w3(u) du = −Γ

(
7

3

)
1

5
3

√
3A

2

∫
∂K

κ′′(x)

3(κ(x)− 1)
4
3

+
2κ(x)2 + 7κ(x)− 1

2(κ(x)− 1)
1
3

− 5(κ′(x))2

9(κ(x)− 1)
7
3

dx
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where we use that if ∂K is C2
+ smooth and f(u) is a measurable function on S1, then∫

S1 f(u)du =
∫
∂K
f(ux)κ(x)dx, (cf. formula (2.62) in [Sch14]). This finishes the proof of

Theorem 5.

3.6 The case of the unit circle

For the sake of completeness, we consider the case when K = B(R). Since E(f0(B(R)Rn ))

is independent of R, we may assume that R = 1. We will use the simpler notation

B1
n = B(1)1n. In [FKV14, p. 916] it was proved that

E(f0(B
1
n)) =

(
n

2

)
4

∫ π

0

sin(σ)

(
1− sin(σ) + σ

π

)n−1

dσ.

Let
y

n− 1
=

sin(σ) + σ

π
.

Since sin(σ)+σ is a strictly monotonically increasing analytic function on [0, π], its inverse

is also a strictly monotonically increasing analytic function by the Lagrange inversion

theorem. Then σ has a power series expansion in terms of y/(n − 1) around y = 0 as

follows

σ = c1

(
y

n− 1

)
+ c3

(
y

n− 1

)3

+ . . .+ c2k+1

(
y

n− 1

)2k+1

+ . . . ,

where all coefficients can be calculated explicitly. In particular,

c1 =
π

2
, c3 =

π3

96
, c5 =

π5

1920
.

Thus,

sin(σ) = e1

(
y

n− 1

)
+ e3

(
y

n− 1

)3

+ . . .+ e2k+1

(
y

n− 1

)2k+1

+ . . . ,

where the coefficients can be calculated explicitly. In particular,

e1 =
π

2
, e3 = −π

3

96
, e5 = − π5

1920
.

Therefore

E(f0(B
1
n)) =

(
n

2

)
4

n− 1

∫ n−1

0

(
1− y

n− 1

)n−1

sin

(
σ

(
y

n− 1

))
σ′
(

y

n− 1

)
dy
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= f1

(
n

2

)
4

(n− 1)2

∫ n−1

0

(
1− y

n− 1

)n−1

y dy

+ f3

(
n

2

)
4

(n− 1)4

∫ n−1

0

(
1− y

n− 1

)n−1

y3 dy

+ . . .+ f2k+1

(
n

2

)
4

(n− 1)2k+2

∫ n−1

0

(
1− y

n− 1

)n−1

y2k+1 dy + . . . ,

where all coefficients f1, . . . , f2k+1, . . . can be evaluated explicitly using Lemma 9 and the

binomial series expansion of n/(n− 1)2k+1. In particular,

f1 =
π2

4
, f3 =

π4

96
, f5 =

11π6

15360
.

Thus, by Lemma 10 the first integral yields(
n

2

)
π2

(n− 1)2

∫ n−1

0

(
1− y

n− 1

)n−1

y dy

=
π2

2

n

n− 1

(
Γ(2)− Γ(4)

2

1

n− 1
+

(
−Γ(5)

3
+

Γ(6)

8

)
1

(n− 1)2
+ . . .

)
=
π2

2

(
1− 2

n
+

2

n2
+ . . .

)
The second integral yields

f3

(
n

2

)
4

(n− 1)4

∫ n−1

0

(
1− y

n− 1

)n−1

y3 dy

=
π4

48

n

(n− 1)3

(
Γ(4)− Γ(6)

3

1

n− 1
+

(
−Γ(7)

3
+

Γ(8)

8

)
1

(n− 1)2
+ . . .

)
Thus, for any k ≥ 0,

E(f0(B
1
n)) = w0n

0 + w1n
−1 + w2n

−2 + . . .+ wkn
−k + . . . , (3.18)

where all coefficient w0, . . . , wk can be calculated explicitly. In particular,

w0 =
π2

2
, w1 = −π2, w2 =

π4 + 8π2

8
, w3 =

13π2

3
− 11π4

24
. (3.19)
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Chapter 4

The less smooth case

4.1 Introduction and results

In this chapter we discuss the case when the boundary of K is assumed to have weaker

differentiability conditions. The motivation for this lies, at least partly, in the work

of Schütt [Sch94], where he extended the validity of the previously proved asymptotic

formula for the missing volume in the model of linear random polytopes to the case with

no smoothness assumption at all. However, we note that Schütt’s formula, although

valid without smoothness conditions, gives 0 for many convex bodies, most notably for

polytopes. In our case this does not happen because of the bounds on the curvatures.

Here we try to follow this path and extend the validity of formulas (3.2) and (3.3)

under the weakest smoothness conditions our method currently allows. This is probably

not the most general version, however, it shows that it is not the differentiability that is

most important but the existence of the (positive) minimum and the maximum of the

(generalized) curvature.

The asymptotic formulas (3.2) and (3.3) were proved in [FKV14]. We show that the

original argument in [FKV14] can be carried out in this more general context with minor

changes.

Our main conditions on the smoothness of ∂K will be the existence of a rolling circle

and that K slides freely in a circle. More precisely, the definitions are the following.

A convex disc K has a rolling circle if there exists a real number r0 > 0 with the

property that any x ∈ ∂K lies in some closed circular disc of radius r0 contained in K,
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for a definition in a more general context see [Sch14, p. 164]. According to a theorem of

Blaschke [Bla56], if the boundary of K is C2
+ smooth, then it has a rolling circle; this is

often called ”Blaschke’s rolling theorem”. The existence of the rolling circle guarantees

that the boundary of K is smooth in the sense it has a unique outer unit normal at

each point, that is, no vertices are permitted. This also yields that ∂K is continuously

differentiable, so it is C1. Moreover, Hug proved in [Hug00] that the existence of a rolling

circle is equivalent to the exterior unit normal being a Lipschitz function on ∂K. However,

having a rolling circle does not guarantee that ∂K is differentiable twice.

We say that a convex disc K slides freely in a circular disc R0B
2 of radius R0 if for

each x ∈ ∂K there exists a p ∈ R2 such that x ∈ ∂(R0B
2)+ p and K ⊂ R0B

2+ p. Again,

for a definition in a more general context see [Sch14, p. 156]. The property that K slides

freely in a circle yields that K is strictly convex, that is, it boundary does not contain

segments. Hug [Hug00] proved that if K slides freely in a circle, then the reverse spherical

image map (the map that assigns to a unit vector u the boundary point xu where the

outer unit normal of K is u) is a Lipschitz map from the unit circle to ∂K.

If K has both a rolling circle and slides freely in a circle, then it is smooth and

strictly convex. Then both the spherical image map and it reverse are well-defined on

the whole boundary ∂K and the whole of S1, respectively, and they are inverses to

one another, and both are Lipshitz continuous by Hug’s results. Thus, in this case, by

Rademacher’s theorem both the spherical image map and its reverse are differentiable

almost everywhere.

By the theorem of Bezdek et al [BLNP07], if K is an R-spindle convex disc, then it

slides freely in a circle of radius R. The converse is also true, if the convex disc K slides

freely in a circle of radius R, then it is the intersection of all supporting circles so it is

R-spindle-convex. So R-spindle convexity, for convex discs, is equivalent to sliding in a

circle of radius R. This is an important, although weak, smoothness property.

Since we do not require ∂K to be of class C2, we need a notion of generalized second

order differentiability and generalized curvature: We say that ∂K is twice differentiable

in the generalized sense if it can be approximated by a quadratic function in the following

sense: Let x ∈ ∂K. If K is positioned in such a way that x = o and R is a support line

of K, then in a neighborhood of the origin o, ∂K is the graph of a convex function f
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defined on an open interval containing o satisfying

f(z) =
κ(x)

2
z2 + o(z2)

as z → 0. We call κ(x) the generalized curvature of ∂K at x. Note that if f is twice

differentiable at x in the usual sense, then κ(x) coincides with the usual curvature. We

do not distinguish the generalized curvature from the usual curvature in notation, as the

difference is always clear from the context. According to the classical result of Alexandrov

(see P.M. Gruber [Gru07] or R. Schneider [Sch14]), ∂K is twice differentiable in the

generalized sense at almost all points with respect to the arc-length. We call a boundary

point x of K normal, if ∂K is differentiable twice in the generalized sense at x. We denote

the set of normal boundary points by M(K). It is known that if x ∈ ∂K is normal, then

the spherical image map is differentiable (in the usual sense) at x, see [Sch14].

Our main results are described in the following theorem.

Theorem 11. Let K be a convex disc that has a rolling circle and slides freely in a circle

of R0. Then for any R > R0, it holds that

lim
n→∞

E(f0(K
R
n )) · n−1/3 = 3

√
2

3A(K)
· Γ
(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx, (4.1)

and

lim
n→∞

E(A(K \KR
n )) · n2/3 =

3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx. (4.2)

Let K satisfy the conditions of Theorem 11. Then ∂K is C1 smooth and κ(x) >

1/R0 > 1 for all normal boundary points x ∈ ∂K.

Since the conditions of Theorem 11 imply that ∂K is C1, the statements of the

following lemma hold at every normal boundary point.

Lemma 12. Let K be a convex disc which has a rolling circle and slides freely in a circle

of radius R0 < 1. Let R = 1 and let x ∈ ∂K normal boundary point with κ(x) > 1. With

the same notation as in 3.2 it holds that

lim
t→0+

ℓ(xu, t)t
−1/2 = 2

√
2

κ(x)− 1
, (4.3)

lim
t→0+

A(ux, t) · t−3/2 =
4

3

√
2

κ(x)− 1
. (4.4)
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Lemma 12 was proved in [FKV14] for the case when ∂K is C2
+. We observe that the

proof is valid in our case without any changes.

We quote the following technical statement from [FKV14] which guarantees that we

can bound the area of disc-caps from below uniformly in u for sufficiently small height t.

Let the radius of the rolling circle of K be r0.

Then the assumptions on K and (4.4) yield that there exists 0 < t̂ < r0 such that for

any regular direction u ∈ S1

A(u, t) ≥ 1

2

(
4

3

√
2r0

1− r0

)
t
3
2 for t ∈ [0, t̂]. (4.5)

4.2 Proof of Theorem 11

We only prove the asymptotic formula for the expectation of the number of vertices (4.1),

as the one for the missed area (4.2) follows from it via Efron’s identity in a standard way.

The idea of the proof is that the lack of second differentiability causes no problem

because we can still integrate as the Jacobian is the same (almost everywhere) as in the

usual case by Hug’s results [Hug00]. Formally, we will integrate on a subset of ∂K where

all necessary things (generalized curvature, Jacobian, etc.) exist. This is a measurable

set and its complement is a set of measure 0.

We assume again that the radius of spindle convexity is 1 and obtain the general form

of the theorem by scaling. We use the same notation as in Section 3.2 and recall that

E(f0(K
1
n)) =

∑ 1

An

∫
K

. . .

∫
K

1{xixj ∈ E(Kn)} dx1 . . . dxn

=

(
n

2

)
1

A2

∫
K

∫
K

(
1− A12

A

)n−2

+

(
1− A21

A

)n−2

dx1dx2, (4.6)

see (3.5). In the first line summation extends over all ordered pairs of distinct points

from Xn = {x1, . . . , xn}. We use the same reparametrization for the pair (x1, x2) as in

Section 3.2 (and also in [FKV14]), see (3.6).

Since the conditions of Theorem11 guarantee that both the spherical image map and

the reverse spherical image map are Lipschitz, they are differentiable almost everywhere

by Rademacher’s theorem, thus the Jacobian of the map Φ is

|JΦ| =
(
1 + t− 1

κ(xu)

)
|u1 × u2|
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almost everywhere. Therefore, by the reparametrization and the same argument as in

Section 3.2, we obtain that

E(f0(K
1
n)) =

(
n

2

)
1

A2

∫
S1

∫ t1

0

(
1− A(u, t)

A

)n−2

J(u, t) dtdu+O(n−2).

where

J(u, t) = 2

(
1 + t− 1

κ(xu)

)
(ℓ(u, t)− sin ℓ(u, t)),

see (3.7).

Let h(n) = (c lnn/n)2/3, where c is a suitable positive constant that depends only on

K and which we determine later. From the existence of the rolling circle it follows that

there exists n0 ∈ N and γ1 > 0, depending only on K, such that if n > n0, then h(n) < t1,

and A(u, t) > γ1 · h(n)3/2 for all h(n) ≤ t ≤ t1 and for all u ∈ S1.

Since R0 < 1, by the result of Hug [Hug00] κ(xu) ≥ 1/R0 > 1 in each normal

direction, which yields that 0 ≤ (1 + t− 1/κ(xu)) < 3 for any regular direction u ∈ S1.

Furthermore, ℓ(u, t) − sin ℓ(u, t) ≤ 2π + 1 < 8 for all 0 ≤ t ≤ t1 and u ∈ S1. Hence, for

any fixed regular direction u ∈ S1 and any n > n0, it holds that

J(u, t) ≤ 48. (4.7)

Thus, using (4.7), we obtain that for all n > n0,(
n

2

)
1

A2

∫ t1

h(n)

(
1− A(u, t)

A

)n−2

J(u, t) dt

≤ n2 24

A2

∫ t1

h(n)

(
1− γ1h(n)

3
2

A

)n−2

dt

< n2 24

A2

∫ t1

0

(
1− γ1c(lnn/n)

A

)n−2

dt

≤ n2 48

A2
n− cγ1

A ,

so if c > 5A/3γ1, this quantity is o(n1/3).

Thus,

lim
n→∞

E(f0(K
1
n))n

− 1
3 = lim

n→∞
n

5
3

1

2A2

∫
S1

∫ h(n)

0

(
1− A(u, t)

A

)n−2

J(u, t) dtdu, (4.8)
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Now, for n > n0 we define the following function for (regular) normal directions u ∈ S1

θn(u) = n
5
3

∫ h(n)

0

(
1− A(u, t)

A

)n−2

J(u, t)dt, (4.9)

so

lim
n→∞

E(f0(K
1
n)) · n− 1

3 = lim
n→∞

2

A2

∫
S1

θn(u) du.

We recall formula (11) from [BFRV09] that states the following. For any β ≥ 0, ω > 0

and α > 0 we have that∫ g(n)

0

tβ (1− ωtα)n dt ∼ 1

αω
β+1
α

· Γ
(
β + 1

α

)
· n−β+1

α , (4.10)

as n→ ∞, assuming (
(β + α + 1) lnn

αωn

) 1
α

< g(n) < ω− 1
α ,

for sufficiently large n. We note that Lemma 9 also implies (4.10).

The conditions on K and formula (4.3) imply that there exists γ3 > 0 such that

ℓ(u, t) − sin ℓ(u, t) < γ2t
3/2 for all 0 < t < t0 and normal directions u ∈ S1. We recall

that 1 + t− 1/κ(xu) < 3 for all normal directions u ∈ S1 and 0 ≤ t ≤ t1. Now (4.5) and

(4.10) with α = β = 3/2 and ω = (2/(3A))
√

2ρ/(1− ρ) yield that there exists γ3 > 0,

depending only on S, such that θn(u) < γ3 for all normal u ∈ S1 and sufficiently large n.

Thus, by Lebesgue’s dominated convergence theorem we may exchange the limit and the

integral and obtain that

lim
n→∞

E(f0(K
1
n)) · n− 1

3 =
2

A2

∫
S1

lim
n→∞

θn(u) du. (4.11)

Let u ∈ S1 be a normal direction and ε ∈ (0, 1) be arbitrary but fixed. It follows from

Lemma 12 that

lim
n→∞

θn(u) =
4
√
2

3

(
1

κ(xu)− 1

) 3
2

×

κ(xu)− 1

κ(xu)
lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
3
2dt

+ lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
5
2dt

 , (4.12)
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see [FKV14, p. 910]. Applying (4.10) with α = 3/2, β = 5/2 yields that the second term

of (4.12) is 0. Now, (4.10) yields that

lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
3
2dt =

2

3

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.

Thus, putting everything together we obtain

lim
n→∞

θn(u) =
8
√
2

9

(
1

κ(xu)− 1

) 3
2 κ(xu)− 1

κ(xu)

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.

Therefore,

lim
n→∞

Ef0(K
1
n) · n− 1

3 =
2

A2

∫
S1

lim
n→∞

θn(u)du

=
3

√
2

3A
Γ

(
5

3

)∫
S1

1

κ(xu)
(κ(xu)− 1)

1
3 du

=
3

√
2

3A
Γ

(
5

3

)∫
∂S

(κ(x)− 1)
1
3 dx.

From this we get (4.1) by scaling.
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Chapter 5

Concluding remarks and open

problems

As already noted in Chapter 2, the methods used in Section 2.2 for the case of three

points in the plane could, in theory, be applied for four or more points although the

argument would involve more case analysis. This may only be worth writing down if one

could use it for an arbitrary number of points. However, that seems difficult due to the

increasing number of cases.

In connection with Wendel’s problem, we mention the open question of the spindle

convex variant of Sylvester’s problem. It asks for the probability that four i.i.d. uniform

random points from a spindle convex container K are (not) in spindle convex position,

that is, they form (or do not form) the vertices of a disc-4-gon. It also makes sense to

ask the same question for other probability distributions as well.

In Chapter 3, the advantage of using spindle convexity against classical convexity is

most apparent when K = rB2, where r is close to 1. In this case, the constants for

spindle convex approximation are significantly smaller than for classical approximation.

We note that using essentially the same methods, but with significantly more technical

difficulties, it is reasonable to say that we could extend results of this chapter to the L-

convex case for the expected number of vertices and missed area.

Another important quantity in the plane is the perimeter of the random disc-polygons.

In the paper [FKV14] by Fodor, Kevei and Vı́gh, there is an asymptotic formula about

the expected perimeter difference of K and Kr
n which requires that ∂K is C5

+ using a
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similar local expansion of the boundary as in Chapter 3. This suggests that one could

perform a similar calculation for the perimeter in order to obtain a finite series expansion.

However, this calculation seems to be much more involved than that of the missed area

and vertex number.

Although we only deal with probabilities and expectations in this thesis, we note that

asymptotic upper and lower bounds of matching orders of magnitude in n have been

proved by Fodor and Vı́gh [FV18] and Fodor, Grn̈felder and Vı́gh [FGV22] for the missed

area under certain restrictions. However, no lower or upper bounds are known for the

variance of the perimeter. For this question, methods of Reitzner [Rei03] could be used.

Also, the natural question about similar results in higher dimensions arises. However,

very little information is available for this case. Recently, Marynych and Molchanov

[MM22] proved an asymptotic formula for the expected number of k-dimensional faces

of uniform random L-polytopes when the container from which the random points are

selected is L itself. When L and the container K are different, essentially no formulas

are known. Here, one of the difficulties lies in the fact that while d i.i.d. uniform random

points selected from a convex body that is spindle convex with radius r span a hyperplane

with probability 1 in Rd, they may not lie on a sphere of radius r. Besides this geometric

problem, more work is required to overcome other technical difficulties that arise when

trying to adapt classical convex methods for the spindle convex case.

With regards to the results in Chapter 4, the natural question arises whether these

asymptotic formulas are also valid without any smoothness conditions, similar to the

classical convex case. In the paper by Böröczky, Fodor and Hug [BFH10] a completely

different method was used to prove a similar asymptotic formula for the classical convex

case with no smoothness conditions. However, it seems that that argument cannot be

adapted easily to the spindle convex case. One reason for this is the essential use of affine

transformations, which are not allowed in the spindle convex setting. It remains to be

seen whether this can be circumvented somehow.

In a recent paper, Fodor, Kevei and Vı́gh [FKV23] proved similar asymptotic formulas

for the case when K is a disc-polygon. Probably, their argument could be used to deal

with a finite number of non-smooth points, but likely not when there are infinitely many

of them.
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Despite the above, we still think that the method of Böröczky, Fodor and Hug [BFH10]

is the most hopeful that could deal with all kinds of extremes on the boundary.

We have already mentioned earlier that Fodor, Kevei and Vı́gh [FKV14] proved an

asymptotic formula for the expectation of the perimeter difference of K and KR
n . Their

formula is valid if ∂K is C5
+. It is an open question whether the differentiability conditions

on ∂K could be relaxed while maintaining the validity of the formula. In this case, the

difficulty lies in the fact that the proof uses several terms of local Taylor polynomial

expansions of ∂K which would be unavailable under weaker differentiability conditions.
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Chapter 6

Summary

In this dissertation we consider some spindle convex analogs of classical problems in the

theory of random polytopes. Spindle convexity is when the (spindle convex) hull of a set

S is produced by the intersection of all equal radius R closed balls containing S, for a

more detailed description and precise definitions see Section 1.1. The closed balls play a

similar role as closed half-spaces do in classical convexity.

Most of the mathematical content of the dissertation is based on the following two

publications of the author:

[FMV23] F. Fodor, P. N. A. Montenegro, and V. Vı́gh, On Wendel’s equality for

intersections of balls, Aequationes Math. 97 (2023), no. 2, 439–451, DOI

10.1007/s00010-022-00912-3. MR4563622

[FMP24] F. Fodor and N. A. Montenegro Pinzón, Series expansions for random disc-

polygons in smooth plane convex bodies, J. Appl. Probab. 61 (2024), no. 4,

Published online May 16, 2024, DOI 10.1017/jpr.2024.27.

In Chapter 1, we give a general introduction to the subject. Section 1.1 contains

some of the necessary definitions and notations. We leave the more specific terms and

notations to the individual chapters. Section 1.2 provides a brief overview on the history

of the relevant results of theory of random polytopes.

Chapter 2 contains the results of the paper [FMV23] about the spindle convex variant

of Wendel’s equality.
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Wendel’s equality [Wen62] is a classical result in geometric probability which states

that if x1, . . . , xn are i.i.d. random points in Rd whose distribution is (centrally) symmetric

with respect to the origin o, and the probability measure of hyperplanes are 0, then the

probability that o is not contained in the convex hull [x1, . . . , xn] is

P(o /∈ [x1, . . . , xn]) =
1

2n−1

d−1∑
i=0

(
n− 1

i

)
. (6.1)

In Chapter 2, we investigate the analogous question for spindle convexity. If KR
n

denotes the radius R spindle convex hull of n i.i.d. random points selected from the

o-symmetric convex body K ⊂ Rd according to the uniform probability distribution,

then what is the probability that o ∈ KR
n ? We note that in this model we may always

achieve by scaling (simultaneously K and radius R circles) that R = 1. Henceforth, in

the following two theorems we assume that R = 1.

First, we study the special case when K = rBd with 0 < r ≤ 1. Let

P (d, r, n) := P(o ∈ [x1, . . . , xn]1).

In Section 2.2 we prove the following theorem:

Theorem 1 ([FMV23, Theorem 1.1], ). Let K = rBd. Then

P (d, r, 2) =
ωd−1ωd
(rdκd)2

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 φdφdr2dr1,

where φ(r1, r2) = arcsin(r1/2) + arcsin(r2/2). In particular,

P (2, 1, 2) =

√
3

π
− 1

3
= 0.2179 . . . ,

P (3, 1, 2) =
1

64
(23 + 12

√
3π − 8π2) = 0.1459 . . . .

Furthermore, for the case of three points, we prove the following statement in Sec-

tion 2.3.

Theorem 2 ([FMV23, Theorem 1.2]). Let K = B2. Then

P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .
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In Section 2.4, we study the Gaussian R-spindle convex model. Let x1, . . . , xn be

i.i.d. random points from Rd distributed according to the standard normal distribution.

The question is the same, what is the probability that o ∈ KR
n ? We note that in this

second case, it may, and does, happen that KR
n = Rd. We give an integral formula for

the probability that a Gaussian unit radius spindle contains the origin and evaluate it

numerically in the plane, see (2.6).

Chapter 3 contains the results of the paper [FMP24]. In Chapter 3, we study uniform

random disc-polygons in convex discs in the plane where the boundary of the convex disc

K is assumed to have a higher degree of smoothness. Let k ≥ 2 be an integer and K ⊂ R2

a convex disc that has a boundary that is Ck+1
+ , meaning that it is k+1 times continuously

differentiable and has strictly positive curvature κ(x) for all boundary points x ∈ ∂K.

Let KR
n denote the R-spindle convex hull (an R-disc-polygon) of n i.i.d. uniform random

points from K where it is assumed that R > max 1/κ(x) for x ∈ ∂K.

In the special case when k = 1, Fodor, Kevei and Vı́gh [FKV14] proved asymptotic

formulas, among others, for the expected number of vertices Ef0(KR
n ) and so-called missed

areas A(K \ KR
n ). In Chapter 3 we further study these expectations and prove finite

expansions for them in terms of powers of n as n→ ∞. In particular, the main result of

this chapter is the following theorem.

Theorem 5 ([FMP24, Theorem 2]). Let k ≥ 2 be an integer, and let K be a convex disc

with Ck+1
+ smooth boundary. Then for all R > maxx∈∂K 1/κ(x) it holds that

E(f0(K
R
n )) = z1(K)n

1
3 + . . .+ zk(K)n− k−3

3 +O(n− k−2
3 )

as n→ ∞. All coefficients z1, . . . , zk can be determined explicitly. In particular,

z1(K) = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

) 1
3

dx,

z2(K) = 0,

z3(K) = −Γ

(
7

3

)
1

5

3

√
3A(K)

2

∫
∂K

κ′′(x)

3(κ(x)− 1
R
)
4
3

+
2R2κ2(x) + 7Rκ(x)− 1

2R2(κ(x)− 1
R
)
1
3

− 5(κ′(x))2

9(κ(x)− 1
R
)
7
3

dx.

By the spindle convex version of Efron’s identity we obtain, as a corollary, a similar

expansion for the missed area A(K \KR
n ), see Theorem 6 ([FMP24, Theorem 3]).
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In the case when K = B(R), that is, K is a radius R closed circular disc, the expected

number of vertices behaves fundamentally differently from the previously discussed situ-

ation. It was proved in [FKV14] that

E(f0(B(R)Rn )) =
π2

2
+ o(1).

as n→ ∞.

In Section 3.6, applying the same method as before, we prove a finite expansion of

the expected number of vertices E(f0(B(R)Rn )) in terms of the powers of n, see formulas

(3.18) and (3.19).

Finally, in Chapter 4, we extend the validity of the original asymptotic formulas

proved by Fodor, Kevei and Vı́gh in [FKV14] for the expected number of vertices and

missed area under weaker smoothness conditions. In [FKV14] it was assumed that ∂K

is C2
+ smooth and the radius of spindle convexity is strictly larger maximal radius of

curvature of ∂K. In Chapter 4, we only assume that K has a rolling circle (there exists

r0 > 0 such that for every x ∈ K there is a radius r0 circular disc that is contained in

K and which contains x on its boundary), and that K slides freely in a circle of radius

R0 (meaning that for each x ∈ ∂K there is a circle of radius R0 that contains K and x

is on its boundary). These conditions naturally imply that K is R-spindle convex for all

R ≥ R0. We prove the following statements:

Theorem 11 (p. 51). Let K be a convex disc that has a rolling circle and slides freely

in a circle of R0. Then for any R > R0, it holds that

lim
n→∞

E(f0(K
R
n )) · n−1/3 = 3

√
2

3A(K)
· Γ
(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx,

and

lim
n→∞

E(A(K \KR
n )) · n2/3 =

3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx.
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Chapter 7

Összefoglaló

Jelen dolgozat a geometriai valósźınűség és sztochasztikus geometria témaköréhez

tartozik. Különböző eloszlások szerint választott független véletlen pontok által

meghatározott alakzatok geometriai tulajdonságait vizsgáljuk. A véletlen politópok iro-

dalmában szokásos klasszikus konvexitás fogalom helyett az ún. orsókonvexitás fogalmát

használjuk. Egy Rd euklideszi térbeli X kompakt halmazt R > 0 sugárral orsókonvexnek

nevezünk, ha X benne van egy R sugarú zárt körlmezeben és megegyezik az őt tartal-

mazó összes R sugarú körlemez metszetével. Véges sok R sugarú zát körlemez metszetét

körpoligonnak nevezzük.

A dolgozat gerincét két megjelent cikk adja: [FMV23, FMP24]. Továbbá a dis-

szertáció tartalmaz nem publikált eredményeket is (4. fejezet). Az 1. fejezetben a

legalapvetőbb jelölések és defińıciók kerülnek bevezetésre, amit a témakör egy rövid

töréneti összefoglalója és az elért eredmények ismertetése követ. A 2. fejezet a [FMV23]

cikk tartalmán alapszik és a nevezetes Wendel-egyenlőség orsókonvex változatát vizsgálja.

Itt arra vagyunk ḱıváncsiak, hogy egy origóra szimmetrikus eloszlás szerint választott

véletlen pontok konvex burka mekkora valósźınűséggel tartalmazza az origót. A klasszikus

esetben ez a valósźınűség csak a véletlen pontok számától függ, az eloszlástól nem.

Az orsókonvex esetben az véletlen pontokat egyrészt egy origó középpontú gömbből

az egyenletes eloszlás szerint, másrészt a standard normális eloszlás szerint választjuk.

Meghatározzuk, hogy mekkora valósźınűséggel van benne az origó az orsókonvex burkuk-

ban, ha a pontok száma kettő vagy három. Elviekben ez a módszer több pontra is

alkalmazható lenne, de a sok eset miatt gyorsan elbonyolodik. A 2. fejezet fő eredményeit
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az 1 tétel, a 2 tétel, és a 2.4. alfejezetben a (2.6) formula tartalmazza.

A 3. fejezetben, ami az [FMP24] cikk tartalmán alapszik, Gruber [Gru96] és Reitzner

[Rei01, Rei04] eredményeit terjesztjük ki orsókonvex lemezek véletlen körpoligonokkal

való közeĺıtésére. Konkrétan, a befoglaló K lemezről feltesszük, hogy határa k + 1-szer

folytonosan differenciálható (k ≥ 2) és emellett a feltétel mellett véges sok tagból álló

sorfejtést igazolunk a kimaradó terület, illetve a csúcsszám várható értékére, ha a pon-

tok száma a végtelenbe tart és az orsókonvexitás sugara szigorúan nagyobb, mint a be-

foglaló lemez határának maximális görbületi sugara. Továbbá, ugyanazzal a módszerrel,

megvizsgáljuk azt az esetet is, amikor a befoglaló K konvex lemez épp az R sugarú zárt

körlmez, és erre is véges sorfejtést adunk, ha n → ∞. A 3. fejezet fő eredményeit az

5. tétel, a 6. tétel, és a 3.6. alfejezetben a (3.18) és (3.19) formulák tartalmazzák.

A dolgozat 4. fejezetében Fodor, Kevei és Vı́gh [FKV14] véletlen körpoligonok ki-

maradó területére és csúcsszámára vonatkozó aszimptotikus formuláit terjesztjük ki

konvex lemezek egy tágabb simasági osztályára. A [FKV14] cikkbeli eredmények

feltételezték, hogy K határa C2
+ és az orsókonvexitás sugara R szigorúan nagyobb, mint

K határának maximális görbületi sugara. A 4. fejezetben K határáról csak azt tesszük

fel, hogy rendelkezik gördülőkörrel, illetve szabadon siklik egy R0 sugarú körben, illetve

hogy R > R0. A 3. fejezet fő eredményei a 11. tételben vannak összefoglalva. A 4. fejezet

tartalma nem publikált.

Az 5. fejezet a dolgozatban léırt eredményekkel kapcsolatos néhány megjegyzést és

nyitott problémát tartalmaz. A 6. fejezet a disszertáció angol nyelvű összefoglalója.
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Chapter 8
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[San46] L. A. Santaló, On plane hyperconvex figures, Summa Brasil. Math. 1 (1946),

221–239 (1948).

[Sch81] R. Schneider, Zur optimalen Approximation konvexer Hyperflächen durch
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