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EXECUTIVE SUMMARY 
 
  
The main objective of the project was to contribute to the incorporation of uncertainty 
assessments in water resource decision making in South Africa, thereby quantifying the risks 
associated with specific decisions about planned future water resource developments. This 
objective was supported by several specific aims: 
  
1. Develop an understanding of uncertainty and associated risks in water resource 

management on the basis of literature and known practices, nationally and 
internationally.  

 
2. Identify and characterise the main sources of uncertainty (focusing on current South 

African practice and typical situations of data availability).  
 
3. Develop techniques and guidelines for quantifying the uncertainty associated with 

different models. This will include uncertainty in all relevant areas (hydrological, 
climate, economic, social, etc.).  

 
4. Determine the effects of uncertainty on water resource management and identify 

what level of uncertainty is acceptable.  
 
5. Develop guidelines for the communication of uncertainty and the impacts to various 

stakeholder groups involved within water resource planning and management. This 
aim will need to address the issue of the links between uncertainty and risk.  

 
6. Develop guidelines for incorporating uncertainty and the associated risk into water 

resource decision making processes.  
 
7. Identify those areas of uncertainty that can be realistically reduced and which will 

have the greatest impact on reducing the risks involved with water resource decision 
making.  

 

While all of these aims have been addressed as part of the project, it was inevitable that a 

project of this type would raise almost as many additional questions as it would answer those 

that were posed as part of the project design. The main output from the project has been the 

development of a framework for uncertainty assessments in water resources availability 

analyses within South Africa. This framework has been based on international experience, 

the water resources analysis methods that are commonly applied within South Africa, the 

data constraints that exist within the country as well as the requirements for water resources 

management decision making. The framework has been supported by the development of 

some new approaches to applying existing hydrological models and illustrated by examples 

of their application. The framework development has certainly contributed to an 

understanding of uncertainty (Aim 1), is focused on the main areas of uncertainty that have 

been identified (Aim 2) and is supported by techniques that can be applied in practice (Aim 

3). There remain some questions about how best to communicate uncertainty to different 

stakeholder groups (Aim 5) and consequently how uncertainty effects management, what 
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level of uncertainty is acceptable and how uncertainty affects decision making risk (Aims 4, 5 

and 6). The project has identified the main sources of uncertainty and offers some 

recommendations on approaches to reduce the level of uncertainty. Some of these are 

achievable in the short-term through changes in technical practices (such as hydrological 

model parameter estimation), while others require closer engagement in the future between 

scientists, water resources engineers and policy makers at governmental level (such as 

improvements in the national rainfall monitoring network). 

 

The framework is discussed in detail in the first three chapters of this report and is largely 

based on the concept of generating ensemble outputs from hydrological models rather than 

the traditional approach of a single output. The range of differences between the ensembles 

represents the degree of uncertainty in our understanding of the hydrological response of a 

catchment as well as in the climate data used to force the hydrological response. In practice 

the input uncertainty is represented by using probability distributions (rather than single 

values) of the model parameters as well as variations in the rainfall and evaporation demand 

data used to drive the model. The variability in the parameters and the forcing climate data 

will depend on our existing knowledge about the catchment and the amount and quality of 

data that are available to inform that knowledge. The framework includes a method of 

assessing the ensemble outputs to try and distinguish between those that are not realistic 

representations and those that can be considered ‘behavioural’. This assessment uses 

regional and local knowledge of hydrological response and is largely based on the integrated 

use of observations (measured stream flow data, for example) and prior knowledge (previous 

studies of groundwater recharge, for example). Where high confidence can be expressed in 

this knowledge, the range of behavioural outputs will be small (low uncertainty), while in 

other situations a high degree of uncertainty will remain. The concepts are very similar to the 

traditional approaches to the use of hydrological models involving calibration and validation 

of a result before being used for decision making. However, the traditional approach could 

not be applied satisfactorily in ungauged catchments where there are no data to calibrate 

against, and did not include any explicit quantitative uncertainty information. The new 

framework is far more flexible and can be applied under all conditions regardless of the 

quantity and quality of the available data. The report provides the details of the different parts 

of the framework as well as a number of examples of its application in various regions of 

South Africa. 

 

It is a strong recommendation of this project that the issue of improving and sustaining the 

collection of rainfall data within South Africa be discussed in the very near future by all the 

organisations either responsible for data collection or that use the data. This could be 
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achieved through a highly focused workshop (organized perhaps by the Water Research 

Commission) that has a mandate to report to the relevant Ministers and the outcomes of 

which will be used to guide future policy. It is important that at least the Water Research 

Commission, the Department of Water Affairs, the Department of Agriculture, the SA 

Weather Service, water resources engineering consultants as well as research organizations 

are represented at the workshop. It is also important that the individuals representing the 

government organisations have sufficient authority to influence policy directions. One of the 

outcomes of the workshop should be a succinct report on the state of rainfall data collection, 

the implications of not improving the situation and recommendations for future action.  

 

One of the most important considerations from a practical point of view was that the project 

should not recommend approaches that are completely different, and that would generate 

completely different results, compared with existing methods used by a large number of 

water resources practitioners in South Africa. The intention was to recommend 

enhancements to existing methods such that uncertainty assessments could be explicitly 

included without the need for completely replacing methods that have been used with 

reasonable confidence for many years. Specifically, this point relates to the links between 

hydrological models (used to generate time series of likely natural hydrology) and water 

resources systems yield models that are used to assess water availability, design storage 

and abstractions systems and assess future scenarios so that management decisions can be 

made (see Chapter 4). Some inclusion of uncertainty has always been part of standard 

practice for yield analyses in South Africa through the use of a stochastic model component 

in yield models that generate multiple stream flow sequences. However, this approach 

represents only a form of uncertainty. The project investigated the integration of stochastic 

uncertainty with hydrological uncertainty (related to climate inputs and model parameter 

quantification) through the use of a stochastic rainfall model to provide inputs into uncertain 

hydrological models. The assumption was that this could replace the traditional use of a 

stochastic stream flow generator within the yield model. While the report presents examples 

and evidence to suggest that the new approach has many potential advantages, there 

remain some practical considerations as well as some issues related to the interpretation of 

the results for decision-making purposes. These will be addressed as part of a future 

partnership between key groups involved in both research and practice including the 

Department of Water Affairs. One of the recommendations of this project is that future 

updates to the water resources of South Africa studies (WR2020 perhaps?) should be based 

on improved methods of parameter estimation in ungauged catchments and should include 

parameter uncertainty.   
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One of the potential sources of uncertainty in water resources assessments is related to the 

available information about present day water use. This source of uncertainty also impacts 

on the interpretation of observed stream flows records and the process of naturalization. The 

uncertainty in present day flows can be dealt with in either hydrological models or within yield 

models. Several examples, including uncertainties in groundwater abstraction impacts, 

afforestation impacts and the effects of small farm dams are presented in the report. It is 

quite clear that the uncertainties in these components of the water balance of catchments 

should not be neglected and also that the available information is less than adequate in 

many situations.  

 

Chapter 5 of the report refers to the analysis and software tools that have been developed 

during the project. Many of these are associated with the SPATSIM software package that is 

under common ownership by the IWR, UKZN, the WRC and DWA. Many of these have been 

developed for a research environment and from a practical point of view it will be necessary 

to translate some of the software for use with other software that is currently being used by 

practitioners. This issue will be addressed in the near future. 

 

Being uncertain about the outcome of a scientific or technical analysis should not be seen in 

a negative light and the explicit inclusion of quantitative expressions of uncertainty should 

allow improve future decision-making. First of all, realistic expressions of uncertainty will help 

to identify the gaps and weaknesses in our knowledge and understanding and therefore 

promote interventions to close those gaps. Secondly, uncertainty should be part of the whole 

adaptive approach to managing water resources that is advocated by many leading scientists 

and practitioners worldwide.   

 

Throughout this project attempts have been made to achieve a balance between the 

development of new approaches based on sound hydrological principles and international 

experience with the practical considerations associated with the use of models for water 

resources assessments, planning and management. The degree to which these overall 

objectives have been achieved can only really be measured by the impact of the project 

outcomes on the approaches applied in the future. Many of the techniques that have been 

developed during this project are already being successfully applied by Rhodes University 

research students in studies as diverse as large scale modelling of the Congo River basin 

through much smaller scale evaluations of surface-groundwater interactions in South African 

catchments to various climate change impact assessments. The value of the project results 

to future hydrological research within South Africa has therefore already been demonstrated. 

Many of the principles and some of the results of the project have already been 
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internationally peer reviewed through the publication of papers in scientific journals and 

presentation at international conferences. This process will continue through 2011 as 

additional material is submitted.   

 

Some of the follow up activities will have to be focused on ‘selling’ the concepts, the 

proposed techniques and the recommendations to the broader community of hydrological 

and water resource engineering practitioners. The project team recognizes that this will never 

be a simple task and practitioners are often justifiably reluctant to adopt new approaches 

without a very clear demonstration of the advantages. The authors believe that they have 

presented a strong argument for including uncertainty in standard practices for water 

resources estimation in South Africa but it remains to be seen whether these arguments are 

strong enough to encourage the paradigm shift that will be required. 
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At the start of the project two Rhodes University post-graduate students were already 

working on uncertainty issues in hydrological modelling and both have made significant 

contributions to the outcomes of this project. The first of these students, Dr Tendai 

Sawunyama (2008), was awarded his PhD degree in 2009 and took up employment with 

Water for Africa consulting engineers (now IWR Water Resources and headed up by Mr 

Stephen Mallory) as a hydrologist. Mr Evison Kapangaziwiri was awarded his MSc degree 

(Kapangaziwiri, 2007) with distinction in 2008 and continued with a PhD which he completed 

during 2010 (Kapangaziwiri, 2010) and the degree will be awarded in 2011. While the original 

plan was for Mr Kapangaziwiri to remain within the Institute for Water Research as a staff 

member, for family reasons it was necessary for him to move to a larger urban centre. He 

has therefore taken up a post with the CSIR in Pretoria, but is still expected to contribute to 

further research into uncertainty issues. During 2009, Mr Kapangaziwiri was hosted by Dr 

Thorsten Wagener at Pennsylvania State University for a month. Both Dr Sawunyama and 

Mr Kapangaziwiri attended and presented papers at international conferences during the 

period of this project and have become recognized members of the international hydrological 

community. 

 

Mr Mehari Frezghi was a PhD student in the School for Bioresource Engineering and 

Environmental Hydrology at the University of KwaZulu-Natal, Pietermaritzburg under the 

supervision of Prof. Jeffrey Smithers. Although his involvement in the project was limited, he 

made some contributions to the project through the use of uncertainty assessments within 

the ACRU model. Unfortunately, he left UKZN before it was possible to properly integrate this 

work with the development of the uncertainty framework. 

 

Ms Siphesihle Bukhosini joined the project as an external MSc student at Rhodes University 

with the intention of contributing to the development of the regional constraints. She was 

formerly with Umgeni Water and is now with the University of Zululand. It was very 

unfortunate that it was necessary to terminate her registration at the end of 2010 due to a 

complete lack of any progress. It is possible that moving to a new job did not allow time to 

pursue her research interests. 

 

Apart from the students who were directly associated with the project, there are several other 

post-graduate students at Rhodes University who have directly benefited from this project. At 

the start of 2009 the Institute for Water Research began a new programme (SSAWRN) 

supported by the Carnegie Foundation of New York. The Sub-Saharan Africa Water 
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Resources Network (SSAWRN) is part of the Regional Initiative for Science Education 

(RISE) project managed by the Science Initiative Group (SIG) of Princeton University and is 

designed to build academic capacity in Africa. Four of the SSAWRN students are working on 

projects related to hydrological modelling and uncertainty. Mr Raphael Tshimanga (PhD 

candidate) is working on hydrological modelling issues in the Congo River basin, while Ms 

Sithabile Tirivarombo (PhD candidate) and Mr Agostinho Vilanculos (PhD candidate based at 

Eduardo Mondlane University in Mozambique) are working in the Zambezi River basin. Ms 

Jane Tanner (MSc candidate, upgrading to PhD in 2011) is working on surface-groundwater 

interactions and uncertainty. While Prof. Hughes is the formal supervisor of these students, 

Mr Kapangaziwiri has made substantial contributions to their training by passing on many of 

the techniques that he developed during this project. 

 

The workshops that were held during the project have almost certainly created better 

awareness of the issues associated with estimation uncertainty in water resources estimation 

and management. It was encouraging to note that the workshops were attended by 

researchers, consulting engineers and water resources managers. While there will inevitably 

be barriers to the practical application of some of the research results contained in this 

report, the scene has been set and there appears to be a consensus that uncertainty 

assessments should be part of future standard practice.   
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1. INTRODUCTION 
 
This document represents the final report for the Water Research Commission project on 

‘Identification, estimation, quantification and incorporation of risk and uncertainty in water 

resources management tools in South Africa’ (K5/1838). The project duration was three 

years (April 2008 to March 2010) and the participants were the Institute for Water Research 

at Rhodes University, IWR Water Resources (a private consultancy company) and the 

School of Bioresources Engineering and Environmental Hydrology at the University of 

KwaZulu-Natal. There were 11 deliverable reports generated during the project and these 

can all be found on the IWR website (http://www.ru.ac.za/static/institutes/iwr/uncertainty/).  

 

While uncertainty is a feature of everyday life, its meaning and consequences are not always 

apparent. Many experienced scientists will remember physics or physical sciences classes at 

school where we were taught that all measurements are made with certain levels of accuracy 

that depend on the instrument being used. Within laboratory situations observations can be 

made with very high levels of accuracy and there is little uncertainty. However, when the 

laboratory becomes the natural world and there are many complex interactions, 

measurement becomes much less accurate and understanding much more uncertain. It is 

obvious that we are not able to measure all the things that we wish to know about and 

understand and therefore a wide range of estimation methods have evolved over the years to 

try and fill the gaps. This is particularly true of the fields of hydrology and water resources 

engineering, in which many different estimation tools and models have been developed over 

many decades, to the extent that models are often considered replacements for real data 

(Silberstein, 2006). However, while it cannot be denied that models have proved to be 

valuable assets to water resources management, it should also be recognized that they are 

highly simplified representations of a very complex reality and can therefore never be 

expected to generate totally accurate results – they are therefore uncertain. The critical 

issues in terms of the practical (rather than scientific research) application of models are how 

uncertain are the results in any specific situation and how does this uncertainty affect the 

decision making process (Felix, 1994; Davis and Hall, 1998)? 

 

It has always been recognized that models will never be able to give perfect answers (Beven, 

1993), either because we are unable to perfectly define the inputs (Dawdy and Bergmann, 

1969), or because there are errors in at least some of the data being used (Ibbit, 1972), or 

because the models are far from perfect representations of the real world (Naef, 1981), or 

because we are not able to establish model parameters for a specific site (Haan, 1972). All of 

these problems exist even when we have some observed information against which we can 
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calibrate and test (validate) the results of a model. However, for many practical purposes we 

are more interested in making use of models to estimate water resources availability in 

situations where we cannot directly test the model. The ‘ungauged basins’ problem has 

become one of the most critical issues in hydrological sciences in recent years (Sivapalan et 

al., 2003) and gave rise to the PUB (Prediction in Ungauged Basins) programme of the 

International Association of Hydrological Sciences (IAHS). Despite the fact that the PUB 

programme has been operating for a number of years, the focus has almost always been on 

the science of applying models in ungauged basins and only very recently has attention been 

focused on the practical aspects. One of the dominant focus areas of PUB has been 

methods of estimating parameters in basin where calibration is not possible, but perhaps the 

real focus should be on the uncertainties involved in that process? During discussions at the 

IUGG General Assembly held in Perugia, Italy during 2006 it was suggested that PUB should 

really stand for ‘Predictive Uncertainty in Basins’. 

 

Dealing with uncertainty is not a new problem and the links between modelling, statistical 

inference, uncertainty and decision making have been discussed for many years in many 

different disciplines (Popper, 1959). Within the science of hydrological modelling, the 

approaches to dealing with uncertainty developed in parallel with advancements in the power 

of computers (Cover and Unny, 1986) and our ability to run even complex models many 

times over within realistic computing times. Some of the earlier developments in automatic 

calibration of hydrological models, that involved searching for optimal parameter sets based 

on statistical comparisons with observations (Ibbit and O’Donnel, 1971; Duan et al., 1992; 

Ndiritu and Daniell, 1999; Madsen et al., 2002), evolved into searches of the model 

parameter space (Muleta and Nicklow, 2005; Vrugt et al., 2003) for outputs that could be 

considered realistic, acceptable or behavioural (depending on the terminology used by 

different groups). Determining what is realistic or behavioural may be a relatively 

straightforward task when some comparative observations (of stream flow, for example) are 

available, but is much more complex in ungauged basins (Yadav et al., 2007).  There is now 

a vast (and ever growing) body of literature on the subject of uncertainty analysis in 

hydrological and water resources estimation and much of this was covered within the 

literature review completed for this project (Deliverable 2). This literature covers the need for 

uncertainty assessments (Pappenberger and Beven, 2006), sources of uncertainty, methods 

of model parameter estimation (Wagener and Wheater, 2006), methods of defining 

uncertainty (Beven and Freer, 2001; Zhang et al., 2008) and approaches that can be used to 

reduce uncertainty (Wagener et al., 2003). The literature review is not repeated within this 

final report for the reasons that it can be found on the IWR website 

(http://www.ru.ac.za/static/institutes/iwr/uncertainty/) and because it is expanding all of the 
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time and any review becomes out of date very quickly. The important point is that there is a 

large amount of literature to choose from in the development of approaches for the practical 

application of uncertainty assessment. This may be a relatively daunting prospect for 

practitioners in the field of water resources assessment, but it also implies that the science 

has developed to the extent that it should be applicable in practice. Pappenberger and Beven 

(2006) raised a number of issues about why uncertainty analysis cannot be, or is not being, 

applied. The conclusions that they reached was that there is no real reason for not applying, 

and yet there are many very good reasons for applying, uncertainty analysis in practical 

water resource assessments.   

 

From a South African perspective, the country has a long history of relying on hydrology and 

water resource yield models to make decisions about planning and managing water 

resources developments. However, while there has always been an understanding that the 

estimations being used are far from perfect, there have been few explicit attempts to 

incorporate uncertainty in the way in which the hydrological models have been used. 

Uncertainty has been incorporated into the applications of the water resources yield model in 

that the outputs are given as curves equivalent to the probability distribution of expected 

yields. However, this approach (in theory) only allows for one type of uncertainty in the whole 

estimation process (see later discussion) and therefore the risks associated with decision 

making are potentially ignoring other uncertainties.  

 

The main objective of this project was to contribute to the incorporation of uncertainty 

assessments as part of water resources decision making in South Africa. This objective 

inevitable involved a number of specific aims and project tasks, which are listed below and 

are discussed in more detail within this final report. 

 

i. Develop an understanding of uncertainty and associated risks in water resource 

management on the basis of literature and known practices, nationally and 

internationally. Establish how uncertainty is being addressed and identify any 

differences between developing and developed countries.  

 

ii. Identify and characterise the main sources of uncertainty (focusing on current South 

African practice and typical situations of data availability). 

 

iii. Develop techniques and guidelines for quantifying the uncertainty associated with 

different models. This will include uncertainty in all relevant areas (hydrological, 

climate, economic, social, etc.).  
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iv. Determine the effects of uncertainty on water resource management and identify what 

level of uncertainty is acceptable.  

 

v. Develop guidelines for the communication of uncertainty and the impacts to various 

stakeholder groups involved within water resource planning and management. This aim 

will need to address the issue of the links between uncertainty and risk.  

 

vi. Develop guidelines for incorporating uncertainty and the associated risk into water 

resource decision making processes.  

 

vii. Identify those areas of uncertainty that can be realistically reduced and which will have 

the greatest impact on reducing the risks involved with water resource decision making. 

Part of this aim is also to specify how the uncertainties can be reduced and what 

resources are likely to be required to achieve this reduction. 
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2. A FRAMEWORK FOR UNCERTAINTY ASSESSMENTS 
 
One of the starting points for the development of a modelling framework that includes 

uncertainty assessments in both gauged and ungauged basins is the identification of sources 

of uncertainty, how they propagate through, and how they are likely to impact on, the 

estimation process.  Figure 2.1 illustrates the typical process associated with water 

resources decision making where hydrological and water resources systems models are 

used to provide information. The whole process is sub-divided into three main components, 

all of which include some aspects of uncertainty. The three main sources of uncertainty are 

identified as those associated with the main forcing data of the model, the model 

simplifications, assumptions and structure, as well as the model parameters. 

 

2.1 Uncertainty in hydrological models 

 

Figure 2.2 provides a detailed breakdown of the sources of uncertainty associated with the 

use of hydrological models to estimate natural water availability and the focus is on 

estimation in ungauged basins. The diagram is made more complex in the lower part 

because an attempt has been made to account for the different types of uncertainty that are 

associated with different methods of estimating the model parameter values. However, 

whichever method is used there are three common sources of uncertainty; the hydro-climate 

data used to force (and calibrate in gauged basins) the model, the structure of the model and 

the parameter estimates. 
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Figure 2.1 Main chart of a water resources assessment system including a hierarchy of 

uncertainty and risk. 

 

2.1.1 Hydro-climate forcing data 

 

It has long been recognized that one of the limitations to successful hydrological simulation is 

associated with the quality and representivity (spatial and temporal) of the input hydro-

climate data (precipitation, evaporation demand and, in gauged basins, the observed flow 

data). They have a direct impact on the best model results that can be achieved (Dawdy and 

Bergmann, 1969; Beven and Hornberger, 1982; Nicks, 1982, Troutman, 1982) as well as 

potentially having an impact on parameter estimation (Haan, 1972; Ibbit, 1972, Troutman, 

1983; Gupta and Sorooshian, 1985). One of the major causes for concern in model 

calibration is the fact that models can be fitted to input data that contain errors (Paturel et al., 

1995; Oudin et al., 2006), which implies that the resulting parameter set cannot be 
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considered representative of the real catchment response. This clearly has implications for 

the regional extrapolation of parameters based on calibrations in gauged basins. 

 

 

 

Figure 2.2 Uncertainty in the estimation of natural water availability 

 

Both climate and hydrological data are naturally continuous and variable in space and time 

and this presents a major challenge in the representativeness of observed time series. The 

errors in the estimation of rainfall and evaporation inputs may be related to the limited density 

of gauge networks relative to the spatial variability of the climate and inadequacies in spatial 

interpolation approaches used to convert point data to a spatial time series that can be 

applied to a sub-basin. The accuracy in spatial rainfall estimation for rainfall-runoff modelling 
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representative model parameters and Görgens (1983) found that more than 15 years of data 

are required to obtain acceptable calibrations in semi-arid South African situations. 

 

Sawunyama (2009) investigated uncertainties in precipitation estimation over different time 

scales and in different geographic (and therefore climate) regions of South Africa. The 

geographic region determines the spatial variability of rainfall which can be highly variable 

depending on the time period considered, shorter time periods demonstrating greater spatial 

variability, especially in large parts of South Africa where convective storm activity 

dominates. If the critical runoff processes are also associated with short time periods, 

monthly scale models are rarely able to simulate patterns of runoff response very well, even 

if they are able to simulate longer-term averages and flow frequency distributions. This 

makes traditional methods of calibration quite difficult as there is a very high noise-to-signal 

ratio in relationship between rainfall and runoff at monthly scales. In more humid regions 

where runoff processes are influenced to a greater extent by storage and drainage from 

storage, the loss of resolution caused by the use of monthly time-step data becomes less 

important. Arguably, the areas that experience the greatest impacts of uncertainty in 

observed rainfall are those where topographic influences play a major role and where 

systematic variations in rainfall at all time scales are frequently in evidence (Hughes and 

Mantel, 2010b). Unfortunately these are also the areas where gauge networks are usually 

inadequate (and getting worse – Hughes and Mallory, 2008) and where alternative methods 

of estimating rainfall (radar and satellite) are typically less than successful. 

 

The methods of measurement and estimation of rainfall data in South Africa have received 

attention in the past and are still very relevant today as the network density of ground based 

gauges has been dramatically reduced in recent years (Hughes and Mallory, 2008). While 

the type of rain gauge and its installation design can clearly affect the accuracy of point 

rainfall observations, this represents a minor contribution to uncertainty compared to the 

much more important issues of translating point observations into adequately representative 

spatially averaged rainfall. Similarly, the choice of method (Theissen Polygons, Kriging, 

Inverse Distance Squared Weighting, etc.) to convert point observations into spatial 

averages appear to have less impact on the final result than the representativeness of the 

raw station data (Schafer, 1991; Lynch, 2004). The important issue therefore appears to be 

related to the methods that can be used to generate spatial rainfall inputs in the future given 

that ground based networks are shrinking. While the future seems therefore to lie in the use 

of remotely sensed data products (satellite and radar – Pegram and Clothier, 2001; Hughes, 

2006a&b; Sawunyama and Hughes, 2008) it is essential to understand any additional 
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sources of uncertainty that are associated with the use of these data. There remain a number 

of un-answered questions: 

 How do we link historical sequences of ground based observations with new data 

sources when there are very short overlap periods between the two sources? This is 

very important from a hydrological modelling perspective (Hughes, 2006a, b; 

Sawunyama and Hughes, 2008), given that we wish to generate long time series of 

flow data to better understand trends and variability. A solution proposed by Frezghi 

and Smithers (2008) is to develop relationships between the point rainfall measurement 

and the daily rainfall fields estimated using radar data calibrated to gauged rainfall 

data, and to use the relationships to improve the estimation of catchment rainfall using 

historical point rainfall data when radar data was not available. 

 It is recognized that rainfall inputs to hydrological models and parameter sets are not 

independent (i.e. if different rainfall sources are used in a model, the appropriate 

parameter sets will also be different). This adds to the uncertainty associated with 

using mixed rainfall data sources in hydrological models. 

 Many of the remotely sensed data products rely upon ground truth data to achieve 

effect calibration.  If the ground based data are no longer available because of network 

density reductions, how do we calibrate the remotely sensed data?  

 Global satellite data products that are readily available are often calibrated against a 

standard global set of ground based gauges. Is this adequate for local scale 

(quaternary catchment or smaller) use and, if local re-calibration is required, how can 

this be achieved? 

 

With respect to estimating the future availability of water resources and the influence of 

future climate variations, it has become common practice in various parts of the world to 

make use of the outputs of climate models (downscaled outputs from Global Climate Model 

or Regional Climate Models – Schulze, 2000; Bàrdossy and Duckstein, 2002). If these 

rainfall products are to be used together with historical time series (to assess changes in the 

future relative to the past) we are faced with similar problems of uncertainty as in the use of 

satellite or rainfall data.  

 

Evaporation and evapotranspiration losses represent the largest component of the water 

balance after rainfall in the vast majority of South African catchments. However, in some 

models and notably the conventional use of the most widely used model (the Pitman model), 

time series variations in evaporation demand are ignored. This is partly because long records 

of evaporation demand observations are few and far between and partly because the 
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relationships between the observed information (e.g. evaporation pan measurements) and 

the way in which ‘evaporation demand’ is used in models are not all that well understood.  A 

further reason is that in many parts of South Africa actual evapotranspiration is more 

dependent upon water availability than upon demand. Other models used in South Africa 

(e.g. ACRU) and elsewhere base their evaporation demand inputs on climate data using one 

of the well known estimation equations (Schulze and Kunz, 1995; Allen et al., 1998). Given 

the scarcity of some of the input data requirements for the more complex climate based 

estimations, simpler temperature based estimates have proved quite popular. 

  

With respect to the use of the Pitman monthly model, Sawunyama (2009) found that using 

time series of evaporation demand had geographically variable effects on model simulations 

results. The time series were generated on the basis of fractional deviations of monthly 

temperatures from long-term mean monthly temperatures. The same fractional deviations 

were then applied to the mean monthly evaporation data traditionally used with the model. 

Sub-basins located in the Western Cape, winter rainfall region appear to be less sensitive to 

changes in evapotranspiration inputs, while summer rainfall regions are more sensitive to 

uncertainties in evapotranspiration inputs. The same conclusion was reached when the 

temperature based estimates (Schulze and Maharaj, 2004, 2006) of evaporation demand are 

used directly.  

 
Where model parameter sets are established through some type of calibration process, 

regardless of whether this is a manual or automatic process, there will always be uncertainty 

issues associated with the quality and representativeness of the observed flow data. These 

data in South Africa are subject to the following potential problems: 

 Lack of accuracy of the rating table, particularly at low flows for some of the older 

rectangular weirs in which stage changes are not sensitive to discharge changes. 

Silting in the weir pools can also have an adverse effect on the accuracy of rating 

tables across a range of flows. 

 Rating tables that are inadequate to measure high flows, or structures that do not 

contain high flows. The majority of flow gauges in South Africa suffer from this problem, 

which means that the observed flows are not available during high flow periods. 

Calibrating the parameters associated with the model components that generate high 

flows therefore becomes a very uncertain process. 

 While measurement errors should not be neglected, one of the largest sources of 

uncertainty in the observed flow data is what they actually represent in terms of 

catchment conditions. Almost all of the gauged catchments in South Africa are (or have 

been) impacted by some kind of upstream modification to the natural hydrological 
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response. These modifications can range from land use changes, through small scale 

abstractions from farm dams (Hughes and Mantel, 2010a), the river or boreholes, 

return flows from irrigation or waste water treatment works, to a wide range of impacts 

associated with large reservoirs. It is therefore frequently difficult to either recognize the 

degree to which the measurements can be considered to represent natural catchment 

runoff conditions or to appropriately quantify the effects so that they can be removed 

(naturalise the records) or included as part of the model. To further complicate the 

matter, the effects are rarely stationary and are typically difficult to quantify. 

 

Given that we know the flow data are subject to error and that we are not always sure what 

they represent in terms of runoff response, it is hardly surprising that model calibrations that 

use these data are subject to substantial uncertainty. When model calibrations form the basis 

for developing regional parameter sets for application in un-gauged basins there is the 

potential for the uncertainties to be increased in an unknown manner. It would therefore 

seem to be important to recognize the inherent uncertainty in the use of observed streamflow 

data for calibration purposes and either incorporate it in the calibration parameter estimation 

process, or try and bypass the uncertainty by using an alternative approach for estimating 

parameters in un-gauged basins.  

 

2.1.2 Model structure uncertainties 

 

Structural uncertainties occur within all models, partly because all models are simplifications 

of reality and partly because we do not even have perfect knowledge of what reality is. Some 

of these uncertainties can be overcome to a degree through appropriate quantification of the 

parameter sets (i.e. parameters can, to a certain extent, be used to compensate for 

inadequate hydrological process representation in a model). Some of the structural 

uncertainties are associated with the time and space scales that used within a model. 

However, this does not mean that we can necessarily reduce the uncertainties by creating 

models with higher spatial and temporal resolutions – this may simply shift the uncertainty 

into the parameter estimation process (Beven, 1989, 2006). Amongst others, Beven (1989) 

questioned the value of physically-based modelling approaches for two reasons. The first is 

that the physical process understanding upon which many of the model algorithms are based 

were developed under very small-scale laboratory conditions which are not necessarily 

applicable at typical scales of modelling. The second is related to the information that is 

normally available to parameterize such physically-based algorithms. If this information is not 

directly appropriate the use of the algorithms contains as much uncertainty as would be 
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involved in the use of simpler conceptual representations of catchment scale hydrological 

processes.  

 

Some of the structural uncertainties that are linked to climate data inputs and scale 

associated with the Pitman monthly model are well known (the process of distributing 

monthly rainfall totals over the model iterations and the issue of using mean monthly 

evaporation demand inputs). Despite the fact that the Pitman model has been demonstrated 

on many occasions to have an appropriate conceptual structure for a wide range of basins 

within the southern Africa region, this does not mean that there are no structural 

uncertainties. However, it seems reasonable to suggest (without being able to adequately 

prove such an assumption) that the structural uncertainties are less important than the input 

data and parameter estimation uncertainties. In a research environment it may be possible to 

examine the structural uncertainties in more detail and adjust the model formulation based 

on the results of such a study. From a practical point of view it is probably better to ignore the 

structural uncertainties (or at least accept them as being present but not quantifiable) and 

focus on the related issue of uncertainty in parameter estimation. 

 

The ACRU model is a physical conceptual model, i.e. it is conceptual in that it conceives of a 

system in which important processes and couplings are idealised, and physical to the degree 

that physical processes are represented explicitly (Schulze and Smithers, 2004). The model 

thus attempts to capture our currently imperfect understanding of the rainfall-runoff process 

and thus also contains inherent structural uncertainties.  

 

2.1.3 Model parameter uncertainties 

 

From the point of view of parameter uncertainties the critical part of the Figure 2.2 is the 

lower group of processes that distinguish between regionalization approaches and a priori 

estimation methods for quantifying parameter values in un-gauged basins. The sources of 

uncertainty and/or the way in which these contribute to model output uncertainty will be 

different for these two approaches. 

 
There are a number of possible approaches to parameter regionalization, but most of them 

rely on some form of extrapolation from parameters established through calibration (manual 

or automatic) of the model using the available observed data. This inevitably means that the 

calibrated parameter sets contain uncertainty associated with the input hydro-climate data 

(see above) as well as the calibration process and all the attendant issues associated with 

equifinality (Beven, 2006). Added to these sources of uncertainty are the uncertainties 
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associated with the regionalisation process itself, which will largely depend upon the method 

used, but will be related in some way to the identification of similarities between the 

hydrological responses of the calibration catchments and those of the un-gauged 

catchments.  The identification of these similarities is typically based on climate and physical 

basin properties (topography, soils, vegetation, geology, etc.). 

 

The a priori parameter estimation approaches typically use physical basin property data 

(and possibly indices of climate) to directly estimate the parameter sets in both gauged and 

un-gauged data. If gauged catchments are used to develop the parameter estimation 

equations the result (from an uncertainty point of view) will not be very different from the 

regionalization approach. However, if the parameter estimation equations are developed 

independently (based on conceptual hydrological interpretations of the model structure and 

the meaning of the parameters – see Kapangaziwiri and Hughes, 2008) the propagation of 

the hydro-climate data uncertainties through the modelling process is expected to be 

different. Essentially, the parameter estimation process should therefore be independent of 

the uncertainties in the hydro-climate data. The gauged flow data will still be used, but their 

use will be mainly for testing the parameter estimation equations and contributing to an 

evaluation of the uncertainty associated with the use of the equations.   

 

Both methods (regionalization and a priori estimation) are expected to involve the use of 

physical basin property data which may be drawn from various sources, many of which 

were not originally developed for the specific purpose of hydrological modelling (AGIS, 

2007). There are inevitably sources of uncertainty in the physical property data themselves 

as well as in the way these data are interpreted and used for parameter estimation. Some of 

these sources of uncertainty are related to spatial scale issues. While some physical property 

data may be available at higher spatial resolutions than used in the model (e.g. topographic 

data from DEMs), other data will be available at much lower resolutions (FAO soils data, for 

example). Both situations present potential interpretation problems and could introduce 

uncertainty. 

 
If the physical property data are available at a scale which is coarser than required (e.g. 

ISCW or FAO soils data) the information itself is usually very generalised and difficult to 

interpret into parameter values and uncertainty ranges. If the physical property data are more 

detailed than the spatial scale of modelling (e.g. using AGIS data for modelling at the 

quaternary catchment scale), this presents opportunities for further analysis. Options include 

increasing the detail in the model (given that appropriately representative hydro-climate data 
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can also be accessed), or developing parameter uncertainty expressions based on the 

variability of the physical property data within the model spatial unit. 

 

Apart from scale considerations, it is not always straightforward to interpret the available data 

in a hydrological appropriate way. This applies particularly to soils data which are often 

compiled for agricultural purposes rather than for hydrological purposes. Soil type 

classifications frequently have to be interpreted into texture and structure classes and 

hydrological indices such as porosity, permeability, infiltration rates, etc. inferred from the 

secondary classifications. This will clearly introduce uncertainty into the estimation process 

which is difficult to quantify. 

 

Ultimately what is required is an estimate of the properties of probability distribution functions 

(PDF – type, moments, etc.) that represents the estimation uncertainty of each parameter of 

the model. These PDFs could then be used in one or more of the methods to generate model 

output uncertainty based on input uncertainty. It should be recognized that the parameter 

uncertainty needs to be combined with the input hydro-climate data uncertainties.   

 

2.2 Uncertainty in water resources systems models 

 

Figure 2.3 summarises the sources of uncertainty associated with the application of water 

resources systems models that are typically used to simulate present day and future 

scenarios of water resources availability. This category of models includes the Pitman and 

ACRU hydrological models if their non-natural components (land use impacts, abstractions, 

return flows, reservoirs, etc.) are included as part of the model set-up. It also includes the full 

range of water resources yield models that are available internationally (Table 2.1). 

 

As with the hydrological models, systems models are also subject to uncertainties in the 

climate forcing data that might be used to determine inputs (rainfall) and outputs (evaporation 

losses) from reservoirs or the irrigation requirements of crops under varying climatic 

conditions. They are also subject to similar model structural uncertainties related to both 

spatial and temporal scales and the way in which the water balance of the system is 

computed. The time scale of modelling can be an important consideration in some complex 

systems where storages change quite rapidly. The order in which the water balance 

components are calculated can make substantial differences to the results if the model time 

scale is quite coarse (e.g. monthly). These considerations are particularly important when 

storage components of the water balance are close to the extremes (full or empty) and it is 

often necessary to include internal model iterations. The source of uncertainty is then related 
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to how well the automatic internal iterations represent the real time distribution of the water 

balance components. Other structural uncertainties may also be associated with the 

application of operating rules, which can be quite complex in practice but have to be 

simplified within the models. As with hydrological models, there are overlaps between the 

uncertainties associated with the model structure and those associated with the model 

parameters. 

 

 

 

Figure 2.3 Uncertainty in the estimation of present day water availability 

 

There is one part of a systems yield model where the time scale can make a substantial 

difference in the modelling results and that is where run-of-river abstractions occur (either 

upstream or downstream of a reservoir). Unless some approach is used to account for intra-

month flow variations it is possible that monthly models can over-estimate the volume of 

water that can be abstracted. This specifically applies to situations where there are 

substantial intra-month variations (‘flashy’ catchments) and where the low flows are both a 

relatively small proportion of the total volume and lower than the required abstraction volume. 

The majority of the high flow component of the total monthly flow will not be accessible to 

run-of-river abstraction schemes. Hughes (2006d) attempted to overcome this problem by 
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using only the baseflow component of the total monthly flows when assessing abstraction 

volumes in a simple licensing model that was designed to account for the requirements of the 

ecological Reserve. However, it must also be accepted that there is a great deal of 

uncertainty in the methods used to estimate baseflows from monthly flow time series data. 

 

Table 2.1 Summary of water resources systems models (after Wurbs, 2005a) 

 

Model Descriptive Name Reference 

SSARR Streamflow synthesis and reservoir regulation  Brooks (1975) 

WRIMS 
(CALSIM) 

Water resource integrated modelling system Draper et al. (2004) 

StateMOD State of Colorado stream simulation model Parsons and Bennett, 
(2006) 

OASIS Operational analysis and simulation of 
Integrated system  

Hydrologics (2001) 

ARSP Acres reservoir simulation program Boss International (2004) 

MIKE BASIN GIS-Based decision support for water planning 
and management 

DHI (2000), Hallowes 
and Pott (2005) 

RIBASIM River basin simulation  Delft Hydraulics (2004) 

WEAP Water evaluation and planning SEI (2001) 

SUPER SWD reservoir system model Hula (1981) 

ResSim Reservoir system simulation HEC (2003) 

RiverWare River and reservoir operations Zagona et al., (2001) 

MODISM Generalised river basin network flow model Labadie (2006) 

WRAP Water rights analysis package Wurbs (2006b) 

REALM Resource allocation modelling Perrera et al. (2005) 

WRYM South African water resource yield model Basson et al.(1994) 

WReMP Water Resources Modelling Platform  Mallory (2005) 

 
 
2.2.1 Model parameter uncertainties (water use) 

 

Figure 2.3 illustrates that the parameters of systems models are associated with water use 

data (which is in turn related to socio-economic data), operating rules, water infrastructure 

and land use data. There is the added complexity of allowing for environmental water 

requirements (EWR) and while their estimation is also subject to uncertainty, this issue is not 

covered in detail in this report. For the purposes of this report the EWR can be considered as 
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one of the demands on the system, the only difference being that this demand is required to 

remain in the channel system. 

 

The accuracy of the available information about existing land uses, water infrastructure, 

water use and operating rules is highly variable across different parts of South Africa. In 

many cases, especially in large and well managed water development schemes, this 

information is readily available and generally very accurate. However, in other cases and 

especially where water use is distributed across many users, rather than being centrally 

managed, the required information is not very available and the accuracy is largely unknown 

(Bailey., 1993; Hughes and Mantel, 2010a & b). The problems with these data are very 

similar to those associated with attempts to naturalise observed flow data that have been 

referred to earlier. 

 
There has always been a significant degree of uncertainty about how much water is being 

used in a catchment. This uncertainty is due largely to the fact that under the previous water 

act (Act 36 of 1956) water users had riparian rights and they were generally not required to 

register this water use. The exception was those areas declared as Government Water 

Control areas in which use was calculated or agreed upon with users and gazetted. In many 

cases irrigation boards where formed in which the areas and application rates were also 

fixed and controlled by irrigation boards. More recently, in terms of the new water act (the 

National Water Act of 1998), all water users must register their water use, a process that has 

been largely completed but the results of which are still subject to uncertainty. Some users 

under-registered their use so as to reduce their catchment management charge, while others 

over-registered in the hope of staking a claim to a greater water right than they currently had. 

In an evaluation of the accuracy of the registration process in the Thukela River catchment 

(Tylcote, 2007), it was found that approximately one third of irrigators under-estimated their 

water use, one third over-estimated their water use and the remaining third registered their 

use accurately. The net result in this test case was that the registered use was, on average, 

approximately correct. Within the context of uncertainty, this ‘correct’ estimate still contains a 

large degree of uncertainty. The water use by irrigators is generally estimated using models 

based on the evapotranspiration rates of crops and the assumptions that irrigators will 

irrigate to maximize the yield of their crops. The use is rarely recorded and in an assessment 

of irrigation requirements in the Komati River catchment, estimates of total water use varied 

from 439 to 716 * 106 m3 depending on the approach used. The uncertainties are associated 

with: 

 Crop area and type. 

 Crop factors of the assumed crops. 
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 Losses due to ineffective irrigation techniques (losses range from 5 to 35%). 

 Losses in the conveyance of the water from the source to the field edge. 

 The effect of rainfall in the crop requirement. 

 Irrigators often change the type of crop they are cultivating and hence the water 

demand and the monthly distribution of the water use changes. 

 

Water services provided by the Department of Water Affairs (DWA) and their agents were 

often not registered. It is not clear why this is the case but it seems there is confusion as to 

who is responsible for registering this use. The result of this non-registration is not crucial 

since water use estimates for domestic use can usually be obtained from Water Services 

Development Plans which each municipality must submit to DWA in terms of the Water 

Services Act. Water use by small rural users is generally not monitored and hence unknown 

and the water used by afforestation (as well as other ‘stream flow reduction’ land use 

practices) cannot be monitored directly and is estimated by means of hydrology models. 

These estimates have a wide range of values depending on the methodologies used. The 

genus of tree grown also influences the water use and while afforested areas are relatively 

easy to ascertain using satellite imagery, the genus cannot be ascertained in this way and is 

hence often unknown. 

 

2.2.2 Model parameter uncertainties (operating rules) 

 

Operating rules play a major role in the estimation of the yield of a water resources system. 

However, the actual operating rules used in practice are frequently poorly defined and not 

always applied in a consistent manner. The operating rules relate to the specification of 

supply priorities, the integration of different sources of supply to users, and when, if and how 

restrictions are applied to users during droughts. A further source of uncertainty is related to 

the timing of the application of certain operating rules (e.g. when to apply restrictions). While 

these triggers may be relatively straightforward to include within a model, they may bear very 

little relationship to what actually happens in practice.  

 

There are essentially two types of algorithms used to solve for flow in a network type model. 

These are rule-based algorithms and linear programming algorithms. Both algorithms have 

their advantages and disadvantages but both only offer a mathematical approximation of the 

real system. Linear programming algorithms are driven by assigning a value to water held in 

storage and a penalty to the non-supply of water to users. The higher the penalty assigned to 

a user the higher his priority of supply. The linear programming algorithm then solves the 
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network by minimising the cost to the system. This methodology is often criticized as being 

subjective (Juizo and Liden, 2008). There is certainly a degree of uncertainty introduced in 

this modelling procedure in that it can be difficult to ascertain where water is sourced from to 

supply high priority users in stressed catchments. Water is essentially taken from lower 

priority users but the actual operational decision used is not explicit in these types of models. 

Rule-based models (Mike Basins, Water Resources Modelling Platform, etc.) are driven by 

explicit rules which make the modelling process more transparent. Nevertheless, all yield 

models assume the operators are always making the right decision based on a complete 

knowledge of the system which is never the case. Some catchments may be too complex to 

be modeled with rule-based models and it could be argued that in such complex catchments 

the operators are also operating within a range of uncertainty due to lack of a complete 

understanding of the system. In these complex catchments linear programming models are 

probably more appropriate for determining estimates of the water availability. 

 

2.2.3 Uncertainty and risk in current yield modelling practice 

 

While there has been little practical recognition of many of the sources of uncertainty 

involved in water resources assessments, the standard approach to yield modelling in South 

Africa has included some uncertainty through the inclusion of stochastically generated 

stream flow sequences that are seeded using a single estimate of the historical stream flow 

(typically simulated using a hydrological model). The stochastic stream flow approach is used 

because the single input historical hydrology cannot necessarily be considered 

representative of all possible sequences of flow that will determine the yield in the future, 

even under stable climate and land use conditions. The assumption is that there is no 

guarantee that the worst possible (from a yield perspective) sequence of flows has ever 

occurred in the historical period (derived either from observed or simulated flows). The 

stochastic model is therefore designed to use the statistics (general frequency characteristics 

such as means and standard deviations, as well as serial correlation statistics) of the 

historical record to generate other possible sequences of flow that will inevitably generate 

different yields (Basson et al., 1994). The output of such analyses is typically a yield (y-axis) 

versus probability (x-axis) curve (see Figure 4.1 for example). The conventional interpretation 

of these diagrams is based on the relationships between risk and reliability given in Basson 

et al. (1994) where: 

 

Return Period = 1 / (1 – (1 – Rn)
1/n) 
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where n is the period of record used for the analysis and Rn is the long term risk equivalent to 

the probability of at least one failure in the record. This concept of using the stochastic 

sequences to determine the reliability or risk of a particular yield is based on the assumption 

that all of the stochastic sequences are possible and will occur within a long enough period of 

record. Yield probability curves have been used for many years to determine the long-term 

yield that should be used for development planning purposes on the basis of the risks that 

can be considered acceptable. If designing for a highly reliable system (water supply for 

power generation for example) then a lower volume and higher assurance yield would be 

used, while irrigation systems can be designed with lower levels of reliability and higher risk. 

 

An alternative interpretation is one based on uncertainty and operates on the assumption 

that we do not know which, or whether any, of the stochastically generated sequences are 

realistically possible or not. The concept of a return period would not be used in this 

approach and the probability axis would be interpreted as a measure of uncertainty of 

achieving a specified yield over a very long period of time. The yield that is equaled or 

exceeded 90% of the time (based on the ranking of the yields from say 500 stochastic 

sequences) would then be considered to be very reliable, while the yield corresponding to 

50% exceedence would be less certain and a yield corresponding to 20% exceedence would 

be highly uncertain. It is not suggested that this is the ‘correct’ interpretation, but it is easier 

to combine this interpretation with other sources of uncertainty. 

 

The type of uncertainty referred to above can be termed ‘stochastic uncertainty’ (Figure 

2.4) to distinguish it from ‘hydrological uncertainty’ associated with our ability to define 

representative climate drivers (rainfall and evaporation demand) and to simulate the stream 

flow response to these drivers using hydrological models. The two sources of uncertainty are 

not independent, in as much as the stochastic sequences are dependent upon the statistical 

properties of the historical time series used to generate them. Different historical time series 

(hydrological uncertainty) can therefore be expected to generate different stochastic 

sequences depending on the nature and extent of the hydrological uncertainty. One of the 

issues raised during the various workshops held during this study was the most appropriate 

methods of combining these two sources of uncertainty in the most efficient way possible 

and without having to completely re-design the modelling tools that are currently in use in 

South Africa. An example of possible alternative approaches is provided later in this report. 
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Figure 2.4 Distinction between stochastic and hydrological uncertainty. 

 

2.3 Uncertainty and future management risks 

   

Figure 2.5 completes the detail of the hierarchical diagram of uncertainty and risk given in 

Figure 2.1. The types of water resources systems models discussed in the previous section 

are one of the main tools used in developing future management decisions and all of the 

comments about the various sources of uncertainty are also applicable here. The main 

difference is that the estimates of future water use are subject to many additional sources of 

uncertainty that are related to socio-economic trends and political policy developments. 

While a detailed discussion of these issues is beyond the scope of this report they are 

acknowledged as major sources of uncertainty that contribute substantially to the risks 

involved in water resources decision making. 

 

Within South Africa the development and implementation of many new policies since the end 

of apartheid in 1994 has enormous implications for water resources management. Some of 

these, such as the various provisions of the National Water Act of 1998, impact directly, while 

others impact indirectly through changes in the socio-economic structure of the country’s 

population. While many of the policies are relatively clear, the pace of implementation and 

the impacts on society and therefore the requirements for water are not at all clear. An 

example is the inclusion of EWR within the water resources legislative and management 

framework. The law is quite clear about the legal requirement to allow for EWR, but the 

actual volumes and patterns of flow required to achieve the objectives of environmental 

sustainability are complex and have yet to be implemented in practice. The whole process of 
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including EWR as part of future water resources assessments is also made more complex by 

the need for a classification system which determines the level of ecological protection (and 

therefore the volumetric water requirements) that is related to a number of factors, some 

associated with priorities for economic and social development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Uncertainty and future management risks 

 

Apart from the socio-economic and political uncertainties, there are also huge uncertainties 

associated with the expected patterns of future climates. There are world-wide concerns 

about the impacts of greenhouse gasses and global climate change. However, while many 

popular press articles seem to be quite sure about what is going to happen, the scientific 

community accepts that there are many uncertainties in the outputs of the many prediction 

models that are currently in use and endorsed by the Inter-governmental Panel on Climate 

Change (IPCC) as well as how to down-scale these predictions for use in hydrological and 

water resources estimation models (Hewitson and Crane, 2006). Some examples of the 

uncertainty associated with future climate predictions are included later in this report. 
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The points noted under section 2.2.3 of this report are equally important for the analysis of 

future management as they are for the determination of present day yield assessments and 

the same type of analysis or assessment approaches would apply. 

 

2.4 A generic uncertainty framework for South African water resources 

assessments 

 

One of the early developments in this project was the formulation of a generic uncertainty 

framework (Kapangaziwiri et al., 2009) that recognizes some of the limitations of both the 

data and models that are available and widely used in South Africa, as well as the 

international developments in the science of hydrological modelling. This framework is 

illustrated in Figure 2.6 and is considered to be flexible enough to be applicable to a wide 

range of different models (both hydrological and water resources systems models). A large 

part of the remainder of this report is focused on illustrating the use of this framework through 

examples, while this section provides a brief overview of the components of the framework 

and its perceived advantages. 

 

2.4.1 Prior parameter distributions 

 

The assumption is that these distributions represent the uncertainty in the way in which a 

hydrological model is parameterized and can be defined in any way that is considered 

appropriate to the methods used for estimating parameter values. The approach is therefore 

compatible with parameters derived through some type of regionalization scheme where the 

uncertainty may be defined as prediction limits associated with regression equations used to 

estimate parameters from physical basin properties. It is also compatible with the direct 

estimation of parameters from physical basin properties, without any prior model calibration. 

The details of this type of approach are fully explained in Kapangaziwiri (2008 and 2010) and 

summarized in Kapangaziwiri and Hughes (2008 and 2009) and will be referred to in more 

detail within the sections of this report that illustrate the use of the framework. 

 

The assumption is that the parameter distributions can take on any form including various 

shaped probability distributions such as normal and log-normal, or can be a simple uniform 

distribution in which all values within a range defined by maximum and minimum values are 

equally possible. The uncertainty distributions of the different model parameters are 

considered to be independent and the uncertainty in each individual parameter is also 

considered to be independent across all of the sub-catchments in the model spatial 
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distribution scheme. It is therefore possible to have widely different degrees of uncertainty 

associated with different parameters and some may be specified with no uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 A generic framework for including uncertainty into water resources 

assessments. 

 

It has already been noted that the framework is designed to be applicable to a range of 

different models and the implication is that the approaches used for establishing prior 

parameter distributions will vary with the model. While a large part of this report is focused on 

the application of the Pitman monthly model and the parameter estimation procedures 

explained in Kapangaziwiri (2010), some limited applications of uncertainty analysis using 

the ACRU model also formed part of the project and these are presented in Appendix A. The 

approaches used for prior parameter estimation and the generation of ensembles with the 

ACRU model are very different to those used for the Pitman model.  It is not entirely clear at 

present how these can be integrated into the general framework and this issue requires 

further investigation.  
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2.4.2 Uncertainty in the climate inputs 

 

The lower left part of Figure 2.6 indicates that the climate inputs to the model can also be 

specified as uncertain through the input of multiple time series of rainfall, for example. The 

assumption is that the stochastic component of uncertainty referred to in section 2.2.3 of this 

report could be provided for by using the outputs of a multi-site stochastic rainfall model 

(Srikanthan and Pegram, 2009). The uncertainty could also be represented by a set of down-

scaled climate model ensembles. 

 

2.4.3  Parameter and climate input sampling within the hydrological model 

 

To enable existing hydrological models to be used within this framework, the main 

modifications required is to include a sampling scheme for the uncertain parameter and 

climate data inputs such that the model is run repeatedly and generates an ensemble of 

simulated stream flow (and other modeled variables, where appropriate) outputs. In the 

context of this project the Pitman model has been modified to achieve this through simple 

Monte Carlo sampling of the possible parameter space. The modifications that have been 

included cater for normal and log-normal parameter distributions (defined by means and 

standard deviations, with all samples constrained to lie within defined maximum and 

minimum parameter limits), as well as uniform distributions (defined only by the maximum 

and minimum parameter limits). The number of model runs (and therefore parameter 

samples) can be user specified (typically 1 000 to 10 000) can be specified by the user and 

the outputs include the time series of all the ensembles, the 95%, 50% and 5% exceeded 

flows for each month of the time series, the parameter values and some summary statistics 

(including objective function values if observed data are included) for each of the ensembles. 

 

A separate version of the uncertainty version of the Pitman model allows for the input of 

different rainfall time series (outputs from a stochastic model, for example). Independent 

parameter samples are generated for each of these rainfall inputs such that the output 

ensembles include both climate and parameter uncertainty. If the inputs consist of 500 

rainfall time series and 500 parameter samples are used, the result is 250 000 out put 

ensembles. Generating this large number of ensembles takes a lot of computer resources 

(time and memory) and therefore the outputs have been restricted to the final stream flow 

ensembles and the model does not perform any internal analyses of the simulation results. 

 

It is acknowledged that alternative parameter sampling schemes could be incorporated into 

the framework and that either parameter sensitivity analyses or optimization routines (if some 
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observed data are available) could be used to constrain the parameter sampling process. A 

PhD student at the University of Gainesville in Florida, USA is exploring some sophisticated 

sampling procedures based on parameter sensitivity analyses using the Pitman model in the 

Okavango River basin. The IWR members of the project team have been cooperating with 

the Gainesville group and more results are likely to be available after this WRC project has 

been completed.  

 

2.4.4 Regional constraints on hydrological response 

 

The traditional approach to hydrological model calibration is to make use of observed data to 

condition the simulated flows and determine (manually or automatically) an optimum set of 

parameters based on comparisons with observed data using single or multiple objective 

functions. This approach is clearly not possible in ungauged basins and the whole concept of 

attempting to determine an optimal model has been called into question (Beven and Freer, 

2001; Beven, 2006). Many conceptual type models contain complex parameter interactions 

such that similar outputs can be achieved with several different parameter sets (the 

equifinality problem of Beven, 2006). It is now widely recognized that the most important part 

of any modelling study should be to identify those parameter sets that produce hydrologically 

behavioural outputs. The problem then mainly lies in defining what a behavioural output is 

and rejecting those outputs that can be considered non-behavioural. Yadav et al. (2007) 

proposed an approach that is based on a set of regionalized indices of catchment response 

that would be used to select from initial model ensemble outputs only those that fall within 

the constraints. This is an approach that is ideally suited for regional water resources 

assessments where there are many ungauged sub-basins. 

 

The development of the regional constraints should be able to make use of all the available 

knowledge and understanding of hydrological response characteristics. The constraints 

should address different aspects of the simulated flow time series and may even be applied 

to sub-components (such as estimates of groundwater recharge) of the model, rather than to 

only the final output in terms of stream flow. It should be recognized that the constraints 

themselves will be subject to uncertainty as they will typically be based on regional 

relationships developed with limited data that contain errors. 

 

Within the proposed framework (Figure 2.6) the regional constraints can be used in two 

different ways. They can be simply used to determine which of the initial simulation 

ensembles should be accepted as behavioural and therefore can be passed on to the next 

stage of the water resources assessment process (typically a systems yield model). This 
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would be the appropriate method to use when there is little, or unreliable, information 

available that can be used to estimate the parameter uncertainty distributions. These 

distributions would therefore be expected to have quite large ranges and produce very 

different simulated flows within the full ensemble set. The alternative use of the regional 

constraints is to feedback information to the parameter estimation process so that the 

estimation equations can be improved or so that the interpretation of the physical basin 

property data can be checked and re-assessed. The framework is therefore applicable to 

practical modelling studies as well as being of value to further develop the various internal 

components in a research environment.  

 

It is inevitable that the parameter estimation and modelling process will not be entirely 

independent of the method used to establish regional constraints as they will both share at 

least some common data. However, care should be taken to ensure that erroneous data (or 

assumptions) are not contained within both parts of the framework such that the errors are 

propagated through the system resulting in accepted, but not behavioural, outputs. 
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3. ESTABLISHING THE FRAMEWORK 

 

This section of the report concentrates on the approaches that have been developed to 

estimate the parameters of the Pitman model using physical basin properties as well as the 

development of some initial regional constraints based on observed stream flow data and 

existing estimates of ground water recharge. A large part of the research work reported here 

was undertaken by Evison Kapangaziwiri as part of both his MSc and PhD degree 

programmes. Further details, particularly of the parameter estimation routines can therefore 

be found in the two theses (Kapangaziwiri, 2008 and 2010 accessible form the Rhodes 

University Library website: http://www.ru.ac.za/library/resources/theses/rutheses). 

 

3.1 Prior parameter estimation 
 
The approach adopted for the Pitman model (using the revised version with explicit ground 

water interaction routines as detailed in Hughes, 2004) is based on the physically-based 

parameter estimations routines that were briefly described in Kapangaziwiri and Hughes 

(2008) and more completely explained by Kapangaziwiri (2008). These original references 

explain the conceptual basis for most of the parameter estimation equations and provide 

examples of how they are applied. Initially they were limited to a single estimate for each 

parameter, but the approach has been extended to include measures of uncertainty using 

either Normal, log-Normal or uniform distributions (Kapangaziwiri and Hughes, 2009; 

Kapangaziwiri, 2010). 

 
The basis of all the uncertainty estimation is to assume some uncertainty in the primary 

estimation variables (such as soil depth and texture, topographic slope, geology metrics, 

etc.) and to use Monte Carlo sampling of all the variables associated with the equations used 

for secondary variables, or the final parameter estimates, to generate ensembles of results 

values. A large part of the uncertainty in the primary data is related to its spatial variation 

within a modelling unit and how this spatial variation can be translated into a sub-basin scale 

estimate of the model parameters. The means and standard deviations of the results values 

are then used to define the uncertainty in the parameter estimates. If the skewness of the 

distribution of results values is greater than 2.5, the distribution is assumed to be log-Normal. 

A great deal of the information used to estimate the parameters is derived from the AGIS 

Land Type information (AGIS, 2007), particularly with respect to the main runoff generation 

parameters that are expected to be determined from soil and topography characteristics.  

 
The AGIS data typically includes information for 5 dominant soil units within a land type and 

these will occur in different proportions across the major terrain units (hilltops, upper slopes, 
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lower slopes and valley bottoms). The soils information includes texture and a range of 

depths for each soil unit. The texture type information is used to define some basic soil 

property values (infiltration parameters, porosity etc.), each with uncertainty (based on the 

literature containing typical values). The soil porosity secondary variable (right side of Figure 

3.1) for the total catchment is based on sampling from all the soil types (see left side of 

Figure 3.1), given assumed mean and standard deviation values associated with each 

texture type. The number of samples taken from each soil unit depends upon its relative area 

over the whole catchment. If more than one land type occurs within a sub-basin, the 

information from all land types has to be integrated before entering the values into the table 

on the left side of Figure 3.1. If several land types occur within a sub-basin it is possible that 

the ranges of slope, soil depth and texture will be quite large and this will lead to high 

uncertainty in the secondary variables and eventually the parameter estimates. The only way 

to reduce this uncertainty would be to reduce the modelling scale so that there is less 

variation in the primary input data within a model spatial unit. Some examples of the effects 

of reducing the model scale are provided later in this section of the report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Initial screen of the Pitman model parameter estimation process. 

 

For the basin slope estimation, the range of slopes for each terrain unit is assumed to 

represent the 95% limits of the distribution (Normal) of all possible slopes. If the maximum 

slope is greater than 40%, the distribution of slopes for that terrain unit is assumed to be log-

Normal. These slope distributions are then sampled (a total of 5 000 samples with the 

number of samples from each terrain unit based on the % of the total catchment area) and 
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the results used to estimate the mean and standard deviation for the basin slope (Figure 3.1, 

left side, 1st data row). 

 

The same procedure is followed for all the secondary basin data variables (Figure 3.1, right 

side) as well as for the final parameter estimates (Figure 3.2). In some cases parameters are 

currently estimated without uncertainty, while in others the estimation equations involve 

curve fitting routines but still use the uncertainty in the input variables. Note that some of the 

secondary variable or parameter results end up being log-Normally distributed, despite the 

fact that all of the input variables are normally distributed. This is a consequence of non-

linear estimation equations. The results can be output to a text file that can be imported into 

the SPATSIM data attribute that is used for the uncertain parameter value inputs to the 

Pitman model. Work is still progressing on some of the estimation equations, notably those 

associated with interception, evaporation losses and the groundwater recharge parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Final results screen of the Pitman model parameter estimation process. 
 
 
3.2 Revised versions of the Pitman model 
 
Three revised versions of the SPATSIM implementation of the Pitman model have been 

developed to deal with uncertainty analysis. The first makes use of three values in the 

parameter input stream; a default (or best guess value), a step size and the number of steps. 

If the number of steps for a specific parameter is specified as 3 then 7 values of the 

parameter are used in repeated model runs (the default value and 3 values either side: 

default ±1, 2 and 3 * step size). If 5 parameters are considered to be uncertain then the 
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number of repeats of the model run is 75 or 16 807. The outputs from the model include a text 

file which lists all of the parameter sets plus some summary statistics of the simulation and 

several objective function values if observed data are available and included in the model 

setup. This text file can be used with Excel to analyse the parameter interactions or to 

identify the parameter sensitivity. While this version of the model allows for all the extremes 

of the parameter space to be included, the use of simple steps does not allow for a more 

continuous assessment of the parameter space, nor does it allow for the use of probability 

distributions to define the parameter uncertainty. 

 
A second SPATSIM version of the Pitman model allows the uncertain parameter inputs to be 

used in a Monte-Carlo sampling framework. The input table includes for each parameter the 

mean value (assumed to be the ‘best’ estimate), standard deviation, skewness, distribution 

type to be used in the model (1=Normal, 2=log-Normal, 3=uniform), the minimum and 

maximum values. The parameters for each sub-catchment in the semi-distributed modelling 

scheme are sampled independently (using a sampling method appropriate to the distribution 

type) for each of the model run ensembles (the total number is set to 5 000 by default, but 

this value can be changed by the user). If the distribution type is 1, Normal distribution 

samples (mean = 0, standard deviation = 1) are generated and scaled using the mean and 

standard deviation. If the distribution type is 2, the parameter mean and standard deviations 

are converted to natural log values before being used to scale the Monte Carlo samples and 

the result calculated as the exponential of the scaled sample. For both types 1 and 2 the 

minimum and maximum values are used to reject any samples that are considered to be too 

low or high and additional samples generated. If the distribution type is 3 a uniformly 

distributed set of samples is generated and scaled using the minimum and maximum values. 

It is important to note that the minimum and maximum values are therefore used in different 

ways for the uniform distribution type compared to the Normal or log-Normal types. 

 
All of the ensembles are saved within the SPATSIM database (and can be further analysed 

with the various utilities provided) and additional outputs are generated to two text files. The 

first text file (Pitmv3_{catchment ID}.un1) contains the list of sampled parameter values, the 

simulated mean monthly runoff volume (m3 * 106), the simulated mean monthly recharge 

(mm), the slope of the flow duration curve (FDC) and the 10%, 50% and 90% points (as 

volumes in m3 * 106) on the annual FDC for each of the ensembles. Additional metrics 

summarizing the simulated flow data can be added as the need arises. The second text file 

(Pitmv3_{catchment ID}.un2) contains four columns of monthly flows for each month of the 

simulation period. The first three columns represent the 95%, 50% (median) and 5% 

exceeded simulated flows for all ensembles and it should be noted that these do not 
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represent actual simulated time series, but are the bounds within which all of the ensembles 

fall. The final time series is a copy of the ‘observed’ data passed to the model from SPATSIM 

for reference purposes (if included in the model setup). These ‘observed’ values could be 

real observed flows from a gauge or could be some other reference time series used to 

compare the simulated ensembles with (e.g. WR90 or WR2005 ‘conventional wisdom’). Both 

of the text files (un1 and un2) can be imported into Excel spreadsheets for further analysis 

and graphical display. 

 
The third version of the model is very similar to the second except that it can accept multiple 

rainfall time series inputs (as generated by a stochastic rainfall model for example). Each of 

these time series is used together with the Monte Carlo parameter sampling procedure. If 

500 rainfall time series are used and 500 parameter samples generated, the final output 

consists of 250 000 ensembles. To avoid excessive computer time and storage space the 

outputs are limited to the ensemble time series. It is assumed that these will be further 

screened for use with other models and this approach is discussed later in the report.  

 
3.3 Developing regional constraint indices 
 
 
Table 3.1 provides a list of possible indices of hydrological behaviour, together with predictor 

variables and sources of information that were identified early in the project. Several issues 

were considered in selecting appropriate indices from the list provided in Table 3.1: 

 The indices must be estimated from reliable information about observed natural 

hydrological response. It is recognized that many of the observed stream flow records 

are not appropriate for this purpose without some processing. This is largely because 

they are affected by upstream developments (abstractions, impoundments, diversions, 

land use changes, etc.), are subject to measurement error and because they are not 

able to measure the full range of observed flows. Typically this means that the 

observed flows have to be naturalized. Unfortunately this process is subject to 

uncertainties which will affect the quality (accuracy and representativeness) and 

usefulness of the extracted indices. 

 The indices have to be hydrologically relevant and measure some basic property of the 

hydrological response. 

 It must be possible to calculate the indices from the simulated model ensembles so that 

they can be compared with the observed values of the indices. 

 It must be possible to find predictor variables that can be used to estimate the indices 

for the whole country (at the quaternary catchment scale) with as little uncertainty as 

possible. If the regional constraints are estimated with a high degree of uncertainty 
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(defined using the confidence limits of regression relationships, for example) they will 

not be very useful for constraining the model output ensembles. 

 

Table 3.1 List of possible constraint indices, predictor variable and sources of 

information (note that there is no intended link between the columns). 

 

Constraints Predictor Variables Sources of Information 
Daily & Monthly: Climate: WR90 
Mean stream flow metrics MAP WR2005 
Main slope of monthly FDC Evaporation/MAE SA Atlas 
Some yield metrics  Temperature DWAF GIS 
Monthly or annual CV Rainfall CV GRAII 
Measure of baseflow (FDC?) Daily Rainfall Statistics Smithers (Extreme rainfalls) 
No. of months of zero flow No. of Raindays Topographic map layers 
Seasonality metrics Topography: AGIS 
Groundwater recharge Slope or Relief MODIS satellite data 
 Drainage Density NOAA rainfall satellite data 
Daily only: Basin Area  
Recession Coefficients Basin shape  
Time-to-peak Vegetation:  
Flood frequency characteristics Indices of water use  
 Wetland area  
 Soils:  
 Infiltration properties  
 storage properties  
 Drainage properties  
 Geology:  
 Recharge  
 Storativity  
 Transmissivity  

 

Three of the indices referred to in the first column have been included at this stage of the 

development of the uncertainty framework. However, it is accepted by the authors of this 

report that these are not sufficient and that further work is required to refine the existing 

indices and include additional ones. 

 

3.3.1 Budyko type curves for mean annual runoff volume 

 

The first constraint has been based on the concepts developed by Budyko (1974) using a 

measure of aridity to predict runoff through regional P/PE versus Q/P relationships. The first 

step was intended to cover the whole country and therefore used the mean annual runoff (Q) 

from the simulated 70 year (1920 to 1990) WR90 runoff time series and the estimated mean 

annual rainfall (P) and potential evaporation (PE) for all 1946 quaternary catchments 

(Midgley et al., 1994). The runoff data used were the incremental flows, generated only 

within each quaternary catchment. Plotting all these data suggested a series of log-log 

relationships that converge at low values of both P/PE and Q/P. An iterative process was 
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followed to define four regional relationships. The relationship for Region 1 was first 

established by identifying a regression equation that had a high R2 value and for which the 

residuals were approximately equally divided between negative and positive values. Once 

the points to be included in Region 1 were finalised, the same process was followed to 

identify the Region 2 points and so on. All of the points and the resulting regression 

relationships are shown in Figure 3.3, while Table 3.2 lists the equations and R2 values. 

Figure 3.4 indicates that the regions are generally spatially contiguous although there are 

some areas that are not clearly defined as a single region. This may be due to localised 

variations in runoff response, as well as artefacts related to errors in the data used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Regional Budyko type curves based on log-log relationships (see Table 3.1 for 

coefficients of the regression equations). 

 

It would not be strictly good practice to develop the regional constraint relationships using 

simulated data, although it is considered to be acceptable to use these data to initially define 

the regions.  These are the only data that have a reasonable national coverage and are 

deemed a good starting point for a first order definition of regions before these are refined 

using other coarser data such as observed or naturalised flows for the definition of the 

relationships. Therefore, the second step involved the use of the naturalised time series (also 

given in Midgley et al., 1994) for all available stream flow gauges. Gauges were initially 

rejected if they had less than 10 years of observations, if their drainage areas included 

quaternary catchments that fell into more than a single region or if the amount of missing 

(and in-filled) data was excessive. Some very small gauged sub-basins were also rejected. 

For each of the regions identified during the first step, Table 3.2 lists the number of gauges 



Uncertainty in water resources assessments 35

included in the analysis, the range of catchment areas, the coefficients of the final estimation 

equations and the R2 value. It is apparent that the final equations are very similar to the initial 

equations (Figure 3.2 and top part of Table 3.2 based on the simulated data) for Regions 1 to 

3, but that there are quite large differences for Regions 4 and 5. 

 

Table 3.2 Regional Budyko type relationships  

 

 Regions 
1 2 3 4 5 

Based on simulated data 
No. of Quats. 397 702 317 202 325 
Area (km2) range 59-8647 43-18108 72-10274 72-3913 89-8037 
Slope (A) 2.527 2.293 2.168 2.126 1.770 
Intercept (B) -1.113 -0.687 -0.304 0.194 0.478 
R2 0.927 0.968 0.984 0.990 0.866 
Based on observed flow data 
No. of gauges 40 135 45 23 27 
Area (km2) range 86-1887 81-1668 106-1691 84- 873 101-1889 

Slope (A) 2.322 2.154 2.171 2.406 1.351 
Intercept (B) -1.079 -0.741 -0.338 0.475 0.173 
R2 0.932 0.905 0.890 0.917 0.820 

 
Note: Equations are of the form ln(Q/P) = A * ln(P/PE) + B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Regions based on Budyko type relationships between P/PE and Q/P 
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3.3.2 Slope of the annual flow duration curve for monthly stream flow volumes 
 
In a region such as South Africa with very diverse flow regime characteristics, the shape of 

the flow duration curve (FDC) can be a very useful indicator of hydrological response 

characteristics. The shape of FDCs is also important in determining potential levels of 

sustainable abstraction, the need for artificial storage and is relevant to determining 

environmental flow requirements (Hughes and Hannart, 2003). FDC shape is therefore highly 

relevant to water resources management. As with the Budyko relationships the starting point 

for the analysis was to use the simulated flow time series for all 1946 quaternary catchments 

to try and identify regional relationships. For largely perennial river systems the FDC slope 

values were calculated as the difference between the logarithms of the Q10 and Q90 values 

divided by 0.8 (i.e. {90-10}/100 : dividing by 100 is simply used to avoid small numbers in the 

result). For those sub-basins with periods of zero flow, the Q90 value was replaced with the 

first non-zero FDC percentage point value and the difference in flows divided by the 

appropriate % differences.  

 
Various readily available predictor variables (or combinations thereof) expected to influence 

FDC shapes were used to try and find suitable estimation equations, either for the whole 

country or for different regions.  It was found to be very difficult to find suitable variables and 

there were no obvious regional patterns in the data. While further analyses are still being 

done to improve the development of a constraint relationship, Figure 3.5 illustrates the initial 

interim solution. The estimation equation is based on an index that combines a measure of 

aridity (P/PE) and a measure of sub-basin slope (relative relief). The R2 value of the 

relationship is 0.63 and the equation is ln(FDC slope) = 4.0-0.6xIndex value. The relationship 

illustrated in Figure 3.5 excludes a number of sub-basins in the country that are strongly 

influenced by dolomitic geology and a region in the north-east of South Africa that appears to 

be anomalous based on the simulated flow data. Some of the scatter in the relationship as 

well as the existence of anomalies could be artefacts associated with the use of simulated 

data.  

 
The regression analysis has been recently repeated with 230 naturalised observed flow 

records (taken from WR90) and the appropriate format of the index value was found to be 

closely similar to the one used for the quaternary catchment data (i.e. a scaling factor of 

between 0.08 and 0.06 for the log value of relative relief).  The range of index values is 

substantially less for the observed data (reaching a minimum index value of only 2.5), the R2 

value is much lower (0.275) but the regression is very similar (ln(FDC slope) =  

3.64-0.53xIndex value). The inclusion of relative relief in the analysis of the observed data 
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does not add very much to the precision of the relationship and further work is required to 

assess other predictor variables that might influence the variability in slope of FDCs. 
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Figure 3.5 Relationships between an index of aridity (P/PE) and sub-basin slope (Relief) 

and the slope of flow duration curves based on simulated WR90 data.  
 
 
 
3.3.3 Groundwater recharge  
 
During the revision of the initial parameter estimation procedures (Kapangaziwiri and 

Hughes, 2008), an attempt was made to estimate the main groundwater recharge 

parameters (GW and GPOW) using estimates of the mean annual recharge (from the GRAII 

database) and an indication of average soil moisture status based on some of the other 

parameter estimates. While an approach has been adopted, it was not found to be very 

reliable during initial testing and therefore cannot be used with a great deal of confidence. In 

practice there are too many variables and non-linearities involved in the monthly simulation 

of recharge within the model to be able to reverse engineer the model output (i.e. estimate 

the input parameters required to achieve a defined result in terms of mean annual recharge). 

The alternative of using both surface and sub-surface physical catchment properties has yet 

to be attempted.  

 
Given the relatively low degree of confidence in the recharge parameter estimates it was 

considered necessary to constrain the ensembles using the GRAII estimates of recharge. 

However, as Figure 3.6 indicates, this is also a highly uncertain process, particularly in those 

areas where recharge is expected to be high. The GRAII database contains three different 
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recharge estimates and Figure 3.6 illustrates the range of these values for all 1946 

quaternary catchments. In many cases this range can be in excess of 50mm which would 

translate into a very wide range of groundwater contributions to stream flow. It is worth noting 

that the largest range is between the middle estimates and the higher estimates, particularly 

at high recharge rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Range of mean annual recharge estimates (mm y-1) extracted from the GRAII 

database for all 1946 quaternary catchments (the results are ranked using the 

lowest estimate). The grey shaded area represents the difference between the 

lowest and middle recharge estimates, while the black area represents the 

difference between the middle and highest recharge estimates. 

 
 
3.4 Examples of the parameter estimation approach 

 

Kapangaziwiri and Hughes (2008) provide some examples of the use of the parameter 

estimation methods and compare the values and the results with the standard regional 

parameter values available in WR90 (Midgley et al., 1994). One of the more noticeable 

features of these results is that the differences in the values generated by the estimation 

equations and the WR90 regional parameters are often quite large, while the differences in 

the simulation results are much smaller. This illustrates the concept of equifinality and the 

fact that multiple parameter sets can produce similar results in conceptual type models with a 

relatively large number of parameters. This does not necessarily mean that the model 

contains structural weaknesses, but does imply that it is quite important to quantify 

parameter values that are behavioural for the right ‘hydrological’ reasons (Hughes, 2010b). 
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Table 3.3 provides some example comparisons of the different parameter values for 5 

gauged catchments. The basis for the comparisons is the use of the ‘best guess’ parameter 

values (see section 3.1 above) and two objective functions (coefficient of efficiency based on 

ordinary stream flow volumes and based on log-transformed values). In most of these 

catchments the WR90 ST parameter values are quite low, while the surface runoff routine 

parameters (ZMIN and ZMAX) are set at 999, which effectively turns off this part of the 

model. The result is that most of the wet season peak flows are generated by rainfall which 

exceeds the available moisture storage and therefore becomes runoff. In contrast, the 

physical basin property data suggest much higher storage volumes (the sum of STsoil and 

STunsat in Table 3.3) but values for ZMIN and ZMAX that will allow surface runoff to be 

generated by the model. A comparison of the objective function values suggests that both 

sets of results provide equally good or poor simulations when compared with the observed 

data.  

 

Table 3.3 WR90 and revised parameters, estimated physical properties and model 

results.  

Basin K4H003 V7H016 C1H004 X1H016 W5H005 
MAP(mm) 702 1093 661 868 832 
WR90 parameters and results 
ST 100 100 45 150 180 
FT 50 50 2 24 15 
POW 2.0 3.0 3.0 2.0 3.0 
GW 50 20 5 18 15 
ZMIN 0 999 999 999 0 
ZMAX 200 999 999 999 900 
CE : CE{ln} 0.66 : 0.57 0.69 : 0.79 0.61 : 0.52 0.24 : 0.61 0.62 : 0.72 
Estimated physical properties, revised parameters and results 
Drain. Dens. 2.1 2.3 1.4 1.8 1.6 
Soil Depth (m) 0.6 0.8 1.5 1.8 1.0 
Ksoil (m d-1) 1.85 0.47 0.16 0.81 0.81 
Gradient 0.30 0.30 0.10 0.12 0.10 
Porosity 0.41 0.35 0.35 0.35 0.35 
STsoil 148 224 420 378 210 
FTsoil 41.5 15.5 2.0 18.5 8.0 
GW Depth (m) 30 20 10 15 10 
Kunsat (m d-1) 0.02 0.01 0.015 0.05 0.01 
GW storativity 0.002 0.002 0.003 0.002 0.002 
STunsat 60 40 30 34 20 
FTunsat 7.5 2.5 0.5 3.0 0.5 
POW 2.0 2.8 5.0 3.0 3.5 
GW 50 20 10 22 15 
ZMIN 10 30 50 50 0 
ZMAX 200 400 350 550 650 
CE : CE{ln} 0.66 : 0.67 0.68 : 0.80 0.63 : 0.60 0.36 : 0.69 0.58 : 0.73 
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Experience, during the project, of the use of the parameter estimation routines suggests that 

there remains a certain degree of subjectivity in the interpretation of the available information 

and how it is used in the estimation process. Part of the problem lies in the fact that the AGIS 

(2007) data are provided at more detailed spatial scales than those typically used with the 

Pitman model. This means that the patterns of variation of such information as slope, soil 

depth and soil texture given in the AGIS data requires some interpretation before use and 

there is the potential for different users to interpret the data in different ways. A further 

problem is that not all of the information required for the parameter estimation process is 

directly available in the AGIS data or any other source. This is particularly the case for the 

groundwater components of the estimation process. 

 

While problems of subjectivity and the additional time required to estimate the parameter 

values are accepted as legitimate concerns, it is necessary to view these in the context of the 

proposed uncertainty framework. The parameter estimation equations are designed to 

provide a range of possible behavioural parameter sets which will then be subjected to 

further scrutiny and constraint using the regional indices of catchment response (section 3.5). 

It is also necessary to recognize that the parameter regionalization scheme used within 

studies such as WR90 are based on very subjective assessments of catchment similarity. 

While the process that was followed to derive the parameter values in the proposed 

estimation process is transparent (all of the input variables can be saved for later retrieval 

and checking – see Figures 3.1 and 3.2), the same is not true for the procedures used to 

establish the WR90 regional parameter sets. 

 

3.5 Examples of the use of the regional constraints 

 

3.5.1 Groundwater recharge constraint 

 

During the development phase of the parameter estimation routines the regional constraints 

were used quite frequently to assess the results of some of the estimation equations and 

revise them where necessary. A good example of this feedback process involved the 

groundwater recharge parameter estimation equations and the recharge constraints. Figure 

3.7 shows a comparison between the constraints and the ensemble minimum and maximum 

recharge estimates that were generated from the original estimation equations. It is clear that 

the range of recharge values given by the original approach to estimating the GW parameter 

far exceeded the regional constraints, despite the fact that the maximum GRAII recharge 

estimates are considered to be very high in some catchments (see Figure 3.6). 
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Figure 3.7 Comparisons between the three GRAII recharge estimates and the minimum 

and maximum recharge estimates from the 5 000 model ensembles. The 

maximum vertical scale has been restricted to and all those catchments with 

maximum ensemble recharge values above 250mm are identified with arrows.  

 
The use of these recharge parameter values also had very large impacts on the variability of 

the simulated values for the other two regional constraint indices (Q/P and FDC slope). 

Figure 3.8 illustrates that after some modifications to the recharge parameter estimation 

equation many of the example catchments have recharge ensembles that lie within the 

bounds of the GRAII data. However, there are still some that lie beyond either the maximum 

or minimum GRAII values. The recommended procedure is to make initial use of the 

recharge parameter estimation, but then to check the range of mean annual recharge values 

generated by the ensembles and then adjust the mean and standard deviation of the GW 

parameter to constrain the simulated range if necessary.  Given that many of the GRAII 

upper estimates of recharge might be considered excessive (Figure 3.6) a user may decide 

to modify the GW parameter values to constrain mean annual recharge to within the lower 

two GRAII estimates.  
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Figure 3.8 Comparisons between the three GRAII recharge estimates and the minimum 

and maximum recharge estimates from the revised model ensembles.  

 

3.5.2 Mean annual runoff (Budyko type index) constraint 

 

Figures 3.9 to 3.14 present the final results of applying the most recent versions of the 

parameter estimation routines to a number of quaternary catchments and comparing the 

range of Q/P values to the 95% prediction limits of the regional constraint regression 

equations (Table 3.2). The standard error of the predictions (SEvol) can be estimated from the 
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following equation (where σvol is the standard deviation of the dependent variable values 

used to develop the regression equations and R2 is the regression coefficient): 

 

 SEvol = σvol . sqrt(1 – R2)   

 

The curves for the prediction limits are therefore given by (with R.Slope and R.Int the 

regression slopes and intercepts given in Table 3.2 and the ± 1.96 used to define the number 

of standard errors either side of the mean) the following equation over a range of different 

P/PEi values. 

 

 Q/Pi = Exp {R.Slope . ln(P/PEi) + R.Int ± 1.96 . SEvol} 

 

The red points on all the diagrams represent the positions of the naturalized observed data 

for those catchments where gauges coincide with the quaternary catchment outlet. The 

figures for the 5 regions suggest that the parameter estimation process frequently produces 

a range of uncertainty that is well within the regional constraints (category A), but that there 

are also a number of cases where the uncertainty bounds are either large (category B) or 

biased to greater than (category C) or less than (category D) the regional constraints. The 

results for all of the regions are summarized in Table 3.4. While explanations for some of the 

excessive parameter uncertainty bounds can be found for some catchments (e.g. high 

degree of topographic and soil variation), this is not always possible. Similarly, it is not 

always straightforward to identify why there appears to be a substantial bias in some of the 

parameter ensembles.  Table 3.4 indicates that this bias is nearly always toward higher 

flows. It should, however, be recognized that the parameter uncertainty bounds include all of 

the ensembles and in some cases it is a small number of extremes that cause the excessive 

range. Removing these from the full list of ensembles is effectively equivalent to removing a 

few outliers. In these cases the value of the regional constraints as part of the whole 

uncertainty framework has been more than adequately demonstrated. 

 

In most cases the naturalized observed flows fall within the parameter uncertainty ranges. 

However, there are one or two exceptions and the parameter estimation process for these 

catchments requires further investigation. For X31A in Figure 3.10 the observed data point is 

a long way above the very narrow range of ensembles and this suggests that some errors 

have occurred within the parameter estimation process. There are also several examples 

where the observed data point is within the lower (R20D in Figure 3.10) or upper (T35C and 

S60C in Figure 3.12) extremes of the ensembles.  Apart from checking the parameter 

estimation process in these cases, it is also necessary to examine the method and results of 
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the observed data naturalization process. Reference has already been made to the 

uncertainties associated with this process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 2 (A).  
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Figure 3.11 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 2 (B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 3.  
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Figure 3.13 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 95% prediction limits for the P/PE and Q/P relationship compared with the 

range of ensemble outputs for example catchments within region 5.  
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Table 3.4 Summary of the results of the frequency of occurrence of categories A to D in 

the comparison of the model output ensembles with the volume and FDC 

slope constraints. The values are the percentage number of catchments within 

each region falling into the different categories. 

 

Region No. in 
region 

Comparison categories 
A B C D 

Description Low 
parameter 
uncertainty 

Excessive 
parameter 
uncertainty 

Parameters 
giving outputs 
above limit 

Parameters 
giving outputs 
below limit 

Runoff ratio constraint 
Region 1 7 50% 25% 13% 0%
Region 2 16 44% 31% 25% 0%
Region 3 8 63% 0% 25% 13%
Region 4 8 63% 38% 0% 0%
Region 5 7 86% 14% 0% 0%
Total 46 59% 24% 15% 2%
FDC slope constraint 
All regions 46 31% 2% 2% 65%
 

 

3.5.3 Slope of the flow duration curve constraint 

 

Table 3.4 includes summary information for comparisons of the parameter ensemble outputs 

with the slope of the flow duration curve (FDC) constraint, while more detail for individual 

catchments used in the study are given in Figures 3.15 and 3.16. For a large number of the 

examples the range of FDC slopes extends to well below the lower prediction limit of the 

regional constraint equation. While this suggests some bias and over-estimation of low flows, 

it is less than apparent when examining the time series of individual ensembles in more 

detail. The general conclusion is that, while the FDC slope constraint is potentially useful, it 

should be subjected to further investigation. This could involve improving the method used to 

calculate the slope or improving the regional estimation equation, which currently has a 

relatively low R2 value and therefore a high standard error and wide prediction limits. 
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Figure 3.15 95% confidence intervals for the flow duration curve relationship compared 

with the range of ensemble outputs (A).   
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Figure 3.16 95% confidence intervals for the flow duration curve relationship compared 

with the range of ensemble outputs (B).   
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3.6 Reducing the uncertainty in the parameter ensembles 

 

Section 2.4.4 referred to two options for the use of the regional constraints. The first is to 

simply remove those model output ensembles that lie outside the constraint boundaries and 

the second is to use the results of the comparison as the basis for a feedback loop to the 

parameter estimations process. Reference has already been made to one example of the 

latter, where the groundwater recharge constraint has been used to improve (or effectively 

‘calibrate’) the uncertainty in the groundwater recharge parameter of the model. This process 

has proved to be very effective and overcomes, to a certain extent, recognized deficiencies 

in the recharge parameter estimation equation. The first option for using the constraints will 

be applicable for the category B results (Table 3.4), but will not be applicable to the category 

C and D results because these contain too much potential bias in the model ensembles.  

 

The feedback process will essentially involve a re-examination of the interpretation of the 

available physical basin property data and particularly the AGIS land type data. This re-

examination can be informed by sensitivity analyses of the ensemble results to try and 

identify which parameters the results are most sensitive to. While the use of a spreadsheet 

can provide many flexible facilities for post-processing the ensemble results and to assist in a 

detailed understanding of parameter interactions and their effects on the model results, an 

additional software tool has been developed to facilitate ‘regional sensitivity analysis’. This is 

an approach widely used in the international literature to investigate the sensitivity of the 

model results to changes in groups of parameter values.  Figure 3.17 illustrates the approach 

using a screen shot of the main program interface. The top of the screen includes a button to 

load a UN1 output text file, while the left hand side allows the parameters to be included in 

the analysis to be selected (and listed in the lower-left hand display). The sensitivity analysis 

can be based on either a flow metric of the simulated ensembles (e.g. mean monthly flow) or 

on an objective function if observed data were included in the model setup. It is also 

possible, for some of the flow metrics, to enter the variables used to calculate the regional 

constraints or signatures and distinguish between behavioural and non-behavioural 

ensembles. 

 

Figures 3.18 and 3.19 provide examples of the sensitivity results. All of the ensembles are 

ranked (based on the sensitivity criteria selected – i.e. a flow metric or an objective function) 

and then divided into five groups (or seven if the behavioural analysis option is included – i.e. 

the top and bottom groups are those that lie outside the limits of the regional constraint 

estimates). The four groups are then plotted as cumulative frequency curves. If an objective 

function is selected as the criteria for the sensitivity analysis the frequencies are weighted by 
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the objective function values. The interpretation of the results is based on the recognition that 

sensitive parameters are indicated by widely spaced cumulative frequency curves across the 

four groups. A low degree of over-lap in the parameter value range between the top and 

bottom groups suggests parameters that are identifiable (i.e. changes in the values of one 

parameter strongly affect model results, regardless of the other parameters). Figures 3.18 

and 3.19 illustrate that many of the parameters of the Pitman model are rarely identifiable 

and there are many different parameter combinations that give similar results.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Regional sensitivity software tool – main screen 
 

Figure 3.18 provides a relatively clear illustration of an example where too low values of the 

GW (groundwater recharge) parameter leads to a large number of ensembles that are below 

the regional constraint (‘below behavioural’ – also see Figure 3.12). There is also a 

suggestion that the extremes of the FT parameter (outflow from the main moisture storage) 

are also too low. However, FT and GW are highly interactive parameters, both contributing to 

the sustained release of low flows. For K40B adjustments to the GW parameter removed all 

of the non-behavioural ensembles and improved the position of the ensemble range within 

the regional FDC slope constraint. 

 

Figure 3.19 shows an example of a situation where many of the ensembles are above the 

regional constraints (see also Figure 3.11). The sensitivity analysis clearly indicates that the 

main source of the problem lies with the surface runoff component of the model and 
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specifically with parameter ZMAX. The implication is that the soil texture and surface cover 

properties of the catchment should be re-examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18  Regional sensitivity analysis of the mean monthly flow metric for K40B before 

the GW parameter was calibrated. After the calibration all non-behavioural 

outputs were eliminated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Regional sensitivity analysis of the mean monthly flow metric for R20B. 
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3.6.1 Feedback loops from the constraints to parameter estimation 

 

Revisiting the parameter estimation process for X31A (headwaters of the Sabie River) 

revealed that: 

 It had been assumed that the vegetation cover was dominated by forest, which is the 

developed situation rather than the un-developed situation as represented by the 

naturalised observed flows. Correcting this reduced the interception parameters of 

the model. 

 The presence of dolomitic compartments had not been accounted for in the 

unsaturated zone storage and runoff parameters. Correcting this led to a higher 

storage (ST) as well as a higher runoff from storage (FT) parameter. It must be 

acknowledged that some of the physical basin property values used to represent 

these conditions are difficult to estimate. The approach followed here was to increase 

the fracture zone storativity and transmissivity by quite large amounts. 

 The catchment slope had been slightly under-estimated, while the soils were 

classified as dominantly sandy clays, while it would be more accurate to classify them 

as sandy-clay-loams. These changes had very little effect on the results. 

 

These changes resulted in the minimum and maximum Q/P values moving to 0.314 and 

0.421, respectively. From Figure 3.11 it is apparent that the uncertainty range is wider but in 

the middle of the regional constraints and the observed Q/P value (0.37) falls close to the 

middle of the range. The FDC slope values are slightly reduced but remain in the middle of 

the regional constraints, while the recharge values are quite substantially increased and now 

fall towards the upper range of the regional constraints, rather than the lower part (Figure 

3.8). The overall conclusion is that the feedback loop has resulted in more behavioural 

simulations, although the groundwater recharge parameter would probably benefit from 

some downward adjustment. The improvement has been achieved through the application of 

some more detailed knowledge and experience of the catchment hydrology than is available 

through the normal sources of information. This is an illustration of the potential inadequacies 

of the AGIS and GRAII data, but demonstrates that the parameter estimation routines can be 

successfully applied if the input information used to quantify some of the physical properties 

is sufficiently detailed.  

 

Attempts to follow the same re-evaluation process for the southern Cape catchments K40A 

and K40B were not as successful and there were no obvious reasons why the parameter 

estimation process appears to have been unsuccessful. However, one observation was that 

the mid-slope soil depths given by the AGIS data are relatively shallow (220mm in K40A and 
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430mm in K40B). These are substantially lower than would be expected from personal 

experience of the project team. It is recognised that this will always be a difficult area to map 

soil variations because of the accessibility issues and extensive forest cover, but the 

conclusion is that the soil information has been over-generalised and that the soil depths 

have been under-estimated. 

 

The most obvious problem with the simulations for R20C and B are the excessive 

groundwater recharge estimates that are associated with the already identified weaknesses 

in the estimation approach for parameter GW. Figure 3.8 illustrates that the maximum 

recharge values are at least 50% greater than the GRAII maximum value, while the lowest 

simulated recharge values are zero. The process for this feedback loop was to calibrate the 

GW parameter values (mean and standard deviation of the PDF) to achieve a similar range 

of mean annual recharge values as those given in GRAII. The result is that the upper and 

lower limits of Q/P for the ensembles are reduced by approximately 20% for both 

catchments. This mover the ensemble lines in Figures 3.10 and 3.11 down and although 

most of the ensembles are now within the bounds of the regional constraint there are still 

some that are higher. The indications are that there could be additional aspects of the 

parameter estimation process that should be re-visited. Both catchments are quite diverse in 

that they both have relatively small upland areas in the Amatole Mountains, but are 

dominated by lower topography and drier areas in the middle to upper reaches of the Buffalo 

River north of King Williams Town. 

 

A further problem with the simulations for these catchments is the very wide range of FDC 

slopes that result from the model ensembles. Correcting the groundwater recharge 

parameters reduced both the minimum (a worse result) and the maximum (a better result). 

Figure 3.20 illustrates that approximately 35% of the ensembles are non-behavioural from 

the point of view of FDC slope (i.e. those with a ln{FDC slope} value of less than about 0.6).  

Further investigations would be required to determine the exact cause of this result, but initial 

observations suggest instability in the equation used to estimate parameter POW which is 

related to the unsaturated zone parameter estimation when the drainage vector slope is very 

close to the sub-basin slope. 
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Figure 3.20 Cumulative frequency distribution of FDC slopes for R20C before and after 

correction of the estimation equation for the unsaturated zone storage 
component of ST (which also affects parameter POW) 

 

3.6.2 Scale effects in the parameter estimation process 

 

Hughes et al. (2010b) investigated the uncertainty in the groundwater parameters of the 

Pitman model and the effects on sustainable groundwater abstractions in the semi-arid 

catchment L21E (712 km2), a part of the Buffalo River in the Karoo region of the Western 

Cape Province. The initial approach treated the catchment as a single spatial unit and 

uncertainty in the main groundwater parameters with a fixed recharge depth resulted in a 

sustainable yield range of 700 to 970 *103 m3 y-1. It is assumed that the recharge area is 

mostly on the higher ground where the soils are shallower, while the abstraction boreholes 

are expected to be in the valley bottoms where the water is needed for agricultural activities 

(stock watering and a limited amount of irrigation and domestic use). A second approach 

therefore involved dividing the area into two model spatial units, one to represent the 

recharge area and one to represent the abstraction zone. The main differences between the 

ground water parameter values that were assumed for the two zones are:  

 The maximum monthly recharge parameter is assumed to be much higher for the 

recharge sub-catchment. 

 The gradient parameter that controls downstream groundwater outflow is higher for 

the recharge zone. 

 The drainage density parameter is lower for the recharge zone. 

 The riparian loss parameter is lower for the recharge zone. 
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The sub-division of the total area resulted in a reduction in yield from 855 *103 m3 y-1 to 

between 720 and 640 *103 m3 y-1 for recharge zones of 30% and 70% of the total area 

respectively (based on parameter values giving the same input and output water balance  for 

the catchment as a whole). Without further information about the real ground water 

processes that occur within this region, it is difficult to reach firm conclusions. However, the 

division of the total catchment into the two zones is conceptually sensible and it is 

encouraging that the model results are consistent with expectations associated with the 

effects (on sustainable abstraction volumes) of delays in recharge water reaching the sub-

surface zones where abstractions are assumed to take place. 

 

The study referred to in the previous paragraph did not involve the parameter estimation 

routines but throughout the duration of project, the application of the parameter estimation 

process was always found to be more difficult and uncertain in catchments where there are 

substantial spatial variations in the land type data, either because the catchments were 

covered by several land types, or because there is a lot of variation in topography, soil depth 

or soil texture within a land type. Several assessments were therefore made to determine 

whether reducing the scale of modelling would reduce the uncertainty in the output 

ensembles and ensure that they became more behavioral. 

 

Figure 3.21 presents the results of a sub-quaternary model application on catchments H10A 

to H10C (headwaters of the Breede River in the Western Cape). These catchments are 

ringed with steep mountain topography and have relatively flat valley floors. The mountains 

are the higher rainfall and groundwater recharge areas and have shallow soils and steep 

slopes. The valley bottoms have much deeper soils and are expected to be the groundwater 

discharge areas. H10A was sub-divided into 3 sub-basins, while H10B and C were divided 

into 2 sub-basins. Figure 3.21 illustrates a substantial reduction in uncertainty, especially for 

H10B. The naturalized observed data suggest that the simulated outflows from H10C are all 

greater than observed, however, a problem with the naturalization process has been noted at 

this site which is heavily impacted by farm dams and has many missing peak values in the 

daily record. 
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Region 5 - H10 sub-quaternary analysis
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Figure 3.21 Changes in the ensemble Q/P ranges for H10A to H10C as a result of the 

model scale reduction. 

 

3.6.3 Using observed data to reduce uncertainty 

 

While, at first sight, the heading for this section of the report may seem trivial, it has to be 

recognized that the majority of observed stream flow data available for South Africa is 

uncertain. This uncertainty may be related to the accuracy and completeness of the daily 

flow records (i.e. missing high flows when the rating table is exceeded), or it may be related 

to the effects of upstream developments and the extent to which the data can be assumed to 

represent natural conditions. Where there are upstream developments, it has been traditional 

practice to remove these from the records through a process of naturalization, which is 

inherently uncertain given the general lack, or poor accuracy, of the available water use data. 

 

It is therefore considered to be incorrect to consider that a single naturalized stream flow 

record can be used to constrain (or calibrate) the outputs from a hydrological model, unless 

the confidence that can be expressed in the observed record is very high. One of the 

approaches that could be adopted is to incorporate uncertainty into the naturalization 

process taking into account uncertainties in the impacts of upstream developments and 

adding a random error component to the measured stream flows themselves. 
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3.7 Uncertainty in observed rainfall data 

 

The focus of this part of the report has been on the parameter estimation process. However, 

there are many mountainous areas of South Africa where the precipitation data available to 

force the model are very uncertain due to a lack of gauges located in elevated and remote 

parts of the catchments. The uncertainty is therefore derived from the assumptions made 

about the rainfall gradients that result from orographic effects. In two separate studies of the 

combined effects of uncertainty (parameters, forcing climate data and water use data) it was 

found that the effects of rainfall uncertainty can be very large in mountainous areas (H10C) 

compared to areas where orographic effects are not expected (X21F). Table 3.5 (Hughes 

and Mantel, 2010b) suggests that the uncertainty effects of rainfall increase with the 

simulation of higher flows (lower exceedence percentage points of the flow duration curve). 

In this example the rainfall uncertainty was defined by using monthly time series taken from 

both WR90 and WR2005. 

 

Table 3.5 Comparison of uncertainty sources 
 

Sub-basin and 
FDC % Point 

Uncertainty source 
Parameters  + Water Use + Rainfall 

H10C: 90%  98.9 (65.4%) 113.7 (9.8%) 151.1 (24.8%) 
H10C: 50% 68.1 (54.7%) 89.5 (17.2%) 124.5 (28.1%) 
H10C: 10% 22.3 (26.0%) 38.4 (18.0%) 87.4 (56.0%) 
X21F: 90%  124.8 (48.7%) 254.8 (50.7%) 256.5 (0.6%) 
X21F: 50% 52.8 (69.7%) 70.8 (23.8%) 75.7 (6.5%) 
X21F: 10% 40.9 (84.2%) 44.6 (7.6%) 48.6 (8.2%) 
The first number is based on the cumulative uncertainty within each model run (Upper prediction – 
Lower Prediction) * 100 / Central prediction. The second number is the % contribution to the total (all 
sources) uncertainty of individual sources: Water Use uncertainty for H10C: 90% is 9.8 = (113.7 – 
98.9) * 100 / 151.1. 
 
The results from the Hughes and Mantel (2010b) study are confirmed by a study by 

Sawunyama et al. (in preparation) based on comparisons of the uncertainties in estimated 

reservoir yield (Figure 3.22). In this study, another mountainous Western Cape catchment 

(G10B) demonstrated the substantial effects of rainfall uncertainty (using WR90, WR2005 

and independently estimated rainfall inputs), while in less mountainous areas (U20B), or 

areas where the orographic effects are better understood (K40A) parameter uncertainty 

appears to be the dominant source. These results support the frequently made calls to 

ensure that the national network of rainfall observations does not decline any further than it 

already has and in fact suggests that additional rainfall monitoring should be undertaken in 

key areas of the country. These mountainous areas are of great importance, either nationally 

or locally, for generating natural flows and therefore it is essential that we have a sound 
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understanding of their hydrological dynamics and variability. We clearly cannot achieve this 

without adequate rainfall data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.22 Pie charts showing the contributions of different uncertainty sources to total 

output uncertainty based on the % differences in achieved yield from 

hypothetical reservoirs. 

 

3.8 Uncertainty related to future climates 
 

This project has benefited from the results generated by a further WRC project started during 

2010 on developing climate change adaptation strategies for local water boards in South 

Africa (K5/2018). Under the terms of this project, down-scaled rainfall and temperature data 

(using the products generated by the Climate Systems Analysis Group at the University of 

Cape Town – see Hewitson et al., 2005 and Hewitson and Crane, 2006) for 9 climate change 

models (Table 3.6) have been incorporated into a hydrological modelling study of the Buffalo 

River catchment in the Eastern Cape. The down-scaled products used consist of daily rainfall 

and temperature data for quinary catchments for a baseline period (1961 to 2000) and a 

near-future change period (2046-2065) using the SRES A2 emission scenario. 

 
The approach adopted in this study has been to establish the hydrological model (Pitman) 

using uncertain estimates of the parameter values based on the methods explained by 

Kapangaziwiri and Hughes, 2009) and run the model with WR2005 rainfall data. The near-
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future rainfall data for each climate model was then corrected to remove any bias between 

the baseline period rainfall predicted by the climate models and the WR2005 data. The 

temperature data were used to modify the evaporative demand values used in the model for 

the near-future period. These calculations have been based on the widely used Hargreaves 

approach (Allen et al., 1998). 

 

Figure 3.23 illustrates the results for one part of the catchment (outlet of quaternary 

catchment R20B) using bands of uncertainty around the simulated flow duration curves. The 

results clearly indicate the increased uncertainty consequent on including the simulations for 

all 9 GCMs, but that the signal of change is not very clear. Some models suggest increased 

flow, some decreased flow. Further details will be available as the use of climate change 

data are further processed through the uncertainty framework and the Pitman model. 

 

Table 3.6 GCMs used in the study 

 
GCM abbreviation Source of GCM 
CCCMA Canadian Centre for Climate Modelling and Analysis 
CNRM France Centre National de Recherches Meteorologiques 
CSIRO Australian CSIRO Atmospheric Research 
GFDL USA NOAA Geophysical Fluid Dynamics Lab 
GISS USA Goddard Institute for Space Studies 
IPSL France Institut Pierre Simon Laplace 
MIUB Germany Meteorological Institute of the University of Bonn 
MPI Max-Planck Institute For Meteorology 
MRI Japan Meteorological Research Institute 
 
 
Reference is made in Figure 2.6 and elsewhere in this report to the use a stochastic rainfall 

model to generate uncertainty inputs into the Pitman model. The main concept behind this 

approach is that both stochastic and parameter uncertainty can be incorporated in the same 

model. This would avoid the apparent confusion of incorporating hydrological uncertainty 

(parameter uncertainty) in a hydrological model and stochastic uncertainty (sequence 

uncertainty) into a yield model (see section 4 of this report).  

 
 
A possibility for the future is that uncertainty in the magnitude of rainfall related to a lack of 

representative rainfall observations could be built into the stochastic generator, by sampling 

from uncertain values defining the statistics of the historical rainfall time series. The main 

components of a stochastic rainfall model are the ‘parameters’ that define the monthly means 

and standard deviations of rainfall, the serial correlation statistics (sequencing) and the 

spatial correlation statistics (spatial similarity measures). While these statistics would 
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normally be calculated from historical data sets, there does not seem to be any reason why 

uncertainty could not be included. The main source of uncertainty would be in the monthly 

means and possibly standard deviations. This approach opens up other opportunities to 

incorporate climate change uncertainties into the overall uncertainty modelling framework. It 

seems reasonable to suggest that a stochastic rainfall generator represents a potentially very 

efficient method of doing this. It is likely that future rainfall regimes could be represented by 

changes to monthly means and standard deviations, as well as differences in the seasonal 

distributions of these. There may also be some changes to the serial correlation structure of 

the time series with potentially more persistence of certain conditions. It is proposed that 

these changes to the parameters of a stochastic rainfall model could be quantified through 

the analysis of baseline versus future down-scaled outputs from climate models. 

Furthermore, uncertainty could be quantified by repeating this exercise for all climate models 

that are considered appropriate for the region of concern. Incorporating climate change into 

the Pitman model (and therefore water resource assessments) would therefore involve the 

use of uncertain stochastic rainfall model parameters as part of the total simulation approach 

and they would be seamlessly integrated with the hydrological parameter uncertainty (which 

may also change with climate change). 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 Comparison of the historical range of uncertainty (based on model parameter 

uncertainty) and future uncertainty (based on parameter uncertainty and 

future climate uncertainty across all 9 GCMs). 
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4. PROPAGATING UNCERTIANTY INTO YIELD MODELLING 

 

It has already been noted that the conventional approach to water resources yield modelling 

within South Africa is to input a single historical time series of natural flows and to apply a 

multi-site stochastic stream flow model to generate a number of different time series that are 

used to estimate the yields. The resulting yields are ranked to generate a yield probability 

curve. This approach clearly ignores the parameter uncertainty and the main question that 

was raised during this project is related to the impacts of not allowing for parameter 

uncertainty. 

 

Some of the initial investigations examined the range of yield estimates generated by a water 

resources yield model using the median output ensemble from the hydrological model 

compared to the historical firm yield generated by using the 95% and 5% exceeded 

simulated natural flow sequences (i.e. the extremes of the ensemble predictions). Figure 4.1 

illustrates two examples of this type of comparison for the Nooitgedacht (X11C) and Kwena 

(X21C) dams. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Range of possible yields using uncertainty ensembles and long-term stochastic 

yield analysis (Left side: Nooitgedacht Dam; Right side: Kwena Dam).  

 

Clearly there are substantial differences between these two examples, with the parameter 

uncertainty impacts on the Kwena dam yield analysis being far greater that for Nooitgedacht 

dam. Table 4.1 summaries the comparative yield estimate analyses conducted on 5 

catchments and there are no simple explanations for these differences. It is therefore 

essential to explore these issues further before recommendations can be made about 

combining the generation of uncertainty ensembles from hydrological models with the current 

practice of generating stochastic flow sequences within yield models. The three ensembles 
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used in the yield analysis were selected on the basis of ranking the outputs using the 

simulated MAR, while the highest MAR simulations may not necessarily generate the highest 

yield. 

 

Table 4.1 Summary of the results of the yield estimate comparative analysis. 
 

Catchment  % Diff. LTY inside 
Firm Yield 

limit 

CV 

Kwena (Median – 95%) 12.3 Yes 0.42 
(5%-Median) 19.3 Yes 0.37 

Midmar (Median – 95%) 7.0 Yes 0.44 
(5%-Median) 8.0 No 0.38 

Nooigedacht (Median – 95%) 21.6 No 0.37 
(5%-Median) 15.4 No 0.38 

Mokolo (Median – 95%) 11.1 No 0.48 
(5%-Median) 11.2 Yes 0.45 

H10C (Median – 95%) 12.9 Yes 0.51 
(5%-Median) 12.5 No 0.41 

Notes: The % Diff. values are the percentage differences of the MARs (from the MAR of the median 
ensemble) for the lower (95%) and upper (5%) hydrology ensembles relative to the median 
ensemble MAR and are a reflection of the uncertainty in the ensembles. 

 The ‘LTY inside Firm Yield Limit’ is a statement of whether the long term yields (based on the 
median hydrology) are within the limits of the firm yields at the 95% and 5% ends of the 
probability distributions of the long term yield..  

 The CV represents the coefficient of variation (standard deviation/mean) of the appropriate 
ensemble. 

 
If hydrological uncertainty is to be completely combined with stochastic uncertainty using the 

standard approach of stream flow stochastic generation within a yield model, the process 

would become lengthy. If it is assumed that the hydrological uncertainty is represented by 1 

000 ensemble outputs from the hydrological model and that 1 000 stochastic ensembles are 

generated for each hydrological model output, the result is 1 million runs of the yield model – 

which will generate a truly realistic yield assessment, but not within a practical computing 

time frame, particularly for complex systems with many nodes. The issue of combining 

probabilities does not come up in the example as we simply have 1 million possible yield 

estimates.  

 
The question is whether a short cut can be found that involves the processing of fewer of the 

hydrological ensembles through the yield model. Figure 4.2 illustrates the results of a 

simplified hypothetical experiment to investigate this question. It has been assumed that a 

single representative hydrology time series would produce a range of yields between 80 and 

120 * 106 m3 (MCM). The dotted line (‘Single’) represents the cumulative probability 

distribution of yield based on a simple process of randomly sampling 100 yield estimates 

from the range (80 to 120). The second part of the process was to add an additional 10 
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hydrology time series, representing some uncertainty in the hydrological model outputs, and 

assume that each would generate a different range of yields when used as input to the 

stochastic model, with some giving overall higher yields and some lower yields. If the total of 

1 100 (100 x 11) yield estimates are included, the frequency curve is given by the thick line 

(‘Ensemble’) in Figure 4.2.  

 

The thin line without any symbols (‘Extremes’) is made up of all the yield estimates assumed 

to be generated from the original hydrology (yield range of 80 to 120) as well as the two 

hydrology groups with the highest and lowest yield estimates (a total of 300 values). This 

represents (in a simplified way) the result of taking the median hydrology ensemble plus two 

others representing the extremes and processing only these through the stochastic generator 

in the yield model. Figure 4.2 clearly illustrates that the yield estimates in the ends of the 

curves (approximately 5 to 15% and 75 to 95%) will not be very accurate representations of 

the real yield uncertainty based on all ensembles. This result will occur when the extremes of 

the hydrological ensembles are expected to be less likely than the median. This situation 

typically results from using Normal distribution sampling of parameter sets, while uniform 

distribution sampling may result in the extreme hydrological ensembles being as equally 

likely as the median. 

 

The final curve in Figure 4.2 (‘Extremes (corrected)’) is also based on the use of the median 

and two extremes of the yield estimates (300 values). However, in this case the cumulative 

frequencies have been based on weighting the median hydrology yield estimates by 0.2 and 

the extreme hydrology yield estimates by 0.05. These are relatively arbitrary choices of 

weighting, but are related to frequency properties of a Normal distribution (approximately 0.2 

or 20% of the distribution lies within 0.25 standard deviations either side of the median, while 

0.05 or 5% of the distribution lies beyond approximately 1.7 standard deviations – i.e. the 

extremes). The result still shows some variations from the total ensemble line, but is much 

closer than the uncorrected ‘Extremes’ line. 

 
An additional test has been added to the simple analysis to determine whether an even 

simpler approach can be adopted that does not add any additional stochastic analyses to the 

yield model. Figure 4.3 uses the same data set as used in Figure 4.2, but in this case the 

basic information generated by the yield model is assumed to be the historical yields based 

on the median and two extreme hydrology ensembles (Upper and Lower) as well as the 

stochastic yield analysis based only on the median hydrology ensemble (‘Median Stochastic’ 

in Figure 4.2). Two additional sets of yield estimates are added by scaling the median 

hydrology stochastic yield values by the ratios of the median historical yield to the upper and 
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lower hydrology historical yields. As with the previous analysis the three sets of yield 

estimates are combined using probability weighting factors appropriate to the probabilities of 

occurrence of the three hydrology ensembles (0.2 for the median hydrology and 0.05 for the 

upper and lower extremes). The complete set of yield estimates is then re-sorted and the 

final yield frequency curve generated (‘Extended Median’ in Figure 9.10). The results in this 

simple test suggest that the differences between this curve and the one using stochastic 

analyses of the three hydrology ensembles are relatively minor. 
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Figure 4.2 Yield frequency (probability) curves based on approaches to combining 

hydrological and stochastic uncertainty (A). 

 
The simple exercise demonstrates that a relatively accurate representation of the yield 

probability distribution resulting from combined hydrological and stochastic uncertainty, that 

would normally involve an impractical number of runs of the yield model, can be obtained 

with a substantially reduced number. In the last experiment the only additional yield model 

runs required would be to determine the historical firm yields of the upper and lower 

hydrology ensembles. 
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Figure 4.3 Yield frequency (probability) curves based on approaches to combining 

hydrological and stochastic uncertainty (B). 

 

4.1 Stochastic rainfall versus stochastic stream flow sequences  

 

One of the major discussion points during some of the project workshops was whether it is 

possible to include the stochastic component of uncertainty using a stochastic rainfall model 

as part of the hydrological model and run the resulting ensembles through the yield model 

without any stochastic stream flow generation. The other question is whether the results 

would be substantially different from those generated with the conventional approach. The 

potential advantage is that the stochastic and hydrological (i.e. parameter) uncertainty can be 

combined within the same model. A single test of this approach has been applied in this 

study using the data for the Midmar Dam catchment (U20A to U20C). The version of the 

Pitman model that has been created to perform this analysis has already been discussed in 

section 3.2. 

 

The multisite monthly rainfall model employed in this study was based on the daily model 

developed by Srikanthan and Pegram (2009). The main features of this model are that it 

stochastically links the spatial and also the temporal dependence between the gauges using 

a multivariate autoregressive time series model and it post-conditions the simulations to 

recapture the temporal correlations and marginal statistics of the annual rainfall amounts. 

The first feature is fairly standard, while the second ensures that the observed fluctuations of 

wet and dry years is recovered, a very necessary condition for long term reservoir yield 
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analyses. Extensive validation tests were done to ensure that the model captures the 

features described. Table 4.1 summarises the statistics of the forcing historical rainfall data 

and the range of equivalent values for 500 stochastic sequences. The sequences generally 

give lower rainfalls than the historical data based on annual totals (see the lower values of 

skewness, maximum and minimum in particular). 

 

Table 4.2 Annual summary statistics for sub-basin U20A for the historical rainfall data 

and the 500 stochastic sequences. 

 
Statistic Historical 

rainfall 
Stochastic rainfall 
sequences 
Upper   Lower 

Mean (mm) 1010.0 1010.0 1009.9
St. deviation (mm) 184.7 184.5 183.6
Skewness 0.95 0.94 0.39
Maximum (mm) 1586.8 1586.7 1527.6
Minimum (mm) 682.5 682.7 619.4
 
 

The rainfall data inputs into the parameter uncertainty ensemble model run were the same 

as those used to force the stochastic rainfall model and are recently updated sub-basin 

rainfalls based on available gauge information. The period of record is from October 1920 to 

September 2005. A total of 10 000 parameter samples were used and the results suggest a 

range of mean annual runoff values for U20B of 54.8 to 97.1 * 106 m3, compared with the 

naturalized observed value of 79.8 * 106 m3. Further comparisons between the time series of 

the ensembles and naturalized flows (and the objective functions) suggest that model has 

generated behavioural simulations that bracket the observed flow sequences and that the 

range of uncertainty is not excessive. Figure 4.4 illustrates the frequency distribution of 

minimum total flow volumes over all 24 month periods for all of the ensembles.   

 
The 500 rainfall scenarios generated from the stochastic model were combined with 500 

parameter samples, using the same parameter distributions as in the previous run of the 

model, to generate 250 000 ensembles. These were reduced to a sample of 500 ensembles 

for use in the yield model by simple Monte-Carlo sampling from the total of 250 000 after 

ranking all ensembles on the basis of the minimum 24 month reservoir inflow volumes (outlet 

of sub-basin U20C). This minimum inflow volume is used as a simple surrogate for the 

reservoir yield and the duration (24 months in this example) would be set to the critical 

drought period of the reservoir. Figure 4.4 illustrates that the frequency distributions of 

minimum flow volumes are the same for the total group of ensembles and the sample of 500. 

Figure 4.4 also suggests that the stochastic rainfall model has introduced some bias in the 
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stream flow ensembles in that the median minimum volume (193 * 106 m3) is substantially 

lower than the median given by ensembles based on only parameter uncertainty (221 * 106 

m3). The reasons for this are not clear at this stage but the result is consistent with the 

comparisons between the statistical properties of the rainfall sequences and the historical 

rainfall (Table 4.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Frequency distributions of minimum 24 month flow volumes for the 10 000 

parameter ensembles and the two rain and parameter ensembles (250 000 total 

and 500 sample). 

 

The yield of the Midmar Dam was determined using the Water Resources Modelling Platform 

(Mallory et al., 2010). This is a water resources yield model which is integrated into a 

database of water use and hydrological information for South Africa and includes numerous 

utilities and algorithms for dealing with complex modelling problems, such as ecological flow 

requirements and reservoir operating rules. The model is able to generate a single ‘historical’ 

yield estimate based on a single inflow time series input, or the single inflow input can be 

used as a seed for an ARMA stochastic generator and the resulting yields ranked to produce 

a yield exceedence probability curve. A yield probability curve can also be generated from 

multiple inputs of inflow time series and is therefore ideally suited for this specific study. 

 

Figure 4.5 shows the results of the different yield analyses. The ‘stream flow stochastics’ 

curve is based on seeding the stochastic stream flow model in the yield model with the 

median hydrology ensemble generated by the rainfall-runoff model using a single historical 

rainfall time series. The three horizontal lines represent the historical yield (i.e. no stream 

flow stochastic generation) based on the 5% (‘max flow’), 50% (‘median flow’) and 95% (‘min 

flow’) exceeded flow ensembles from the rainfall-runoff model. The ‘Rain stochastics & 
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parameters’ curve represents the distribution of historical yield estimates for the 500 sample 

ensembles generated by combining stochastic rainfall sequences and parameter uncertainty 

in the rainfall-runoff model. An immediate observation is that the yields generated by the 

stream flow stochastic approach are biased to lower yields compared with the historical yield 

generated from the median hydrology (used to seed the stochastic stream flow model). This 

result is similar to that noted for the stochastic rainfall model and requires further 

investigation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Yield exceedence (probability) curves based on different yield analyses (A). 

 

Two additional stream flow stochastic yield analyses were based on the two extreme 

ensemble outputs from the rainfall-runoff model with only parameter uncertainty. These two 

extremes represent the 5% and 95% exceeded simulated flows generated by the uncertainty 

in the rainfall-runoff model for each month of the time series. The yields determined from 

these are therefore less likely to occur than the yields based on the median hydrology. Figure 

4.6 reproduces the two yield probability curves from Figure 4.5 and adds a third line 

(‘Resampled’) to represent the effects of allowing for the parameter uncertainty, but still using 

the conventional stream flow stochastic model in the yield model. This curve has been 

produced by sampling from the three yield curves generated from seeding the stochastic 

stream flow model with the two extreme flow ensembles and the median ensemble. The size 

of the samples (500 for each of the extreme ensembles and 2 000 for the median) has been 

set to reflect the probability of the different flow ensembles occurring. The three samples 

were combined to produce the ‘Resampled’ yield curve which is almost identical to the curve 

based on combining all the uncertainties in the rainfall-runoff model.  Changing the size of 

the samples did not make any tangible difference to the results.   
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Figure 4.6 Yield exceedence (probability) curves based on different yield analyses (B). 

 

Although the yield curves in this example are not very different (a range of 151.0 to 156.8 * 

106 m3 at the 95% exceedence level), this is partly a consequence of the relatively small 

parameter uncertainty in these sub-basins which has at least some gauged stream flow data 

to condition the rainfall-runoff model. The results indicate that the use of stochastic stream 

flow generation within the yield model has accounted for a large part of our uncertainty in 

water resources availability and this has been part of practical water resources management 

in South Africa for many years. The study has demonstrated that the explicit inclusion of 

parameter uncertainty is possible either through the traditional use of stream flow stochastic 

generation in the yield model or by including the stochastic uncertainty as part of the rainfall-

runoff model. The time and computer resources required to complete a yield analysis using 

the two approaches are not very different now that the appropriate software is available. The 

effects of parameter uncertainty that have been referred to and illustrated in section 3 of this 

report suggest that there could be much larger differences in yield estimates in other basins. 

There is therefore a need to extend this type of study so that water resources managers can 

be made more aware of the uncertainties associated with the use of model outputs for 

decision making.  

 

There are several potential advantages of using stochastic rainfall sequences in hydrological 

models and these are mostly related to the direct links between rainfall variability and 

uncertainties in other hydrological processes. It is very difficult to incorporate these links in a 

systems yield model when the stream flow inputs have already been calculated. An obvious 

example is the uncertainties in ground water recharge which would be explicitly included 

through the use of stochastic rainfall inputs and uncertainty in the relevant Pitman model 
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parameters. The Pitman model is able to simulate water use and abstractions associated 

with afforestation, small farm dams and un-regulated abstractions. The impacts of some of 

these are likely to be directly linked to rainfall variations and could be usefully accounted for 

within the hydrological model, rather than within the systems yield model. While it is not 

suggested that uncertainty in these small scale water uses could not be included in future 

versions of yield models, it may be better to include their effects in the hydrological model. 

This is an issue for future research and there is a need to identify which is the most efficient 

and technically appropriate approach to adopt.   

 

4.2 Uncertainty and risk: the interpretation of uncertain yield curves 

 

If the conventional ‘return period’ approach (see section 2.2.3 of this report) is used to 

interpret the yield curves shown in Figures 4.5 and 4.6, the estimates of a 1:100 (typical 

design scenarios) return period yield would not be affected by the introduction of hydrological 

uncertainty as the two curves are very similar at the 43% exceedence probability point (the 

analysis used an 85-year record period). For a return period of 1:50 years (18% exceedence 

probability point) the yield would increase by a small amount given the inclusion of 

uncertainty. The implication is that if the ‘return period’ approach to interpretation of 

stochastically generated yield curves is to be retained, the analysis has to be done in a 

different way. Returning to the simple and hypothetical example used in Figures 4.2 and 4.3 

(which based the analysis on the same approach used in Figures 4.5 and 4.6 for the Midmar 

dam example), Figure 4.7 offers an alternative method of analyzing the same data. In this 

case stochastic sequences have been generated for the median hydrology and the upper 

and lower bounds. Clearly, if this was based on an 85-year record a 1:100 year return period 

yield estimate could vary between approximately 86 and 121 * 106 m3, while the yield without 

including any hydrological uncertainty would have been 104 * 106 m3. The range of 

uncertainty is about 34% of the median yield value. The exact shape of these curves (and 

their degree of separation at different probability percentage values) will vary, in reality, from 

catchment to catchment with the nature of the hydrological uncertainty and how this interacts 

with the stochastic uncertainty. 

 

Assuming that the upper and lower uncertainty bounds are based on the 5% and 95% 

exceeded ensemble outputs from the hydrological model, the interpretation is that there is a 

95% probability that the 1:100 year yield will be greater than 86 * 106 m3, a 50% probability 

that it will exceed 104 * 106 m3 and a 5% probability that it will exceed 121 * 106 m3. Adopting 

the first value would represent the low risk approach, while adopting the higher value would 

involve high risk. Figure 4.8 repeats the same analysis for the Midmar Dam example (see 
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also Figures 4.5 and 4.6) where a 1:100 year event would lie between 163 and 195 * 106 m3, 

a range of 18% relative to the mean yield value of 176 * 106 m3. This provides some 

indication of the scale of uncertainty that is introduced for a catchment which has relatively 

low hydrological uncertainty. However, this result is based on running three different 

hydrological model outputs through the yield model using the stochastic stream flow 

component and does not help to inform us of the likely consequences of using the rainfall 

stochastic model as an alternative approach. 
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Figure 4.7 Yield probability curves with uncertainty – a hypothetical example. 

 

Figure 4.9 is based on filtering the full 250 000 ensembles generated from the hydrological 

model with 500 stochastic rainfall inputs and 500 parameter samples where the filtering 

process is designed to extract three groups of ensembles. The ensembles are first sorted 

into groups of 500 such that each group has all the different stochastic rainfall sequences 

represented (and different parameter sets). The median value of the 24-month minimum flow 

volume in each group has been used to ranks the groups. The three graphs are then based 

on the 500 minimum flow volumes within the groups that have median minimum flows 

exceeded by 95% (Lower Bound), 50% (Central) and 5% (Upper Bound) across all of the 

groups. The ultimate intention is that these three groups would be passed to the yield model 

for further analysis and generation of three yield curves (without the need for stochastic 

stream flow generation). The median 24-month minimum flows for the three groups are 

191.3, 192.8 and 202.5 * 106 m3, a range of 5.8% around the central value and skewed to the 

lower values. It is difficult to predict how these ensembles would translate into differences in 
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the three yield curves, but the indications are that a diagram similar to Figure 4.8 would show 

less variation. 
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Figure 4.8 Yield probability curves with uncertainty – the Midmar Dam example. 
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Figure 4.9 Frequency distributions of 24-month minimum flow volumes for three 

stochastic rainfall – parameter variation combinations – the Midmar Dam 

example. 
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Section 2.2.3 referred to different approaches to interpreting yield curves depending on what 

the stochastic (rainfall or stream flow) sequences are assumed to represent. However, the 

important issue is that recommendations for the future use of uncertainty outputs in yield and 

risk assessments should not require a radical re-thinking of the interpretation of yield curves. 

The ensemble filtering approach that was initially adopted and that produced the results 

given in Figures 4.5 and 4.6 is therefore not likely to be appropriate. A more appropriate 

approach is one that produces results similar to Figure 4.8 and the filtering approach used to 

generate Figure 4.9 would therefore appear to be better aligned with the conventional 

interpretation of yield curves.  

 

The analyses of using stochastic rainfall versus stochastic stream flow applied within this 

project are simply a starting point and need to be investigated further before 

recommendations can be made for implementation in practice. There are, however, 

indications that several possible approaches could be used and the choice of which is the 

most appropriate will depend on their efficiency and the extent to which they can be correctly 

aligned with conventional practice.  

 

4.3 Additional issues of uncertainty in simulating present day flows or yield 

estimates 

 

4.3.1 Uncertainty in upstream inflows related to small farm dams 

 

In many parts of South Africa farm dams have the potential to impact substantially on 

downstream resource availability either for other users or for ecological Reserve 

requirements. However, these impacts and their uncertainty have not been fully documented. 

This section summarises a separate study that investigated the uncertainty in the impact of 

small farm dams in three regions based on a thorough investigation of the sources of 

information that are available.  

 
Arguably the largest source of model structural uncertainty lies in the aggregation of all 

dams into a single volume and the use of a model parameter to define the proportion of the 

catchment area that contributes runoff to the dams. If all the dams are situated on separate 

tributaries, this approach will normally produce realistic results. However, if a significant 

number of dams are located on the same tributaries the model may not be able to simulate 

the impacts correctly. If the headwater dams are the largest, overflow plus incremental flows 

below this dam may exceed storage in the lower dams and the model will over-estimate 

runoff losses. However, if the larger dams are downstream, the model will generate more 
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realistic runoff losses. A further issue is that the approach does not account for spatial 

variations in runoff within the catchment relative to the location of the dams. The only way to 

completely resolve these uncertainties would be to use smaller catchments in the modelling 

system which could add other uncertainties associated with parameter estimation and 

simulating the natural hydrology. Additional structural uncertainties are associated with the 

lack of any feedbacks between the water stored in or abstracted from the dams and the 

natural hydrology. Examples include the lack of dam seepage and return flow routines, which 

could impact on soil moisture storage, ground water recharge and therefore the generation of 

low flows. While these are expected to have relatively minor impacts where the number of 

farm dams and the abstractions from them are small, there are some regions of South Africa 

where there are many farm dams and where abstractions are a significant component of the 

natural runoff volume. These structural uncertainties have not been addressed in this study, 

mainly because the objective was to investigate uncertainties in the outputs of an existing 

widely used model.  

 
The full capacity surface area of the combined dams is not a parameter of the hydrological 

model, but it is used to evaluate the parameters of the area-volume relationship. The area 

can be calculated from maps, areal photographs or satellite information, while it is not 

possible to calculate the volume without field surveys.  Two approaches to estimating the 

surface area of small dams were used in this study. The first was based on the information 

generated by Silberbauer (Chief Directorate of Surveys and Land Information, 1999) and 

contained within a GIS layer for South Africa. The polygons representing the dam areas were 

based on digitizing 1:50 000 scale topographic maps. The second approach was to use 

Google Earth images together with a set of pre-defined geometric shapes (circles, 

rectangles, triangles, trapezoids, etc.). The area estimation process involved selecting the 

most appropriate shape for an individual dam and measuring the geometric parameters 

(width, length, radius, etc.) required to calculate the area using the ruler tool within Google 

Earth. The most noticeable difference between the two estimates was that some of the dams 

included in Silberbauer’s database were found to be dried-up or used for agriculture or 

forestry, while some new dams were found in Google Earth.  Apart from differences in the 

number of dams, the accuracy of the two area estimation methods was compared using data 

for 14 farm dams in the Bedford area (90 km north of Grahamstown in the Eastern Cape 

Province) that were ground surveyed for area and volume during a previous Rhodes 

University project in 1989 (unpublished data) and that could be reliably located on the 

Silberbauer coverage. The means and standard deviations (SD) of the absolute relative 

errors (compared to the surveyed areas) were 65% (SD=37%) and 22% (SD=14%) for the 

Silberbauer and Google Earth estimates respectively.  The Google Earth approach is 
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therefore expected to generate more reliable estimates, particularly as the Silberbauer 

estimates were all lower than the surveyed areas. 

 

A recent database (DWAF, 2008) includes dam area and full capacity volume for about 

4500 major and minor dams in South Africa. After excluding all records with areas greater 

than 500 ha (not considered to be farm dams for the purposes of this study) regression 

relationships between area and volume were developed. It became immediately obvious that 

no significant regression relationships could be achieved at a national scale and regional 

assessments would be necessary. The parameters of the three regional regression 

equations (slope and constant), the sample size and the coefficients of determination (R2) 

are given in Table 4.2. It has been assumed that the distribution of uncertainty in dam 

volume estimates for a given dam area (DA) can be given by a Normal distribution with a 

mean of Slope x ln(DA) + Constant and a standard deviation of the standard error of the 

predicted volume. For each of the study catchments 1 000 samples of volume were 

generated through Monte Carlo sampling for each dam and the total volume summed for 

each of the samples. The uncertainty is represented by the mean and standard deviation of 

the aggregated volumes for the 1 000 samples (assuming a Normal distribution). This 

process was repeated for the dam areas estimated from the Silberbauer and Google Earth 

approaches.  

 

Table 4.3 Dam volume–area regression equation parameters, sample size and R2 for 

the three regions included in the study. 

 
Region Area of 

region (km2) 
Slope  Constant  Sample 

size 
R2 

H10 and H20 2879 0.715 4.137 88 0.62 
D51 and D52 6088 0.884 3.549 10 0.60 
X21 3091 0.796 3.453 9 0.47 
Regression equations: Ln {Volume (103 m3)} = Slope x ln{area (ha)} + Constant 

 
The area-volume relationship is defined in the model using a power function and is used to 

determine the evaporation losses from the aggregated dam volume during any single month. 

It is not strictly realistic to allow the scale (A) and power (B) parameters to vary 

independently, nor for them to vary independently of the uncertainty variations in full supply 

volume.  It was concluded that uncertainty in the estimation of evaporation losses would be 

adequately covered through the uncertainty in the full supply volume parameter (previously 

discussed) together with some uncertainty in the scale (A) parameter of the area-volume 

relationship.  
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There are many different approaches to estimating the contributing catchment areas of 

individual farm dams depending on the available time and map or GIS resources. The 

simplest and quickest approach would be based on a rapid visual assessment of maps, or 

GIS layers, of dams and river channels, with or without contour information. This approach 

will always be subject to quite a high degree of uncertainty. At the opposite end of the scale 

would be a detailed mapping exercise using maps or GIS data at the 1:50 000 scale and 

explicitly defining each dam’s catchment area. While expected to generate the most accurate 

information, this approach could be very time-consuming even with digital elevation data and 

appropriate automated catchment area definition software. In this study an intermediate level 

approach was adopted that makes use of at least three GIS layers; the main sub-catchment 

polygons (used in the hydrological model), a river-line layer and a farm dam polygon layer. 

The accuracy of the process is improved if a contour layer (or an image of a 1:50 000 map 

which includes contour lines and channels) is also available. Clearly, it is only necessary to 

assess the most downstream dam on any tributary, as all the upstream dams will be 

included. 

 

The information available for abstraction patterns is typically confined to an annual volume 

and/or area of irrigation and crop type. There is rarely any information about the way in which 

abstractions are managed, if at all, through operating rules. In situations where farm dams 

are mainly used for stock watering there is rarely any reliable information about the number 

of large or small stock units. Google Earth can be useful in identifying the area of irrigation 

and crop type, while standard tables of crop factors for different crops (Midgley et al., 1994) 

can be used to convert monthly potential evaporation data into estimates of water 

requirements. 

 
A total of 6 example catchments have been used in the study and were selected to 

represent catchments with a relatively large number of farm dams taken from climatically 

different parts of the country. All of the hydrological analyses have been based on simulated 

natural monthly flow data (October 1920 to September 1990) using regional model 

parameter values and standard rainfall time series inputs obtained from Midgley et al. (1994).  

 

The H10A to D group of catchments are located in the headwaters of the Breede River in the 

winter rainfall region of the Western Cape Province. The topography is a mixture of steep 

mountain slopes and flat valley floors, while the dominant land use activity is deciduous fruit 

orchards. Mean annual rainfall is highly variable (500->1000 mm) and strongly controlled by 

topography, while mean annual potential evaporation is about 1600-1700 mm.  
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X21F is located in the headwaters of the Elands River in Mpumalanga. Mean annual rainfall 

is approximately 760 mm, while potential evaporation is about 1400 mm y-1 and the flow 

regime has a substantial baseflow component (Table 6.10). The main land use is large stock 

grazing with some game farm tourism and mining activities. Table 6.11 indicates large 

differences in the numbers of dams (and consequently surface area and storage capacity) 

between the two estimates (Table 6.11) and this could be an indication of a recent increase 

in farm dam development. 

 

D52A is located in the headwaters of the Hartebeest River within the arid western Karoo 

region and experiences low annual rainfall (320 mm) and high evaporation (1900 mm). 

Topographically it has steep mountain sides and a relatively flat valley floor that supports 

stock grazing supported by irrigated fodder crop cultivation along the margins of the river 

channel. There are a relatively large number of dams for such an arid area with only limited 

runoff and some of them are quite large. 

 

The uncertainties in the farm dam input data to the model are given in Tables 4.3 and 4.4. In 

the absence of any better approach, uncertainty in the contributing catchment areas was 

represented with a uniform distribution, the minimum and maximum values being set at 10% 

either side of the area estimated (Table 4.3). Parameter B in the area-volume relationship 

was assumed to be 0.8 with no uncertainty, while parameter A was initially calculated from 

the mean dam areas and volumes given in Table 4.3 and a uniform distribution assumed with 

maximum and minimum values set at ±10% of the initial value. It was difficult to estimate the 

water demands and Google Earth was used to determine approximate areas of irrigation. 

The use of a Normal distribution to represent the uncertainty is rather arbitrary, while setting 

the standard deviations to 20% of the mean for the H10 and D52A catchments and 30% for 

X21F is a reflection of the higher uncertainty expected for X21F. 

 

The Results are based on 1 000 model runs and are summarized in Figure 4.7 using four 

flow regime characteristics (mean monthly flow volume, Q10, Q50 and Q90). The impacts 

are expressed as a % reduction from natural flow and D52A is absent from Figure 4.7D 

because the natural Q90 is zero. Sensitivity analyses based on simulated monthly runoff 

volume clearly reveal the dominance of the uncertainty in the irrigation area (i.e. water 

demand) parameter for most of the example catchments. The exception is D52A, where 

contributing catchment area plays the dominant role. The uncertainty in the dam volume 

estimate is usually the second most important parameter. The importance of the water 

demand information is problematic from a water resources assessment point of view 

because this is also the most difficult parameter to quantify given existing, readily available, 
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information sources. If low flows are used in the sensitivity analyses contributing catchment 

area becomes the most sensitive parameter, with water demand second in importance. This 

is a reflection of the long durations during which the dams are using all of the upstream 

inflow, a situation exacerbated in the Western Cape catchments where the highest water 

demands are during the low-flow season (summer). For X21F, water demand remains the 

most sensitive parameter even when using Q90, a reflection of the much higher natural 

baseflows that have been simulated for this catchment, as well as lower relative water 

demands during the low-flow season (winter). The implication is that the dams in X21F are 

under-utilised relative to their capacity and inflow volumes and are therefore expected to 

regularly spill.  

 

Table 4.4 Small farm dam aggregated full capacity surface areas and volumes and % 

catchment area contributing to dams. The values provided are the means and 

standard deviations of Normal distributions or the minimum and maximum of 

uniform distributions used to represent the uncertainty. 

 
Catchment Aggregated small farm dam measures (based on full capacity) 

No. of 
dams 

Surface 
area 
(km2) 

Volume 
(m3 * 106) 

% catchment 
area contributing

Parameter A 

Mean  St.Dev Min. Max. Min. Max 
Based on Google Earth area estimation 
H10A 134 3.16 15.905 1.132 72.0 88.0 4.8 5.8 
H10B 61 1.95 9.000 0.936 45.1 67.4 3.8 4.6 
H10C 181 5.98 23.907 1.734 45.8 68.6 6.5 7.9 
H10D 0 0.00 0.000 0.000 N/A N/A N/A N/A 
X21F 188 1.84 6.476 0.424 62.0 76.0 6.3 7.7 
D52A 49 1.98 6.163 0.434 50.0 62.0 6.1 7.5 
Based on Silberbauer area estimation 
H10A 150 2.50 13.736 0.871 72.0 88.0 4.4 5.4 
H10B 84 1.09 6.603 0.581 45.1 67.4 3.2 4.2 
H10C 220 5.68 26.194 1.781 45.8 68.6 5.9 7.3 
H10D 0 0.00 0.00 0.00 N/A N/A N/A N/A 
X21F 104 1.57 5.372 0.404 62.0 76.0 5.9 7.1 
D52A 50 1.14 3.628 0.323 50.0 62.0 5.9 7.1 
 
 
Figure 4.10 reinforces many of the conclusions reached from the regional sensitivity 

analyses discussed above. X21F has the greatest uncertainty range, a reflection of the 

higher assumed uncertainty (30% of the estimated mean, compared with 20% for the other 

areas) associated with the water demand parameter and the dominance of this parameter in 

the simulations. The % reduction is greatest for the low flows (high percentiles of the flow 

duration curve) as well as in the catchment with the most arid climate (D52A), although high 

water demands during the summer dry season in the H10 catchments also leads to 
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substantial reductions even in Q50. The higher % reductions for Q50 and Q90 within 

catchment H10A is a reflection of the large contributing catchment area (Table 4.3). Further 

details of the results of this study can be found in Hughes and Mantel (2010a), while 

comparisons with other sources of uncertainty can be found in Hughes and Mantel (2010b) 

and Table 3.5 of this report. 

 
 Table 4.5 Catchment area and annual water use uncertainty expressed as the mean 

and standard deviation of irrigation area (km2) for a Normal distribution.  
 
Catchment Area (km2) Irrigation area (km2) 

Mean St. Dev. 
H10A 233.7 5.0 1.0
H10B 162.5 21.0 4.2
H10C 259.6 42.0 8.4
H10D 97.0 0.0 0.0
X21F 396.7 4.8 1.5
D52A 377.6 0.76 0.15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10 Uncertainty in the impacts of farm dams on mean flow (A) and three 

percentiles of the 1-month annual flow duration curve; Q10(B), Q50(C) and 

Q90(D). The uncertainty is represented as ranges of % reduction relative to 

the natural flow. 
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4.3.2 Uncertainty in groundwater abstraction impacts 

 

It is not very clear at present how successfully the impacts of groundwater abstractions can 

be incorporated into either hydrological models or water resource systems models. The 

current version of the Pitman model has groundwater abstraction components (based on 

either the Sami version or the Hughes (2004) version). Hughes et al. (2009) report on a study 

designed to look at some of the uncertainties in estimating the catchment-scale groundwater 

yield of a semi-arid catchment (no significant groundwater contribution to streamflow), but 

there do not seem to be any published evaluations of the use of the groundwater 

components of the model for estimating the impacts of abstraction on low flows. It is also not 

clear to the project team how such impacts are currently managed within the yield model. 

 
The previous section reported on the impacts of small farm dams that are used for irrigation 

purposes in a headwater catchment of the Breede River (H10A to C). This area is expected 

to receive substantial volumes of recharge on the mountain areas surrounding the flatter 

valley bottoms where the irrigation is practiced. The GRAII database refers to mean annual 

recharge values of between 11 and 50 mm for H10A (having some Bokkeveld and some 

Table Mountain Sandstone ridges), 42 to 105 mm for H10B (TMS) and 23 to 79 mm for 

H10C (mostly TMS). Even if the lower value is used for H10A this represents approximately 

the same volume that was used as the abstraction volume from small farm dams. 

 

An initial assessment of groundwater abstraction impacts was based on replacing all the 

effects of farm dam abstractions with groundwater abstractions in H10A. This represents a 

total of some 3 * 106 m3, which is 17% greater than the lower estimate of mean annual 

recharge. The impact on the pattern of monthly flows is relatively small reducing the mean 

annual runoff by less than 5% and having almost no effect on low flows. The impact of the 

abstractions on ground water levels has been assessed using the simulated GW gradient 

nearest the channel (the surrogate for GW level that is used in the model). Under natural 

conditions it is apparent that GW only contributes to surface water (+ve gradients) during July 

to October, while the abstractions remove all the contributions and draw the groundwater 

down significantly. If the model is simulating the sources of surface runoff in this catchment 

realistically, the implication is that groundwater abstractions have far less impact on patterns 

of streamflow than abstracting similar volumes of water using small farm dams, which is a 

highly significant observation from a water management and especially from an 

environmental flow perspective. However, as already mentioned, it must be recognized that 

this is a model result that has yet to be assessed with field observations. 

 



Uncertainty in water resources assessments 81

50

55

60

65

70

75

80

85

90

95

10 50 90

FDC % Point

R
ed

u
ct

io
n

 (
%

 o
f 

N
at

u
ra

l F
lo

w
)

Eucalypt
Pine 
Wattle
Upper
Lower

4.3.3 Uncertainty in afforestation impacts 

 

Several approaches (including Hughes, 2006) to estimating afforestation impacts make use 

of the so-called Gush curves that were generated using the ACRU model (Gush et al., 2002). 

One version of these data provides streamflow reduction values for several percentage 

points on monthly and annual flow duration curves.  During the Southern Africa FRIEND 

project (Hughes, 1997) the Pitman model was used to simulate the impacts of afforestation in 

a number of small experimental catchments throughout South Africa and one of the results of 

those assessments were that the main parameters to change were the interception (PIForest) 

and evaporation scale (FF) parameters. The latter represents a scaling factor to apply to the 

afforested part of the catchment. The guidelines were that PIForest should be set to 4.0mm and 

FF to 1.4.  The uncertainty version of the Pitman model has been run (1000 ensembles) for 

quaternary catchment T35A with PIForest set to a range of 3 to 5mm and FF to a range of 1.2 

to 1.5 and a forest area of 40% of total catchment area. The range of reductions in the 10, 50 

and 90% points of the annual FDC are compared with the Gush database (all three forest 

types) in Figure 4.11.  While the Gush results for the median (50%) flow are between the 

Pitman model ensembles, the high flow reductions (10%) for the Pitman model results are 

generally lower than Gush. The Pitman model tends to under-estimate the reductions 

(relative to Gush) for the low flows (90%). It is clear that some of these uncertainties would 

have to be resolved if the two methods were to be used in parallel during different studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11 Comparison of afforestation impacts for T35A with 40% forest cover as 

generated by the Gush curves and by the Pitman model uncertainty 

ensembles. 
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4.3.4 Reservoir operating rules and uncertainty  

 

The manner in which a reservoir or bulk supply system is operated appears to depend very 

much on the economic impact that would result from the failure of the reservoir or system to 

supply the desired or expected quantity of water. Very little effort goes into operating a farm 

dam since generally only one farmer or farming community will suffer the consequences of 

less than anticipated water supply, while large systems such as the Vaal and Mgeni have 

complex operating rules and sophisticated models with which to assist operators and 

decision makers to operate the system within defined levels of risk. More recently, real-time 

operation has been implemented in the Mhlatuze and Crocodile (east) catchments. These 

operational procedures provide feedback to the operator as to how much water is actually 

abstracted from the river as opposed to the amount released into the river from upstream 

dams. This feedback loop should further reduce the uncertainty as to how much water can 

be made available to water users in the short and long-term. Figure 4.12 provides a graphical 

representation of the concept of reducing uncertainty with increasing operational 

sophistication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12 Effects of increasing operational sophistication on uncertainty.  

 

Small farm dams generally operate, at best, on a rule-of-thumb basis and the farmer 

generally learns by trial and error how much water he can supply from his dam and plan 
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accordingly. Small domestic water supply schemes are probably more problematical since 

the expertise is not available to develop operating rules and the institutional knowledge is 

often lost with staff turnover. Schemes such as these are generally operated to supply on 

demand and continue to supply until the reservoir is empty. Large schemes, generally 

operated by organizations such as the Department of Water Affairs, Water Boards and in 

some cases irrigation boards, experience less uncertainty due to the operating procedures 

that are in place and which have been developed by means of complex water resources 

models and applied in practice. A few examples of water supply schemes operating in South 

Africa and their level of uncertainty are listed in Table 4.5. 

 
Table 4.6 Examples of water supply schemes and the associated levels of uncertainty in 

the present day operating rules. 

 

Scheme Supplying Comment 
High uncertainty 
Middle Letaba 
Dam  

Thoyandou Although operating rules were developed 
for this dam, they were never adhered to 
resulting in a very high level of 
uncertainty. 

Acornhoek Acornhoek No operating rule or any idea of the 
sustainable yield of the dam 

Medium uncertainty 
Sandile Dam Irrigators and small 

towns downstream of 
the dam 

The yields of the dams are known and the 
demand placed on the dams does not 
exceed this yield, but there are no 
restriction rules in place. 

Low uncertainty 
Vaal system Large bulk supplies. Complex operating rules in place. 

Decisions made annually or bi-annually Mgeni System 
Komati System 
  
 
While the development of complex operating rules results in a reduction in the uncertainty as 

to how much water can be obtained from a reservoir or bulk supply system, these rules are 

developed with the aid of models which attempt to mimic the real world. A crucial assumption 

made in models is that information is readily available in order to make the best decisions. 

The information required would be the flow in the river at any point in time and location and 

the actual water use as apposed to the water requirement. In reality, this information is often 

not known to a high degree of accuracy and the system operator has to make some 

assumptions in determining how much water to release from a dam to downstream users. 

These assumptions therefore introduce uncertainty into the real world. 
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Modelers of complex systems usually assume that water users downstream of a reservoir 

will make use of incremental inflows or accruals downstream of the reservoir and releases 

will only be made when required. The reason for this is that such an operating procedure 

maximizes the yield of a system. When it comes to operating the system in real-time, 

however, the operator does not necessarily know what the flow in the river is and merely 

responds to requests for releases from the users. Also, since river abstractions are seldom 

monitored or audited, the efficient operation of a system seems to depend on the integrity 

and honesty of the water users. A hypothetical modelling exercise was carried out to 

demonstrate the significant difference in system yield should a system be operated with a 

continual release from the dam to downstream users (Mode 1) assuming they are not making 

use of incremental inflows (i.e. a system with no knowledge of downstream conditions) on 

one hand and a perfect knowledge of incremetal inflows downstream of a dam coupled with 

abstractions by users (Mode 2). It is clear from Figure 4.13 that the release required from the 

dam in operational Mode 1 will be greater (and the dam will empty sooner) than for Mode 2. 

From a system yield perspective, the sustainable or firm yield obtainable under Mode 2 will 

be greater than under Mode 1. This increase in system yield is commonly referred to by 

water resource practioners in South Africa as the ‘leverage effect’.  The comparative firm 

yields are 31.3 *106 m3  y-1 for Mode 1 and  48.0 *106  m3  y-1 for Mode 2.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13 Storage trajectory of a hypothetical dam under different operation modes 

 

The Kat River provides a practical example of how lack of knowledge of conditions in a 

catchment results in uncertainty about the system yield. The operation of the Kat River dam 

underwent a major change in 1982, from a system of constant uniform releases to that of a 

‘release-on-demand’ system. Figure 4.14 shows the observed storage of the Kat River Dam 

since its construction up to the end of 1989, which was the extent of the natrual flow time 

series available at the time of carrying out this analysis. Plotted on this same axis are the 

modelled trajectories of the dam assuming the two operation modes, Mode 1 and Mode 2. It 

is interesting to note how closely the modelled operating modes follow the actual reservoir 

Mode 2 Mode 1 
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strorage trajectory. Up until the severe drought in the early 1980’s water was released at a 

constant rate to irrigators downstream of the dam. This mode of operation, while requiring 

very limited management, was not sustainable and not surprisingly the system failed during 

the drought. After the drought a ‘release-on-demand’ mode of operation was adopted and 

since then the Kat River Dam has never been in danger of failing.  It can be concluded from 

the Kat River case study that the way in which a dam is operated and the lack of information 

on water use and incremental inflows downstream of a dam introduces uncertainty about 

system yield. Methods to quantify and reduce these uncertainties need to be developed. 

 

 
 
Figure 4.14  Observed and modelled storage of the Kat River Dam 
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5. TECHNIQUES AND TOOLS FOR QUANTIFYING UNCERTIANTY 

 

This section of the report is designed to highlight and summarise the techniques and 

software tools that have been developed during the project. The majority of the software 

products have been either incorporated as part of the SPATSIM hydrological framework 

software, or are interfaced with that software in some way. 

 

5.1 Pitman model parameter estimation procedures 

 

These are the parameter estimation procedures that were developed by Kapangaziwiri 

(2008, 2010) and the software is designed to use any available physical basin property data 

to estimate the distribution statistics of the Pitman model parameters. While the design of the 

software has been largely influenced by the type of data that can be obtained from the AGIS 

(2007) land type database, it is flexible enough to be able to be used with any available data 

after some interpretation. The basis for the parameter estimation approach is the conceptual 

interpretation of the hydrological ‘meaning’ of the parameters of the Pitman model and the 

subsequent development of estimation equations based on information that is expected to be 

available (with differing degrees of accuracy and resolution) about the physical properties of 

a catchment (Kapangaziwiri, 2008 and Kapangaziwiri and Hughes, 2008). The initial 

approach did not include uncertainty, while work undertaken for this project was designed to 

modify the original approach to include estimates of uncertainty. The principal that was 

adopted for the inclusion of uncertainty was that the available physical property data would 

always be either less accurate than is really required or they would be available at a spatial 

scale (greater or lower) that is different to the scale of modelling. Within South Africa, a great 

deal of the required information is available from the AGIS (2007) land type data and the 

spatial scale of the data is more detailed than the quaternary scale of modelling. In other 

cases (such as large parts of southern Africa or for data inputs that are not part of the AGIS 

database), more generalized information is expected and the approach for incorporating 

uncertainty would be different. 

 

Figure 5.1 Illustrates the data entry interface (Left side) and the calculation of the so-called 

‘secondary’ variable distribution statistics (right side). There are a number of default settings 

for the data entry part of the program that can be accessed by double-clicking on the relevant 

rows of the left hand side. These help with establishing default values for some of the 

hydrogeology, soil and vegetation physical properties. The results (and the input data) can 

be saved to a text file for storage and later retrieval and editing. 
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Figure 5.1 First screen and data entry window for the parameter estimation program. 

 

The second part of the software (final parameter estimation) is activated using the ‘Calculate 

Parameters’ button and the result is the table of mean, standard deviations, skewness, 

distribution type, minimum and maximum values for each parameter (Figure 5.2). This table 

is included in the text file (generated by the ‘Output Results’ button) and the first two parts of 

that file (the raw physical property data and the secondary variables)) can be deleted from 

the file to leave a text file input that can be directly imported into an uncertainty parameter 

attribute of the SPATSIM system. This type of data attribute is required for the parameter 

input to the SPATSIM uncertainty version of the Pitman model. 

 

The ‘primary’ physical variables are used to estimate the probability distributions of a number 

of ‘secondary’ variables (soil permeability, mean catchment slope, etc.). It is generally 

assumed that the primary variables are normally distributed, while the distribution properties 

of the secondary variables depend on the form of the estimation equations and can be either 

normally distributed or log-normally distributed. The only exception to this general rule is 

where the maximum topographic slope is very high, in which case a log-normal distribution is 

assumed for the primary slope input variable. The approach used is to randomly sample from 

the primary variable distribution functions, use the estimation equations to generate 

ensembles of secondary variables and then to calculate their distribution properties (mean, 

standard deviation and skewness). The skewness property is used to decide whether the 

secondary variables are normally or log-normally distributed. The results of the secondary 
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variable estimations are listed on the screen so that the user can assess the validity of both 

the mean estimates and their standard deviations against their own understanding of the 

hydrological properties (and variability characteristics) of the catchment. 

 

 

 

Figure 5.2 Second screen of the parameter estimation program. 

 

The same process is used to generate the distribution properties of the parameter value 

estimates from a combination of the primary and secondary variables using estimation 

equations that thoroughly presented and discussed in Kapangaziwiri (2010). The minimum 

and maximum values are not calculated by the software but are required as part of the input 

to the uncertainty version of the Pitman model. If the distribution type is 1 or 2, the minimum 

and maximum values are used to constrain the parameter sampling process within the 

model. Some of the parameters are not included as part of the estimation process (notably 

the parameters associated with impacts on natural hydrology), but their values can be edited 

at a later stage. The third distribution type (3) has been included to allow users the flexibility 

to over-ride the automatic choice of either normal or log-normal distributions and represents 

a uniform distribution, where all parameter values between the minimum and maximum are 

expected to be equally likely. 

 

While the software is simple to use (it operates much the same as a spreadsheet) the 

interpretation of the available physical property data requires some training and experience 

to ensure that sensible and realistic parameter estimates are achieved. Experience in the 

use of the software within the IWR (staff and post-graduate students) suggests that there 
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remains a degree of subjectivity in the interpretation of the AGIS data and therefore the final 

parameter distribution properties. One of the major problems encountered with obtaining 

consistent estimates was in those situations catchments have highly variable soil and 

topography characteristics (i.e. a number of different land types within a single quaternary 

catchment). Some limited experiments with reducing the model scale (to sub-quaternary 

level), and therefore the number of land types used for a set of parameter properties, 

produced better results in terms of reduced uncertainty as well as more consistent estimates.     

 

5.2 The uncertainty versions of the Pitman model  

 

Two uncertainty versions of the Pitman model have been included as part of the SPATSIM 

software package; one that assumes a single rainfall input time series and an extension 

program that assumes the rainfall input is a set of stochastically generated sequences. The 

input parameter details are the same as the table referred to in the previous section (Figure 

5.2) and the user specifies how many ensembles should be generated (typically between 1 

000 and 10 000). The parameter sets for each ensemble are based on random sampling 

from the parameter distributions, with each parameter and each sub-area being sampled 

independently. This means that it is assumed that there are no structural relationships 

between the parameter sets for sub-catchments within the spatial distribution system. The 

random generation process has been checked to ensure that truly random parameter sets 

are generated and an earlier version of the software was found to fail in that respect 

(repeated patterns of the same parameter values were found to occur with a large number of 

sub-areas and ensembles). The outputs from the single rainfall time series version are: 

 Time series of simulated flows for all ensembles stored within the SPATSIM 

database. 

 A text file (for each sub-catchment) of all parameter values plus some flow statistics 

and objective functions calculated if observed data are included as part of the model 

setup (UN1 file). 

 A text file of the median, 5% and 95% exceeded flows for each month of the 

simulation period and including observed flows if part of the model setup. The first 

three values are not ‘real’ time series in that they do not represent specific ensembles 

but rather the range (or distribution) of possible simulated flows in all the months 

(UN2 file). 

 

The amount of computer time taken to run the model clearly depends upon the number of 

sub-areas included in the spatial distribution system and the number of ensembles (as well 

as type of computer hardware being used). A typical time for 3 sub-areas and 5 000 
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ensembles is approximately 5 minutes including the time taken to save the results. The latter 

can be quite time consuming and therefore almost all of the outputs have been removed from 

the second version of the model that included stochastic rainfall inputs. In this program it 

would be typical to use 500 rainfall input time series and 500 parameter samples – a total of 

250 000 ensembles. In this situation the output ensembles are stored in binary files and no 

other outputs are included. The binary files (one for each sub-area) for an 85 year simulation 

period are approximately 1 Gbyte. 

 

5.3 Post-processing the uncertainty outputs of the Pitman model 

 

There are a range of different analyses that can be performed on the uncertain outputs, 

including simple visual examination of the ensembles versus other data (observed flows or 

previous simulations) using the TSOFT facility within SPATSIM. The TSOFT utility can also 

be used to compare flow duration curves and seasonal distributions (between different 

ensembles and between ensembles and other results) as well as calculate some 

comparative statistics. 

 

The UN1 output files can be imported into a spreadsheet and the sorting and graphical 

analysis facilities of the spreadsheet (Excel for example) used to examine such as the 

interaction between parameters, the relationships between parameters and flow statistics or 

objective functions (Figures 5.3 and 5.4). Spreadsheet analyses of the UN1 outputs are also 

used to evaluate the ensembles against regional or observed constraints. 

 

While the use of a spreadsheet can provide many flexible facilities for post-processing the 

ensemble results and to assist in a detailed understanding of parameter interactions and 

their effects on the model results, an additional software tool has been developed to facilitate 

‘regional sensitivity analysis’. This is an approach widely used in the international literature to 

investigate the sensitivity of the model results to changes in groups of parameter values.  

Figure 5.5 illustrates the approach using a screen shot of the main program interface. The 

top of the screen includes a button to load a UN1 output file, while the left hand side allows 

the parameters to be included in the analysis to be selected (and listed in the lower-left hand 

display). The sensitivity analysis can be based on either a flow metric of the simulated 

ensembles (e.g. mean monthly flow) or on an objective function if observed data were 

included in the model setup. It is also possible for some of the flow metrics to enter the 

variables used to calculate the regional constraints or signatures and distinguish between 

behavioural and non-behavioural ensembles. 
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Figure 5.3 Example plot of parameters FT and ST versus two objective functions, 

indicating the effects of different objective functions on optimum parameter 

values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 Example plot of parameter GW versus two objective functions, indicating an 

optimum result (given other parameter variations) at approximately 60 to 70 

mm month-1. 
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Figure 5.6 provides an example of an output. All of the ensembles are ranked (based on the 

sensitivity criteria selected – i.e. a flow metric or an objective function) and then divided into 

five groups (or seven if the behavioural analysis option is included – i.e. the top and bottom 

groups are those that lie outside the limits of the regional constraint estimates). The four 

groups are then plotted as cumulative frequency curves. If an objective function is selected 

as the criteria for the sensitivity analysis the frequencies are weighted by the objective 

function values. The interpretation of the results shown in Figure 5.6 is based on the 

recognition that sensitive parameters are indicated by widely spaced cumulative frequency 

curves across the four groups. A low degree of over-lap in the parameter value range 

between the top and bottom groups suggests parameters that are identifiable (i.e. changes in 

the values of one parameter strongly affect model results, regardless of the other 

parameters). Figure 5.6 illustrates that the parameter values of the Pitman model are rarely 

identifiable and there are many different parameter combinations that give similar results. 

The data used to plot the graphs in Figure 5.6 can also be output to a text file that can be 

imported into Excel to facilitate generating publication quality graphs of the same information.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Regional sensitivity software tool – main screen 

 

Figure 5.7 illustrates the use of the UN2 output file to generate time series plots of the upper 

and lower bounds of the simulations for each month of the simulation period and clearly 

shows the degree of uncertainty and the relationships with observed flow. 

 

 



Uncertainty in water resources assessments 93

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Regional sensitivity software tool – graphical results screen 

 

 

 

 

Figure 5.7 Time series plots of the upper and lower bounds of the simulation ensembles 

together with results based on initial parameter estimates and observed data. 
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The type of analyses discussed in this section are not expected to be applied during typical 

practical applications of the Pitman model as they may be too complex and time consuming 

to complete. However, they do provide a comprehensive range of tools that can be used 

during either scientific applications of the model or when detailed ‘calibration’ is required and 

justified to obtain the best possible results.  

 

An additional facility has been included within SPATSIM to sort the ensemble outputs from 

either of the Pitman model uncertainty versions. This post-processing facility is designed to 

sample from a large number of ensembles and generate text file outputs for use with a yield 

model. The sorting and sampling process is based on the minimum volume over a user 

defined critical period within each ensemble. This approach is used as a rapid surrogate for a 

yield assessment and is considered to be a better sampling approach than one based on the 

mean annual runoff. Figure 5.8 provides an illustration of the approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Stream flow time series ensemble sorter. 

 

The application of the facility is set up for all the sub-areas in the spatial distribution system 

that was modeled and the user can decide which sub-area to focus on and can set the 

critical period (which is expected to depend upon the reservoir storage and the flow regime 

characteristics which in turn will be related to the region in which the catchment lies). The 

data source can be the binary files that are generated by the 2nd uncertainty version of the 

Pitman model, involving stochastic rainfall inputs (there is one file for each sub-area and they  

have the same name for all model runs – gw3_ensembles0.tmp, gw3_ensembles1.tmp, etc, 
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where the number is the sub-area). Alternatively the data source can be a multiple time 

series attribute of SPATSIM that stores the output ensembles from the 1st uncertainty version 

of the Pitman model. The 500 sample ensembles are written to a different multiple time 

series attribute (which can also be used as in input to generate the distribution characteristics 

of the samples for comparison with the original ensemble set). 

 

All of the software tools that have been developed during the project are designed to support 

both research and the practical application of uncertainty analysis. While training will be 

required for some of the tools to be used effectively, the amount of training should not 

excessive for any hydrologists or water resources engineers who are already relatively 

experienced in the application of hydrological models.  
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6. COMMUNICATION OF UNCERTAINTY TO DECISION MAKERS 

 

The deterministic approaches applied to hydrological estimation during the 20th Century led 

to a culture of ignoring uncertainty in favour of the development of supposedly more exact 

estimates. The expectation that more complex models would reduce uncertainty has not 

been realized, largely because of the complexity of natural hydrological processes and the 

limitations of our ability to represent these in mathematical form. This means that exact 

estimates are rarely possible and that models can generate the same results for different 

reasons (Hughes, 2010b). More recently, scientific approaches to hydrological estimation 

have been based on explicitly recognizing uncertainty and that exact estimates are not 

possible in most cases. This means that it is essential to be able to identify the sources of 

uncertainty and quantify them so that the overall uncertainty can be managed. These 

approaches offer many opportunities for the development of the science and practice of 

modelling. Unfortunately though, water resource managers and other end-users of model 

results are still largely stuck in the previous paradigm that ignores uncertainty. One of the 

major communication challenges (Brashers, 2001) is to change that and to ensure that 

managers are provided the tools and knowledge to be able to deal with uncertainty. 

 

Papenberger and Beven (2006) compiled a very thought provoking paper entitled ‘Ignorance 

is bliss: Or seven reasons not to use uncertainty analysis’. The objective of the paper was to 

identify the reasons often given for not using uncertainty in water resources analyses and to 

assess the validity of these reasons. In all cases they concluded that there are no valid 

excuses for not using uncertainty, except for the fact that decision makers do not really 

understand what they are dealing with. It is therefore essential that the concepts of 

uncertainty are communicated to the very people who need to understand them and modify 

their decision making processes accordingly. 

 

It is apparent that there is very limited information available about how people interpret 

uncertainty (Montanari, 2007) but it is recognized that there are links between uncertainty 

and credibility, as well as uncertainty and trust. Effectively, all hydrological and water 

resource estimates are offered with uncertainty, but the way in which the estimates are 

provided can be very different. The following phrase contains uncertainty, but it is not 

explicitly stated, nor quantified: 

 

 ‘Based on the model results, the estimated yield is 120 * 106 m3’ 
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An alternative phrase explicitly includes uncertainty, but does not offer any probabilistic 

statements that can be used to link the uncertainty to risk: 

 

 ‘The estimated yield lies between 100 and 130 * 106 m3’ 

 

The alternative might be a full statement of the probability of getting yields greater than 

defined amounts coupled with confidence statements to assist in the interpretation of the 

assumed probabilities (Table 6.1). The yield estimate that would be selected for use by a 

water resources manager would clearly be linked to the level of risk aversion that was 

considered acceptable, which in turn would be linked to the purpose of the water resources 

development. However, there appears to be very little information available on how to 

determine an appropriate level of risk aversion.  

 

Table 6.1  Uncertain yield estimates, probabilities of exceedence and confidence 

statements. 

 

Yield estimate (106 m3) Probability of exceedence  Confidence level 
100 0.95 Very high 
105 0.75 High 
110 0.50 Moderate 
115 0.25 Low 
125 0.05 Very low 
 
 
One interpretation of yield curves that are generated with a single hydrology and stochastic 

generation of many stream flow time series is that they represent the ‘frequency’ with which a 

certain yield can be abstracted from the system over an infinitely long period of time. The 

implication is that all of the yield values given by the curve will occur eventually. This is not a 

statement that is associated with uncertainty, except that we would be uncertain what the 

amount available for abstraction would be at any one time. The alternative is that it is 

accepted that, because of imperfect knowledge about the system, we do not know what the 

yield is. Part of that uncertainty is associated with a lack of experience of the possible 

sequences of low flows that will contribute to storage and therefore yield (stochastic 

uncertainty in Figure 2.4) and part because we have imperfect knowledge of the real flows 

that will occur (hydrological uncertainty in Figure 2.4). Both contribute to the overall 

uncertainty and represent the same thing in terms of the risks associated with designing a 

water resources development scheme for a certain target yield.  

 
The main point to be made is that the two sources of uncertainty cannot and should not be 

separated, except from the point of view of reducing the uncertainty and therefore the risk. 
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The stochastic uncertainty cannot effectively be reduced as we do not have long enough 

records of either stream flow or rainfall (and other climate variables) to define all possible 

sequences of low flows. The hydrological uncertainty, however, can be reduced with 

improvements in such as rainfall and stream flow observations, improved parameter 

estimation processes and improved methods of quantifying upstream impacts and water use.  

Thus any attempts to reduce the risk of water resources decision making must necessarily 

focus on reducing the hydrological uncertainty, and given appropriate tools and methods, the 

main sources of uncertainty can be identified and targeted. This is particularly the case in 

terms of all the future uncertainties associated with possible climate change impacts on 

water resources availability. 

 
A further issue is the level of risk aversion that is used by water resources managers in 

making decisions. Studies have been undertaken to investigate this issue as well as 

experiments that have clearly demonstrated that participants in decision making ‘games’ 

made better decisions when they had access to uncertainty information. Figure 6.1 illustrates 

the results for a game associated with making decisions about salting roads in the US on the 

basis of forecasts of freezing temperatures. Groups B and C both have uncertain information 

and maximized their ‘profits’ (or decision success) far better than group A. 

 

  
 
 
Figure 6.1 Outcomes of a decision making game based on three groups of participants – 

Group were given a point forecast, Group B were given a forecast with a 

standard error and Group C were given a standard error and probability.  
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While there remain some issues about the communication of uncertainty that are not very 

clear, what is certain is the importance of ensuring that the users of uncertain information 

recognize its existence. It may not be essential for the users to understand all the details of 

the sources of uncertainty, but they do need to be fully aware of the implications for decision 

making and the risks involved. In some cases it is important to emphasise the sources of 

uncertainty, so that there is greater motivation for implementing approaches that can 

contribute to a reduction in the uncertainty. An example is the contribution that poor rainfall 

monitoring networks make to the estimates of available water resources into the future, while 

the lack of available information about historical upstream landuse and water abstraction 

patterns can contribute to uncertainty in the naturalization of observed streamflow data. With 

all the speculation about future climate variability and change, it is critically important to not 

only maintain, but to extend and improve our ability to measure the rainfall inputs into the 

hydrological cycle, as well as the extent to which water resources are already developed. 

 
One of the issues that were raised during the project workshops is the uncertainty associated 

with making operational decisions. This type of decision is inevitably based on short-term 

projections of future demand and supply and it is clear that a large degree of uncertainty will 

remain until improvements are made in short-term weather forecasting. These forecasts will 

always represent one of the major sources of uncertainty. The Water Resources Planning 

Model makes use of short-term stochastic projections and this appears to be the best that 

can be achieved in the absence of improved weather forecasts. The use of ENSO 

predictions and other short-term forecasting tools remain largely untested in terms of 

reducing the uncertainty (and therefore risk) in operational decision making and such studies 

are long overdue. Throughout the duration of this project it has become clear that most water 

resources managers in South Africa are familiar with the concepts of uncertainty. The main 

communication issue appears to be the need to enhance the understanding of the 

contributions of different sources of uncertainty as well as the need to fully appreciate the 

links between uncertainty and risk. 
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7. CONCLUSIONS AND RECOMMENDATIONS  

 

The main objective of the project was to contribute to the incorporation of uncertainty 

assessments in water resource decision making in South Africa, thereby quantifying the risks 

associated with specific decisions about planned future water resource developments. This 

objective was supported by several specific aims and this section on conclusions and 

recommendations is focused on the extent to which the project has addressed these issues: 

(i) Develop an understanding of uncertainty and associated risks in water resource 

management on the basis of literature and known practices, nationally and 

internationally. 

(ii) Identify and characterise the main sources of uncertainty (focusing on current 

South African practice and typical situations of data availability). 

(iii) Develop techniques and guidelines for quantifying the uncertainty associated with 

different models. This will include uncertainty in all relevant areas (hydrological, 

climate, economic, social, etc.). 

(iv) Determine the effects of uncertainty on water resource management and identify 

what level of uncertainty is acceptable. 

(v) Develop guidelines for the communication of uncertainty and the impacts to 

various stakeholder groups involved within water resource planning and 

management. This aim will need to address the issue of the links between 

uncertainty and risk. 

(vi) Develop guidelines for incorporating uncertainty and the associated risk into water 

resource decision making processes. 

(vii) Identify those areas of uncertainty that can be realistically reduced and which will 

have the greatest impact on reducing the risks involved with water resource 

decision making. 

 

The following sections of the report present the main conclusions and recommendations of 

the project orientated to the seven major aims of the project listed above. The key 

recommendations are highlighted in the text.  

 

7.1 Understanding uncertainty and risk 

 

The project has certainly contributed to an improved understanding of water resources 

assessment uncertainty in a South African context. It was readily apparent at the start of the 

project that the existence of uncertainty has always been recognized but not completely 

understood. The long history of using a stochastic stream flow model within the standard 
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yield simulation approaches in South Africa is a testament to the recognition of uncertainty. 

This approach generates a yield probability curve rather than a single yield value. However, 

many water resources planning reports still only refer to single yield values. Others may refer 

to the yield curve but tend to select a single value from it and refer to such as the 1 in 50 year 

yield as opposed to a yield with a certain probability of being equaled or exceeded (Table 6.1 

for example). The use of the return period expression is based on some assumptions about 

what stochastic sequences really represent and has become part of standard practice in 

South Africa for assessing the risks associated with different estimated yields (see section 

2.2.3). While there are potentially other interpretations that use probabilities of yield 

exceedence, these would not be aligned with current practice and therefore should not be 

encouraged at this stage. The implication is that if stochastic rainfall sequences input to 

hydrological models are to replace stochastic stream flow sequences in system yield 

models, the information transferred must be aligned with current practices and 

understanding of the links between uncertainty and risk (see section 4.2). 

 

7.2 Sources of uncertainty 

 

The various sources of uncertainty that exist within water resources assessments have been 

extensively covered during this project. Several examples are included within this report, 

while additional examples have been documented in some of the publication (e.g. Hughes 

and Mantel, 2010a and b) outputs and the student theses (e.g. Sawunyama, 2008 and 

Kapangaziwiri, 2010). In summary the dominant sources of uncertainty that affect the 

simulation results of both hydrological and water resources yield models are: 

 Historical climate input data, with uncertainties in rainfall inputs generally being more 

important than evaporation demand inputs. Uncertainties in rainfall inputs are 

apparently one of the major sources in mountainous areas where orographic 

gradients are important and where the small number of rainfall observation stations is 

inadequate to represent spatial variations in rainfall. As these areas are often very 

important water supply sources these rainfall uncertainties are critical from a 

water resources management perspective (see sections 7.4 and 7.7) and need 

to be addressed in the future. 

 Future climate data generated from downscaled global climate models (GCMs). 

There remain many uncertainties in the predictive ability of GCMs and the associated 

downscaling techniques. The uncertainties are associated with the greenhouse gas 

emission scenario that is assumed, as well as with the ability of the various GCMs 

(and downscaling methods) to translate the emission effects into information that is 

appropriate for use in hydrological models. The project has provided an example 
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(section 3.8) of the application of uncertainty analysis using climate change data in 

the Buffalo River catchment. The initial results presented in this report are part of an 

ongoing WRC project and further results will be available in the near future. 

 Hydrological model parameter uncertainty. This issue has been one of the main focus 

areas of the project and is dealt with extensively in this report and a number of other 

outputs from the project.  

 Present day water use uncertainty (including uncertainty in system operating rules) is 

important, not only from the perspective of yield modelling, but is also critical for the 

process of naturalizing observed flow data. The project has addressed a number of 

aspects associated with water use data and has identified it as a major source of 

uncertainty in many South African catchments. 

 Uncertainty in observed stream flow data. During some of the workshops held during 

the project it was frequently suggested that there is little uncertainty in those 

catchments where observed stream flow data are available. While this may be true in 

some areas where there is a clear understanding of what the observed data 

represent, but is certainly not true in many other areas where there is a lack of 

information on historical water use (or land use) patterns. There are also many gaps 

in observed stream flow data associated with limited rating curves. These gaps have 

a potentially huge impact on our knowledge of the high flow responses of catchments. 

 Uncertainty in model structure is an issue that is considered very important 

internationally. However, this project has generally concluded that this source of 

uncertainty is less important than many of the others and can frequently be 

considered part of the model parameter uncertainty.  There has been a great deal of 

debate within South Africa in recent years about the appropriate time scale to be 

used for modelling water resources systems. The country has a long history of using 

monthly time step models and there are clearly structural uncertainties associated 

with the averaging that occurs within a month. From this perspective, a strong 

argument can therefore be presented for changing to daily time steps. However, there 

is little doubt that the resources required for daily modelling are greater and the 

availability and accuracy of daily time step data are often open to question, as are 

some of the results generated by available daily time step models. There is little 

doubt that daily time steps are warranted in some situations, but there are almost 

certainly many other situations where monthly time steps are still appropriate. One of 

the critical issues to consider if there is general movement towards daily time 

steps is that the results of any new modelling approaches should be aligned to 

the ‘conventional wisdom’ that is available from the old approaches. The use of 

the uncertainty framework proposed by this project should facilitate this 
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process of alignment.  An attractive option for a future daily model is the conversion 

of the Pitman model to a daily time step using the same parameter set as used in the 

monthly model coupled with internal parameter conversion routines. It is understood 

that such a development has already been started (Bailey and Pitman, Pers. Comm.). 

 

7.3 Quantifying uncertainty 

 

One of the main outputs of the project is the generic framework for uncertainty assessments 

that is discussed in sections 2, 3 and 4 of this report. This framework offers an approach for 

quantifying various sources of uncertainty in hydrological models and suggests approaches 

for constraining the uncertainty and propagating it into water resource yield estimates. A 

large part of the research into uncertainty quantification has focused on the use of basin 

physical property data to estimate the parameters of the Pitman model. This represents a 

complete divergence from the traditional regionalization approaches that have been used in 

South Africa. The regional parameter sets for the whole country that are part of the WR90 

and WR2005 databases represent a major asset for water resources assessments in South 

Africa. However, they do not include any recognition of uncertainty and were based on very 

subjective regional extrapolation approaches. One of the recommendations of this project 

is that future updates to the water resources of South Africa studies (WR2020 

perhaps?) should be based on improved methods of parameter estimation in 

ungauged catchments and should include parameter uncertainty.  

 

The project also addressed the issue of linking stochastic and hydrological uncertainty within 

water resources yield models and demonstrated an approach based on the use of a 

stochastic rainfall model to generate uncertain climate inputs that can be combined with 

parameter uncertainty to generate outputs (ensembles of natural hydrology) that can be used 

as inputs to yield models. While further tests of this approach are still required, the initial 

results suggest that it represents a practical alternative to conventional methods and, 

perhaps more importantly, integrates all uncertainty sources. It is recommended that 

further assessments of this approach be undertaken in collaboration with practicing 

water resources engineers as the next step towards modifying standard practices for 

yield assessments in South Africa (see also section 7.6).  

 

Uncertainties in existing (and historical) patterns of water use were also identified as a 

key source of uncertainty in many areas and it is recommended that improvements in 

the availability of this type of information should be identified as a priority. This 
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recommendation is clearly aligned with the ongoing process of water use registration by the 

Department of Water Affairs. 

 

7.4 Effects of uncertainty 

 

This aim referred to determining what level of uncertainty is acceptable. However, in 

retrospect this was probably the wrong question to ask and is almost certainly impossible to 

answer. The real point is to quantify the uncertainty as realistically as possible and then to 

assess what the impact of that uncertainty would be on the decision making process. That is 

also something that is very difficult to generalize and is linked to the level of risk aversion that 

is considered acceptable, which in turn would be linked to the purpose of the water resources 

development. However, there appears to be very little information available on how to 

determine an appropriate level of risk aversion. There are various examples provided in this 

report that clearly demonstrate the effects of uncertainty, but these have not really addressed 

the impacts on decision making. It is recommended that further studies of different 

levels of risk aversion should be undertaken. Such studies need not necessarily be very 

complicated and could be focused on a range of typical water resources development 

decisions. However, they must involve individuals and organizations (DWA) who make real 

decisions. The uncertainty framework that has been developed as part of this project can be 

used to generate the information required as input to such studies. 

 

7.5 Communicating uncertainty 

 

The project concluded that the correct methods used to communicate uncertainty are 

important and that it is necessary to represent the use of uncertainty assessments as a 

positive development and to prevent the impression that uncertainty is a result of ‘bad’ 

models or modelers. Uncertainty is inherent in all estimations or predictions of environmental 

systems, largely due to their complexity and our inability to understand or measure every 

single component. While scientists and engineers have always recognized the limitations of 

the models that they use, they have not always communicated these uncertainties to the 

users of the model outputs. It is therefore necessary to change the paradigm under 

which the users of model results operate so that they have a better appreciation of 

uncertainty and its impacts. This can only happen if all modelers adopt uncertainty 

approaches. While expressions of the level of confidence in model results can go a long way 

to communicating uncertainty, the explicit quantification of the uncertainty will always be a 

better approach that should lead to improvements in the assessment of decision making risk. 
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A further advantage with the explicit inclusion of uncertainty is that it will improve the 

awareness of the problems associated with poor data and shrinking observational networks. 

This is a worldwide problem that is getting worse. The extent to which sophisticated 

modelling tools have contributed to this problem is largely unknown, but there is certainly an 

impression that political decision makers view models as a replacement for data collection 

which is expensive and resource intensive.  

 

7.6 Incorporating uncertainty assessments in practice 

 

Several recommendations about incorporating uncertainty assessments into standard 

practice have already been made under section 7.3, but are repeated here for clarity: 

 Future updates to the water resources of South Africa studies should be based 

on improved methods of parameter estimation in ungauged catchments and 

should include parameter uncertainty. 

 Standard yield modelling approaches should begin incorporating both 

stochastic and hydrological uncertainty and this project has tentatively 

concluded that this can be achieved using the suggested framework and 

generating stochastic rainfall inputs into hydrological models. 

 If there is a move towards the use of daily models as part of standard water 

resources assessment practice, it is important that uncertainty is incorporated 

and that the outputs are aligned with existing estimates based on monthly 

models. 

 

Many of the techniques and tools that have been developed and used in this project have 

been incorporated as part of the SPATSIM hydrological modelling software system. While 

this system is used by some practitioners, there are other software products that are used to 

support modelling studies that are used by many other individuals and organizations. It is 

therefore recommended that an assessment of the feasibility of incorporating 

uncertainty components into these software products be investigated in the very near 

future. The methods used within the SPATSIM models are relatively straightforward and 

should be readily applied in the other models without too much effort. All of the software code 

and algorithms used by the project team can be made available to other software 

developers. 
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7.7 Reducing uncertainty 

 

7.7.1 Hydrometeorological data  

 

One of the most obvious ways of reducing uncertainty in hydrological modelling is to force 

the model with accurate and representative data including input precipitation and 

evapotranspiration data, as well as observed stream flow data to calibrate the model or to 

constrain the results. Unfortunately, it appears that the collection of hydrometeorological data 

is not high on the list of funding priorities in many countries of the world and in some 

countries the availability of such data are restricted by sharing protocols, issues of intellectual 

property rights and other bureaucratic obstacles. 

 

The project has demonstrated the value of accurate and representative rainfall data in the 

application of any hydrological model. Unfortunately, in South Africa the national database of 

rainfall data appears to have been impacted in recent years to a greater extent than any of 

the other hydrological databases. This is occurring at a time when it is important to 

understand trends in rainfall patterns to assess possible climate change and when our water 

resources in many regions are highly stressed and where accurate assessments of natural 

runoff are a high priority. It is recognized that the maintenance of any national data collection 

system is expensive in terms of money and human resources and is very time consuming. 

However, the costs, in terms of increased uncertainty in such as water resources 

assessment, of not maintaining routine data collection will surely be greater than the costs of 

data collection. It is this point that needs to be communicated to decision makers. It is too 

easy to conclude that we have a great deal of historical data and therefore the whole data 

collection network can be rationalized – this ignores the existence of a spatial and temporal 

variability, as well as the possible existence of future non-stationarity and trends associated 

with climate change.   

 

It is essential therefore that South Africa reviews the data collection policy and places greater 

emphasis on basic data collection using efficient and reliable collecting and data storage 

systems. Replacing ground-based rainfall observing systems with remote sensing platforms 

(radar and/or satellite) do not offer valid alternatives unless there are overlaps in the two data 

sets so that the remotely sensed data can be ground-truthed. The remotely sensed data can 

be very useful in extending the spatial coverage of rainfall data, but without the link to the 

long historical records of gauged rainfall data, they are of limited value. 
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It is a strong recommendation of this project that the issue of improving and 

sustaining the collection of rainfall data within South Africa be discussed in the very 

near future by all the organisations either responsible for data collection or that use 

the data. This could be achieved through a highly focused workshop (organized 

perhaps by the Water Research Commission) that has a mandate to report to the 

relevant Ministers and the outcomes of which will be used to guide future policy. It is 

important that at least the Water Research Commission, the Department of Water 

Affairs, the Department of Agriculture, the SA Weather Service, water resources 

engineering consultants as well as research organizations are represented at the 

workshop. It is also important that the individuals representing the government 

organisations have sufficient authority to influence policy directions. One of the 

outcomes of the workshop should be a succinct report on the state of rainfall data 

collection, the implications of not improving the situation and recommendations for 

future action.  

 

It is extremely difficult to observe measures of evaporation or evapotranspiration that are 

directly appropriate for use in hydrological models and there are many uncertainties 

associated with the internal structure of models and the way in which actual evaporation is 

estimated. It could therefore be argued that accurate observations of evaporation are 

probably less important than an understanding of evapotranspiration processes from different 

vegetation types and densities. This, of course, does not mean that the relevant observations 

should be totally neglected. It means that perhaps the focus should be on regional and 

national observation networks of some of the basic driving variables (at least temperature) 

and a better understanding of the processes involved through focused, but localized, 

experimental observation networks. 

 

One of the main issues associated with stream flow data is that, to reduce hydrological 

model uncertainties, attention has not only to be given to how representative the flow 

gauging network is, but also to the data and understanding required to accurately assess 

what the stream flow observations are measuring. There is little point, from a hydrological 

modelling perspective, of extending the stream flow gauging network (at great cost in terms 

of both financial and human resources) if the information required to quantify upstream 

development impacts is ignored.  
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7.7.2 Parameter estimation uncertainty 

 

While there are potentially many areas where the uncertainty in the parameter estimation 

process can be improved to reduce uncertainty, the conclusions of this project focus on two 

main issues; improving the conceptual understanding of hydrological processes in general 

and improving the understanding and the availability of quantitative information about surface 

– groundwater interactions. 

 

Any addition to our conceptual understanding of hydrological processes in different regions 

must contribute to our ability to parameterize hydrological models, or at the very least, to 

assess the outputs and re-calibrate parameters. The assumption is that information is 

available to improve our understanding and that it is in an accessible format and at 

appropriate spatial scales for use with models. There have been a number of detailed 

hydrological studies that have been conducted within South Africa over the period in which 

the Water Research Commission has been in existence (and even before that). These have 

covered forest hydrology, semi-arid area hydrological processes, evapotranspiration studies 

from different land types and surface-groundwater interactions. However, the outputs from 

these studies have often not been incorporated into standard hydrological modelling 

practices, and have rarely contributed to improved parameter estimations for models used in 

water resources assessments. Many of these detailed process study outputs may have 

contributed to the development of models that are used for research or very specialized 

purposes, but they do not seem to have contributed much to the approaches used for the 

Pitman model – the mostly widely used model for practical water resources assessments. 

 
It would seem reasonable to suggest that this situation needs to change in the future if the 

uncertainty in water resources assessments (using the Pitman model) is to be reduced 

through improvements in parameter estimation methods or through improved assessments 

and validation of some of the model outputs. These assessments should, arguably, include 

not only simulated stream flow volumes, but also some of the state variables that can be 

validated with detailed process study outputs. Examples could include validation of 

interception and evapotranspiration depths across different land covers and improvements in 

the estimation of the associated parameters of the model. There are certainly data available 

from this type of study (the work of Dr Colin Everson and his associated at the CSIR over 

many years). The recommendation of this project is that the detailed process, or small 

scale catchment hydrology studies that have been conducted in South Africa be 

reviewed and assessed for their potential to contribute to the reduction of uncertainty 
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in hydrological modelling. This could be achieved through a relatively short-term (say 

2 year) project. 

 

The renewed interest in surface-groundwater interactions and the encouragement of close 

cooperation between surface and groundwater hydrologists represents a promising 

development for the future. However, it is important to recognize that the objectives of 

understanding the processes at relatively detailed scales and the requirements for larger 

scale modelling are different. It is therefore important that both of these objectives are 

considered when designing future research programmes. Experience of applying the surface 

– groundwater interaction components of the Pitman model during this WRC project have 

identified a number of gaps in either the available data, or in our understanding of processes 

and addressing these gaps is a recommendation of this project: 

 There is not enough information about recharge processes and their variability 

over time at the catchment scale. The GRA II estimates are very uncertain and 

give no information about temporal variability. Without accurate estimates of 

recharge patterns, the other groundwater components of the model will always 

be highly uncertain. 

 It is known that surface and groundwater catchments do not always coincide 

and that this issue has been neglected in surface hydrology models that have 

recently included groundwater components. However, there is very little direct 

information on the sub-surface routing of groundwater flow. Before this type of 

process can be satisfactorily included in models guidelines need to be 

developed on how the relevant parameters would be quantified. 

 Recharge water is generally assumed to either leave the immediate surface 

water (SW) catchment as sub-surface transfers to other SW catchments, 

contribute to stream flow within the SW catchment, be lost to 

evapotranspiration (in the riparian margins of the channel perhaps), or be 

abstracted. However, there is very little explicit information available to quantify 

any of these processes and therefore quantify the relevant model parameters. 

 More information on riparian evapotranspiration losses and the relationships 

with groundwater levels would be very useful. 

 One of the only signals that can be used to quantify the groundwater 

contribution to stream flow is the ‘baseflow’ signal in observed flow data. 

However, in some areas this may be confused by the presence of other 

‘baseflow’ processes (Hughes, 2010a) 
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7.7.3 Regional hydrological signatures as uncertainty constraints  

 

One of the main conclusions of this project is that an integrated uncertainty framework can 

be extremely useful, not only for identifying and quantifying uncertainty, but also for reducing 

the uncertainty. The framework proposed by this project includes new and flexible methods 

of estimating parameters with uncertainty, generating uncertain model outputs (ensembles), 

evaluating the validity of the ensembles using regional hydrological signatures and feedback 

loops that contributes to improved parameter estimation and ultimately a reduction in 

uncertainty (Figure 2.6). While the project has developed some useful constraint 

indices, it is recommended that the search for improved constraints should continue. 

Ultimately, this search is related to a number of the points raised in the previous section 

about conceptual understanding and parameter estimation, as well as being linked to the 

quality of the available data that can be used to develop constraint relationships. This type of 

study is ideal material for post-graduate research projects because it requires to students to 

develop and test their understanding of catchment hydrological responses.   

 

7.8 Final observations 

 

Throughout this project attempts have been made to achieve a balance between the 

development of new approaches based on sound hydrological principles and international 

experience with the practical considerations associated with the use of models for water 

resources assessments, planning and management. The degree to which these overall 

objectives have been achieved can only really be measured by the impact of the project 

outcomes on the approaches applied in the future. Many of the techniques that have been 

developed during this project are already being successfully applied by Rhodes University 

research students in studies as diverse as large scale modelling of the Congo River basin 

through much smaller scale evaluations of surface-groundwater interactions in South African 

catchments to various climate change impact assessments. The value of the project results 

to future hydrological research within South Africa has therefore already been demonstrated. 

Many of the principles and some of the results of the project have already been 

internationally peer reviewed through the publication of papers in scientific journals and 

presentation at international conferences. This process will continue through 2011 as 

additional material is submitted.   

 

Some of the follow up activities will have to be focused on ‘selling’ the concepts, the 

proposed techniques and the recommendations to the broader community of hydrological 

and water resource engineering practitioners. The project team recognizes that this will never 
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be a simple task and practitioners are often justifiably reluctant to adopt new approaches 

without a very clear demonstration of the advantages. The authors believe that they have 

presented a strong argument for including uncertainty in standard practices for water 

resources estimation in South Africa but it remains to be seen whether these arguments are 

strong enough to encourage the paradigm shift that will be required. 

 



Uncertainty in water resources assessments 112

8. REFERENCES 

 

AGIS (2007) Agricultural Geo-Referenced Information System, accessed from 

www.agis.agric.za during December 2010. 

 

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M.(1998) Crop evapotranspiration – 

guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 

56, FAO, Rome. 

 

Bailey, A.K. (1993) The effect of uncertainties in irrigation on the hydrology, system analysis 

and stochastic analysis of the Pienaars River. Proceedings of the 6th SANCIAHS 

Symposium, University of Natal, Pietermaritzburg, South Africa.  

 

Bàrdossy, A. and Duckstein, L. (2002) Hydrological Risk Under Nonstationary Conditions 

Changing Hydroclimatological Input. In: Risk, Reliability, Uncertainty, and Robustness 

of Water Resources Systems, International Hydrology Series, Bogardi JJ and 

Kundzewicz ZW (eds), Cambridge University Press 13, 111-121. 

 

Basson M.S., Allen R.B., Pegram G.G.S and van Rooyen J.A. (1994) Probabilistic 

management of water resource and hydropower systems. Water Resources Publ., 

Colorado. 424pp. 

 

Beven, K. (1989) Changing ideas in hydrology – The case of physically based models. J. 

Hydrol. 105, 157-172. 

 

Beven, K. (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. 

Water Resource. 16, 41-51. 

 

Beven, K. (2000) On model uncertainty, risk and decision making. Hydrol. Proc. 14, 2605-

2606. 

 

Beven, K. (2006) A manifesto for the equifinalty thesis. J. Hydrol. 320, 18-36. 

 

Beven, K. and Freer, J. (2001) Equifinality, data assimilation, and uncertainty estimation in 

mechanistic modelling of complex environmental systems using the GLUE 

methodology. J. Hydrol. 249, 11-29. 

 



Uncertainty in water resources assessments 113

Beven, K.J. and Hornberger, G.M. (1982) Assessing the effect of spatial pattern of 

precipitation in modelling stream flow hydrographs. Water. Res. Bull. 18(5), 823-829. 

 

Boegh, E., Hartmann, H., Wagener, T. , Hall, A., Bastidas, L., Franks, S., Gupta, H.V., 

Rosbjerg, D. and Schaake, J. (eds.) (2007) Quantification and reduction of predictive 

uncertainty for sustainable water resources management. IAHS Publ. 313, 507pp.  

 

Boss International (2004) Acres Reservoir Simulation Package (ARSP). Boss International, 

Madison, USA. Available from: http://www.bossintl.com/html/arsp_overview.htm 

 
Brashers, D.E. (2001) Communication and uncertainty management. J. Commun. 51(3), 

477-497. 

 

Brooks, K.N. (1975) Program description & user manual for SSARR model: Streamflow 

Synthesis & Reservoir Regulation. U.S. Army engineer Division, North Pacific, USA. 

 

Budyko, M.I. (1974) Climate and life. New York: Academic Press. 

 

Chief Directorate of Surveys and Land Information (1999) Dams and Lakes of South Africa 

from 1:50 000 Topographical Map Blue Plates.  Polygon coverage generated by M. 

Silberbauer, The Institute for Water Quality Studies, Pretoria, South Africa.   

 

Clark, M.P., Slater, A.G., Rupp, D.E., Woods, R.A., Vrugt, J.A., Gupta, H.V., Wagener, T. 

and Hay, L.E. (2008) FUSE: A modular framework to diagnose differences between 

hydrological models. Water Resources Research 44, doi:10.1029/2007WR006735.  

 

Cover, K.A. and Unny, T.E. (1986) Application of computer intensive statistics to parameter 

uncertainty in streamflow synthesis. Water Res. Bull. 22(3), 495-507. 

 

Davis, J.P. and Hall, J.W. (1998) Assembling uncertain evidence for decision-making. In 

Hydroinformatics ’98 (ed. V.M. Babovic and L.C. Larson), Balkema, Rotterdam, pp. 

1089-1094. 

 

Dawdy, D.R. and Bergmann, J.M. (1969) Effect of rainfall variability on streamflow 

simulation. Water Res. Res. 5(5), 958-966. 

 



Uncertainty in water resources assessments 114

Delft Hydraulics (2004) Ribasim: River Basin Planning and Management. Delft Hydraulics, 

Rotterdamsweg, Netherlands: http://www.wldelft.nl/soft/tools/indexs.html 

 

DHI (2000) MIKE BASIN – a tool for river basin planning and management, User manual for 

Mike Basin 2.2. Danish Hydraulic Institute, Horsholm, Denmark. 

 

Duan, Q., Sorooshian, S. and Gupta, V.K. (1992) Effective and efficient global optimization 

for conceptual rainfall-runoff models. Water Resour. Res. 28(4). 1015-1031.  

 

Draper, A.J., Munevar, A., Arora, K.S., Reyes, E., Parker, N., Chung, I.F. and Peterson, E.L. 

(2004) CalSim: Generalised model for reservoir system analysis. J. Water Res. 

Planning and Management 130, 480-489. 

 

DWAF (2008) Dams Database South Africa. Polygon coverage generated by Stephen J.L. 

Mallory and P. Odendaal, Water for Africa (Pty) Ltd.  Department of Water Affairs and 

Forestry, Pretoria, South Africa. 

 

Felix, R. (1994) Relationships between goals in multiple attribute decision making. Fuzzy 

Sets and Systems 67, 47-52. 

 

Frezghi, M.S. and Smithers, J.C. (2008) Merged rainfall fields for continuous simulation 

modelling. Water SA 34(5): 523-528. 

 

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003). Bayesian Data Analysis, second 

edition. London: Chapman and Hall. 

 

Gupta, V.K. and Sorooshian, S. (1985) The relationship between data and the precision of 

parameter estimates of hydrologic models. J. Hydrol. 81, 57-77. 

 

Gush, M.B., Scott, D.F., Jewitt, G.P.W., Schulze, R.E., Lumsden, T.G., Hallowes, L.A. and 

Görgens, A.H.M. (2002) Estimation of Streamflow Reductions resulting from 

commercial afforestation in South Africa. Water Research Commission, Report No. 

TT 173/02, Pretoria, South Africa. 

 

Haan, C.T. (1972) Adequacy of hydrologic records for parameter estimation. Proc. Am. Soc. 

Civ. Engs., J. Hyd. Div. 98, 1387-1393. 

 



Uncertainty in water resources assessments 115

Hallowes, J.S. and Pott, A.J. (2005) Potential for the Mike Basin model to support innovative 

water resource management in South Africa. Proceedings of the 12th SANCIAHS 

Symposium, ESKOM Convention Centre, Midrand, South Africa.  

 

HEC (2003) ResSim : Reservoir System Analysis Model, Version 2 User's Manual. USACE 

Hydrologic Engineering Center, California, USA. 

 

Hewitson, B. and Crane, R. (2006) Consensus between GCM climate change projections 

with empirical downscaling: precipitation downscaling over South Africa. Int. J. Clim. 

26(10), 1315-1337. 

 

Hewitson, B., Tadross, M. and Jack, C. (2005) Climate change scenarios: Conceptual 

foundations, large scale forcing an, uncertainty and the climate context. In 

R.E.Schulze (ed) Climate Change and Water Resources in Southern Africa: Studies 

on Scenarios, Impacts, Vulnerabilities and Adaptation. WRC Report No. 1430/1/05. 

Chapter 2, 21-38. Water Research Commission, Pretoria, South Africa. 

 

Hughes, D.A. (1982) Conceptual catchment model parameter transfer studies using monthly 

data from the southern Cape coastal lakes region. Hydrological Research Unit, 

Rhodes University, Report No. 1/82. 

 

Hughes, D.A. (1985) Conceptual catchment model parameter transfer investigations in the 

Southern Cape.  Water SA 11(3), 149-156. 

 

Hughes, D.A. (1997) Southern African 'FRIEND' – The application of rainfall-runoff models in 

the SADC region. Water Research Commission, Report No. 235/1/97, Pretoria, 

South Africa.  

 

Hughes D.A. (2004) Incorporating ground water recharge and discharge functions into an 

existing monthly rainfall-runoff model. Hydrol. Sci. Journ. 49(2), 297-311. 

 

Hughes, D.A. (2006a) Water resources estimation in less developed regions – issues of 

uncertainty associated with a lack of data. Prediction in Ungauged Basins: Promises 

and Progress (Proceedings of symposium S7 held during the Seventh IAHS Scientific 

Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ. 303, 72-79. 

 



Uncertainty in water resources assessments 116

Hughes, D.A. (2006b) Comparison of satellite rainfall data with observations from gauging 

station networks. J. Hydrol. 256, 234-235.  

 

Hughes, D.A. (2006c) An evaluation of potential use of satellite rainfall data for input to water 

resource estimation models in southern Africa Climate Variability and Change-

Hydrological Impacts, (Proc. Fifth International FRIEND conference) IAHS Publ. 308, 

75-80.  

 

Hughes, D.A. (2006d) A simple model for assessing utilizable streamflow allocations in the 

context of the ecological Reserve. Water SA 32(3), 411-417. 

 

Hughes, D.A. (2010a) Unsaturated zone fracture flow contributions to stream flow: evidence 

for the process in South Africa and its importance. Hydrol. Proc. 24, 767-774. 

 

Hughes, D.A. (2010b) Hydrological models: mathematics or science? Hydrol. Proc. 24, 2199-
2201.  

 

Hughes, D.A. and Hannart, P. (2003) A desktop model used to provide an initial estimate of 

the ecological instream flow requirements of rivers in South Africa. J. Hydrol. 270(3-4), 

167-181. 

 

Hughes, D.A., Kapangaziwiri, E. and Baker, K. (2010a) Initial evaluation of a simple coupled 

surface and ground water hydrological model to assess sustainable ground water 

abstractions at the regional scale. Hydrol. Res. 41(1), 1-12. 

 

Hughes, D.A., Kapangaziwiri, E. and Sawunyama, T. (2010b) Hydrological model uncertainty 

assessment in southern Africa. J. Hydrol. 387, 221-232. 

 

Hughes, D.A. and Mallory, S.J.L. (2008) Including environmental flow requirements as part of 

real-time water resource management. River Research and Applications 24(6), 852-

861. 

 

Hughes, D.A., Mallory, S.J.L., Haasbroek, B. and Pegram, G.G.S. (2011) Hydrological and 

Stochastic Uncertainty: Linking Hydrological and Water Resources Yield Models in an 

Uncertainty Framework. in water resources management (Proceedings of 

Symposium  H03, IUGG Conference held in Melbourne, Australia, July 2011), IAHS 

Publ. (accepted). 



Uncertainty in water resources assessments 117

Hughes, D.A. and Mantel, S.K. (2010a) Estimating the uncertainty in the impacts of small 

farm dams on stream flow regimes in South Africa. Hydrol. Sci. Journ. 55(4), 578-

592. 

 

Hughes, D.A. and Mantel, S.K. (2010b) Estimating uncertainties in simulations of natural and 

modified streamflow regimes in South Africa. Global Change – Facing Risks and 

Threats to Water Resources (Proc. Sixth FRIEND World Conference held in Fez, 

Morocco, November 2010), IAHS Publ. 340, 358-364. 

 

Hughes, D.A. and Metzler, W. (1998) Assessment of three monthly rainfall-runoff models for 

estimating the water resource yield of semi-arid catchments in Namibia.  Hydrol.  Sci.  

Journ. 43(2), 283-297. 

 

Hughes, D.A., Tshimanga, R. and Tirivarombo, S. (2010c) Simulating the hydrology and 

water resources of large basins in southern Africa. Global Change – Facing Risks 

and Threats to Water Resources (Proc. Sixth FRIEND World Conference held in Fez, 

Morocco, November 2010), IAHS Publ. 340, 591-597. 

 

Hula, R.L. (1981) Southwestern division reservoir regulation simulation model. Proc. National 

Workshop on Reservoir System Operations. ASCE, New York, USA. 

 

HydroLogics (2001) User Manual for OASIS with OCL, Version 3.4.14. HydroLogics, Inc., 

Columbia, USA: http://www.hydrologics.net/oasis/indexs.html 

 

Ibbit, R.P. (1972) Effects of random data errors on the parameter values for a conceptual 

model. Water Res. Res. 8(1), 70-78. 

 

Ibbit, R.P. and O’Donnell, T. (1971) Fitting methods for conceptual catchment models. Proc. 

Am. Soc. Civ. Engs., J. Hyd. Div. 97, 1331-1342. 

 

Juizo, D. and Liden, R. (2008) Modelling for transboundary water resources planning and 

allocation. Hydrology and Earth System Sciences Discussions, 475-509. 

 

Kapangaziwiri, E. (2008) Revised parameter estimation methods for the Pitman monthly 

rainfall-runoff model. Unpublished MSc thesis, Rhodes University, Grahamstown, 

South Africa. 

 



Uncertainty in water resources assessments 118

Kapangaziwiri, E. (2010) Regional application of the Pitman monthly rainfall-runoff model in 

southern Africa incorporating uncertainty. Unpublished PhD thesis, Rhodes 

University, Grahamstown, South Africa. 

 

Kapangaziwiri, E. and Hughes, D.A. (2008) Revised physically-based parameter estimation 

methods for the Pitman monthly rainfall-runoff model. Water SA 32(2), 183-191. 

 

Kapangaziwiri, E. and Hughes, D.A. (2009) Assessing uncertainty in the generation of 

natural hydrology scenarios using the Pitman monthly model. Paper presented at the 

14th SANCIAHS Symposium, Pietermaritzburg, KwaZulu-Natal, Sept. 2009. 

 

Kapangaziwiri, E., Hughes D.A., and Wagener, T. (2009) Towards the development of a 

consistent uncertainty framework for hydrological predictions in South Africa. New 

approaches to hydrological prediction in data sparse regions. (Proc. symposium HS2 

at the joint IAHS & IAH convention, Hyderabad, India, Sept. 2009). IAHS Publ. 333, 

84-93.  

 
Kapangzawiri, E.,  Hughes, D.A., Tanner, J. and Slaughter, S. (2011) Resolving uncertainties 

in the source of low flows in South African rivers using conceptual and modelling 

studies. Conceptual and modelling studies of integrated groundwater, surface water 

and ecological systems (Proceedings of  Symposium  H01, IUGG Conference held in 

Melbourne, Australia, July 2011), IAHS Publ. (accepted). 

 

Labadie, J.W. (2006) MODISM: River basin management decision support system. In: Singh, 

VP and Frevert, DK (Eds), Watershed models, Taylor & Francis Group, New York, 

USA, 591-569.  

 

Lynch, S.D., 2004. Development of a raster database of annual, monthly and daily rainfall for 

Southern Africa, Water Research Commission, Pretoria, South Africa.  

 

Liu, Y., Gupta, H.V., Springer, E. and Wagener, T. (2008) Linking science with environmental 

decision making: Experiences from an integrated modelling approach to support 

sustainable water resources management. Environmental Modelling and Software 

23(7), 846-858.  

 



Uncertainty in water resources assessments 119

Liu, Z., Mario, Martina, M.L.V. & Todini, E. (2005) Flood Forecasting Using a Fully Distributed 

Model: Application of the TOPKAPI model to the upper Xixian Catchment. Hydrology 

and Earth system Sciences 9(4), 347-364. 

 

Madsen, H., Wilson, G. and Ammentorp, H.C. (2002) Comparison of different automated 

strategies for calibration of rainfall-runoff models. J. Hydrol. 261(1-4), 48-59.  

 

Mallory, S.J.L (2005) The modelling of water restrictions applied in complex bulk water 

supply systems and the application of these techniques to operationalising the 

ecological Reserve. 12th South African National Hydrology Symposium, Midrand, 

South Africa. 

 

Mallory, S.J.L., Desai, A., Odendal, P and Ward, J. (2010) The Water Resources Modelling 

Platform: User Guide Version 3.2. Available at www.waterresources.co.za 

 

McIntyre, N., Lee, H., Wheater, H.S., Young, A. and Wagener, T. 2005. Ensemble prediction 

of runoff in ungauged watersheds. Water Resources Research 41, doi: 10.1029 / 2005 

WR004289.  

 

Montanari, A. (2007) What do we mean by 'uncertainty'? The need for a consistent wording 

about uncertainty assessment in hydrology. Hydrol. Process  21, 841-845.  

 

Muleta, M.K. and Nicklow, J.W. (2005) Sensitivity and uncertainty analysis coupled with 

automatic calibration for a distributed watershed model. J. Hydrol. 306(1-4), 127-145.  

 

Naef, F. (1981) Can we model the rainfall-runoff process today? Hydrol. Sci. Bull. 26(3), 281-

289. 

 

Ndiritu J.G. and Daniell T.M. (1999) Assessing model calibration adequacy via global 

optimization. Water SA 25(3), 317-326. 

 

Nicks, A.D. (1982) Space-time quantification of rainfall inputs for hydrologic transport models. 

J. Hydrol. 59, 249-260. 

 

Oudin, L., Perrin, C., Mathevet, T., Andréassian, V. and Michel, C. (2006) Impact of biased 

and randomly corrupted inputs on the efficiency and the parameters of watershed 

models. J. Hydrol. 320, 62-83.  



Uncertainty in water resources assessments 120

Pappenberger, F. and Beven, K. (2006) Ignorance is bliss: Or seven reasons not to use 

uncertainty analysis. Water Resour. Res. 42, W05302, doi:10.1029/2005WR004820. 

 

Perrera, B.J.C., James, B. and Kularathna, M.D.U. (2005) Computer software tool REALM 

for sustainable water allocation and management. J. Env. Management  77, 291-300. 

 

Paturel, J.E., Servat, E. and Vassiliadis, A. (1995) Sensitivity of conceptual rainfall-runoff 

algorithms to errors in input data – case of the GR2M model. J. Hydrol. 168, 111-125. 

 

Pegram, G.G.S. and Clothier, A.N. (2001) High resolution space–time modelling of rainfall: 

the “String of Beads” model. J. Hydrol. 241, 26-41.  

 

Popper, K.R (1957) Probability magic or knowledge out of ignorance. Dialectica 11, 354-373. 

 

Sawunyama, T. (2008) Evaluating uncertainty in water resources estimation in southern 

Africa: A case study of South Africa. Unpublished PhD Thesis, Rhodes University, 

Grahamstown, South Africa. 

 

Sawunyama, T. and Hughes, D.A. (2007) Assessment of rainfall-runoff model input 

uncertainties on simulated runoff in southern Africa. Quantification and Reduction of 

Predictive Uncertainty for Sustainable Water Resource Management  (Proceedings of  

Symposium HS2004 at IUGG2007, Perugia, July 2007). IAHS Publ. 313, 98-106. 

 

Sawunyama, T. and Hughes, D.A. (2008) Application of satellite-derived rainfall estimates to 

extend water resource simulation modelling in South Africa. Water SA  34(1), 1-9. 

 

Sawunyama, T., Hughes, D.A. and Mallory, S.J.L. (2011) Evaluation of combined 

contribution of uncertainty sources to total output uncertainty in water resource 

estimation in South Africa. Risk in water resources management (Proceedings of 

Symposium  H03, IUGG Conference held in Melbourne, Australia, July 2011), IAHS 

Publ. (accepted). 

 

Schäfer, N.W. (1991) Modelling the areal distribution of daily rainfall. Unpublished MScEng. 

Thesis, Dept. of Agricultural Eng., University of Natal, Pietermaritzburg, South Africa. 

 



Uncertainty in water resources assessments 121

Schulze, R.E. (1995) Hydrology and Agrohydrology : A Text to Accompany the ACRU 3.00 

Agrohydrological Modelling System. Report TT69/95, Water Research Commission, 

Pretoria, RSA. 

 

Schulze R.E. (2000) Modelling hydrological responses to land use and climate change: A 

southern African perspective. Ambio 29, 12-22. 

 

Schulze, R.E. and Kunz, R.P. (1995) Reference potential evaporation. In Schulze, R.E (Ed) 

Hydrology and Agrohydrology. A text to accompany the ACRU 3.00 Agrohydrological 

modelling system.  Water Research Commission, Pretoria.  

 

Schulze, R.E. and Maharaj, M. (2006) Temperature Database . In Schulze R.E (Ed) 2006. 

South African Atlas of Climatology and Agrohydrology. WRC, Pretoria, South Africa.  

 

Schulze, R.E. and Smithers, J.C. (2004) The ACRU agrohydrological modelling system as of 

2002: Background, concepts, structure, output, typical applications and operations. 

In: R.E. Schulze (Editor), Modelling as a Tool in Integrated Water Resources 

Management: Conceptual Issues and Case Study Applications. WRC Report 

749/1/04. Water Research Commission, Pretoria, RSA, pp. 47-83. 

 

Silberstein, R.P. (2006) Hydrological models are so good, do we still need data? Env. 

Modelling & Software 21, 1340-1352. 

 

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshim, V., Liang, X., 

McDonnel, J.J., Mendiondo, E.M., Connell, O., Oki, T., Pomeroy, J.W., Schertzer, D., 

Uhlenbrook, S. and Zehe, E. (2003) IAHS Decade on Predictions in Ungauged 

Basins (PUB), 2003-2012: shaping an exiting future for the hydrological sciences. 

Hydrol. Sci. Journ. 48(6), 857-880.  

 

Sorooshian, S. and Gupta, V.K. (1983) Automatic calibration of conceptual rainfall-runoff 

models: The question of parameter observability and uniqueness. Water Res. Res. 

19(1), 260-268. 

 

Srikanthan, R. and Pegram, G.G.S. (2009) A nested multisite daily rainfall stochastic 

generation model. J. Hydrol. 371, 142–153. 

 



Uncertainty in water resources assessments 122

Troutman, B.M. (1982) An analysis of input errors in precipitation-runoff models using 

regression with errors in the independent variables. Water Res. Res. 18(4), 947-964. 

 

Troutman, B.M. (1983) Runoff prediction errors and bias in parameter estimation induced by 

spatial variability of precipitation. Water Res. Res. 19(3), 791-810. 

 

Tshimanga, R., Hughes, D.A. and Kapangzawiri, E. (2011) Understanding hydrological 

processes and estimating model parameter values in large basins: The case of the 

Congo River basin. Conceptual and modelling studies of integrated groundwater, 

surface water and ecological systems (Proceedings of  Symposium  H01, IUGG 

Conference held in Melbourne, Australia, July 2011), IAHS Publ. (accepted). 

 

Tylcote, C., 2007. Personal communication. 

 

Vrugt, J.A., Gupta, H.V., Bouten, E. and Sorooshian, S. (2003) A shuffled complex evolution 

Metropolis algorithm for optimization and uncertainty assessment of hydrologic model 

parameters. Water Resour. Res. 39(8), doi:10.1029/2002WR001642. 

 

Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V. and Sorooshian, S. (2001) 

A framework for development and application of hydrological models. Hydrology and 

Earth System Sciences 5(1), 13-26.  

 

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S. and Gupta, H.V. (2003) Towards 

reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability 

analysis. Hydrol. Proc. 17(2), 455-476.  

 

Wagener, T. and Wheater, H.S. (2006) Parameter estimation and regionalization for 

continuous rainfall-runoff models including uncertainty. J. Hydrol 320(1-2), 132-154.  

 

Yadav, M., Wagener, T. and Gupta, H. (2007) Regionalisation of constraints on expected 

watershed response behaviour for improved predictions in ungauged basins. 

Advances in Water Resources  30, 1756-1774.  

 

Yang, J., Reichert, P., Abbaspour, K.C. & Yang, H (2007) Hydrological modelling of the 

Chaohe Basin in China: Statistical model formulation and Bayesian inference. J. 

Hydrol. 340(3-4), 167-182. 

 



Uncertainty in water resources assessments 123

Wurbs, R.A. (2005a) Comparative evaluation of generalised reservoir/river system models. 

Technical Report No. 282. Texas water resource Institute, Texas A&M University 

System, Texas, USA. 

 

Wurbs, R.A. (2006b) Water rights analysis package (WRAP) modelling system. In: Singh, VP 

and Frevert, DK (Eds) Watershed models, 593-611, Taylor & Francis Group, New 

York, USA. 

 

Zagona, E.A., Fulp, T., Shane, R., Magee, T. and Goranflo, H.M. (2001) RIVERWARE: A 

generalised tool for complex reservoir system modelling. J. American Water Res. 

Assoc. 37(4), 913-929. 

 

Zhang, Z., Wagener, T., Reed, P. and Bushan, R. (2008). Ensemble streamflow predictions 

in ungauged basins combining hydrologic indices regionalization and multiobjective 

optimization. Water Res. Res. 44, doi:10.1029/2008WR006833.  



Uncertainty in water resources assessments 124

APPENDIX A: UNCERTAINTY ANALYSIS USING THE ACRU MODEL 

 

Contribution from M. Frezghi (with some editorial inputs from D.A. Hughes) 

 

A1. Introduction 

 

The ACRU agrohydrological model is a physically based conceptual rainfall-runoff model and 

it is structured to integrate various water budgeting and runoff producing components of the 

terrestrial hydrological systems (Schulze, 1995). The model is a daily time step, multi-layer 

soil water budgeting and multi-level model. Input variables are generally estimated from 

physical characteristics. As with any simulation model, limitations in the model structure, in 

parameter estimation, and the observed input, result in uncertainty in the simulated model 

output. A methodology to assess the uncertainty is being developed for the ACRU model 

based on Bayesian inference. In Bayesian uncertainty analyses a prior probability distribution 

of parameters is deducted from experiments and previous experience in order to derive 

posterior parameter distributions. In the approach, a marginalized posterior probability 

distribution of the model parameters is used to predict the total uncertainty in the model 

output.  A description of the process is explained in the following three subsections. 

 

Prior ACRU Parameters 

 

In the Bayesian inference methodology the amount of information and accuracy is extracted 

from one or more experiments or from previous experience, which is referred as prior 

information, and is the most important knowledge that guarantees the success of predicting 

uncertainty using the Bayesian process. In case of the ACRU model, the conceptual 

parameters in the model are modeled through the Bayesian uncertainty framework. The 

coefficients selected in this study are critical soil depth for runoff generation (SMDDEP), 

coefficient of initial abstraction (COIAM), base flow coefficient (COFRU), A and B horizon 

response (ABRESP and BFRESP) and quick flow response coefficient (QFRESP). The 

output simulated by ACRU is sensitive to these parameters (Schulze, 1995) and, most 

importantly, to SMDDEP. In addition, physically-based parameters also contribute to 

uncertainty in the model outputs. The range and a non-informative prior marginal distribution 

of the ACRU parameters are estimated from experiments and from experienced users of the 

model. The prior distribution of these parameters is assumed to be a uniform distribution and 

the range of each parameter is used as specified in the ACRU theory manual (Schulze, 

1995). Monte Carlo simulations are used to sample prior distributions of each parameter 

within the estimated range. 
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Posterior ACRU parameter 

 

According to Bayes’ theorem (Gelman et al., 2004), the probability density of the posterior 

parameter distribution, )( obs
Y yf  , is derived from the prior density, )(

pri
f , the likelihood 

function of the model, )( obs
Y yf M  , and data, obsy , according to 
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Numerically, there are two generic Monte Carlo approaches to approximate the posterior 

parameter distribution (Gelman et al., 2004), i.e., Markov Chain Monte Carlo (MCMC) and 

Importance Sampling (IS). 

 

A Metropolis Hastings algorithm, which is a general term for a family of Markov chain 

simulation methods that are useful for drawing samples from Bayesian posterior distributions 

(Gelman et al., 2004), is used to sample the posterior ACRU parameters. The Metropolis 

algorithm is an adaptation of a random walk that uses an acceptance/rejection rule to 

converge to a specified target distribution. The algorithm used is as follows: 

 

(i) Draw a starting point 0 , satisfying 0)( 0 f  

(ii) Using current   value, sample a candidate point * from some jumping 

distribution  

(iii) Calculate the ratio of densities, 
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Normalising marginal likelihood in Bayesian Inference, which is the denominator 

in posterior parameter distribution, cancels out. 

(iv) if 1 accept the candidate point (set * t ) and return to Step (ii), if 1 then 

with probability  accept the candidate point, else reject it and return to Step (ii). 

 

In hydrology, the likelihood function is often constructed by assuming the residuals between 

observations, obsy , and model results, My , are identically, independently and normally 

distributed. However, because of the measurement errors in the model input and response, 

and errors in model structure (Yang et al., 2007), this assumption is usually not satisfied and 

residuals are often hetroscedastic and autocorrelated. Therefore, in order to correctly apply 
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Bayesian inference, the likelihood function must either address these errors explicitly or 

contain an auto-correlated component of residuals to describe their effect on model output. 

 

Predictive ACRU uncertainty  

 

The predictive uncertainty is derived using the same method used by Liu et al. (2005) where  

each parameter set relevant to a predictive uncertainty can be obtained via the Normal 

Quantile Transformation (NQT), initially by forming a joint probability distribution in a normal 

space and deriving a conditional probability density. The conditional density can then be 

transformed back in the original space through the inverse of the NQT. Then the predictive 

uncertainty can be derived by marginalising all the densities with respect to the parameters, 

which can be approximated by summing up the products of all the realisations of their 

probability density of occurrences. 

 

A2. Assessment of ACRU uncertainty approach  
 
The Midmar dam catchment, as shown in Figure A1, was selected as a study area. The 

catchment was divided into 25 sub-quaternary catchments and in this preliminary test; the 

same values of prior parameters were used for each catchment. In this preliminary test, 

observed data from gauging weir U2H007 was used to determine the errors between the 

ACRU simulated results and observed data at a point of interest. Each of the uncertain 

parameters is constrained within a range derived from past experiments. Their prior 

parameters values are assumed to be uniformly distributed within their range and in this 

study 10 000 random numbers are generated using Monte Carlo simulation. 

 

An ACRU input menu was setup for the MIDMAR catchment in a way which enables multiple 

runs to be made by changing the selected ACRU parameters for each run. Once the required 

number of runs have been completed, an error is calculated for each run to determine the 

likelihood value for each run. Using the Metropolis Hasting Algorithm described above, 398 

parameter values were accepted for each ACRU parameter considered from the 10 000 runs 

performed. The accepted parameter values are populated to produce a histogram and 

cumulative distribution of parameter values versus frequency as shown in Figures A2 and 

A3. Any number of parameter values for each parameter can be sampled from the 

cumulative posterior parameter distribution to perform multiple runs. In this preliminary test, 

the 398 parameter values accepted through the Bayesian framework were used to perform 

398 runs of the ACRU model. 
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Figure A1 Midmar Dam catchment 
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Figure A2 Posterior parameter values of ACRU parameters. 

U2H007

U2R001
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Figure A3 Cumulative Posterior distribution of ACRU parameters.  
 
 
Figure A4 shows the frequency analysis of mean ACRU streamflow ensembles from 

posterior parameter values and Figure A5 contains the frequency analysis of maximum  

ACRU streamflow ensembles from posterior parameter values.  Each box-whisker shows a 

frequency analysis for each month, the whisker represents a 100 and 0 percentile of mean 

ensembles while the box represents upper and lower quartile of the mean ensembles. A 

frequency analysis of the mean ACRU ensembles shows that ACRU simulates the mean 

monthly total of daily streamflows very well. 
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Figure A4 Monthly Mean ACRU streamflow ensembles for each month. 
 

 
 
Figure A5 Monthly Maximum ACRU streamflow ensembles for each month. 
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A3. Integrating the ACRU approach with the framework 

 

The previous section made use of observed flows to constrain the sampling from the 

parameter distributions, which is a different approach from that suggested for the framework 

and could not be applied in ungauged basins. The ACRU model has been run in an 

uncertainty environment for catchment C12D using the same procedures discussed in 

section A1 and based on Bayesian inference. In simple terms the prior parameter space is 

estimated from experience of the model. In contrast to the Pitman model, all of the 

ensembles have very similar mean flow values which are very close to the observed flow and 

there is no value in further evaluating the P/PE v Q/P relationships. While this is an 

unexpected result that was not repeated during the previous test on the Midmar catchments 

the ACRU Midmar results also showed a much lower range of mean flow variation than was 

evident for the Pitman model approach. These differences require further investigation that 

was not possible during the project as Mr Frezghi left the University of KwaZulu-Natal before 

the study could be completed. 

 

In this brief assessment, the minimum and maximum flows for each day of the simulation 

(1950 to 1999) have been extracted from 532 ensembles generated by the ACRU model. 

These are therefore not real time series but represent the range of simulated flows for all the 

ensembles (the same data are used to represent the ensemble ranges for some of the 

analyses of the Pitman model results). Figure A6 compares the observed flow duration curve 

with the range of ACRU model outputs, while Figure A7 compares the results using the time 

series. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A6 Observed, minimum and maximum ACRU flow duration curves for C12D 

(based on data for 1960 to 1999). 
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Figure A7 Observed, minimum and maximum ACRU monthly flow time series for C12D. 

 

The first point to note is that the simulated and observed responses are very different despite 

the fact that the mean runoff response (and the slope of the flow duration curve) is very close 

to the observed data. The implication is that the constraints being used in the framework to 

determine whether a model is generating behavioural results are not necessarily sufficient. 

Figure A8 illustrates the equivalent time series results for the Pitman model (observed plus 

the minimum and maximum simulated monthly flows for each month of the time series 

across all 10 000 ensembles). While the overall uncertainty output from the Pitman model 

(based on the mean monthly flow metric) is far greater than for the ACRU model, the 

uncertainties in simulating individual monthly flows and relatively short sequences of the time 

series are very similar for the two models.   

 

Visual comparison of Figures A7 and A8 suggest that the Pitman model has generated 

somewhat more behavioural sequences of flows than the ACRU model in this specific 

catchment, although both models show advantages and disadvantages in specific years. It is 

clear that the results for both models are impacted to a certain extent by un-representative 

rainfall inputs in some years (1976 being probably the best example). The ACRU model 

appears to be unable to reproduce the very small runoff responses in dry years (1982 and 

1983, for example) and also tends to under-simulate the higher flow responses. 

 

 



Uncertainty in water resources assessments 132

0

10

20

30

40

50

60

70

80

1975 1977 1979 1981 1983 1985
Months

M
o

nt
hl

y 
F

lo
w

 V
ol

um
e 

(m
3
x1

06
)

Observed
Pitman (Min)
Pitman (Max)

 

 

Figure A8 Observed, minimum and maximum Pitman monthly flow time series for C12D. 

 

The purpose of these observations is not to compare the models, but to highlight the issues 

associated with the different approaches to establishing prior parameter sets, generating 

ensembles and assessing (as well as constraining) the results. The use of relatively simple 

summary metrics to assess and constrain the ensembles may not be sufficient in some 

catchment situations, regardless of the model being used. To further illustrate this point a 

very simple yield analysis has been performed on the minimum and maximum time series 

generated by the two models and assuming a dam (at the catchment outlet) of 50 m3 x 106 

with a seasonal distribution of demand similar to the seasonal variation in evaporation 

demand. The objective of this very simplified analysis was to determine a maximum annual 

demand that could be met without the hypothetical dam running dry for the four scenarios. 

The range for the ACRU model minimum and maximum time series was between 31 and 65 

m3 x 106, while for the Pitman model the range and the overall yield was much lower at 20 to 

28 m3 x 106. This is consistent with the differences between the two model results illustrated 

in Figures A7 and A8 and specifically that the ACRU model does not simulate low flows in 

dry years very well. There is no suggestion in this report that one of the models is giving a 

more accurate yield estimate than the other. The important issue is that they are giving very 

different answers, despite the fact that all of the simulations would be considered behavioural 

based on the regional constraints currently being used in this study. 
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APPENDIX B: LIST OF ABBREVIATIONS 

 
ACRU  Agricultural Catchments Research Unit. 
AGIS.  Agricultural Geo-referenced Information System. 
ARMA  Auto Regressive Moving Average (a stochastic model). 
BEEH  Bioresources Engineering and Environmental Hydrology, UKZN. 
CE  Coefficient of Efficiency (Nash Coefficient): a statistical objective function. 
CV  Coefficient of Variation (Standard Deviation / Mean). 
DWA Department of Water Affairs (formerly DWAF, Department of Water Affairs and 

Forestry). 
EWR Environmental Water Requirements. 
FDC Flow Duration Curve. 
GCM  Global Climate Model or General Circulation Model. 
GIS  Geographical Information Systems. 
GRA II  Groundwater Resource Assessment. 
IAHS  International Association of Hydrological Sciences. 
IPCC  Inter-governmental Panel on Climate Change. 
IUGG  International Union of Geophysics and Geodesy.  
IWR  Institute for Water Research, Rhodes University. 
KISC  Key International Science Capacity (an NRF support programme). 
LTY  Long-Term Yield. 
MAE  Mean Annual Evaporation or Evapotranspiration. 
MAP  Mean Annual Precipitation. 
MAR  Mean Annual Runoff. 
MCM  Million Cubic Metres or m3 * 106. 
ML  Mega Litres or m3 * 103. 
NRF  National Research Foundation of South Africa. 
P  Precipitation. 
PDF  Probability Density Function. 
PE  Potential Evapotranspiration. 
PUB  Prediction in Ungauged Basins (an IAHS research programme). 
Q  Stream Flow Discharge 
Q10, Q90 10th and 90th percentage point on a flow duration curve. 
SPATSIM Spatial and Time Series Information Modelling. 
SD  Standard Deviation. 
UKZN  University of KwaZulu-Natal. 
WRC  Water Research Commission of South Africa. 
WR90  Water Resources of South Africa 1990. 
WR2005 Water Resources of South Africa Update 2005. 
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