
Data Structures and
Algorithms for
Bioinformatics

Philip Machanick

DATA STRUCTURES AND ALGORITHMS FOR BIOINFORMAT-
ICS
First draft edition, 2017; updates 2019
Copyright © Philip Machanick 2017, 2019

Published by Philip Machanick in the RAMpage Research imprint
under an Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) licence:
http://creativecommons.org/licenses/by-nc/4.0/
The quick summary: free to use however you like but not for
commercial purposes.

Picture credits: all illustrations are either by the author or from
public domain sources, as acknowledged in the text.

Author: Machanick, Philip, 1957-

Title: Data structures and algorithms for bioinformatics / Philip Machanick

Edition: draft ed.

Publisher: Grahamstown, South Africa : RAMpage Research, 2017, 2019.

ISBN: xxx-x-xxxxxxxx-x-x (pbk.)

LoC classification : QA76

Last typeset 4 June 2019

http://creativecommons.org/licenses/by-nc/4.0/

Preface

WHY THIS MATERIAL? Bioinformatics is a difficult subject because it
integrates so much from multiple disciplines. The emphasis here is on
algorithmic thinking – working from a problem to an implementation

while thinking analytically about efficiency concerns.
The picture illustrates a general plan for algorithmic thinking. Anything that

can be classed as an algorithm can be analysed and your design choices are not
always to find the most efficient algorithm possible.

The aim is to solve a problem as efficiently as possible; if it is something you
do only once, that results in a rather different set of choices than if you are going
to do it many times. And – of course – size counts. That is what this course is

am I doing this once?

yes no

inefficient solution OK

if runs in time < time to

code a better one

how big is the

data set?

first reasonable

solution, not

ridiculous space

and time

try to reduce

complexity

class O(f(n))

smaller bigger

worth optimizing?

Only now tweak details, e.g., array instead of list, or a

lower-level language like C

easiest way

there e.g. built in

features of

Python

is it a good fit to

divide and

conquer?

Dynamic

programming,

greedy?

test

Generic Design Decision Logic: guidance on how to apply algorithmic thinking
to real problems.

ii

iii

O(n)2

O(k)n

O(n)

O(log n)

O(n log n)

10

100

1000

10,000

100,000

1,000,000

approximation methods:

heuristics, AI, machine

learning

n

Efficiency decisions: the area of each zone roughly indicates how many useful
algorithms are likely to be found in that zone. Some popular bioinformatics tools
like BLAST fall in the “approximation” zone.

about – how to think through algorithmic problems and arrive at useful solutions.
The next picture illustrates roughly how problem size relates to algorithm

performance categories called complexity classes (see page 8). If the complexity
class is a very rapidly-growing function as n, a measure of problem size, grows, an
algorithm in that class is not useful except for small values of n. Understanding
that concept is a key part of this course. Boundaries are very approximate and
depend on details of the algorithm, how long you are prepared to wait and whether
it’s possible to find an algorithm in a more efficient class.

As I said at the start, size counts. . .

Contents

Preface ii

List of Figures vii

List of Tables viii

1 Introduction 2
1.1 Basics . 2
1.2 Algorithm Design Styles . 9
1.3 More Complexity . 15
1.4 Further Reading . 17
Exercises . 17

2 Data Structures 19
2.1 Basics . 19

2.1.1 Arrays . 20
2.1.2 Lists . 20
2.1.3 Graphs . 20

Trees . 21
General graphs . 24

2.1.4 Content-Addressable structures 25
2.2 Relationship to Python . 26

2.2.1 Python lists . 26
2.2.2 Python arrays . 26
2.2.3 Trees in Python . 27
2.2.4 Python content-addressable data structures 28

2.3 Case Study: Dictionary . 29
2.3.1 Hash tables . 29

iv

CONTENTS v

2.3.2 Balanced trees . 30
2.4 Further Reading . 31
Exercises . 31

3 Sorting and Searching 33
3.1 Trees . 33
3.2 More General Sorting . 35

3.2.1 Simple methods . 35
3.2.2 Efficient methods . 37
3.2.3 Proving a recurrence . 41
3.2.4 Theoretical limit on sort by comparision 43

3.3 More on Searching . 44
3.4 Further Reading . 46
Exercises . 47

4 String Matching 49
4.1 Exact Match Algorithms . 50

4.1.1 Naïve string match . 51
4.1.2 More advanced string matching 52

4.2 Pattern Matching with Regular Expressions 53
4.2.1 Regular Expressions . 54
4.2.2 Finite state machine . 55
4.2.3 Regular language limitations 56

4.3 Further Reading . 57
Exercises . 58

5 Sequence Alignment 59
5.1 Further Reading . 60

6 Case Studies 61
6.1 Motif Finding with Regular Expressions 61

6.1.1 Motifs . 61
6.1.2 The DREME motif finder 63
6.1.3 CentriMo motif central enrichment analysis 64

The idea . 65
The prototype phase . 66
Final implementation . 67

6.2 Further Reading . 67

vi CONTENTS

Exercises . 67

References 69

List of Figures

1.1 Partial string match matrix . 13
1.2 Comparison of logs to different bases 15
1.3 Comparison of functions with different complexities 16

2.1 Phylogenetic tree example . 22
2.2 Tree as list . 22
2.3 Growth of log2 N . 23
2.4 General graph . 25

3.1 Mergesort moves . 40
3.2 Sort decision tree . 43
3.3 logN vs. log logN . 45

4.1 Naïve String Match . 51
4.2 Finite State Machine . 56

6.1 MEME motif matrix . 62
6.2 Logo representation of a motif 63
6.3 Central Motif Enrichment Analysis Concept 65
6.4 Centrimo output . 66

vii

List of Tables

2.1 Adjacency matrix example . 24

4.1 Finite State Machine Table . 56

viii

Listings

1.1 Pseudocode: recursive binary search 9
1.2 Python: recursive binary search 9
1.3 Python: iterative binary search 10
3.1 Pseudocode: recursive inorder tree traversal 34
3.2 Pseudocode: Insertion sort . 35
3.3 Pseudocode: Quicksort . 38
3.4 Pseudocode: Mergesort recursion 39
3.5 Pseudocode: Merge . 39
4.1 Pseudocode: index past end of string 50
4.2 Pseudocode: naïve match . 51

ix

x LISTINGS

1 Introduction

ALGORITHMS AND DATA STRUCTURES are a fundamental part of computer
science and any understanding of bioinformatics that goes deeper than
elementary use of standard tools and techniques requires at least some

understanding of these concepts. Developing new tools and techniques requires a
deeper understanding. One of the most critical concerns in design and analysis of
algorithms and data structures is scalability. Without the right analytical tools, it
is difficult to predict how performance will vary when you move from small test
cases to big data sets and bioinformatics is a field with very big data. The human
genome, for example, is about 3 Gbytes, represented the most obvious way, with
a single letter for each base.

To start, I explain some of the fundamentals of what we study in data structures
and algorithms, then go on to how this all applies to bioinformatics, to set the
scene for what follows.

The take home message? A box of this kind reminds you of key points.

Heads up: A box like this warns you of things that may not be obvious or
that could catch you out.

1.1 Basics

First, what is an algorithm? An algorithm is a precisely-defined method for
obtaining a particular result that should eventually conclude with the correct
answer. Because an algorithm is precisely defined, it is possible to implement
it in any computer programming language. Provided it is correctly implemented,
the program containing the algorithm will eventually finish (because an algorithm

1

2 CHAPTER 1. INTRODUCTION

should always terminate in a finite amount of time) and it should produce the
correct answer. In summary, the properties of an algorithm are:

1. precisely defined – there should be no ambiguity about what it does

2. terminate in finite time – it should eventually finish

3. correct – it should produce the correct result for its purpose

Any computer program that implements an algorithm should therefore produce
the correct result in a finite amount of time.

In practice, there are constraints; a “finite” amount of time can still be too long
to be practical and a real computer has limits like the size of its memory.

Second, what is a data structure? A data structure is a method of storing
information that can either be single item or some kind of composite item.
Composite data structures can be a group of individual items each identified by
name, a collection of items each identifiable by either a key or their position in
the data structure. An example of a key is a name used to identify a person in
telephone directory, or a student number used to identify a student in a university.

Aside from how data is stored, a data structure is also characterised by
operations on it – for example:

• how two or more of them can combine (e.g., strings can be concatenated)

• whether arithmetic on them makes sense and, if so, how it is defined

Scalability

The study of scalability falls into two sub categories: space complexity and time
complexity.

• space complexity is concerned with how much more memory an algorithm
needs than that used to store the data.

• time complexity is concerned with the time it takes to run an algorithm.

In both cases, complexity is a expressed as a function of the size of the data,
usually taken as the number of items in a collection. For example, if a genome has
3-billion bases, the size of the data is 3-billion, without considering how each base

Basics 3

is represented. What we are interested in is measuring how time (or additional
space) grows as we scale the problem size up.

If, for example, an algorithm’s time complexity is a function in which the
biggest term is n2 (quadratic), it will scale much more poorly than an algorithm
whose time complexity has no term bigger than n (linear).

What concerns us is how fast time (or space) grows as n grows, not the
precise formulation of the total space or time required. A function describing time
complexity that looks like n2 means that if you double the size of the problem, you
need not twice the time to complete but four times the time, since (2n)2 = 4n2.
Because we are concerned most about growth rate, we generally drop constants
as well as lower-order terms.

To emphasize that we are only looking at the highest term and ignoring
constants, we write the complexity as O(f (n)) where f is the function of interest,
e.g., O(n2). We can define the notation more formally using limits:

f (n) ∈ O(g(n)) if lim
n→∞

g(n)≤ k× f (n) for sufficiently large k (1.1)

This definition says that we can choose g(n) to be an increasingly good approxim-
ation to f (n), disregarding constants, as n grows; we can also define variants on
the notation where g(n) is a strict upper or lower bound (never equal). The = part
of the inequality implies that we should ideally choose g so that k× g(n) could
be approximately equal to f (n) for suitable k and big enough n; the < allows the
possibility that it may be inexact. In practice, we choose g so that it is as simple
as possible and captures the fastest-growing part of f . Note that g(n) defines a set
of functions; we can choose the one that best characterizes a complexity class and
any actual function that meets the definition is a member of the same set.

Reading O(f (n)) as “order f (n)”, meaning that f (n) characterises how fast
time (or space) required grows, suffices for our purposes. This notation is
sometimes called “big-O”, since o(f (n)) is also used in some scenarios, but we
can abbreviate it in conversation to “O” (pronounced “Oh”)1.

When we look at space complexity, as with time complexity, the concern is
how space required grows as the data size grows – but the space we are concerned
with is over and above that required for the original data (extra variables etc.)
since the space for the original data is needed no matter what the algorithm is.

1To be strictly formal, the “o” and “O” are actually the Greek letter omicron in lowercase or
capitals; there is another variant on describing the complexity class that uses the Greek letter
omega in lowercase or capitals.

4 CHAPTER 1. INTRODUCTION

A particular concern is with recursive algorithms, since each layer of call needs
storage, even if you do not explicitly create that as a variable.

The take home message? Space and time complexity are concerned with
growth rates as the problem size scales, not absolute values of time or
space needed. We use big-O notation to separate out the term that most
strongly affects growth.

Heads up: Space complexity is not concerned with the memory required
to store the data, but extra memory needed by the algorithm. We ignore
space complexity unless it is a function of data size, n (e.g., a few extra
fixed-size variables don’t count).

Best, worst, average

Another thing we need to consider with algorithm analysis is how much complex-
ity can vary for a given problem size. Some algorithms may have a best case that
is a lot worse than the worst case, and an average case that could be somewhere
between. For example, some sorting algorithms (see §3.2) have a best case of O(n)
and a worst case of O(n2). There is at least one with a best case of O(n logn) and a
worst case of O(n2). Yet the latter is one of the best sorting algorithms because its
O(n2) scenario can (usually) be prevented, whereas the algorithm with a best case
of O(n) only does that well in a special case and O(n2) is more typical behaviour.

Average-case analysis requires arguing about how the algorithm varies across
all possible data variants (hence, all variants on the algorithm’s behaviour) and can
be difficult unless this sort of variability is easy to characterise. In a case where
the best and worst analyses are very different (e.g., O(n) vs. O(n2)), the average
case is highly informative in deciding whether this is a good algorithm for large n.
If the average is also O(n2), this is not a method you are likely to want to use for
large data sets. If, on the other hand, an algorithm with a best case of O(n logn)
and a worst case of O(n2) has an average case of O(n logn), it will be a reasonable
algorithm to use if the worst-case behaviour is possible to avoid.

It is important to understand that best, average and worst refer to variations for
the same n and as usual the big-O notation is of interest to describe how algorithms
scale up as n grows – so it is not the “best case” when n is small.

Basics 5

The take home message? Understanding conditions that lead to best
and worst case analysis is important for understanding which or both is
relevant in a given context. Average-case analysis is often harder but can
be useful when there is a big difference between best and worst analyses.

Heads up: Best, worst and average refer to variations for given n.

Before we get to a specific algorithm, we can also analyze properties of the
problem to get an idea on whether it is solvable. Two concerns are

• computability – whether it is possible to solve the problem at all

• tractability – whether it is possible to find an efficient solution to a problem

Computability
Computability theory is a large and complex area. It does however contain some
elementary results, the best known of which is the halting problem. To give a
sense of the subject, I explain that one example. For the most part, we are not
addressing problems in bioinformatics where computability is a concern.

The halting problem is a decision problem. Stated simply, it is an algorithm
H(G, I) that decides if, given algorithm G and a particular input to that algorithm
I, G(I) will run to completion (halt). We can prove it is not possible to find a
general algorithm H as described, using proof by contradiction, a proof technique
that shows that an assumption leads to a contradiction (in logic, true = false).

In this case, we assume we can find algorithm H (returns true if given as
input an algorithm that terminates on a given input, false otherwise) and construct
algorithm F that takes algorithm X as input follows:

F (X) :
if H(F, X)

loop forever
else

terminate

We have two cases if we run this algorithm:

1. F(X) terminates – then calling H(F,X) will give a true result and F(X)

doesn’t terminate

6 CHAPTER 1. INTRODUCTION

2. F(X) doesn’t terminate – then calling H(F,X) will give a false result,
resulting in F(X) terminating

So the assumption that H(F,X) exists leads to a contradiction in both cases. This is
a particularly elegant proof showing that a whole class of algorithm is not possible;
all it requires is the conceptual leap of regarding an algorithm as data that can be
examined by another algorithm.

What is really remarkable about this proof is that it originated – in a slightly
different form – in 1936, before any computers existed [Turing 1937]2.

Tractability
Another issue in practicality of finding an algorithm for a given problem is the
theoretical limit on how efficiently the problem could be solved. What we are
looking at here is the problem, not the solution.

Sometimes, we can prove that a problem can never be solved in better than
exponential time (O(kn)), which means it will never be solvable in a reasonable
amount of time no matter what algorithm we find. One example is trying to play
chess by looking ahead at every possible move. Since a chess game has something
like 1062 variations in board positions (based on an average of 35 possibilities per
turn and an average game length of 40 moves3: 3540 ≈ 1062), this is never going
to be a workable solution. Even if you could compute a trillion moves per second,
it would still take about 1043 years to compute all the outcomes. You need not
even try to find an algorithm. Here, the power is a constant rather than a function
of n but is so large that the problem space is too big to search.

Generally speaking, for modest-sized n, polynomial-time problems, particu-
larly when the biggest power is 2, are reasonably tractable. As n grows, even
these quickly become too slow.

An in between case is problems where the best-known solution takes exponen-
tial time but there is no proof that a polynomial-time algorithm does not exist. An
important class of such problems is called NP-complete. We will not explore

2The author of this paper, Alan Turing, was at the forefront of developing the first electronic
computers in World War II, used for breaking German codes. This project was top secret and
only made public in the 1970s, so a US project, ENIAC, completed too late to be of use in
the war, was credited with producing the first working computer. More here: http://www.
colossus-computer.com/.

3Some discussion of that here: https://chess.stackexchange.com/questions/2506/
what-is-the-average-length-of-a-game-of-chess.

http://www.colossus-computer.com/
http://www.colossus-computer.com/
https://chess.stackexchange.com/questions/2506/what-is-the-average-length-of-a-game-of-chess
https://chess.stackexchange.com/questions/2506/what-is-the-average-length-of-a-game-of-chess

Basics 7

this concept in any detail: it is just important for our purposes to know that
some problems can never have efficient solutions, unless we use an approximation
method that is not guaranteed to find the best answer.

The most scalable algorithms are generally better than polynomial time:
O(n logn), linear (O(n)) or logarithmic (O(logn)) time. Generally, we charac-
terize an algorithm by a function like this that places it into a complexity class.

In most algorithms work, problems that are NP-complete or known to be of
exponential time complexity are considered intractable and can only realistically
be solved for small n or using approximations.

Alternatives to Algorithms

Sometimes an algorithm either can’t be found or is inherently inefficient – the
problem may be intractable or unsolvable, or the data size simply too large even
for a “tractable” algorithm. In bioinformatics, we often encounter the last case
where the time complexity would be reasonable for a moderately large data set
but e.g. for a whole genome or for multiple-genome problems, O(n) or O(n logn)
is not practical.

In these situations various approximation techniques apply, some derived from
the field of artificial intelligence (AI). One example is the use of hueristics, rules
of thumb that guide to a solution without guaranteeing that the solution is correct
or optimal. Another is machine learning, whereby patterns of or classifications of
data are found by methods that are inherently approximate.

These approaches lose one key property of an algorithm, a correct solution (or,
more accurately, they may not produce a completely correct or optimal solution).
The gain is solving a problem where an algorithm would either not be able to find
a solution or would take too long.

The take home message? Using heuristics, machine learning or other
techniques from AI makes it possible to solve problems that would take too
long or even not be solvable at the expense of losing accuracy, optimality
or the assurance of correctness.

8 CHAPTER 1. INTRODUCTION

1.2 Algorithm Design Styles
Algorithms often can fit into one of several common patterns; spotting one of
these aids in analysis and provides a starting point for design. Common examples
are divide and conquer, greedy and dynamic programming.

Divide and Conquer

The divide-and-conquer approach is based on breaking a problem into smaller
pieces until you can solve it directly. This method is a natural fit to recursion: if
you are not at a case that can be handled directly, invoke the algorithm again on
one or more smaller instances of the problem until you break it down to a case that
you can directly handle, then pass the solution up to where the algorithm called
itself.

A simple example is binary search, where you have data in an array that is
sorted and you search for a particular value. A recursive algorithm for binary
search looks like Listing 1.1.

binsearch (data , key) -> boolean
N = data.size
if (N = 1)

if data [0] = key
return true

else
return false

if data [N/2] <= key
return binsearch (data[N/2..N-1], key)

else
return binsearch (data [0..N/2-1], key)

Listing 1.1: Pseudocode: recursive binary search

This is an example of pseudocode: a program-like notation that need not be exact
on details, as long as it expresses the algorithm clearly enough to convert to code.
Here, I assume arrays start on index 0 and I can make a slice of an array by giving
the range of the start and end index. Here is the equivalent code in Python in
Listing 1.2. Note the use of a docstring, with triple-quotes (double-quote symbols
appearing 3 times) to open and close. This makes documentation about a function
possible to extract easily, and is good Python programming practice.

def binsearch (data , key) :

Algorithm Design Styles 9

""" binary search example to illustrate recursion
pass in: sorted list to search , key to search for
return True if found False if not

"""
N = len(data)
print key ," in ", data ," at ", N/2
if N == 1 :

if data [0] == key :
return True

else:
return False

if data [N/2] <= key :
return binsearch (data[N/2:], key)

else:
return binsearch (data[:N/2], key)

Listing 1.2: Python: recursive binary search

Python has some syntactic details you have to get right like indentation, colons
at the end of particular lines and spelling True and False with an initial capital.
These annoying little details are necessary so your program can run; on the other
hand, Python has a very neat syntax for slices (on lists, in this example – they look
at bit like arrays but are not, see §2.2.2): the notation data[N/2:] (everything
from element N

2 on) and data[:N/2] (everything up to but not including element
N
2) divides the data so it is all included in either the one partition or the other. By
contrast, with my pseudocode notation, I had to be very explicit about what was
in each slice of the data, since my notation is meant to be obvious just by reading.
The Python notation is not obvious but is easier if you know what it means.

For comparison, Listing 1.3 contains a Python version of an iterative (non-
recursive, using a loop) version of binary search. It is conceptually simple, but the
details are tricky to get right.

def binsearchloop (data , key) :
""" binary search example using a loop

pass in: sorted list to search , key to search for
return True if found False if not

"""
N = len(data)
low = 0
high = N-1
while low <= high:

mid = (low+high)/2

10 CHAPTER 1. INTRODUCTION

if data [mid] == key :
return True;

if data [mid] < key :
low = mid+1

else :
high = mid -1

return False;

Listing 1.3: Python: iterative binary search

So in this case, there is a small win for recursion. Both approaches are divide and
conquer – recursion more obviously fits the mould, but the iterative version also
cuts the data set down until there is an exact match to a comparison.

The cost of the recursive solution is an internal data structure created for you
called the stack that keeps track of the depth or recursion and allows you to return
to where each call originated. For this particular case, the stack can grow to at
most log2 n deep for search n items, which is acceptable even for very large n.
That is an example of space complexity. Here, the space complexity is O(logn).
We need not give the base of the log as logs in two bases differ by a constant
factor, according to the base conversion formula:

loga X =
logb X
logba

(1.2)

What of time complexity? The algorithm in both forms can be proved to take at
most log2n+1 steps, which is also O(logn).

The take home message? Recursion can be a powerful technique and is
a natural fit to divide-and-conquer problems.

Dynamic programming

Dynamic programming is a bottom-up method in which you solve small sub-
problems until you solve the original problem. Since you start directly with
subproblems rather than the top-down approach of divide and conquer, dynamic
programming can be more efficient in a case where there are many repeated
subproblems. By keeping a table you build of previous solutions you can build
on the solutions already known. In that scenario, divide and conquer can be very
wasteful as it recomputes every subproblem each time it is encountered even if
has been solved before.

Algorithm Design Styles 11

The value of dynamic programming is really only obvious with relatively com-
plex algorithms; I give an example here of a relatively simple one: approximate
string matching. My algorithm is based on Baase and van Gelder [2000, p 507]
but corrects an error in their description.

Figure 1.1 illustrates the core idea of the algorithm. You have two strings you
are comparing, a shorter search string s length m and a longer text t of length n.
You want to find a k-approximate match, the first place in the longer text where the
search string is an exact match except for up to k differences. You can distinguish
four cases:

• match – the two characters currently being compared match

• revise – the two characters currently being compared differ

• insert – the search string has an additional character

• delete – the search string has a character missing

If you are perceptive, you will note that these alternatives are not mutually
exclusive; did a mismatch occur because a character was inserted, deleted or
altered? The solution to this dilemma is to score all the alternatives if there is a
mismatch and build a measure of mismatch that minimizes over all the alternative
ways of scoring a mismatch.

At each position, we score the four alternatives and the difference matrix
(called D) entry for position i in the search string and position j in the text is
the minimum score for each of the above alternatives. What figure 1.1 illustrates
is how we can compute D[i][j] purely using nearest neighbours: each position
where either or both of i and j is reduced by 1.

The score at position D[i][j] is calculated as the minimum value of calculations
1, 2 and 3:

1. choose one of these to compare with the other two values:

• matchCost = D[i−1][j−1] if si = t j

• reviseCost = D[i−1][j−1]+1 if si 6= t j

2. insertCost = D[i−1][j]+1

3. deleteCost = D[i][j−1]+1

12 CHAPTER 1. INTRODUCTION

00 0
1

2

:
m

text you match against.

m

a

t

h

1 n

1

m

D[i-1][j-1] D[i-1][j]

D[i][j-1] D[i][j]

Figure 1.1: Partial string match matrix. The search string (length m) is down
the side; the text to compare (length n) along the top. The top row is initialized
with zeroes and the first column with 0 . . .m.

You find a k-approximate match if a value ≤ k appears in the bottom row and you
can stop at that point.

How does it work?
As you go down column i, the number at position D[i][j] represents how many

mismatches there are in the substring of t up i, when you have looked at the shorter
string s up to position j. Look down column 0: at the top, the entry is 0 meaning
you have scanned 0 positions of both strings, so there are 0 mismatches. Go down
1 row and the value is 1: this means you have looked at 1 position of the search
string s and none of the text t, so there is 1 mismatch. Go down 1 more row, and
the value is 2 because you have looked at 2 positions of the search string s and
none of the text t, so there are 2 mismatches. That is how you develop the first
column – it is initialized like this rather than created as the algorithm runs. The
top row is also set to all zeros.

Start the second column now; this is where the algorithm really starts. If you
compare the first element of s with the first element of t (or i= j = 1), you can now
apply the algorithm. If the two are equal, use matchCost = 0 (D[i− 1][j− 1] =
D[0][0] = 0); you will find the minimum of this and insertCost and deleteCost.
Since the latter 2 are both 1, the minimum is 0, so D[1][1] = 0. If on the other
hand s1 6= t1, you will use reviseCost, which is also 1, so D[1][1] = 1.

If you keep going like this the number in the bottom row is how many
differences there are between s and the substring of t ending at that column of
the table. So to find the first k-approximate match, keep going until you find a
column with bottom entry ≤ k.

Although the algorithm conceptually needs a table with (m + 1)× (n + 1)

Algorithm Design Styles 13

entries, in fact it is only necessary to keep two columns at a time as generating the
current entry only needs those above it (calculated in the same pass) and those to
its immediate left (calculated in the last pass). Its space complexity is therefore
2(m+1) or O(m), acceptable since usually m� n.

Time complexity is O(mn), which is good particularly if the smaller string is
short (length m). However for things like sequence alignment, the algorithm is not
efficient enough as a very large number of runs of the algorithm could be needed
and sequence alignments frequently compare lengthy sequences with both pairs
roughly equally long. Aligning multiple sequences scales the problem up further.

Greedy algorithms

A greedy algorithm, like dynamic programming and divide and conquer, works
by solving subproblems. However the approach differs in attempting to find the
most promising subproblem to tackle next rather than simplistically starting at one
end of the problem and working through from there.

There are cases where the greedy approach only produces an approximate or
suboptimal solution (such a solution is not strictly an algorithm) but there are
cases where greedy algorithms work very well (getting the correct solution fast).

Since the greedy approach grabs a chunk of the problem to solve, leaving
a smaller subproblem to solve, it is more likely to result in a top-down than a
bottom-up approach.

The ideal case for a greedy approach is where it results in a correct, optimal
algorithm. Where this works, it can be a very efficient approach. However,
grabbing the most promising subproblem is not always the best approach. For
example, if you are trying to make change with notes or coins of a limited range
of values, a greedy approach may leave you unable to solve the problem even
though you could with a different choice of smaller denominations. To illustrate
this, assume you have a till full of $2 notes, one $5 and nothing else. You need
to make change of $6. Start with the greedy choice, $5. Now you are stuck. If
instead you considered all options, you could have made change with three $2
notes4.

4For US readers, yes, there is a $2 bill: https://en.wikipedia.org/wiki/United_States_
two-dollar_bill. The fact that many people do not believe it exists would be a reason for this
denomination to accumulate in a till.

https://en.wikipedia.org/wiki/United_States_two-dollar_bill
https://en.wikipedia.org/wiki/United_States_two-dollar_bill

14 CHAPTER 1. INTRODUCTION

0"

5"

10"

15"

20"

25"

0.00E+00" 2.00E+06" 4.00E+06" 6.00E+06"

log_2(N)) log_10(N)) log_2(N)/log_10(N))

Figure 1.2: Comparison of logs to different bases: they differ by a constant
factor.

1.3 More Complexity

When we look at time and space complexity, because we are only concerned with
how fast they grow as n grows (sometimes a function of more variables, but calling
this n is sufficient for general principles), we can often omit inessential details.
For this reason, a pseudocode notation that is imprecise is acceptable, as long as
details we omit do not obscure any contribution that is a function of n and could
change the asymptotic growth rate.

Though I did define the asymptotic growth rate more formally using limits,
what we are concerned with is the biggest term in the function describing
complexity (space or time). Since we are concerned with growth rate, we can
drop any constant multiples.

To take an example, I mentioned that we are not concerned with the base of a
log because all logs of different bases are related by a constant factor. Figure 1.2
illustrates this point. The horizontal line is a constant: it is the ratio between the
two log functions.

Now check out Figure 1.3. The point I make here is that a very simple
algorithm with poor time complexity may do better for small n than a far more
complex algorithm with much better time complexity; lower time complexity wins
out in bigger examples. The functions describing the behaviour of the algorithms
are 100n2, 1000× n log2 n and 1000× n log2 n + 10000× n. The last function
takes a while longer than 1000× n log2 n to start beating the 100n2 function,
but it does in the end. What this example illustrates is that except for relatively

More Complexity 15

0"

20000000"

40000000"

60000000"

80000000"

100000000"

120000000"

0" 500" 1000" 1500" 2000" 2500" 3000"

10"X"N,squared"
1000"X"N,log_2"N"
1000"X"N,log_2"N+10000N"

Figure 1.3: Comparison of functions with different complexities: higher
complexity loses despite lower constants for n large enough.

small examples, it is worth concentrating on finding an algorithm with the lowest
possible time complexity, in this case, it appears, O(n logn). Once you have that,
you can focus on making it more efficient – in this case, maybe the two variants
on O(n logn) algorithms represent different levels of attention to detail. There is
a lot less to gain tweaking one of them than in moving away from O(n2). Even
so there is value in optimizing the slower O(n logn) algorithm; working hard on
making the O(n2) algorithm faster will not be worth significant effort.

Sometimes, it’s worth exploiting knowledge that a simpler algorithm is faster
for small n. For example, there are sorting methods that reduce the problem to
smaller subproblems (divide and conquer) then use a simpler sort method with
poor complexity once the problem size is small enough for that method to be
reasonable to use. When would that be? We can measure the cross-over point and
switch to the simpler algorithm when it is clearly faster. For example, some sorting
methods are O(n2) but so simple that they are much faster than any O(n logn) for
n < 100. So some O(n logn) methods reduce the data size to the point where the
O(n2) algorithm is faster, use the simple algorithm on that subset of the data then
combine the sorted sections of the data using the more scalable algorithm. This
trick works well with divide and conquer, since part of that strategy is combining
solutions to smaller sub-problems.

In summary: it is clear that finer detail of an algorithm is not always necessary
to do time and space complexity analysis, so I use pseudocode when it I do not
need to illustrate implementation details.

16 CHAPTER 1. INTRODUCTION

The take home message? Lower complexity wins for larger n but a
simple algorithm can still be good when you know n is small e.g. to solve
a problem of known size.

1.4 Further Reading

Cormen et al. [2009] is a very good general algorithms text with more detail
than you are likely to need. There are many other algorithms and data structures
books, either general [Baase and van Gelder 2000] or specific to computational
biology [Elloumi and Zomaya 2011]. Also search for algorithms on the Internet;
Wikipedia is a good starting point but Wikipedia articles should always be checked
against authoritative sources.

Exercises

1. Using the definition 1.1 of big-O on page 4:

(a) is n2 ∈ O(logn)?

(b) is logn ∈ O(n2)?

(c) is 3n2 +2 ∈ O(n2)?

(d) which of these is useful if true? Why?

2. We store data in an array and want to sort it using an algorithm that uses
exactly 12 extra bytes of variables no matter how many items we sort. If the
array holds n items, what is the space complexity of the algorithm? Explain.

3. Someone asks you to write a piece of software that will check any program
to see if it runs forever or correctly terminates. Is this something possible to
do? Explain.

4. Explain why it is not practical for a computer to play chess by evaluating
every possible board position.

5. A particular greedy approach sometimes gives good answers quickly but
cannot guarantee to do so: sometimes the answer is inaccurate. Can this
strictly be called an algorithm. Explain.

Exercises 17

6. Compare and contrast greedy, divide and conquer and dynamic program-
ming algorithm design strategies.

7. Can you think of a biological application for k-approximate string match-
ing?

2 Data Structures

A LANGUAGE LIKE PYTHON provides a wealth of built-in data structures so
if you use that class of language, you seldom have to build data structures
from scratch. However, an understanding of what is happening underneath

you is useful so that you do not make inefficient choices. In this chapter I describe
common data structures, show how they can be built up and illustrate how Python
provides them, usually as a high level construct.

Related to data structures is methods of access, which vary according to the
data structure. In general, a data structure can be characterised by:

• structure – how it is organized

• access – how elements can be accessed from a starting point

• search – how elements can be accessed without a starting point

Some aspects of data structures emerge from how we use them so this chapter is
a starting point for successive chapters.

2.1 Basics

The simplest data structures are those that permit access in a particular sequence.
Next are variants on those that can be accessed by a specific value – either an index
(a numeric position) or a key (any kind of value). Finally, there are data structures
that have a more complex interconnection between elements – in general, graphs
(of which trees are an example).

Some of these data structures are built into programming languages, with a
fair amount of variation between languages.

18

Basics 19

2.1.1 Arrays

For example, an array is a data structure that has elements the same size and that
can be indexed using an integer indicating how far along you are from the start of
the array. A common convention is for array indexing to start on zero1. An array
is based on machine-level addressing where it is relatively easy to find an item
i places from the start if all items are the same size. Some languages apparently
have arrays where elements are not the same size; they do this by storing the actual
contents somewhere else and using a pointer to the actual data within the array. A
pointer (sometimes called a reference in languages a bit further from the machine)
is essentially a memory address: a number indicating where in memory something
is stored.

2.1.2 Lists

An array is close to machine level; a list provides more abstract operations and is
a basis for creating more complex structures like trees.

A list has several basic operations common to all languages with that have a
predefined list concept:

• head – get the first item

• tail – get a list containing all but the first item

• traverse – process each element

These basic operations have different names and notations in different languages.
The key thing to understand is that lists are very efficient at sequential access.

2.1.3 Graphs

A graph is a data structure in which nodes (also called vertices; node is a more
obvious term than vertex but the two terms mean the same thing) are connected
by edges. Few languages have a graph as a built-in structure; it must be built out
of lower-level components.

Graphs have differing properties:

1A few languages differ; most you encounter will use 0-based indexing. Some languages leave the
index range up to the programmer; others start it on 1 instead of 0.

20 CHAPTER 2. DATA STRUCTURES

• connected – a graph in which every edge is connected to every other edge,
possibly indirectly

• directed – a graph in which edges have a direction is a directed graph or
digraph; the direction can be one way or bidirectional

• cycles – a graph with a cycle has a node that can be reached through a path
from itself; this is only a concept in digraphs

• degree – number of edges connecting a node; in a digraph

– the in-degree is the number of connections into a node

– the out-degree is the number of connections out of a node

Trees

A tree is a special case of a digraph without cycles – it has an in-degree of exactly
one and an out-degree of one or more. A special case is a binary tree, with an
out-degree of at most two.

A tree has its own special terminology:

• descendant – a node reached from another node

• parent – the node above another node (i.e., the one from which it is an
immediate descendant)

• other relationships are sometimes named as well:

– child – the node descended from another

– sibling – a node with the same parent as another

– uncle or aunt – a node that is a sibling of the parent

– others e.g., cousin, grandparent can be used if the meaning is clear

• root – the only node with no parent

• leaf node – a node with no descendants

• interior node – a node with a parent and at least one descendant (not the
root or a leaf node)

• height – the longest path from the root to a leaf

Basics 21

Figure 2.1: Phylogenetic tree example.

Ironically a tree is usually depicted with the root at the top and the leaves at the
bottom.

How can a list represent a tree? Consider the following representation of the
phylogenetic tree illustrated in Figure 2.1 called Newick format)2:

(A:0.1,B:0.2,(C:0.3,D:0.4)E:0.5)F;

You could represent this as a list as follows (using Python notation – loosely, see
§2.2 for Python notation done more correctly):

[[F, 0], [[A, 0.1], [B, 0.2], [[E, 0.5], [[C, 0.3], [D, 0.4]]]]]

Here I rely on the fact that a list element can be another list. Each element of the
list is either the root of the tree (the first element) or another list of descendants.
If a contained list is a leaf node, it only contains its name and the distance from
its parent. Otherwise, a level that is not a leaf level is represented as a list of the
current level’s nodes and its descendants. For example, the descendants of F are
A, B and E so they are all in the list defining the node following F. C and D are the
next level down so they are inside another layer of list, the list containing E.

In summary, a tree is represented as a list. All nodes are represented as a
list, a pair containing name and distance from the root. A leaf node is only a
list containing the pair representing that node. An interior node is contained in a
list containing the current node followed by its descendants. Figure 2.2 illustrates
how each level of the tree is represented as this list – the top level containing the

2Source: https://en.wikipedia.org/wiki/Newick_format.

Figure 2.2: A tree represented as a list.

https://en.wikipedia.org/wiki/Newick_format

22 CHAPTER 2. DATA STRUCTURES

0"

5"

10"

15"

20"

25"

0" 2,000,000" 4,000,000" 6,000,000"
N"

log2N"

Figure 2.3: Growth of log2 N.

root is highlighted with dark shading; the subtree descended from that in lighter
shading and the subtree a further level down with the lightest shading.

Aside from phylogenetic trees, which have wide use in biology, a tree is a
useful data structure for finding information efficiently. A binary tree has at most
2 descendants (out-degree 2) and an ordered binary tree is a binary tree in which
data is inserted and hence can be found using a specific ordering. The usual way
of doing this is:

• < root – insert to the left

• ≥ root – insert to the right

In the ideal case, where the tree is balanced, searching for a value out of N values
in a tree takes at most log2 N steps. To define this concept we need another
definition. A tree is:

• perfect if all non-leaf nodes have exactly 2 descendants and all leaves are at
the same level

• balanced if it is of height k and it would be perfect if all leaves at level k are
removed

A balanced tree has other definitions that may differ slightly; the key point is that
the difference between the shortest and longest path (height) is at most 1.

A perfect tree of height k has 2k leaves and 2k+1−1 nodes. We can prove this
by induction.

Basics 23

Table 2.1: Adjacency matrix example. Each row represents nodes that the
named node connects to, based on the graph of Figure 2.4. A “0” means no
connection in the direction from the node named in the row to the node named
in the column heading, a “1” means a connection.

A B C D
A 0 1 0 1
B 1 0 0 0
C 0 1 0 0
D 0 1 0 0

• For k=0, a tree has exactly 1 node (2k = 20 = 1) and that is a leaf node;
2k+1−1 = 21−1 = 2−1 = 1 so the basis case holds.

• For the inductive step, assume the result holds for some k ≥ 0. Then for
k + 1, we need to show the next bigger perfect tree has 2k+2 − 1 nodes
and 2k+1 leaves. If height is k and we add 1 to height k, then the extra
layer has twice as many leaves as a tree of height k. Since the number of
leaves was 2k this means for k+ 1, the number of leaves is 2× 2k = 2k+1.
The total number of nodes for height k+ 1 is then 2k+1− 1+ 2k+1. Since
2k+1 +2k+1 = 2×2k+1 = 2k+2, the result is proved.

Why is this result useful? Because a balanced tree to a good approximation has
a height of log2N for N nodes. That means if you can keep an ordered tree of
N items reasonably close to balanced, searching for a value in a tree takes about
log2 N steps. To get some idea how good this is, check out Figure 2.3. It should
be clear from the graph that log2 N grows really slowly even for large N.

General graphs

More general graphs have various methods of representation, the most common
of which is an adjacency matrix. The idea is that each node is represented in both
a row and a column and a connection is marked where connected nodes’ rows and
columns intersect. For an undirected graph, only half the matrix is useful as it is
symmetrical; for a digraph, a connection may exist in one direction not the other.

Figure 2.4 illustrates a digraph; Table 2.1 illustrates an adjacency matrix for
the same graph.

An adjacency matrix is inefficient for a sparse graph, one with very few
connections compared with the node count. In some cases, an adjacency list –

24 CHAPTER 2. DATA STRUCTURES

D
A

B

c

Figure 2.4: General graph. This is a digraph with a mix of edges, mostly
unidirectional, one bidirectional.

a list for each node indicating its connections – is more compact. For example,
for this graph:

• A – [B, D]

• B – [A]

• C – [B]

• D – [B]

2.1.4 Content-Addressable structures

An array is accessed by knowing the index of an element. A tree can be used to
look up specific values.

If we abstract away the method of storage, a data structure in which we find
content by searching for part of that content can be implemented various ways.
In general, we divide the content stored into a key, the means of identifying the
content of interest, and a value associated with the key. A 〈key,value〉 pair implies
that the key is only used for identification. However the key could also be part of
the value of interest.

A dictionary is an example of a data structure where a key (the word) is used
to look something up that does not include the key (the definition).

Relationship to Python 25

2.2 Relationship to Python
Python has a built-in data structure called a list. Python lists have array-like
operations such as indexing and slicing – as illustrated in Listing 1.2, where I
divide a list into smaller pieces. You will be familiar with writing lists between
square brackets if you code a lot in Python.

Let us take a look at how Python data structures map onto arrays, lists and
trees. Other more sophisticated data structures are directly represented in Python;
I look at those afterwards. Lists are a built-in data structure familiar to most
Python coders so I focus here mainly on how arrays differ and on how you can
build trees out of arrays after a brief look at lists.

2.2.1 Python lists

In Python, the basic list operations can be implemented in various ways. The
simplest way to get the head and tail of a list is to use indexing for the head and
a slice for the tail:

>>> data = [0, 7, 12, 15, 34, 42, 99]
>>> data[0]
0
>>> data[1:]
[7, 12, 15, 34, 42, 99]

There are various ways of traversing a list in Python; the simplest is something
like this:

for x in data :
print x

The second line can be anything that needs the value “x” retrieved from the list.

2.2.2 Python arrays

Using as list as if it’s an array in Python is convenient and works well for small
examples. However, if you want to work with large examples where efficiency is
a concern, you need proper arrays where all elements are actually the same size
and indexing is efficient. Since arrays are an optional feature, you need to import
a module, which you can do like this, to import the array data structure:

26 CHAPTER 2. DATA STRUCTURES

from array import array

Once you have done that, you can create an array like this:

x = array('l', [3, 6, 9, 12])

where the letter “l” represents the type of element, here “signed long”, a C type
that represents an integer value in 32 bits3.

2.2.3 Trees in Python

Going back to the phylogenetic tree example, we would have to quote the names
of the “species” in the tree to get genuine Python list code:

phyloTree = [['F', 0], [['A', 0.1], ['B', 0.2], [['E', 0.5],
[['C', 0.3], ['D', 0.4]]]]]

We can now extract the root of the tree as phyloTree[0] – noting that a distance
of 0 makes sense if all distances are from the root:

['F', 0]

and the rest of the tree as phyloTree[1]:

[['A', 0.1], ['B', 0.2], [['E', 0.5], [['C', 0.3], ['D', 0.4]]]]

Since A and B are at the same level, we can extract them by another level of
indexing:

>>> phyloTree[1][0]
['A', 0.1]
>>> phyloTree[1][1]
['B', 0.2]

What happens if we use phyloTree[1][2]?

[['E', 0.5], [['C', 0.3], ['D', 0.4]]]

This indicates that E is an interior node since it is inside a list; the other elements
are its descendants.

Here is a Python session that extracts more of the tree:

3For a more complete list of array types: https://docs.python.org/2/library/array.
html.

https://docs.python.org/2/library/array.html
https://docs.python.org/2/library/array.html

Relationship to Python 27

>>> phyloTree[1][2][0]
['E', 0.5]
>>> phyloTree[1][2][1]
[['C', 0.3], ['D', 0.4]]
>>> phyloTree[1][2][1][0]
['C', 0.3]
>>> phyloTree[1][2][1][1]
['D', 0.4]

A few observations; at each level there is a list:

• root – only needs to contain its name but for consistency, I add distance 0

• leaf node – contains two non-list elements: name and number (distance)

• interior node – contains a list with two list elements: a leaf node-like list
and a list of descendants

What all this illustrates is that a list is a very general structure, which is why it is
built into languages like Python.

2.2.4 Python content-addressable data structures

Python has a dictionary data structure built in. A value for a dictionary is written
in curly brackets (braces); each 〈key,value〉 pair is written with a colon between
key and value, and a comma separates each pair. For example, if we create this:

words = {
'tree' : 'branching data structure',
'species' : 'group of living organisms able to interbreed'
}

We can do this:

>>> words['tree']
'branching data structure'

Once you have started building a dictionary you can add to it as you would assign
to an array index, but using a key value instead of an integer, e.g.:

>>> words['root'] = 'start node of tree'
>>> words['root']
'start node of tree'

28 CHAPTER 2. DATA STRUCTURES

A dictionary in Python hides a lot of detail behind the scenes: how can a key be
looked up efficiently? How are keys and values stored? Python allows the type of
key and value pairs to differ. For example:

>>> dictionary = {}
>>> dictionary[42] = 'forty-two'
>>> dictionary['forty-two'] = 42
>>> print dictionary
{42: 'forty-two', 'forty-two': 42}

The first line creates an empty dictionary. We then add in the value 'forty-two'
with key 42, then the value 42 with key 'forty-two'. In the first case, the
value is a string and the key a number; in the second, we reverse that. The
Python developers have designed dictionaries so they can encompass that sort
of generality and versatility. That generality and versatility comes at a price, as I
explore in §2.3.

An advantage of a language like Python is that it hides the detail of all these
things; a disadvantage is that it hides the detail of all these things. You can write
interesting problems with relatively minimal effort, but it is useful to have a sense
of what is going on underneath so you do not use features that are inefficient for
your particular problem.

2.3 Case Study: Dictionary
Python’s dictionary is provided in the language so you can’t alter it (unless you
are prepared to make your own implementation of Python). It is however a useful
example to use to study how to design a data structure.

In Python, a dictionary is implemented as a hash table, a structure designed for
fast look up. I start out by explaining a hash table, then illustrate alternatives that
have different design trade-offs. Understanding this is useful if you use Python
on large data or if you have to do your own coding from scratch in a lower-level
language that does not have features like dictionaries built in.

2.3.1 Hash tables

A hash table is implemented in two parts:

• hash function – converts the key to a number suitable to use as an array
index

Case Study: Dictionary 29

• array – contains the keys and values

You need to store the key as well as the value since the hash function cannot be
guaranteed to produce a different value for every possible key – particularly if you
do not know in advance what the key values are. Because of this, a hash function
may result in collisions, where different keys result in the same hash value and
hence map to the same place in the array. There are various methods of handling
collisions including storing the collisions in a second table or using a secondary
hash function to find another space in the same array.

In the best case, a hash lookup takes 1 step or a number of steps bounded by
a constant, and hence time is O(1). However, in the worst case (mostly avoided
by careful design of the hash function), a substantial fraction of the data hashes
to the same location and handling collisions can result in a linear search, which is
O(n). A strategy for making it easier to avoid collisions is to make the hash table
significantly larger than it needs to be.

The take home message? A hash table is the most efficient way of
looking up data based on a key provided the hashing function distributes
key values reasonably evenly and minimizes collisions. You can rely on
efficient implementation of built-in structures such as Python dictionaries.

2.3.2 Balanced trees

A hash table has the benefit that, provided collisions are minimal, lookup takes
constant time (called O(1) in algorithm analysis). However a hash table is
inefficient if you want to retrieve the data sorted in key order as that requires
sorting. An ordered binary tree allows efficient retrieval of the contents in sorted
order but at the cost of making lookup take time O(logn).

However, a tree is only efficient if it is reasonably close to balanced. In the
worst case (e.g., if the data that is inserted is already sorted before insertion
into the tree), a tree can be completely unbalanced with all the data down one
side resulting in O(n) lookup time complexity. There are various algorithms for
keeping a tree balanced that make inserting and deleting much harder to code,
though the benefit of maintaining O(logn) lookup time complexity is worth it.

Two strategies are red-black trees and AVL trees. Both keep a tree close
to balanced as new data is inserted or data is removed (deleted) from the tree.
Both are too complex for a relatively introductory treatment of data structures and
algorithms. You need to be aware that they exist in case you need them; for a

30 CHAPTER 2. DATA STRUCTURES

language like Python, you can rely on efficient implementation of structures like
dictionaries rather than having to build your own from scratch.

A tree wastes less memory than a hash table, provided the data items stored are
reasonably big. The main overheads are pointers to the left and right descendants.
A red-black tree also needs an extra variable that keeps track of whether the
node is considered to be “red” or “black”. An overhead of 3 small data items
is reasonable if the key or value (or both) is reasonably large. Also the tree is only
allocated on demand, whereas the size of the hash table needs to be determined in
advance.

The take home message? For code that is used a lot and meant to be very
general the complications of implementing balanced trees are worth the
effort. For most of our own coding, simpler strategies are good enough.

2.4 Further Reading
Hash tables have a long and venerable history [Maurer and Lewis 1975], including
applications in bioinformatics [Rizk et al. 2013]. In recent times, hash functions
have also been used as a check on whether data has been corrupted [Coron et al.
2005] (you can store the hash value and check if you get it again on what should
be the same data – a common application is checks that email and downloaded
files have not been tampered with).

Red-black trees go back a long way [Guibas and Sedgewick 1978]. They
were preceded by AVL trees [Adelson-Velsky and Landis 1962], named after their
inventors, two Soviet scientists GM Adelson-Velsky and EM Landis.

There is plenty of more recent material on these subjects on the Internet, as
well as in the books cited in Chapter 1.

Exercises
1. The approach given for organizing a tree into a list is not the only option.

Rethink the approach and explain how else a tree could be represented in a
list.

2. The STRING protein-potein interaction network database4 at last access
had 2031 organisms, 9.6-million proteins and 1.4-billion interactions.

4https://string-db.org/, accessed 9 June 2017.

https://string-db.org/

Exercises 31

(a) Is this a sparse graph?

(b) Is it a digraph?

(c) Describe differences in how your would implement connections in an
adjacency matrix as opposed to an adjacency list.

(d) Which approach would you choose and why?

3. Is it reasonable to use a Python list in most cases rather than an array? Think
of an example where an array would be a better choice.

4. Look up how insertion and deletion work in a normal ordered binary tree
and compare with a red-black tree.

5. Would you use a Python dictionary for data you frequently need to retrieve
in sorted order?

6. If you want the speed of access of a hash table but also need to retrieve data
in sorted order, what could you do if memory use is not a consideration?

7. If you had to write Python code involving phylogenetic trees and you had
data in Newick format, would you use that directly, or convert to a format
like that of S2.2.3? Explain.

8. Explain why hashing, though the best case of lookup is O(1), has a worst
case analysis for lookup of O(n).

3 Sorting and Searching

SORTING AND SEARCHING are common techniques that apply in many areas
and I introduce some of the more popular methods. Many programming
languages have built-in sorting algorithms; it is not common that you need

to build your own so the purpose of this chapter is to use them as examples
to illustrate principles rather than to build extensive skills in designing such
algorithms.

Sorting nonetheless is a good example of design trade-offs between simplicity
for a small example and the value of more complex, scalable algorithms. It
also provides an interesting example of a theoretical model for the best possible
efficiency of a class of algorithm. Most sorting algorithms assume data can all fit
in memory – these are internal sorting algorithms. For really large data sets, there
are also external sorting algorithms that use file space. External sorting is a big
subject: mostly you can use existing tools so I only touch on it here.

Searching in its simplest form is a straightforward problem – find a particular
value in a data set – that illustrates the value of choosing the right data structures.

3.1 Trees

Trees provide a data structure that facilitates both sorting and searching. Recall
how an ordered binary tree places everything less than the root to the left – and
does that recursively as you go down the tree. Recall also that if the tree is
reasonably close to balanced, that results in a search time O(logn).

Once the data is in a tree, it can be retrieved in sorted order by visiting each
node is defined in listing 3.1 – this order of tree traversal is generally called inorder
traversal. The name not only captures the fact that you retrieve the nodes in the
correct sorted order (for an ordered tree) but that the data processing step is in the
middle of two recursive calls.

32

Trees 33

NULL represents an endpoint in the tree. In a lower-level language like C or
C++, this would be a NULL pointer. I use “print” to represent visiting the node
in the correct order – some other action could be done instead, depending on the
purpose of “sorting” the data.

inorder (tree)
if (tree.left != NULL)

inorder (tree.left)
print (tree.data)
if (tree.right != NULL)

inorder (tree.right)

Listing 3.1: Pseudocode: recursive inorder tree traversal

How do you make sense of this? Logically, everything to the left of the current
node should be visited first to visit all the nodes in the correct order since
everything less than a given node is inserted to its left. Similarly everything to
the right is at least as big as the current node and so, in the correct ordering, can
be visited after the current node.

What is the time complexity of this form of “sort”? It happens in two phases:
building the tree and traversing the tree.

For building the tree, assuming it stays close to balanced, the longest operation
to place a new element in a tree that already contains n nodes is at worst log2 n
steps. The actual number of steps is ∑

n
i=0 log2 i, which can be shown to be

O(n logn).
For traversing the tree, each node is visited once on the way down the recursion

to the left, again to print and again on the way up from recursion to the right so
traversing is O(n).

Overall, then, “sorting” like this is O(n logn) since adding something like k1n
onto a function of the form k0n logn will not take it to higher complexity class.

Sorting like this is really only useful if you need your data in a tree anyway
because adding in a tree as an extra data structure is extra memory (space
complexity O(n)), a waste if you don’t need it, and the overall time is longer
than other O(n logn) sorts.

The take home message? Keeping a tree ordered has the benefit that
lookups are quick and you can produce the data in sorted order if needed,
but understand the trade-offs that make this a suboptimal approach in
some cases.

34 CHAPTER 3. SORTING AND SEARCHING

3.2 More General Sorting
It is worth studying simple sorting methods because they are good enough for
small data – and also because some of the more efficient methods are slower for
small n and switching to a simpler method for smaller subproblems can be a good
choice, as outlined on page 16. So in this section, I start with simpler methods
that (aside from special cases) take time O(n2), then go on to more sophisticated
algorithms.

3.2.1 Simple methods

There are many simple sorting algorithms that generally have the property that
one value is guaranteed to be in the correct place each pass. That means: if you
are sorting n items, you reduce the problem each time by 1. So the problem size
on the first pass is n, on the second pass, n−1, and so on, down to 1. The amount
of work then is some constant times ∑

n−1
i=1 i; it can easily be proved that

n−1

∑
i=1

i =
n× (n−1)

2

=
n2−n

2
(3.1)

which is O(n2). Of the O(n2) algorithms, insertion sort is one of the best because
it is very simple and does not move data unnecessarily.

insertionsort (data)
for i in 1 .. N

j = i - 1
compare = data[i]
while j >= 0 and data[j] > compare

data [j+1] = data [j]
j = j - 1

data[j+1] = compare

Listing 3.2: Pseudocode: Insertion sort

The algorithm can be thought of like this. The first i items are sorted. Now take
the next item and insert it into the part of the data that is already sorted. How does
this work? When i is 1, the zeroth item is sorted since only one item is always
sorted. So item 1 needs to be either before or after item 1. The inner loop does

More General Sorting 35

this. Now the first two items are sorted; we can run the inner loop again to insert
the next item at position i = 2 into the sorted portion.

What if the data is already sorted? Then the inner loop will always stop on the
first test of data[j] > compare (this will be false because j = i− 1 before the
loop, so we are comparing data[i-1] with data[i]). As soon as the test fails
the inner loop can stop because the previous items are sorted. This means that
the outer loop will go n− 1 times, but the inner loop takes constant time, so the
algorithm in this case is O(n).

What of the worst case? The worst-case behaviour is if the inner loop always
stops only when j = 0. That results in a count of total inner and outer loop
iterations described by Equation 3.1, i.e. O(n2). This will occur if the data is
sorted in reverse order, as each item encountered will be smaller than all those
previously sorted.

What of the average case? If we know nothing about the distribution of the
number of different ways the original data could be ordered, it is reasonable to
assume that each time we insert a new item, it will on average be smaller than
half the values already sorted. In this case, the inner loop runs half the number
of times of the worst case, resulting in time a constant times n2−n

4 , which is still
O(n2).

There are several other sorting algorithms with minor differences in efficiency
but with similar analysis, best case O(n) when the data is already sorted, worst
case O(n2). Two well-know examples: bubble sort and selection sort. It is not
worth studying these in detail as any requirement for efficiency is better met by
O(n logn) algorithms.

An interesting variation on this kind of algorithm is shellsort (named after its
inventor, DL Shell) [Shell 1959]. Shellsort works like insertion sort in multiple
passes. In each pass, it only compares values a distance d apart, reducing d until
d = 1. Although the code is more complicated, it can run faster if data is far from
sorted as items that are far from their final position move a long distance as a result
of one comparison. Analysis of shellsort is very complicated and depends on the
exact method of choosing d; some variants run faster than O(n2) though none as
good as O(n logn) [Plaxton et al. 1992].

The take home message? Insertionsort is a good method for small
data but O(n2) grows so fast that for n much bigger than 100, a more
sophisticated method with lower time complexity is better.

36 CHAPTER 3. SORTING AND SEARCHING

3.2.2 Efficient methods

The most popular O(n logn) sort is quicksort, invented by Tony Hoare [Hoare
1961]. Quicksort works by:

• pivot – choose an element of the array as a basis for reorganising the
ordering

• partition – reorder as necessary so that all data less than the pivot appears
before the pivot

• recursion – sort on the two partitions: data before the pivot and data after
the pivot

Quicksort works best if the pivot is close to the middle; in the best case, the data
is split in half each time, resulting in time complexity O(n logn). To see why,
you need to solve the following recurrence, which describes the work done in the
algorithm. We call the function T (n) because it approximates the growth rate of
run time. It takes n steps to partition n values, and T (n

2) describes the amount of
work for each of the two recursive sorts of the new partitions:

T (n) =

{
1 if n = 1

2×T (n
2)+n if n > 1

(3.2)

Intuitively, the total amount of work over all partitions as we divide down remains
proportional to n for each pass, even though we divide each partition again at each
step. How often can we do another pass over the data? If we divide it evenly, we
can do that log2 n times. What if the data is already sorted and we choose the first
element of the partition as the pivot? Then the algorithm only splits off one sorted
item each pass, and its time run is described by Equation 3.1, i.e., it takes time
O(n2). For quicksort, the average case can be shown to be O(n logn). Since detail
of quicksort is simple, a lot of work has gone into tricks to avoid the O(n2) worst
case, rather than on more complex algorithms with worst case O(n logn).

Solving recurrences can be tricky; if you do a lot of algorithms work, look up
the master theorem, also known as the master method, which provides a cookbook
approach to solving recurrences in the form they often come up with algorithm
analysis. Since it demonstrates a few useful tricks, I present a proof that this
recurrence simplifies to n log2 n+n in §3.2.3.

In listing 3.3, I use C-like notation for increment (increase by 1): i++ means
the same as i = i + 1, and similar notation for decrement (decrease by 1): i--.

More General Sorting 37

This version always choose the first item in the partition as the pivot. To call
it: quicksort (data, 0, N-1) for N elements (assuming indexing from 0).
Another notation detail – I use the Python notation:

x, y = y, x

for swapping values.

quicksort (data , low , high)
if high > low:

divide = partition (data , data[low], low , high)
quicksort (data , divide+1, high)
quicksort (data , low , divide -1)

partition (data , pivotvalue , low , high) -> int
loop forever

while data[high] > pivotvalue
high --

while data[low] < pivotvalue
low++

if high <= low
return high

else
data[low], data[high] = data[high], data[low]

Listing 3.3: Pseudocode: Quicksort

The take home message? Quicksort is a good general-purpose sorting
method; it is not a lot more complex than insertionsort and scales much
better for large n with O(n logn) best and average cases, provided its
worst-case behaviour of O(n2) is avoided.

It is worth comparing quicksort with mergesort, another O(n logn) sort.
Whereas quicksort is O(n logn) for the best case and average case, it can be O(n2).
Mergesort is always O(n logn), but needs more extra memory and is not as simple
so quicksort usually beats it in real examples.

Mergesort works by splitting the data evenly each time (from which it derives
its O(n logn) time), then merges the two recursively sorted partitions of the data;
recursion continues until there is only 1 item left. Then you pop out of recursion
and merge adjacent pairs of values; 1 level up you merge adjacent groups of 4
values, and so on. Dividing the data evenly until there is only one item can be

38 CHAPTER 3. SORTING AND SEARCHING

done in log2 n steps; merging n items in 2 sorted lists or arrays into one sorted
list or array takes O(n) steps. As with quicksort, if we add up the work in all the
merges at one level of recursion, there are n items being merged; merges like this
happen log2 n times, resulting in a total of O(n logn) work. We can describe the
work done with the same recurrence as the quicksort best case (Equation 3.2).

So why is mergesort not the preferred method? Because the constants in the
O(n)-step merge are bigger than the O(n)-step quicksort partition.

Also, I mentioned memory. Quicksort, like any recursive algorithm, needs
stack space to keep track of the recursion to allow returning to the correct place
as each step completes. How deep does the stack go? In the best and average
case, O(logn) extra memory is needed; for the worst case, the stack is O(n) deep.
This is extra memory over and above the data structures being sorted and is not a
constant but a function of n; this is an example pf space complexity.

What of mergesort? Any reasonably obvious algorithm to merge two sorted
lists, total size n, needs O(n) extra memory. Mergesort needs this in all cases –
unlike quicksort where the extra memory is much smaller in the best and average
cases than in the worst case.

To give you some idea of where the complication in mergesort lies, compare
listing 3.4 with that of quicksort (3.3). It looks far simpler. But that’s because I
separated out the merge code.

mergesort (data , low , high)
if high - low > 1

divide = (high + low) / 2
mergesort (data , low , divide)
mergesort (data , divide , high)
merge (data , low , divide , high)

Listing 3.4: Pseudocode: Mergesort recursion

The merge code is in listing 3.5; that is far more complex and – more importantly
– needs a lot of memory since each time we merge, we copy the data to a new
data structure, hence the O(n) space complexity. In this listing, I do array slices
and ranges in loops with a notation that is explicit about the start and end indices,
unlike in Python, where the end of a range is one past the last value. This is
consistent with the notation introduced in Listing 1.1.

merge (data , low , divide , high)
templow = data [low..divide -1]
temphigh = data [divide ..high -1]

More General Sorting 39

3

57

-1

12

100

77

99

108

m
e
rg
es

p
lit

-1

3

12

57

Figure 3.1: Mergesort moves. Showing sorting the first half of the data, stored
values only shown when they change. The first 4 elements are split off in the
first step and splits continue until partitions have at most one element and are
then merged. Only the last merge of elements [3, 57] and [-1, 12] actually
changes the array order since all smaller partitions up to then are sorted.

next_low = next_high = 0
next_data = low
low_N = templow.length
high_N = temphigh.length
loop forever

if next_low >= low_N or next_high >= high_N
break

if templow[next_low] < temphigh[next_high]
data[next_data] = templow [next_low]
next_low ++

else
data[next_data] = temphigh[next_high]
next_high ++

next_data ++
for i in 0..low_N -1

data[next_data] = templow [i]

40 CHAPTER 3. SORTING AND SEARCHING

next_data ++
for i in next_high ..high_N -1

data[next_data] = temphigh [i]
next_data ++

Listing 3.5: Pseudocode: Merge

A few notes on the code: the first loop finds the smaller next item out of each
partition to copy back to the original array; it terminates when one of the two
partitions has emptied. The last two loops finish off transferring out of the two
partitions when one of them is empty. So one of the loops will have a vacuous
range, i.e., it will do zero iterations.

This all works because each partition is sorted prior to merging. Why?
Because the recursion continues until it hits a partition with 1 or zero elements,
then pops out to the merge code. A partition with 1 or zero elements is by
definition sorted. Merge it with its neighbour and the result is a bigger partition
that is now sorted. As you pop out of recursion and do a merge, this results in
doing so on pairs of partitions sorted by a deeper level of recursion.

Mergesort is a good candidate for switching to a simpler sort when the
partitions get small enough as the merge stage of the algorithm is relatively
complicated. However, the merge is still O(n) for merging n items, so it is still
better than O(n2) for any reasonably large n.

While quicksort is generally faster, there may be scenarios where you cannot
risk quicksort’s O(n2) worst case. Mergesort also adapts better to sorting data too
big to fit in memory, where you may need to move part of the data into memory at
a time, with the rest in a file. With the trend of flash slowly replacing disk, there
has been new work on adapting mergesort to external sorting [Lee et al. 2016].

The take home message? Mergesort has the benefit of being O(n logn)
even in the worst case, with the downside of requiring O(n) extra memory.
Using insertionsort when the partitions are reasonably small is a good
trick. Mostly, quicksort is faster but mergesort does have special cases
where it is the better choice.

3.2.3 Proving a recurrence

Equation 3.2 is a relatively easy recurrence to solve. Although we could use the
master method, I show here how you can show that it has the following closed

More General Sorting 41

form (a simple equation with no recurrence) for n = 2k,k ≥ 0:

T (n) = n log2 n+n (3.3)

I prove by induction on k, i.e., the proof holds for powers of 2 (it is a reasonable
approximation for other values). This illustrates a useful trick: doing induction on
a new variable, in this case, k, to simplify the proof. The result is inexact for n not
a power of 2.

Basis: k = 0. For this case, the recurrence directly gives the value 1 and n log2 n+
n = 1log2 1+1 = 0+1 = 1. So the basis case is proved.
Inductive step: assume that T (n) = n log2 n+n for some k such that 2k = n≥ 1.
Now show the result holds for k+1, i.e., prove that:

T (2k+1) = 2×T (
2k+1

2
)+2k+1

= 2k+1 log2 2k+1 +2k+1 (3.4)

if it holds for n = 2k, i.e. T (2k) = 2k log2 2k +2k (inductive assumption, IA).

2×T (
2k+1

2
)+2k+1 = 2×T (2k)+2k+1

= 2× (2k log2 2k +2k)+2k+1 by IA

= 2× (2k log2 2k)+2× (2k)+2k+1

= 2k+1 log2 2k +2k+1 +2k+1

Since log2 2k+1 = log2(2
k × 2) = log2 2k + log2 2 = log2 2k + 1, we can write

log2 2k as log2 2k+1−1:

2k+1 log2 2k +2k+1 +2k+1 = 2k+1(log2 2k+1−1)+2k+1 +2k+1

= 2k+1 log2 2k+1−2k+1 +2k+1 +2k+1

= 2k+1 log2 2k+1 +2k+1 (3.5)

So the result holds for 2k+1 if it holds for 2k – the proof is complete since the
equations 3.4 and 3.5 are equal.

The take home message? Solving recurrences in general can be
difficult; for recurrences derived from relatively straightforward recursive
algorithms, look up the master method.

42 CHAPTER 3. SORTING AND SEARCHING

first compare

second round

final result ...

...

Figure 3.2: Sort decision tree. A record of the order of steps an arbitrary
algorithm takes sorting by making a decision after each pairwise comparison.
Depending on the outcome of each comparison, you go left or right at each
point in the tree to go down one level. Leaves represent all the possible orderings
of the original data at least once.

3.2.4 Theoretical limit on sort by comparision

Is O(n logn) the best we can do for sorting (excluding special cases, like the data
is already sorted)? Yes. Mostly. We can prove that the worst case and average
case of any algorithm that makes a decision based on pairwise comparisons cannot
have a worst-case analysis better than O(n logn).

Consider Figure 3.2. This represents all the decisions an algorithm takes
sorting by comparing pairs of values. The root and interior nodes represent
decisions; depending on the outcome you go left or right down the tree. The
picture does not indicate what the decision is – that would depend on the
algorithm. The important thing to understand is that the leaves of the tree must
number at least as many as the different ways to order the original data. For n
values the number of leaves is n! if each reordering is represented exactly once,
the smallest number of leaves there could be. If the tree is as compact as possible,
it should be balanced, meaning the height of the tree representing the algorithm
taking the smallest number of steps possible is to a good approximation log2 n!

We can approximate n! with Stirling’s formula (asymptotically closer to
correct as n grows):

n! ∼
√

2πn
(n

e

)n
(3.6)

Consequently (with a little mathematics), logn! approximates as n lnn plus lower-
order terms, so O(n logn) is a bound on the worst case of any sort that makes

More on Searching 43

decisions like this. It is also possible to show that this is a bound on the average
case.

Does this mean that no sorting algorithm can in general beat O(n logn)? No;
to do so you must do something that does not involve making a choice each time
you compare values. There are sorting methods such as radix, lexicographic and
bucket sorts that put the value directly in the right place, possibly after a few passes
over the data. These methods require knowledge of the type of data being sorted
to be effective.

The take home message? Sorting by pairwise comparisons in general
cannot do better than O(n logn). We can do better in special cases and
methods that use special knowledge of how the data is represented can
also do better.

3.3 More on Searching

Binary search on a sorted list of array and searching a reasonably balanced binary
binary search tree are good options with different trade-offs.

If the data is mostly sorted and not changed often, keeping it in a list or array
is reasonable. Adding to a list if you know the right place is quick though if
your language – like Python – allows you to index a list as if it’s an array, there
could be hidden overheads. Adding to an array is expensive as it is usually stored
contiguously in memory. If you need to add an element before the end, you need
to move everything after it along one position, in the worst and average cases,
time O(n). Also, since an array is a fixed-sized structure, adding to it may require
reallocating it in new memory and copying everything over to the new space, O(n)
even in the best case.

A tree has more overhead than an array – you need a left and a right pointer
for each node – and is only good if it is kept balanced, possible at the cost of more
difficult algorithms for insertion and deletion.

All of these methods can provide O(logn) search time. Can you do better?
There is at least one algorithm that for the average case does better: interpolation
search. This method, instead of finding the midpoint of each interval, estimates
how far along the search key is likely to be by interpolating using known values.
For example, if the biggest item in an array of 50 elements is 200, the smallest
is 10 and the search key is 30, we can estimate how far along it is likely to be
assuming a uniform distribution of key values. In this case, our estimate (for a

44 CHAPTER 3. SORTING AND SEARCHING

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20"
x 10000000

"log"n" 5"X"log"log"n" 10"X"log"log"n"

Figure 3.3: logN vs. log logN. With a small extra overhead per step, log logN
easily beats logN even for small N but the actual numbers are not big; with 10
times the overhead, log logN is still behind with N=20-million.

partition of an array with indexes in the range low . . .high) would be1:

mid = low+
key−data[low]

data[high]−data[low]
× (high− low) (3.7)

(3.8)

The way to read equation 3.7 is: the divide scales the indexes to how far along the
key is relative to the minimum and maximum values (the first and last items in the
array – since the data is sorted). Now plug in the actual values from our example:

= 0+
30−10

200−10
× (49−0)

=
20

190
×49

≈ 5

So we would choose 5 as our next index to probe into the array, rather than
the midpoint (here, 24). Provided the data is uniformly distributed, this is a

1Adapted from https://en.wikipedia.org/wiki/Interpolation_search – where the
multiply is done before the divide; doing it that way reduces roundoff error though the formula
as expressed here is clearer.

https://en.wikipedia.org/wiki/Interpolation_search

Further Reading 45

much better guess than probing at the midpoint. How much better? It can be
shown that interpolation search on average takes time O(log logn) [Perl et al.
1978] – far better than O(logn) for very large n. However, since the algorithm
requires significantly more computation than binary search and O(logn) is small
for quite large n, binary search is on the whole preferable. Add to that the fact
that interpolation sort’s worst case is O(n). In short, interpolation search is an
interesting algorithm that could be useful for really large data but you need to
be sure that the data is reasonably uniformly distributed. If not and you know
enough about how it is distributed to perform a reasonably accurate interpolation,
you could still get a good result.

Take a look at Figure 3.3. Even for N = 20,000,000, logN is within a
factor of two of 5× log logN and a little ahead of 10× log logN. That means
an O(log logN) algorithm has little space for extra complications per step to beat
an O(logN) algorithm except for truly large data.

What then is the best search method? It depends how you process your data.
If you read it in once, need to access at least part of it in sorted order and need to
search it efficiently, an array is not a bad choice. If you need to update your data
frequently and the other requirements are unchanged, a balanced tree is a good
choice as insertion and deletion are a lot more efficient than for a tree. If fast
searches are your main requirement and a bit of extra memory is not an big issue,
a hash table is good.

With a relatively high-level language like Python, you will seldom need to
code these things from scratch – just use built-in structures like dictionaries and
lists; you need all this if your problem sizes become very large and you do not
have pre-existing tools that do the job.

The take home message? A binary or balanced binary tree search with
time O(logn) is good enough for most purposes. If you are prepared to
waste more memory a hash table can do a lot better with O(1) lookups.

3.4 Further Reading
Quicksort has been widely studied including methods to tweak the details for more
speed [Sedgewick 1978] and more recently implementing it on GPUs [Cederman
and Tsigas 2009] (using a graphics processing unit for high-speed non-graphical
computation is called general-purpose use of GPUs, or GPGPU – that is another
whole subject). Knuth [1998] is the most comprehensive reference on sorting and

46 CHAPTER 3. SORTING AND SEARCHING

searching – written in what some may consider an archaic style but in a way others
may consider comprehensive.

Exercises

1. The quicksort algorithm is an example of tail recursion in the second
recursive call; it does nothing after the recursion ends. Rewrite the
algorithm so the second recursive call is replaced by a loop. What is the
value of doing that?

2. Prove by induction that the formula (3.1) for time for an O(n2) algorithm is
correct.

3. Look up how a bucket sort works. Explain why the O(n logn) construction
of Figure 3.2 does not apply and why this sorting method is O(n), no matter
how many items we sort. What is the space complexity of the algorithm?
Explain.

4. Choose the best data structure and algorithm for each scenario and explain
your choice:

(a) You have data that is captured once then many searches are performed
on it and occasionally you need to print out all the data in sorted order.

(b) You have data that is captured once then many searches are performed
on it and you never need to print out all the data in sorted order.

(c) You have data that is captured a few items at a time and occasional
searches are performed on it; you need to print out all the data in sorted
order frequently.

5. Rewrite the mergesort algorithm so it switches to insertionsort when
partition size is 100 or less.

6. Explain how you would go about implementing interpolation search if the
data was not uniformly distributed but you had some idea of the nature of
the variability of the distribution of the data.

7. You have a choice of algorithms A and B that respectively have analyses of
O(n2) and O(n logn). You test them and find A runs faster. Explain how

Exercises 47

this could happen and how this could influence your choice of whether to
use A or B.

8. Explain why it is not clearly better to use an O(log logn) algorithm than an
O(logn) algorithm in all cases.

4 String Matching

STRING MATCHING underlies much of bioinformatics – DNA can be seen as
a string from a 4-letter alphabet, RNA from a slightly different 4-letter
alphabet and proteins as strings from a 20-letter alphabet. Classic string

matching problems often have little resemblance to the problems we solve in
bioinformatics because the individual “letters” are not pure abstractions. A string
in text processing – a sequence of letters, symbols, punctuation, etc. – can have
different meanings depending on context. Are you processing program code
or a natural language (one spoken, not created for an artificial purpose, like
programming)? Even so, string matching can be reduced to a relatively abstract
problem. Does a sequence of a longer string contain an instance of a shorter
string? Or, more generally, does a longer string contain a pattern, a description
that covers a range of possibilities?

In bioinformatics the problem is complicated by three things:

• data size – we often need to consider very long strings up to the length
of a whole genome and more than one (in the most extreme case, a multi-
sequence alignment that includes multiple genomes)

• differential significance of matches – in some cases, e.g., amino acids with
similar function, a match to individual “letters” can include a requirement
to know how substitutable one letter is for another

• significance of gaps – in some cases, a gap may not matter; in others it may
(e.g., in a coding region)

These and other issues complicate the bioinformatics string matching problem
versus the text-processing version. Nonetheless that latter is useful to understand
for two reasons: sometimes these classic approaches are useful and they are a
lot simpler than classic bioinformatics algorithms like Smith-Waterman [Smith

48

Exact Match Algorithms 49

and Waterman 1981] and BLAST (Basic Local Alignment Search Tool) [Altschul
et al. 1990].

Since Smith-Waterman and BLAST are very complicated, I introduce the
basics of string searching in this chapter and look at sequence alignment in
the next chapter. Some aspects of string matching apply to contexts other than
sequence alignment such as motif discovery and there are occasionally problems
where these techniques do apply. So it is worth knowing them both for their
potential use and as a scaffold for understanding more complicated algorithms.

Also refer to page 12; the approximate string matching algorithm (k-approximate
match) may sometimes be of practical use, but also provides a starting point for
understanding sequence alignment strategies.

In this chapter, I introduce several exact string match techniques followed
by regular expressions, which can be used to match a pattern, not only an exact
subsequence.

4.1 Exact Match Algorithms

There is a plethora of interesting algorithms for doing exact-match string searches;
I only skim the surface here to indicate the possibilities. The simplest approach is
to compare the search string (“pattern”) against the bigger string (“text”) and as
soon as there is a mismatch move the pattern along one position and start again.
That naïve approach works well for small examples but does not take advantage
of repetition within the pattern or noticing that one of the characters in the text
is not in the pattern, both of which would allow the pattern to move further on a
mismatch.

To illustrate the variations, I describe a naïve approach in detail and outline
one of the more sophisticated strategies.

To start, it is useful to have a function that detects whether an index is off the
end of the text string. Listing 4.1 defines a function atEnd that does that.

atEnd (str , k) -> boolean
return k >= length(str)

Listing 4.1: Pseudocode: index past end of string

50 CHAPTER 4. STRING MATCHING

A piece of text to search
text
text
text

text
...

Figure 4.1: Naïve String Match. Each time there is a mismatch, the pattern
string slides along the text string one position. In this case, the pattern being
searched for is the string “text” The algorithm stops the first time there’s a
match and returns the position in the text where the match starts – here 11,
with the first position counted as 0 – or -1 if there is no match.

4.1.1 Naïve string match

The naïve algorithm, in listing 4.2 and illustrated in Figure 4.1, is based on that
of Baase and van Gelder [2000, p 486] and corrects an error in their algorithm. In
their version, they check for reaching the end of the text in the loop header; doing
this results in missing a match at the very end of the text string. I also simplify the
code and make it more obvious but it essentially does the same steps.

naiveMatch (pattern , text) -> int
match = -1
i = j = k = 0;
m = length(pattern)
while true

if k >= m
match = i
break

if atEnd (text , j)
break

if text[j] == pattern[k]
j++; k++

else
i++; j = i; k = 0

return match

Listing 4.2: Pseudocode: naïve match. Returns the index of the first match
of a pattern string in a text string or -1 if not found.

The algorithm returns -1 if there is no match, the index of the match otherwise.
In the algorithm, j represents where your have got to in the text, k how for along
you are in the pattern and i where the current search started, and i is the value

Exact Match Algorithms 51

returned if the string is found. The line

i++; j = i; k = 0

takes j back to the position it started the current search plus 1 (after i++, it does
j = i), and the position in the pattern back to the start (k = 0).

This algorithm has the merit of being very simple (not much work per loop
iteration). However in the worst case (when the pattern is not found) its time
complexity is O(mn). To get close to that you would have to construct a pattern of
length m that most times almost matched before having to give up and sliding it
one position. In real natural language texts, that scenario is unlikely; the average
time complexity is heavily dependant on use cases.

4.1.2 More advanced string matching

Can we do better? There are algorithms that take advantage of details like
repetition within the pattern and skipping over text that contains a character not
in the pattern. Some of these tricks do not help us a lot with bioinformatics
– for example, skipping over text containing a character not in the pattern is
not a great help with DNA searches since a high fraction of patterns contain
all four bases. However some of these strategies could be adapted to different
approaches so I outline the basic approach of the Boyer-Moore algorithm [Boyer
and Moore 1977], but present less detail than for the naïve string match and for
the k-approximate match algorithms.

Boyer-Moore uses three tricks to reduce the number of comparisons between
pattern and text characters:

• start at end – start checking the pattern against the string from the end not
the start of the pattern

• skip characters not in the pattern – is a mismatch occurs on a character not
in the pattern, you can skip the pattern forward past the mismatch

• exploit repeating subsequences – if a mismatch occurs after a subsequence
found earlier in the pattern, skip the pattern forward to align the repeated
subsequence

Boyer-Moore was shown early on to have better results than competing ap-
proaches, reducing comparisons in English-language text searches to about 25%
of the comparisons using rival approaches (depending on length of search pattern,

52 CHAPTER 4. STRING MATCHING

m) [Smit 1982]. Another approach, Knuth-Morris-Pratt, was shown by this study
to be barely better than the naïve approach. The three tricks used by Boyer-Moore
all work together. Starting from the back end of the search pattern means you can
skip forward as far as possible once you find a mismatch, whichever of the other
two strategies you use.

The Boyer-Moore algorithm has a few drawbacks over the naïve algorithm. It
takes significantly more setup and it needs data structures such as an array with
one entry for every letter of the alphabet Σ (any character that can appear in a text
or pattern) that use significant memory. If you are searching a very large text and
there is low probability of a match early on, or you are searching for the same
pattern multiple times, these disadvantages become less significant. To put the
memory size issue into context, an 8-bit character set such as ASCII, commonly
used in computers, has 256 different characters, i.e. |Σ| = 256. An array of 256
integers is not very large and the overhead to set it up is not very large – but if you
are searching for a pattern of a few tens of characters at most in a text only a few
thousand characters long, this overhead is not worth the effort.

Total time complexity for Boyer-Moore, in addition to scanning for a match, is
the time to set up the two data structures (O(|Σ|+m)) for jumping over characters
not in the pattern, for pattern of length m) and O(m) for setting up skipping to the
next instance of a subsequence. Extra memory for the two parts of the algorithm is
respectively O(|Σ|) and O(m). Time for scanning for a match is O(m+n), much
better than the naïve algorithm, O(mn).

A lot of work has gone into refining Boyer-Moore; should you need to
implement a string matching algorithm, this is a good place to start.

The take home message? String matching in bioinformatics can be
complicated by factors not covered here like reverse complements and
amino acids that may have similar functions. Nonetheless the key ideas
in Boyer-Moore are useful to understand.

4.2 Pattern Matching with Regular Expressions
A regular expression defines a string in a regular language. In formal language
theory, languages are classified according to how sophisticated a “machine” can
recognise them, i.e., detect whether a string is a member of the language or not.
Chomsky [1956] defined 4 classes of language of which regular languages are the
simplest.

Pattern Matching with Regular Expressions 53

We need not concern ourselves with the detail of Chomsky’s hierarchy: regular
expressions are sufficient to define things at the level of complexity of words, but
cannot define things we would think of as grammar rules – for that you need a
more sophisticated language.

4.2.1 Regular Expressions

There are various ways a regular language can be described; a regular expression
is convenient because we can easily create one and interpret it in computer code.
There are many variants on regular expressions; they are provided in Python1,
Perl2 and in Unix scripting in the form of grep3 and egrep 4, and in many other
programming languages or progamming toolkits.

In general, regular expressions allow you to match:

• exact – a specific character

• set – one of a selection of characters

• zero or one – up to one of the previous item

• zero or more – one or none of the previous item

• one or more – one or more of the previous item

• choice – select between subsequences

• repetition – repetition a specific number of times of the previous item

To make this concrete, I introduce a simplified notation to use for examples, noting
that grep symbols as defined here cannot be matched unless they are escaped as
noted below this list:

• exact – any character not used as a special symbol, or a special symbol
preceded by “\”

• any character – a full stop: “.”

1https://docs.python.org/2/library/re.html
2https://perldoc.perl.org/perlre.html
3https://www.gnu.org/software/findutils/manual/html_node/find_html/
grep-regular-expression-syntax.html

4https://www.gnu.org/software/findutils/manual/html_node/find_html/
egrep-regular-expression-syntax.html

https://docs.python.org/2/library/re.html
https://perldoc.perl.org/perlre.html
https://www.gnu.org/software/findutils/manual/html_node/find_html/grep-regular-expression-syntax.html
https://www.gnu.org/software/findutils/manual/html_node/find_html/grep-regular-expression-syntax.html
https://www.gnu.org/software/findutils/manual/html_node/find_html/egrep-regular-expression-syntax.html
https://www.gnu.org/software/findutils/manual/html_node/find_html/egrep-regular-expression-syntax.html

54 CHAPTER 4. STRING MATCHING

• set – characters enclosed in “[]”: select only one of them; we can give
ranges (such as “[a-z0-9]”, meaning all lowercase letters and all digits)

• zero or one – any character or group followed by “?”

• zero or more – any character or group followed by “*”

• one or more – any character or group followed by “+”

• an exact count – cn means n of any character or group c

• choice – two characters or groups separated by “|”

• group – one or more characters or grep symbols enclosed in “()”

The “repetition” option in the list of features can be accommodated by repeating a
group, enclosed in parentheses. All the “special characters” (grep symbols), used
to indicate expression syntax, can be turned into a character to recognize using the
escape character, “\” – and that includes “\” itself, e.g. “\\A\\.*” would match
any of the following (plus any other example that started the same way):

• “\A\”

• “\A\Docs”

In this case, the double-“\\” in both cases stands for a single “\”, the “.” matches
anything and the “*” says as many as you like. Let’s say now we want to only
allow letters of the alphabet rather than anything for the variable part of the
pattern. It becomes: “\\A\\[a-zA-Z]*”.

4.2.2 Finite state machine

A finite state machine (FSM) can recognize a regular language (i.e., correctly tell
you if a string is a member of that language or not). You can represent a finite state
machine (FSM; also called finite automaton) as a digraph with labelled transitions.
An FSM in effect represents a regular expression (and hence the regular language
it represents). An FSM has a start state where recognition begins and each state
can have zero or more transitions, each labelled by what must match to go that
path. If you reach the end of a string on a final state marked by a double circle,
you have recognized something that is defined by the language.

Figure 4.2 illustrates a finite state machine (FSM) that recognises the language
described above.

Pattern Matching with Regular Expressions 55

\

a-zA-Z

\

start 1 2 3

Figure 4.2: Finite State Machine. It recognizes a regular language that starts
with a backslash, a letter “A”, a backslash then zero or more letters of the alphabet
(capital or lowercase).

An FSM can also be represented as a table with one row for each state and one
column for each letter in the alphabet. For each state, the transitions out of that
state are given in the column for the letter (or other character, like a backslash as in
the example); if there is no transition, encountering that character is an error. Table
4.1 represents the FSM of Figure 4.2 in tablular form. You start at the start state;
any transitions labelled “error” (implicitly also any characters not listed result in
an error) are incorrect. So from the start state, only a backslash is an allowed input
taking you to state 1. Once there, only an A is allowed, taking you to state 2. From
there, only a backslash is allowed, taking you to state 3. At state 3, you can only
keep going to state 3 if any of the inputs A, a–z, B–z occur. But you can stop any
time in state 3, since it’s a final state. Here, since there is only one transition that
uses the whole alphabet, I can put that in one column (minus the letter “A”, which
does appear in a separate transition).

4.2.3 Regular language limitations

What are the limits of regular languages? They cannot count in more than one
place at once. For example, they cannot match parentheses. A language L with any

Table 4.1: Finite State Machine Table. Each row represents what state to go
to next given the current state and the next character.

character
state \ A a–z,B–Z final?
start 1 error error no
1 error 2 error no
2 3 error error no
3 error 3 3 yes

56 CHAPTER 4. STRING MATCHING

number of open parentheses, any number of lowercase letters, the same number
of close parenthesis as opened the string, defined by (note the need to escape the
parenthesis characters with “\”, since parentheses are used to group characters in
our notation):

L = \(n[a-z]∗\)n (4.1)

is not regular. Why? Prove by contradiction. Assume you can create a finite state
machine that recognizes \(k.*\)k for some k. Observe that if \(k[a-z]*\)k is
recognized, the finite state machine that recognizes this can be split into the part
that gets as far as \(k[a-z]* and the other part that recognizes \)k, so nothing
can stop if from also recognizing \(k[a-z]*\)k+1.

This is a very informal demonstration; the more formal form of proof is called
the pumping lemma for regular languages. The key idea is that there has to be a
maximum size of string you can recognize in a finite number of states before you
have a loop. Once you have a loop, you cannot force that loop to go the same
number of times as any other loop in that finite state machine, so any construct
that requires counting in two different places cannot be recognized (by this, we
generally mean, without recognizing other strings that fall outside the language).

Despite this limitation, regular expressions and their recognizers are very
powerful, hence their availability in many programming languages (either as a
construct or as part of a library or module). A note of caution though: a complex
regular expression takes significant computation time to construct the recognizer.
if you use simple examples or if you repeatedly use the same example (either to
search a very large text, or to search for the same pattern), they are very useful.

The take home message? Regular expressions are a powerful notation
for constructing searches that are more complex than a fixed pattern
string. They have some setup cost, meaning they are most useful for small
regular expressions or for repeated use once the internal representation
of the FSM is set up.

4.3 Further Reading
If you want to learn more about finite automata, there are good books about formal
languages [Hopcroft et al. 2013] and compilers [Ullman et al. 2014]. String search
is a complex subject with many special cases. Review the original Boyer-Moore
paper [Boyer and Moore 1977] and a selection of work that cites it.

Exercises 57

Exercises
1. Work through the example in Figure 4.1 to demonstrate how the naïve match

algorithm of Listing 4.2 works.

2. Apply the trick of the Booyer-Moore algorithm of scanning the pattern
backwards and shifting the pattern right past any character not in the text.
How much faster do you go with the Figure 4.1 example?

3. Go to Google Scholar and look for bioinformatics work that cites the
original Boore-Moore algorithm. Restrict the cited works to “Since 2013”.
Comment on what you find.

4. If you are searching for a single pattern of length 5 in a text of length 10,000,
would you use the naïve or Boyer-Moore approach?

5. If you are searching multiple times for the same pattern of length 5 in a text
of length 10,000, would you use the naïve or Boyer-Moore approach? Is
your answer any different to the previous? Why?

6. You need to search for a string that contains a prefix “AT”, any number of
letters then “TA”. Which of the methods covered in this chapter would you
use? Why?

7. Compare implementations of regular expressions in Python and the command-
line utilties grep and egrep. List differences in notation and capability.

8. A nondeterministic finite automaton (NFA) can have more than one trans-
ition out of the same state for a given input. Expain why it is a good
thing that it is always possible to convert an NFA into a deterministic finite
automaton (DFA).

9. Look up algorithms for constructing a finite automaton from regular
expression. Is a regular expression something you should use when a
simpler search is possible? Explain.

5 Sequence Alignment

SEQUENCE ALIGNMENT is one of the most used techniques in bioinformatics
and has many applications. The general form of the problem is: given two
or more sequences, find the best alignment of all the sequences or selected

subsequences.
The simplest approach is something along the lines of the approximate string

matching algorithm of page 11. That approach is O(mn) where m and n are lengths
of the two strings being compared so it could be adapted to comparing short
sequences, e.g., smaller proteins or clearly defined parts of genomes. However for
many interesting cases of sequence alignment such as whole genome alignments,
an approach that is a lot faster than this is required. In practice, practical
approaches use heuristics and provide an approximate alignment, usually good
enough for practical purposes.

Essential properties of an alignment are much as in the approximate string
matching algorithm. At each position, the nucleotide or amino acid in each
sequence being compared can:

• match

• mismatch but in the right position: a substitution

• mismatch because there is an insertion

• mismatch because there is an deletion

The latter two cases are often collectively termed an indel.
In this chapter, I introduce an attempt at doing exact alignments (Smith-

Waterman) and the widely-used BLAST algorithm that is more scalable at the
cost of being approximate.

Heads up: This chapter is a placeholder – the focus of the course
developed differently than planned based on class feedback.

58

Further Reading 59

5.1 Further Reading
There is a proof that it is possible to find a subsequence of a sequence of length n
that has at most k mismatches to a shorter string of length m in time O(n logk+
nk3 logk

m) [Amir et al. 2004]. This looks pretty exciting, but you have to remember
that the general sequence alignment problem does not start from knowing what
k is. Each time you repeat the algorithm for another value of k, you add another
multiple of n to the run time.

6 Case Studies

I CONSIDER TWO EXAMPLES IN THIS CHAPTER. One uses the regular expres-
sion concept developed in Chapter 4, the other illustrates how to go from
a concept to a finished program in manageable steps. Both relate to DNA

analysis.
Also please take a look at the figure on page ii for a generic plan for designing

algorithms and ending up with a finished program.
The first example, DREME, finds motifs representing transcription factor

binding sites. The second, CentriMo, does central motif enrichment analysis.
Both illustrate how it is possible to develop an idea with tools and languages that
are quick and easy to program, moving on to more efficient implementations once
the ideas are worked through.

6.1 Motif Finding with Regular Expressions

I start out by describing a motif and one way of representing one. Motifs are
an important tool for analysis of DNA-protein interactions and protein character-
istics. I then explain a method for finding motifs using regular expressions that
illustrates how some of the material in earlier chapters is useful for developing
new tools and algorithms in bioinformatics.

6.1.1 Motifs

A motif is a pattern found in DNA or protein. It may represent any feature of
interest such as a repeated pattern in a protein, a pattern common to more than one
protein or a transcription factor binding site (TFBS) in DNA. Motifs, representing
binding of a TF (TF), can be represented in various ways that represent the
probability of a particular base (or amino acid in other applications of motifs)

60

Motif Finding with Regular Expressions 61

0.338561 0.018681 0.235701 0.407057
0.020276 0.002074 0.976267 0.001382
0.003223 0.002993 0.990792 0.002993
0.003221 0.008282 0.984817 0.003681
0.063693 0.441941 0.002529 0.491837
0.005064 0.003453 0.983656 0.007827
0.009671 0.018420 0.501727 0.470182
0.060872 0.010606 0.899700 0.028822
0.028400 0.030016 0.874856 0.066728
0.058742 0.660962 0.064755 0.215541

Figure 6.1: MEME motif matrix. Each column represents a base in the order A,
C, G, T for DNA; protein motifs are also possible. The MEME format in addition
names the motif and has additional information to aid in processing such as the
size of the alphabet.

at a particular point in a sequence. This kind of representation is called a position
weight matrix or PWM – sometimes also a position-specific score matrix, PSSM.

For purpose of illustration I use MEME-format motifs, which – in minimal
form with other file contents stripped out – are a matrix representing a probability
value for each letter in the alphabet under consideration (DNA or protein) for each
position. MEME is one of the older motif finders [Bailey and Elkan 1994] and
still in wide use. In MEME format, each column represents one letter and each
row one position within a site.

Figure 6.1 contains an example of the matrix for a MEME motif. A motif
in this form is an example of a position weight matrix (PWM); there are many
other formats and methods for scoring each position. This example is Klf4 from
JASPAR CORE database [Mathelier et al. 2013].

Since visualizing a matrix is difficult – particularly as there are differing stand-
ards as to what a PWM contains – it is useful to have a graphical representation of
a motif. A sequence logo (“logo” for brevity) illustrates the contents of a PWM by
stacking the letters in each position, from lowest (bottom) to highest probability.
The letters are scaled for probability and the height of the stack at each position is
scaled for information content (IC) of the position [Schneider and Stephens 1990].
Intuitively, the more uncertainty as to the specificity, the lower the information
content so, e.g., if each letter has equal probability, the information content is zero.
For a 4-letter alphabet, the maximum IC at a position is 2 bits of information, if
we know precisely which letter is represented. So IC at position i is defined as

62 CHAPTER 6. CASE STUDIES

Ceqlogo 15.06.17 15:50

0

1

2

b
it

s

1

T

C

A
G

2

T

G

A

C

3

A

T

C

4

G

A
C

5

C

6

T

G
A

7

G

C

8

C

9

T

C

1
0

C
T
A

Figure 6.2: Logo representation of a motif. Klf4 from JASPAR CORE. Overall
height of letters is the information content of that position; height of each letter
is its proportion of the total information.

follows (for base j = A,C,G,T , frequency f (j, i)> 0 of base j at position i):

IC(i) = 2+
T

∑
j=A

f (j, i)× log2 f (j, i) (6.1)

If f (j, i) = 0, we define the contribution of base j at position i as zero to avoid
a singularity. With this definition, equal probabilities (f (j, i) = 0.25 for all j at
position i) results in zero IC; if f (j, i) = 1 for one base at position i and all others
are 0, IC is 2.

The formula in general is

IC(i) = log |Σ|+∑
Σ

f (j, i)× log2 f (j, i) (6.2)

where Σ is the alphabet of interest (not to be confused with the summation sign)
– i.e., for proteins, the first term changes from log2 4 = 2 to log2 20 ≈ 4.322, and
the probabilities are summed over 20 amino acids instead of 4 bases.

Figure 6.2 illustrates the same Klf4 motif as a logo. Note that the logo is for
the motif on the opposite strand, hence the letter probabilities do not look right
unless you read the logo as its reverse complement (swap the roles of A and T , C
and G and read it backwards).

The de novo motif discovery problem requires finding these patterns in
sequences of interest and identifying those of most statistical significance. There
are many methods for doing this.

6.1.2 The DREME motif finder

DREME (Discriminative Regular Expression Motif Elicitation) is a motif finder
designed to find all short core transcription factor binding motifs in a large
DNA data set. This has become a requirement with the growing popularity of

Motif Finding with Regular Expressions 63

Chromatin ImmunoPrecipitation followed by high-throughput sequencing (ChIP-
seq) to identify transcription factor binding sites. ChIP-seq generates large data
sets, sometimes containing tens of thousands of sites.

DREME starts from finding motifs as simplified regular expressions and
converts these to MEME format PWMs [Bailey 2011] after working out their
significance.

The starting point is counting all k-mers (DNA sequence k letters or bases
long) for k∈ {3, . . . ,8} in a positive sequence set and calculating their significance
versus their count in a negative sequence set. The negative set constitutes a
background model; you can supply a set of sequences that are known not to
contain binding sites or let DREME shuffle the positive sequences to form the
negative set. The most significant 100 k-mers are then used to seed the model, and
form the basis for finding regular expressions that generalise these most significant
words. Each iteration of the program considers one letter replaced by a wildcard
(match any) to estimate how much variability in the word is the best model (can be
found with highest significance, as measured by prevalence in the positive versus
negative set).

Since scanning a regular expression over a string is efficient, O(n) for scanning
the whole string if matches are not allowed to overlap and the program runs a fixed
number of iterations, the total time complexity is O(n) and scales up well to large
data sets.

DREME was originally written in Python for speed of coding; the current
version is written in C for speed of execution.

6.1.3 CentriMo motif central enrichment analysis

Finding motifs from scratch is a useful exercise but it can also be useful to check
how well known motifs are represented in a sequence set. Doing so is called motif
enrichment analysis (MEA). The general MEA problems is: given a database of
motifs, work out the relative representation of those motifs in a set of possible
binding sites. A motif that has a high likelihood fit to a large number of sites is
relatively highly enriched; as the quality of fit to sites and the number of sites with
any match to the motif reduces, it is less enriched.

This generic description does not cover details like how a motif is matched to
sites or when a match is or is not counted. There are various scoring methods.
One of the most common is the log likelihood ratio. The simplest model of
likelihood is to place the matrix containing probabilities for each letter over a

64 CHAPTER 6. CASE STUDIES

site and multiply the probabilities according to which letter is present divided by
the background probability.

Likelihood is defined for a motif of length m by

L =
m

∏
i=1

PWMi,b

Pback(b)
(6.3)

where b is a base, PWMi,b is the entry at position i for base b and Pback(b)
is the background probability for base b. Taking a log of likelihood is a way
of scaling and also makes it possible to do arithmetic with additions instead of
multiplications at the cost of having to introduce a small value greater than 0 as
the minimum to avoid log0. The detail is not important here. The important thing
is that we can score a motif, choose a threshold above which to claim a match and
compare scores.

MEA methods may in some cases simply count how often a match occurs
above a threshold, rather than use the score. Others may take the maximum score
in each sequence.

The idea

CentriMo [Bailey and Machanick 2012] arose from the fact that ChIP-seq is
relatively good at locating binding sites so the true binding motif for a TF should
be biased towards the centre of sequences found in a ChIP-seq experiment. So the
approach is to take a motif database, one motif at a time, and find the best match to
that motif in every sequence in the ChIP-seq data set. Then, with a preferred site
in each sequence (except if there is no match good enough to use), it is possible to
score the relative abundance in sites within a central region versus a background
probability that the sites are uniformly distributed.

Figure 6.3: Central Motif Enrichment Analysis Concept. CentriMo counts how
often the motif is found within a central window within a set of sequences (each
grey line represents a sequence) then works out the binomial p-value, indicating
the probability that this differs significantly from a uniform distribution of sites.

Motif Finding with Regular Expressions 65

Figure 6.4: Centrimo output. The most centred motif enrichment graph is
most likely to represent the true binding motif.

Figure 6.3 illustrates the essential concept of CentriMo (Centrality of Motifs).
The program scores different widths of central region and chooses the one with the
lowest binomial p-value. The probability calculation assumes that the background
probability is uniform e.g., if the central region is a quarter of the width of the
sequences, the probability of placing the best match to the motif in that region
should be 0.25. That value is compared with the actual fraction in the centre to
obtain a binomial p-value.

A highly centred sharply defined distribution is likely to represent the motif of
the TF that was used to produce the sequence set. Sometimes though binding is
indirect or requires cofactors, resulting in less clearly defined central enrichment
– or no central enrichment at all. Cofactors may sometimes result in multiple
distributions not quite centred, indicating binding sites of other TFs that often
bind near the TF of interest. Indirect binding may result in no clear pattern as the
actual TFs binding to the DNA may not be the TF of interest. You can see an
example output of CentriMo in Figure 6.4.

The prototype phase

Tim Bailey approached me with the idea behind CentriMo. To do a preliminary
evaluation, I put something together quickly using existing tools.

The FIMO program [Grant et al. 2011] already has a feature to score motifs
against sequences and can produce plain-text output from which I could extract
the required best site and score for each motif for each sequence. From that,
I could calculate the binomial p-value. All of this I did with a combination
of running existing programs, piping output to scripts and piping the numbers I
needed to a script written in Perl, a language popular at the time for bioinformatics
programming. Perl has features like hash tables and quick and easy string

66 CHAPTER 6. CASE STUDIES

manipulations.
In its original form, the program was fairly crude but showed that the model

proposed for central enrichment analysis worked well enough to invest more time
in it.

All operations were at worst O(n) for n bases counted across all sequences,
which meant that even this crude prototype with a language designed for speedy
coding not speedy running ran reasonably fast.

Final implementation

In the next stage, I reimplemented it in C, drawing on the code that already existed
for the implementation of FIMO. The program has subsequently been further
refined and is part of the MEME suite, including an easy to use web version called
MEME-ChIP that integrates CentriMo into a variety of other tools.

The final version is a lot different than the original. The fact that all operations
on the original data were at worst O(n) meant that converting to C resulted in a
nice speedup – the original work ensured that this would be worthwhile.

6.2 Further Reading
CentriMo has been significantly refined since I worked on it including the addition
of differential mode that compares central enrichment on two sets of sequences
and non-centred enrichment that can find enrichment anywhere along a sequence
set [Lesluyes et al. 2014]. You can find out more about the MEME-ChIP toolchain
that includes DREME and Centrimo in Machanick and Bailey [2011].

Exercises
1. A PWM (with many variants on the actual numbers stored) is the default

way to represent a motif. Could you use a regular expression instead?

2. If you were coding something like DREME in Python, what data structure
would you use to keep counts of k-mers?

3. Take the given motif for KLF4 (Figure 6.1) and work out its likelihood score
for:

(a) AGGGTGTGGC

Exercises 67

(b) GCCACACCCT

(c) Are the results as expected?

4. If a CentriMo run does not show anything as centrally enriched, how would
you interpret that?

5. You have Python code to compute a range of statistical functions including
a binominal p-value and you can run the FIMO program to obtain a score of
a motif in each sequence of a set of binding sites. Describe how you would
combine these things to produce something similar to CentriMo.

6. The final version of CentriMo that I implemented before I left the project,
is implemented in C. I had access to the C code for FIMO, which I was able
to reuse. Discuss the reasons I might have had for reimplementing in C.

7. The final version of DREME is written in C and uses a red-black tree to
store frequency counts rather than a hash table. Discuss why this design
decision could have been taken.

8. The implementation of DREME uses a very simplified form of regular
expression, only allowing one character at a time to be replaced by a
“wildcard”. Discuss whether this could be implemented without a full
regular expression feature in a programming language.

9. Check out the generic design plan in the picture in the Preface (page
ii). How does this design plan fit the way CentriMo and DREME were
developed?

References

Adelson-Velsky, G. M. and Landis, E. M. (1962). An algorithm for the
organization of information. Proceedings of the USSR Academy of Sciences,
146:263–266. In Russian: English translation by Myron J. Ricci in Soviet Math.
Doklady, 3:1259–1263, 1962.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).
Basic local alignment search tool. Journal of Molecular biology, 215(3):403–
410.

Amir, A., Lewenstein, M., and Porat, E. (2004). Faster algorithms for string
matching with k mismatches. Journal of Algorithms, 50(2):257–275.

Baase, S. and van Gelder, A. (2000). Computer algorithms: introduction to design
and analysis. Addison-Wesley, Reading, MA, 3rd edition.

Bailey, T. L. (2011). DREME: motif discovery in transcription factor ChIP-seq
data. Bioinformatics, 27(12):1653–1659.

Bailey, T. L. and Elkan, C. (1994). Fitting a mixture model by expectation
maximization to discover motifs in bipolymers. In Proceedings of the Second
International Conference on Intelligent Systems for Molecular Biology, pages
28–36. AAAI Press, Menlo Park, California.

Bailey, T. L. and Machanick, P. (2012). Inferring direct DNA binding from ChIP-
seq. Nucleic Acids Research, 40(17):e128–e128.

Boyer, R. S. and Moore, J. S. (1977). A fast string searching algorithm.
Communications of the ACM, 20(10):762–772.

68

REFERENCES 69

Cederman, D. and Tsigas, P. (2009). GPU-quicksort: A practical quicksort
algorithm for graphics processors. Journal of Experimental Algorithmics (JEA),
14:4.

Chomsky, N. (1956). Three models for the description of language. IRE
Transactions on Information Theory, 2(3):113–124.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction
to Algorithms. MIT Press, Cambridge, MA, 3rd edition.

Coron, J.-S., Dodis, Y., Malinaud, C., and Puniya, P. (2005). Merkle-Damgård
revisited: How to construct a hash function. In Annual International Cryptology
Conference, pages 430–448. Springer.

Elloumi, M. and Zomaya, A. Y. (2011). Algorithms in Computational Molecular
Biology: Techniques, Approaches and Applications. John Wiley & Sons,
Hoboken, NJ.

Grant, C. E., Bailey, T. L., and Noble, W. S. (2011). FIMO: scanning for
occurrences of a given motif. Bioinformatics, 27(7):1017–1018.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced
trees. In Proc. 19th Annual Symposium on Foundations of Computer Science,
pages 8–21. IEEE.

Hoare, C. A. R. (1961). Algorithm 64: Quicksort. Communications of the ACM,
4(7):321–321.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2013). Automata Theory,
Languages, and Computation. Pearson Education, Harlow, 3rd edition.

Knuth, D. E. (1998). The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley, Upper Saddle River, NJ, 2nd edition.

Lee, J., Roh, H., and Park, S. (2016). External mergesort for flash-based solid
state drives. IEEE Transactions on Computers, 65(5):1518–1527.

Lesluyes, T., Johnson, J., Machanick, P., and Bailey, T. L. (2014). Differential
motif enrichment analysis of paired ChIP-seq experiments. BMC Genomics,
15(1):752.

70 REFERENCES

Machanick, P. and Bailey, T. L. (2011). MEME-ChIP: motif analysis of large
DNA datasets. Bioinformatics, 27(12):1696.

Mathelier, A., Zhao, X., Zhang, A. W., Parcy, F., Worsley-Hunt, R., Arenillas,
D. J., Buchman, S., Chen, C.-y., Chou, A., Ienasescu, H., et al. (2013).
JASPAR 2014: an extensively expanded and updated open-access database of
transcription factor binding profiles. Nucleic acids research, page gkt997.

Maurer, W. D. and Lewis, T. G. (1975). Hash table methods. ACM Computing
Surveys (CSUR), 7(1):5–19.

Perl, Y., Itai, A., and Avni, H. (1978). Interpolation search – a log logn search.
Communications of the ACM, 21(7):550–553.

Plaxton, C. G., Poonen, B., and Suel, T. (1992). Improved lower bounds
for shellsort. In Proceedings of 33rd Annual Symposium on Foundations of
Computer Science, pages 226–235.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very
low memory usage. Bioinformatics, 29(5):652–653.

Schneider, T. D. and Stephens, R. M. (1990). Sequence logos: a new way to
display consensus sequences. Nucleic Acids Research, 18(20):6097–6100.

Sedgewick, R. (1978). Implementing quicksort programs. Communications of the
ACM, 21(10):847–857.

Shell, D. L. (1959). A high-speed sorting procedure. Communications of the
ACM, 2(7):30–32.

Smit, G. d. V. (1982). A comparison of three string matching algorithms.
Software: Practice and Experience, 12(1):57–66.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197.

Turing, A. M. (1937). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(1):230–265.

Ullman, J. D., Aho, A. V., and Sethi, R. (2014). Compilers Principles, Techniques,
and Tools. Pearson Education, Harlow, 2nd edition.

	Preface
	List of Figures
	List of Tables
	Introduction
	Basics
	Algorithm Design Styles
	More Complexity
	Further Reading
	Exercises

	Data Structures
	Basics
	Arrays
	Lists
	Graphs
	Trees
	General graphs

	Content-Addressable structures

	Relationship to Python
	Python lists
	Python arrays
	Trees in Python
	Python content-addressable data structures

	Case Study: Dictionary
	Hash tables
	Balanced trees

	Further Reading
	Exercises

	Sorting and Searching
	Trees
	More General Sorting
	Simple methods
	Efficient methods
	Proving a recurrence
	Theoretical limit on sort by comparision

	More on Searching
	Further Reading
	Exercises

	String Matching
	Exact Match Algorithms
	Naïve string match
	More advanced string matching

	Pattern Matching with Regular Expressions
	Regular Expressions
	Finite state machine
	Regular language limitations

	Further Reading
	Exercises

	Sequence Alignment
	Further Reading

	Case Studies
	Motif Finding with Regular Expressions
	Motifs
	The DREME motif finder
	CentriMo motif central enrichment analysis
	The idea
	The prototype phase
	Final implementation

	Further Reading
	Exercises

	References

