
2OS
more programming from the machine up

Philip Machanick

Minor corrections July 2017, August 2021
Copyright © Philip Machanick 2016, 2017, 2021

This work is licensed under an Attribution-NonCommercial 4.0
International (CC BY-NC 4.0) licence:
http://creativecommons.org/licenses/by-nc/4.0/
The quick summary: free to use however you like but not for
commercial purposes.

Picture credits: all illustrations are either by the author or from
public domain sources, as acknowledged in the text.

Last typeset 18 August 2021

http://creativecommons.org/licenses/by-nc/4.0/

Contents

List of Figures iv

List of Tables v

Definitions vi

1 Introduction 1
Exercises . 7

2 The Kernel 10
2.1 System Calls and IPC . 10
2.2 Kernel or User Space? . 15
2.3 What the Kernel Does . 17
Exercises . 18

3 Schedulers 20
3.1 Theoretical Approaches . 22
3.2 More Practical Approaches . 26
3.3 Examples . 29
Exercises . 34

4 IO and Files 36
4.1 Device Interface . 37
4.2 Files and Devices . 40
4.3 Performance . 56

4.3.1 Speed . 56
4.3.2 Reliability and Fault Tolerance 62

4.4 Protection and Security . 66
4.5 Other Device Types . 67

ii

CONTENTS iii

Exercises . 68

5 Memory 70
5.1 History and Rationale . 70
5.2 Key Concepts of VM . 72
5.3 More Advanced Concepts . 88
5.4 Examples . 92
Exercises . 93

6 Parallel Programming 97
6.1 Concepts . 97
6.2 Launching . 102
6.3 Sharing and Communication . 109
6.4 Synchronization . 116
6.5 Distributed Systems and the Cloud 125
6.6 Parallel Programming Hazards 127
Exercises . 128

References 131

List of Figures

2.1 Basic Interrupt Vector . 13

3.1 Process states . 22
3.2 Round-robin scheduler . 26
3.3 Multilevel Feedback Queues . 28
3.4 Linux O(1) Queues . 31

4.1 Conceptual layout of a disk . 37
4.2 Conceptual FAT . 42
4.3 Conceptual inode . 44
4.4 Minimal inode pointers . 50
4.5 Mirroring versus striping . 64

5.1 Memory external fragmentation 72
5.2 Paging and internal fragmentation 73
5.3 Page translation . 74
5.4 Two forward page table schemes 76
5.5 Page translation . 77
5.6 A TLB hit . 84

6.1 Spinlock and caches . 120

iv

List of Tables

2.1 Sizes of kernels . 16

5.1 Bitwise operations . 79

v

Definitions

A
absolute path – A path from the root of the file system, in Unix designated by starting with “/”.

See also system path, relative path, path.
abstraction – Hiding inessential details so the user or programmer need not worry about how

something is implemented and can focus on how to use it.
access control list – An ACL indicates specific permissions for a list of users for a specific file or

directory.
ACL – See access control list.
address space – Range of addresses as seen by a process. See also virtual memory, virtual address

space. physical address space.
alias – macOS equivalent of a soft link.
Android – Linux-derived mobile OS.
API – An application programming interface is a set of libraries providing user-level services.
application programming interface – See API.
B
backing store – Also called swap or swap space: slower device than RAM used as the lowest level

of the virtual memory hierarchy.
bandwidth – Average work completed per unit time, usually measured in data transfers. See also

latency, throughput.
barrier – A synchronization primitive that forces tasks to wait until a given number reach that

point.
bit mask – A bit pattern used in bitwise logical operations to extract specific bits; often shortened

to mask.
block – Minimum unit of allocation in a device or in a cache.
block-oriented – An IO device designed to transfer data in fixed-sized units.
buffer – Memory faster than a target or source device, used to bridge speed gaps between fast

and slow parts of a system. Differs from a cache in being longer-term storage more under
program control. See also spooling, cache.

C
cache – A fast memory that is used to fake the effect of the entire memory being faster than a

reasonably affordable memory technology. Decisions as to what is in a faster layer are
made in hardware. The fastest cache is integrated into the CPU in recent designs, and is
the highest-level or level 1 (also: L1 cache or L1$ – “$” being short for cache, believe it or

vi

vii

not). There can be 1 or more lower levels of cache, usually in current designs integrated
into the CPU chip, numbered L2, . . . See also buffer, spooling, block, cache miss, cache hit.

cache hit – Item accessed is in a given level of cache. See also cache miss.
cache miss – Item accessed is not in a given level of cache. See also cache hit.
central processing unit – See CPU, core.
cleaning – In VM, doing a write back so the dirty state of a page can be cleared.
cloud – Services available over the Internet with some variability as to whether they are networked

services or distributed systems.
copy on write – A page table entry marked as COW indicates there is more than one virtual page

referring to the same physical page, which must be copied to a new physical page once
modified.

cooperative scheduler – A scheduler in which a process only gives up the CPU when it makes a
call to an OS service. See also preemptive scheduler.

core – In designs with multiple CPUs on a chip (multicore), each CPU is called a core. Cores
often share the lowest-level on-chip cache.

CPU – The central processing unit that contains the instruction-processing logic. See also core.
COW – See copy on write.
critical section – A point in code where there would be a race condition if access were not

sequentialised using synchronization.
cylinder – A collection of tracks all the same radius from the centre of a disk on a disk with

multiple platters. See also seek.
D
deadlock – Two or more tasks are waiting for each other and cannot progress. See also livelock.
determinism – In a scheduler, ability to predict an upper bound on an event. See also realtime.
device driver – Low-level software that controls an individual device such as a disk and presents a

standard interface to the operating system.
directory – A logical unit of a file system that contains any combination of files and directories.

See also folder.
dirty – State of any unit of the memory hierarchy where it has been modified relative to one or

more lower levels. See also cleaning.
distributed system – A system where services have location-independent names and whether a

service is local or remote is an implementation detail, not implicitly or explicitly named as
remote or local. See also networked service, cloud.

DRAM – See dynamic random access memory.
dynamic linking – Linking that is delayed until a program runs. See also linker, library, static

linking, executable file, object file.
dynamic random access memory (DRAM) – RAM usually implemented with a capacitor storing a

bit that needs to be refreshed periodically to maintain its value: relatively inexpensive, but
not as fast as SRAM.

E
embedded system – A computer that is part of another machine or device.
exception – See interrupt.
exec – In Unix-derived systems, replace the current address space by that of a given executable

file and start running that executable. See also fork.

viii DEFINITIONS

executable file – A file that can be run directly. See also linker, object file.
external fragmentation – Reduction in usable memory resulting from scattered freeing of used

space. See also internal fragmentation.
F
FAT – See file allocation table.
fairness – In a scheduler: the property that all processes receive a share of the CPU. See also

starvation.
FCFS – See first come first served.
fault tolerance – Probability that a system keeps running, irrespective of whether a fault occurs.

See also reliability.
file – Logical unit of a file system that a user sees as a single entity containing information.
file allocation table – FAT: a way of keeping track of disk blocks making up a file as a linked list.
file system – Logical organisation of one or more devices (or one or more partitions) containing

files and directories.
first come first served – In scheduling FCFS means processes are processed in the order they arrive.
flash – Type of RAM that is non-volatile and hence can be used to implement storage. See also

wear levelling, solid-state drive.
folder – A directory as viewed in a graphical view of a file system.
fork – In Unix-derived systems, spawn a new instance of a process. See also exec.
forward page table – A page table that uses a part of the virtual address as an index to find the

corresponding physical address translation. See also inverted page table, multilevel page
table, TLB.

fragmentation – Reduced usability of a memory system arising from scattered usage or wasteful
allocation. See also internal fragmentation, external fragmentation.

free software – Software that may be distributed free of charge and for which source code is also
freely available. See also open source.

Free Software Foundation – (FSF) Promotes free software. See also GNU.
FSF – See Free Software Foundation.
function-like macro – See preprocessor macro.
G
global replacement policy – Replacement policy that considers all processes. See also local

replacement.
GNU – GNU is Not Unix: software label of Free Software Foundation.
H
hard link – An alternative name for a file; in Unix-type systems usually implemented by more than

one directory entry pointing to the same inode. See also soft link.
hard realtime – A realtime requirement that if not met means system failure. See also realtime,

soft realtime.
header file – A file merged into another file by the preprocessor, before it is seen by the compiler.
heuristic – An informed guess: used when an exact algorithmic approach is either not possible or

too inefficient to be practical.
hit – At any level of the memory hierarchy: the item being accessed is present at that level. See

also miss.
hot swapping – Ability to replace a part without shutting down or data loss. See also RAID.

ix

I
index node – See inode.
inode – Unix-style index node used to store file attributes and pointers to file blocks.
internal fragmentation – Loss of memory arising from allocation in fixed-sized units, resulting in

more allocated than needed. See also external fragmentation.
interprocess communication – IPC is any mechanism that allows passing of information from one

process to another.
interrupt – Event that breaks the sequence of execution, often resulting in use of a jump table to

find an interrupt handler. See also interrupt handler, jump table, trap, exception.
interrupt handler – Code invoked to handle an interrupt. Generally must be short to minimise

backing up other interrupts. See also interrupt.
inverted page table – A page table that uses a part of the virtual address as a hash index to find

the corresponding physical address translation, with one entry per physical page. See also
forward page table, multilevel page table.

iOS – Unix-derived OS used by Apple for mobile devices. See also macOS.
IPC – See interprocess communication.
J
journal – A log used to recover a file system after an unclean shutdown. See also journalling file

system.
journalling file system – A file system that logs transaction on disk in a journal so those not

completed can be redone after an unclean shutdown. See also logical journal, physical
journal.

jump table – Table of jump instructions that can be used to transfer control code based on an index.
See also interrupt.

K
kernel – Part of operating system that has full access to all hardware. See also microkernel,

monolithic kernel.
kernel mode – See system mode.
L
latency – Time to complete an operation. See also bandwidth, throughput.
library – Precompiled code available to link into programs. See also linker, dynamic linking, static

linking.
linker – A program that combines separately compiler files. See also object file, library.
Linux – Unix-derived free software kernel.
livelock – Two or more tasks cannot progress because of a mutual dependency that does not cause

them to wait. See also deadlock.
local replacement policy – Replacement policy that considers only the current processes. See also

global replacement.
locality – The principle that a program uses a small subset of memory at a time. See also spatial

locality, temporal locality.
lock – A synchronization primitive that ensures mutual exclusion. See also spinlock, mutex.
logical journal – A log in a journalling file system that records metadata only. See also physical

journal.

x DEFINITIONS

M
Mac OS X – See macOS.
macOS – Unix-derived OS used by Apple for full-scale computers. Called Mac OS X up to 2016;

see also iOS.
macro – See preprocessor macro.
mask – See bit mask.
memory protection – OS support usually in virtual memory for protecting processes against

incorrect access by each other, or to memory regions that should not be accessible to that
process.

microkernel – Minimal kernel, with features in it that cannot be implemented outside the kernel.
See also monolithic kernel.

mirroring – Organisation of multiple disks that replicates data across each disk to improve speed,
fault tolerance or both. See also striping, RAID, hot swapping.

miss – At any level of the memory hierarchy: the item being accessed is not present at that level.
See also hit.

monolithic kernel – A kernel that implements all core functions within the kernel. See also
microkernel.

multicore – See core.
multilevel feedback queue – In a scheduler, a version of a multilevel queue in which processes

migrate between priority levels according to their behaviour.
multilevel page table – A page table that is split into levels to minimise the need to store

translations for parts of the address space that are not used. Usually a forward page table.
See also inverted page table.

multilevel queue – In a scheduler, the ready queue is divided into levels according to priority. See
also multilevel feedback queue.

multitasking – Ability to run more than one process or thread simultaneously, switching use of the
CPU between them.

mutex – Type of lock that puts waiting tasks to sleep and queues them to ensure fairness. See also
spinlock, synchronization.

N
networked service – A service that is explicitly named as existing via a network. See also

distributed system, cloud.
non-volatile – Of memory: does not require power to maintain its contents.
null pointer – A pointer value that represents no memory location, usually stored as a zero. See

also pointer.
O
object file – A compiled portion of a program that must be combined with other files to make an

executable file. See also linker.
open source – Alternative name for free software, favoured by those making economic rather than

moral arguments.
P
page – Fixed-size logic unit of memory that is the smallest unit managed by most virtual memory

systems. See also segment, page fault.
page fault – Occurs when a page is not in physical memory, and the OS must intervene.

xi

page frame – A page as represented in physical memory. See also virtual memory.
page table – Data structure used to represent virtual to physical page translations. See also forward

page table, inverted page table, multilevel page table, page frame.
path – Sequence of directory names, in Unix separated by “/”. See also system path, relative path,

absolute path.
PCB – See process control block.
permissions – Access rights to a specific file or directory. See also access control list.
physical address space – Address space as seen by the hardware: actual RAM addresses. See also

virtual memory, virtual address space, page frame.
physical journal – A log in a journalling file system that records metadata and changed file

contents. See also logical journal.
platter – Recordable surface of a disk.
portable – Designed for ease of implementation on multiple platforms.
Portable Operating System Interface – See POSIX.
POSIX – Portable Operating System Interface: libraries designed to standardise interfaces of Unix-

style services for portability across Unix variants and other operating systems.
preemptive scheduler – A scheduler that can interrupt a process to pass control to another. See

also cooperative scheduler.
preprocessor – A text processor that transforms source files before they are seen by the compiler.

See also preprocessor macro, header file.
preprocessor macro – A symbol created using #define is replaced by the preprocessor before the

compiler sees the code, wherever it occurs, by the rest of the text on its definition line; a
function-like macro has parameters.

priority – Any measure of adjustment of the order of processing that takes into account information
about a given unit of work.

process – A program while it is running. See also thread, task.
process control block – A PCB is a data structure that keeps track of process state such as saved

registers and open files.
processor – Logic unit that interprets instructions and includes the fastest layers of memory,

registers and caches. Also called central processing unit (CPU). See also core.
Q
quantum – See time quantum.
R
race condition – An update of a shared variable depends on the order two or more tasks reach that

point in the code. See also critical section.
RAM – See random access memory.
RAID – Redundant Array of Independent (formerly Inexpensive) Disks. Depending on RAID

level, uses variants on mirroring and striping.
random access memory – RAM is any memory that has an addressing scheme that equally allows

any item to be accesses without e.g., a delay to make that region accessible.
read – Access contents of memory or device. See also write.
realtime – A requirement that a task be done by a time deadline. See also hard realtime, soft

realtime, determinism.

xii DEFINITIONS

relative path – Path in Unix starting with anything but “/”, relative to the current working directory.
See also system path, path, absolute path, working directory.

reliability – Probability that as system does not develop a fault. See also fault tolerance.
remote procedure call – RPC provides a wrapper around invoking remote services that looks like

a function or method call.
replacement – At any level of the memory hierarchy, evicting a given victim unit to make space

for a required unit not already present at that level.
replacement policy – Decision algorithm for choosing a victim page to evict from main memory

in VM. See also global, local replacement.
RPC – See remote procedure call.
S
scheduler – Part of OS that determines which task to run next; can also refer to a disk scheduler.
seek – Movement of the disk head to the right track or cylinder.
segment – Logical unit of address space. See also page.
semaphore – A synchronization primitive that has a counter and a queue; decreasing the count

blocks the task if the count ≤ 0.
shell – In Unix-like systems, the environment where you run programs including a scripting

language.
soft link – A pointer to a file or directory; if the original moves, depending how it is implemented,

the link may break. See also hard link, alias.
soft realtime – A realtime requirement that if not met can be handled by a fallback option like a

drop in quality. See also realtime, hard realtime.
solid-state drive – An SSD is a disk equivalent made of electronic components, usually flash,

without moving parts.
spatial locality – The principle that a program is likely to use memory close to a location that has

been accessed some time soon. See also temporal locality, locality.
spawn – Create a new instance of a process. See also fork.
speedup – After a change, tbe f ore

ta f ter
. See also Amdahl’s Law.

spinlock – Type of lock that spins on a shared variable. See also mutex.
spooling – Dumping of output to an intermediate device or buffer to ensure outputs to that device

are not interleaved: mostly associated with printers. A whole word now but originally an
acronym SPOOL for simultaneous peripheral operation off-line. See also buffer, cache.

SRAM – See static random access memory.
SSD – See solid-state drive, flash.
starvation – In a scheduler: when a processes does not receive a share of the CPU. See also

fairness.
static linking – Linking that is done when creating an executable file. See also linker, library,

dynamic linking, executable file, object file.
static random access memory (SRAM) – RAM usually implemented with a transistor storing a bit

that does not need to be refreshed periodically to maintain its value: relatively expensive,
and as faster than DRAM. Also requires more components than DRAM per bit, and hence
not as dense, which is why it is more expensive. Generally used for caches.

striping – Organisation of multiple disks so accesses use each disk in turn to gain speed. See also
mirroring, RAID.

xiii

swap – Also called swap space. See backing store.
synchronization – Maintaining mutual exclusion across a critical section. See also lock, mutex,

barrier, semaphore.
system mode – CPU state for kernel-level code with unlimited access to hardware. Also called

kernel mode, supervisor mode, See also user mode.
system path – Sequence of path names, in Unix separated by “:” used to find executables run with

no path name. See also path, relative path, absolute path.
T
task – A thread or a process.
temporal locality – The principle that a program is likely to use the same memory again some time

soon. See also spatial locality, locality.
throughput – Average work completed per unit time, usually measured in progress of a process.

latency, bandwidth.
thread – Separately scheduled component of a process in the same address space as the parent

process. See also task.
time quantum – The time size that a preemptive scheduler allows a process before interrupting it.
time slice – See quantum.
TLB – See translation lookaside buffer.
track – A logical unit of a disk organised in a circle at a particular radius. If a disk has multiple

platters, all the tracks at the same radius collectively form a cylinder. See also seek.
translation lookaside buffer – A TLB is a small subset of an active page table that can be looked

up very fast.
trap – A kind of interrupt signalled explicitly by a program. See also exception.
U
Unix – Operating system designed in the 1970s and now the basis for various free variants

including Linux; a play on the name Multics, a large complex operating system that
preceded it.

user mode – CPU state for user-level code with limited access to hardware. See also system mode.
V
victim – Any unit of the memory hierarchy that is selected for replacement.
virtual address space – Address space as seen by a process in virtual memory. See also physical

address space.
virtual file system – (VFS) A software layer that hides differences in file systems e.g. making

remote file systems appear to be local.
virtual memory – (VM) OS support for address translation from a virtual to a physical address

space. See also locality, pages, memory protection, backing store.
volume – Logical organisation of a part of a file system that can be part of a device or span multiple

devices. See also partition.
VM – See virtual memory.
VFS – See virtual file system.
W
wear levelling – In flash memory devices: moving around contents that is detected to be frequently

modified to avoid wearing out flash (since each location has a limited number of write
cycles).

xiv DEFINITIONS

working directory – Directory relative to which paths are defined. See also path, relative path,
absolute path.

working set – Minimum set of pages needed in main memory to avoid unnecessary page faults.
See also resident set.

write – Modify memory or device contents. See also read.
write back – Clear the dirty state of any unit of the memory hierarchy by writing the modifications

to a lower layer. See also write through.
write through – Avoid the dirty state of in the memory hierarchy by writing modifications to a

lower layer immediately. See also write back.
X
XNU – macOS kernel: stands for X is not Unix; made sense when macOS was called Mac OS X.

1 Introduction

AN OPERATING SYSTEM is about as close to the machine as any code gets.
Since the main function of the operating system (OS) is to hide the
hardware from the user for a variety of reasons, you seldom get closer

to the hardware in other kinds of program, particularly in an OS that protects the
hardware from direct access.

Background This material follows from MIPS2C and may later be
combined to create a complete book, MIPS2OS. If you did not attend
a prior course using the MIPS2C part, you can find it at
http://homes.cs.ru.ac.za/philip/Courses/CS2-arch-C/
In this book I approach the problem of understanding an OS from the point of

view of a C programmer who needs to understand enough of how an OS works to
program efficiently and avoid traps and pitfalls arising from not understanding
what is happening underneath you. If you have a deep understanding of the
memory system, you will not program in a style that loses significant performance
by breaking the assumptions of the OS designer. If you have an understanding of
how IO works, you can make good use of OS services. As you work through this
book you will see other examples.

Key Abstractions

How does an OS hide hardware – and other details that are difficult for the user?
It defines abstractions that create the appearance of a machine that is easier to
use than the real machine. An abstraction is anything that hides inessential detail:
things you do not need to know to make something work for you. In object-
oriented programming, abstractions are implemented by hiding private details of
a class, so you cannot rely on them to use the class. In an OS, abstraction is about
hiding how the OS actually works so you can focus on using it without worrying

1

http://homes.cs.ru.ac.za/philip/Courses/CS2-arch-C/

2 CHAPTER 1. INTRODUCTION

about what is behind it. Abstraction allows you to focus on what is important to
you and also is an important design tool, allowing the OS designer to change the
inner workings as needed without breaking user-level programs.

For example, a user has the appearance of files and directories (often
graphically presented as folders) that hide the raw disk – or other underlying
device. A file system provides operations that hide the low-level structure of the
device. Abstractions like this are not just a user-level convenience. If a newer
better idea of how to implement files is discovered, an OS designer can implement
this new design without breaking user-level code or the user experience because a
properly implemented abstraction hides this sort of detail.

At a lower level, input and output (IO) are hidden by an abstraction layer that
provides basic operations like opening a file, reading and writing, that can hide
the fact that very different devices are involved. In a Unix-type system, the kind
we mostly study in this book, IO abstraction allows devices like the screen and
keyboard to be treated like files with particular limitations (e.g., you cannot write
to the keyboard – not with useful effect, anyway). IO abstraction includes hiding
the details of a network so it can be accessed at a relatively high level without
having to know much about the underlying technology.

At the level of individual devices, a device driver is an extension of the core
operating system functionality that allows a class of devices to be handled in a
uniform way (e.g., all disks work pretty much the same way, if the device driver
is done right and hides all the device-specific detail).

Another key abstraction is the memory model. To a user-level program,
address space in most systems (at the low level: your programming language
usually hides this in another layer of abstraction) is simply a sequence of bytes
numbered from zero to the largest number that can be addressed by the hardware.
The operating system (usually) converts this user-level view to a mix of different
programs sharing memory, each with the illusion that it has the whole system to
itself. User-level programs need not know how big the physical memory is: the
OS takes care of managing the illusion that each program has a whole machine
to itself that may or may not have more memory required than the physical main
memory. The OS also ensures that a program cannot access memory outside its
own space. This abstraction is called virtual memory. Aside from VM, there is
also a hardware-implemented memory hierarchy from the fastest on-chip cache
(made of static RAM, SRAM) to the main memory (made of dynamic RAM,
DRAM). The speed gap between the fastest and slowest layers can be a factor of
over a million. When we study memory hierarchy, it will be clearer how this can

Introduction 3

work without a huge slowdown relative to the fastest memory layer.
When a program runs, that program usually shares the machine’s resources

with other programs – not just memory, but also IO devices and the processor.
The processor is also called the central processing unit (CPU). If a chip has more
than one CPU, it is called a multicore system, and each CPU is called a core.

Once a program is running, it becomes a process. Sharing the CPU or CPUs
is necessary for a number of reasons. First, there is a mix of requirements: most
users have an interactive process that currently has their attention and others they
need to keep running but do not immediately need to access. For example, if you
are editing a text document, your mail program is still running and can report
new mail, allowing you to change your focus. Another reason to run a mix of
programs is latency hiding. Latency is the time to complete one operation. Some
operations like disk access are very slow compared to instruction execution time,
so a lot of CPU time would be wasted if every disk operation caused the CPU
to stall. An illusion of progress can be maintained across very slow operations
as long as there is other useful work to do. Latency is often in competition with
the averaged rate of work completion (throughput when measuring progress of
processes; bandwidth when measuring data transfers). You can minimise latency
for a task of interest if you give it total use of the CPU, but you lose throughput
because the CPU would be idle when that task had to wait for IO.

Related to managing processes is the decision as to which process runs next:
scheduling. There are many approaches to scheduling, with varying strategies for
balancing throughput and latency. Some IO devices also need a scheduler. A
disk is slow to access and ordering accesses so those close together on the disk
are handled together can give significant speed gains, for example. To the user,
whatever scheduler is used, the effect should be as if each process was running
to completion, each with its own machine – except where information may be
shared.

The overall effect of these abstractions includes another really useful abstrac-
tion: portability, the ability to move code to a very different system ideally with
at most a recompile.

As a consequence of all the levels of abstraction is that the computer at the
programmer level looks a lot simpler than if you had to control the hardware
directly, manage memory explicitly and control the way different processes shared
the machine. Some of this helps at the level of ordinary users, who can use
files, launch programs, etc., without having to know how any of this works –
much as a driver of a car needs to know nothing of the underlying engineering

4 CHAPTER 1. INTRODUCTION

or manufacturing that goes into designing and building a car. On the other
hand, a driver needs a better understanding of how a car works than a passenger
does. So there is a hierarchy of skill levels – just as with a car, a Computer
Science graduate needs a better understanding of what is under the hood than a
“passenger”: someone who only uses a computer at a shallow level.

The take home message? An OS hides hardware and low-level machine-
specific software from the user to make it easier to use the system in
ordinary user-level code, to protect against errors and to make it easier
to write portable code.

Origins of C and Unix

Early operating systems were completely written in assembly language. That
made it easy to address hardware directly, but coding of such a large system in
assembly language is difficult and error-prone. It also limits an OS to specific
hardware, contrary to the goal of portability.

Very early computers had small memories and processors very slow by today’s
standards, so an OS could not be very large. But as speeds and memory sizes grew,
the potential for a larger, more complex OS grew. To give you some idea, in the
1970s, a machine with a megabyte of RAM was a large system, far bigger than, for
example, a machine owned by a research group doing their own projects. When
Unix was first designed, it had to fit on a machine with a few thousand bytes of
main memory.

The Unix system was named as play on the name of a bigger more complex
system, Multics, that preceded it. A small group at Bell Labs1, the research
lab owned by the then telephone monopoly in the US, American Telephone and
Telegraph (AT&T), had a smallish system on which they wanted an OS convenient
for research. They started with an assembly-language implementation, but
decided to design their own language that could access hardware, with minimal
assembly language. This language, C, was based on other earlier languages. Its
oldest predecessor, CPL, was a large, complex language that was never fully

1Despite being owned by a commercial entity, Bell Labs employed first-class academics, the kind
who win Nobel Prizes, who had a lot of freedom to work on open-ended problems. Their most
famous invention is the transistor. The name Unix is sometimes spelt in all capitals but it is not
actually an acronym, since the letters do not stand for anything. It had an earlier name, UNICS
(UNiplexed Information and Computing Service) – noting that Multics stood for Multiplexed
Information and Computer Services – but “Unix” has become a word in its own right.

Introduction 5

implemented. A simplified version, designed for systems implementations, Basic
CPL (BCPL) followed [Richards 1969]. C was inspired by BCPL, but added back
features left out like floating-point numbers [Ritchie et al. 1978; Kernighan and
Ritchie 1988].

Two things ensured the popularity of Unix. Bell Labs made source code
available at low cost to academic projects, and its relatively straightforward
implementation in C made it relatively portable as well as relatively easy to build
on in research projects. It was only later, in the 1980s, that the free software
movement, largely inspired by Richard Stallman [Stallman 2002], led to widely
available completely free source code, but “inexpensive” works as well as “free”
when all the competition is either expensive or not released as source.

A note on naming: Stallman prefers “free software” (“free” as in “liberty”,
not as in “free beer”) rather than “open source”. The open source movement
emphasises the utility of making source code available – multiple eyes checking
code for example – whereas the free software movement is motivated more by the
philosophy of sharing than the putative efficiency of making source code available.
“Free” does not necessarily mean free of cost: you can charge for “free” software
or services related to it, as long as you make the source code available and do not
stop others giving it away.

The free software movement uses GNU as a label for its software projects.
Aside being the English name for a wildebeest, GNU stands for GNU is Not Unix
– a recursive wordplay. You study computer science to appreciate things like that.

The take home message? C is closely related to Unix as its original high-
level implementation language, and has remained the language of choice
for implementing Unix-derived operating systems, even those written from
scratch, such as the Linux and Free BSD kernels, which are usually
packaged with GNU software.

Types of Operating System

Not so long ago, there were two kinds of computer well known to the average
user: desktops (remodelled sometimes into portable versions – called laptops
and notebooks – really the same thing, if with a design focus more on low
power use than speed to allow for working off a battery) and servers. Mobile
devices – smart phones and tablets – are a specialization of portable computers,
designed to work in smaller memories and to run longer off batteries, with addition

6 CHAPTER 1. INTRODUCTION

of phone functionality. They nonetheless (mostly2) draw on older consumer
operating systems. The two most popular, iOS and Android, are based on
Unix underpinnings. Two other whole categories of OS, embedded and realtime
systems, are less well known, but in very wide use.

Realtime systems are in two flavours: hard realtime and soft realtime. A hard
realtime system has to respond to a requirement in a specified time, otherwise it
is broken. An example is a computer controlling a car’s anti-lock braking system.
If it does not respond in time, the car could crash. A soft realtime system must
also respond within a time deadline but is allowed to fail – possibly with some
permitted performance degradation. An example is a music or video player. Up
to a limit where it may irritate the listener or viewer, some glitches are acceptable.
Soft realtime is not too hard to add to a conventional OS as we will see when
we look at scheduling, but hard realtime is difficult to add after the event because
guaranteeing response time is difficult if a given level of throughput of regular
applications is expected, and a realtime system does not work well on top of a
hierarchical memory system with huge variations in memory latency.

An embedded system is one where a computer is part of another machine,
e.g., a computer that controls an appliance like a washing machine, a computer
built into a car to manage the engine or anti-lock braking or a computer built into
a factory. Embedded systems often are not upgraded their entire lifetime, and
therefore need not have much flexibility in design, but need to be able to run for
a long time without maintenance. Depending on the application, an embedded
system can have a cut-down version of a conventional OS (such as a Linux variant
– even versions of Windows are common in things like ATMs), a realtime OS or
a special-purpose highly simplified OS.

In the consumer space, we tend to think of operating systems as being from
a rather small selection. The Windows family is in one corner and, in the other,
a variety of systems with roots in Unix. These include Linux, FreeBSD, macOS,
iOS and Android. In fact there are many embedded and realtime systems and some
ship in an enormous number of devices but you do not see the OS because the
software is completely hidden from the user. Many modern appliances and cars
contain computers – sometimes multiple computers. Because these are built into
the machine and have no software visible to the user, they are in effect invisible.
Since they are part of a particular machine, they have a limited range of functions
and so can be of specialised design, and to not need to support a huge number of
consumer apps. A popular mobile device or desktop computer, on the other hand,

2Blackberry 10 is an exception: it is based on QNX, a realtime operating system.

Exercises 7

has to be general-purpose and support programming a wide variety of user-level
software.

The take home message? There are many operating systems in devices
you wouldn’t think of as computers – embedded systems. Realtime
operating systems are specialised and there are many of them. The
desktop, server and mobile computing worlds are a tiny fraction of the
total both in variety and number of devices. The number of operating
system variants is much smaller where the main point is user-installable
software because issues like compatibility limit market share.

What I Cover

Operating systems is a vast subject to cover. Here, I look at enough to give a
taste of the subject, and to relate it back to programming in C and how C relates
to the machine code level. I look at how an operating system is divided between
a kernel and user space, scheduling of processes and threads, how IO and files
are organised, memory management, and examine how process and threads are
implemented and used at user level. As an extension of processes and threads I
also briefly outline another mode of parallelism: distributed computing and how
it relates to the cloud.

The goal is to give you a general understanding of operating systems with
examples mostly from the Unix family, with occasional comparisons with other
types of system. I do not go deeply into internals: the idea is that you should
become more proficient in using and working with an OS rather then learn how to
implement one. If you want to implement an OS, this book will give you a start
but you will need to learn a lot more.

Exercises
1. There are many types of free software licences.

(a) Look up variants on the Free Software Foundation’s (FSF) General
Public Licence (GPL), generally used with GNU software, as well as
the MIT and BSD licenses.

(b) What are the practical differences?

(c) How does open source differ from free software? Are the differences
significant?

8 CHAPTER 1. INTRODUCTION

(d) Can you think of a practical reason for making source code freely
available, besides having more people available to debug code?

(e) Why is software not always published with a free license?

(f) If you want to publish software you have created, explain how you
would go about choosing a license model.

2. An operating system is about abstractions. Discuss each of the following,
and how they make an OS more convenient to the user (or programmer).

(a) Virtual memory.

(b) Processes.

(c) File Systems.

(d) Input and output.

(e) Device drivers.

(f) Scheduler.

3. Having seen a little assembly language, would you like to write a whole
operating system that way? Does C seem more suited to the task? Explain.

4. How many examples of embedded systems can you think of? Look around
your home: what could contain a computer?

5. Is an MP3 player an example of a hard realtime system or a soft realtime
system? Explain.

6. Is the anti-lock braking system of a car an example of a hard realtime system
or a soft realtime system? Explain.

7. The principle of locality is that a program uses a small subset of memory
at a time. Explain how locality could make VM viable, even though the
fastest layer of the memory hierarchy is a million or more times faster than
the slowest layer.

8. A disk is millions of times slower than a CPU. What tricks can we use to
disguise this fact, so disk access does not slow the system to a crawl?

9. You are implementing an ATM system for a bank from scratch. Give points
for and against each of the following approaches to choosing an OS:

Exercises 9

(a) Write your own OS from scratch.

(b) Use a version of Linux.

(c) Use Microsoft Windows.

(d) Use macOS.

(e) Use iOS.

(f) Use Android.

(g) Investigate embedded OS options for one suited to the task.

10. Is portability a more important issue for consumer apps than for embedded
devices? Explain.

2 The Kernel

MMOST OPERATING SYSTEMS are structured as a layer that has total control
over all hardware, the kernel, and at least one other layer, the user
level, that is restricted in what it can access. Where systems differ is

in how big and complex the kernel is. A monolithic kernel contains everything
that needs direct hardware access including device drivers and can include quite
large components like the graphics subsystem. At the other end of the scale,
a microkernel does the absolute minimum that has to have total access to all
hardware, and even low-level components that need direct access to hardware can
be outside the kernel, provided their access to hardware can be limited to a very
specific part of the system.

2.1 System Calls and IPC

Since a kernel provides access to parts of the hardware that are not accessible to
ordinary programs, there has to be a mechanism for asking the kernel to provide
a service not possible to implement at user level. As we will see later, memory
management in most systems limits direct passing of information, so switching in
and out of the kernel is necessary to pass information around.

Inter-process communication (IPC) is a general term for communicating
between processes. However IPC is implemented, some kernel intervention is
required unless the processes concerned are specifically set up to have a shared
resource they can use, like a shared region of memory. In general terms we will
assume IPC has to go via the kernel. In order to understand how IPC can work,
we need first to understand what a system call is and how it works, since this is a
mechanism to switch control to the kernel.

10

System Calls and IPC 11

Hardware Support for Modes

Since some things are only allowed in kernel mode, to enforce this, hardware
support is necessary. There is a lot of difference between different CPU
architectures; we will look at a generic case, rather than go into detail of any
specific machine.

A common approach is to have a status register that keeps track of the mode
the system is in. In addition to keeping track of the mode the system is in, the
interrupt handler needs information about what caused the interrupt. A register
that contains a value identifying the cause is one approach to this. The MIPS
processor has several registers in “coprocessor 0” that are used to keep track of
details of interrupts, including the machine address where a bad memory access
occurred.

Heads up: For simplicity, we talk loosely of a “status register” but in a
real machine, there may be more to machine state than that, as illustrated
with the MIPS example.

The status register can generally only be set in user mode by an interrupt.
When an interrupt occurs, control switches to a predefined point in the operating
system (depending on the type of interrupt) and the status register is switched to
kernel mode.

To exit kernel mode, the kernel must first restore any registers and any other
machine state specific to the interrupted process, then an instruction for returning
from an interrupt sets the status register back to user mode, and jumps to the
location containing the next instruction in the user process that should run to
restart the interrupted process. That “next” instruction can be the one after the
one causing the interrupt if that instruction completed (e.g. if it was a trap, such
as a syscall – see below), or it could be the instruction that caused the interrupt
if it did not complete. An example of an instruction that should be restarted after
an interrupt completes is one that required some intervention from the memory
manager before it could execute to completion.

The instruction to exit kernel mode cannot be executed in user mode: any
attempt to do so should trap to the kernel and the operating system will usually
treat this as an error and kill the process. One exception: if you are running
another operating system either in an emulation or virtual mode, the kernel may
treat such an instruction as part of emulating another kernel, and handle it more
benignly.

12 CHAPTER 2. THE KERNEL

The take home message? Hardware support for modes prevents a user-
level process from taking actions that could violate security.

System Calls and Interrupts

To enter kernel mode, it is necessary to signal to the CPU that a change in state
from user mode to kernel mode is required, and the method for entry to the kernel
has to be controlled so that it does not expose a security hole.

On the MIPS processor, a system call is invoked via the syscall instruction,
which requires a value in the register $v0 to indicate which system call is invoked.
You can also pass a value in if required by the system call through the usual
register conventions for parameter (argument) passing. In the SPIM simulator, we
have a very approximate implementation of syscall to enable simple functions
like printing. On a real machine, the syscall instruction breaks execution of
the user-level program and passes control to the operating system, which has to
interpret the syscall instruction and register values to work out what to do next.

A syscall is a special case of in interrupt (called an exception in the MIPS
architecture) – an event that breaks control from going to the next instruction (or
may even stop an instruction from completing), and takes you to a specific location
in memory belonging to the kernel. An interrupt that is generated specifically
and directly by an instruction is called a trap. Other interrupts can be caused by
external events, like a timer going off, or by a failure of an instruction to complete
(an error, or something the operating system needs to handle). The result is the
same in all cases: the machine switches to kernel (sometimes called supervisor)
mode and control transfers to a location specific to that type of interrupt. In the
simplest model, there are sequential locations, one for each interrupt type, and
each location contains a jump instruction to the place the interrupt is actually
handled. Such a scheme is called an exception vector. MIPS is a little more
complex: each exception location is 256 bytes long (space for 64 instructions),
but the same basic idea applies – if an exception needs nontrivial code, its handler
must branch out of the location where it starts. Allowing space for 64 instructions
means simpler cases can be handled quickly; wasting most of 256 bytes if a jump
instruction is all that is used is a small overhead compared with the flexibility to
handle simple cases quickly.

System Calls and IPC 13

Figure 2.1: Basic Interrupt Vector. Some schemes as in MIPS put more space
between locations but the idea is the same: an interrupt takes you to a specific
memory location in kernel mode.

Heads up: A system call has to generate an interrupt because that is the
only way to get from user to kernel mode. A user-level process has to give
up control completely before the kernel takes charge otherwise it could
violate security.

To return control to the user-level program, the OS needs to know where it
was when interrupted, and to be able to restore register values. Restoring register
values is not a very different problem to what you do when you return from a
function call at machine code level except that for an interrupt, the program does
not necessarily know it has been interrupted, so all register saves and restores must
be done by the kernel. Also, there is no guarantee that the interrupted process
will be the next to start, so registers will need to be stored in a data structure
specific to the process. When a process is restarted, the kernel has to restore
registers from this data structure. This data structure, commonly called a process
control block (PCB), must contain enough information to restart a process. A
PCB generally contains the information needed to control the lifetime of a process.
That information at minimum includes all registers (excluding any only accessible
by the kernel) and is likely also to include information about or at least a pointer
to the information about resources owned by the process including open files.

Heads up: A process generally cannot know that it needs to save and
restore registers at an interrupt so it is the kernel’s responsibility to return
things to the state when the interrupt occurred. This is different from a
function call, a more symmetrical contract between caller and callee.

Two MIPS machine registers, $k0 and $k1, are reserved for kernel use. There
is nothing to stop you using these in ordinary code (they are just general-purpose
registers) but because they could change any time out of control of your code using

14 CHAPTER 2. THE KERNEL

them is not a great idea. The MIPS convention of reserving these two registers for
the kernel allows an interrupt that can be handled quickly in simple code that needs
only two registers to get away without saving registers. This situation obviously
only applies to interrupts that pass control straight back to the interrupted process.

In very simple cases, an interrupt handler may be able to hand control back
to the interrupted process, in which case these reserved registers come in useful.
Otherwise, the whole set of registers has to be dumped to the process’s PCB so
they can be recovered when the process is restarted.

The take home message? An interrupt is necessary to transfer to the
kernel so a user-level process cannot access any part of the machine that
it is not entitled to see or modify.

System Mode

Given all this machinery, there is one other essential requirement: a way of
keeping track of whether the CPU is in user or system mode. In user mode,
the operating system limits access to hardware. An ordinary user-level program
cannot access all memory or directly access an IO device on most systems.
Without hardware support to prevent a user-level program from accessing all parts
of the system, out of control code could crash the whole system, or security holes
could be exposed. Most CPUs have two privilege levels, system and user, and
a status register that keeps track of which mode the system is in. A user-level
process can only enter system mode by some kind of interrupt, but the kernel (or
any code in system mode) can transfer control to user-level code.

For ordinary user-level processes, the term user mode is in common use. There
is a bit more variation in system mode. System mode is also called kernel mode or
supervisor mode.

IPC

On now to basics of IPC. We will see more detail later when we study
processes (chapter 6), where we look more specifically at mechanisms in Unix-
like operating systems. For now, I provide a brief overview.

The simplest model of IPC is placing information in a shared region of
memory. If one process modifies a region of memory visible to another and the
other periodically checks for updates, all that is required to implement this form
of IPC is the ability to share memory across two or more processes.

Kernel or User Space? 15

Another model is passing a message through the kernel. That means copying
data from the one process to the other, with a transfer into kernel mode to
initiate the transfer. Message-passing IPC can be made very efficient. The L4
microkernel, initially a research project but now deployed on over 1.5-billion
devices [Open Kernel Labs 2012], illustrates this by implementing IPC that is
20 times faster than that of an earlier attempt at a microkernel, the Mach project
[Liedtke 1993].

Copying from one process to another, as we will see when we study memory in
more detail, is complicated by the fact that memory protection prevents processes
from seeing each other’s address space.

The take home message? Speed of IPC is a critical factor in the viability
of microkernels, less so for performance of monolithic kernels, because
a microkernel achieves protection by placing devices and services in
separate address spaces.

2.2 Kernel or User Space?

So what should be in the kernel and what should be in user space?
An absolutely minimal kernel is designed on the principle that something

should only be in the kernel if that is the only way to make that feature work.
Take for example a device driver, the software that controls a device like a disk
or a network interface. Should that be in the kernel? Some aspect of it must be
controlled by the kernel because it may need to have access to a particular region
of memory not accessible to normal user processes, or be required to respond to a
particular kind of interrupt. In a microkernel, some aspects of setting up a device
driver and passing it an interrupt would be in the kernel but the main body of the
code would be another user-level process. In a microkernel world, efficient IPC is
really important otherwise talking to device drivers would be prohibitively slow.

I already mentioned the L4 microkernel, which is one of the smallest
microkernels. Slightly bigger is the MINIX 3 kernel, used in operating systems
education [Tanenbaum and Woodhull 2006] and research. An earlier version
of MINIX inspired the development of Linux. Linux is most decidedly not a
microkernel: device drivers, for example are part of the kernel. MINIX 3 has
slightly different design goals than L4. While L4 was designed with performance
and correctness in mind, MINIX 3 is designed for fault tolerance. Because major
components of MINIX are outside the kernel, if they crash they can theoretically

16 CHAPTER 2. THE KERNEL

Table 2.1: Sizes of kernels

Kernel size
Linux 3.16 6.4MB
L4 100kB
Minux 3.3 187kB

be restarted [Herder et al. 2006]. Since MINIX 3 is also designed to aid teaching
about OS, it is coded relatively simply [Tanenbaum 2016], while L4 is coded for
performance, including highly machine-specific machine code to implement its
most performance-critical features.

Table 2.1 shows kernel sizes (file size of the compiled kernel) on Intel x86
architecture for a few examples; RISC processors like MIPS has less dense code
(bigger code size). Actual run time memory footprint is considerably larger as the
kernel has data structures that can be quite large.

To illustrate how complex the kernel can be in a system that has evolved over
time, the macOS kernel has multiple layers:

• Mach – manages IPC, process scheduling, memory and other low-level
functions

• BSD1 – networking and Unix-like system calls

• networking – builds on the BSD layer

• file systems – supports multiple types of file organization including Apple’s
own HFS+ and several Unix-derived variants

• I/O kit – infrastructure for building device drivers

• kernel extensions – components to add functionality such as new network
capabilities that can be loaded without rebuilding the kernel

The macOS kernel is called XNU, for “X is not Unix”. Since the “X” is a roman
numeral ten, it is not clear how XNU should be pronounced. Or if the name makes
sense after Apple changed the name from “Mac OS X” to “macOS” in 2016.

1Berkeley Software Distribution: a variant of Unix developed at University of California, Berkeley.
Noted for the quality of its network implementation.

What the Kernel Does 17

To answer the question posed by the section title: it very much depends. In
an OS like Linux, OS X or Windows, the kernel includes a lot of functionality
including device drivers. In an OS like Minix 3 or L4, the kernel is a very small
piece of code. The trade-offs are:

• speed – a bigger kernel means fewer trips in and out of the kernel

• footprint – a smaller kernel uses fewer system resources such as faster levels
of memory (caches)

• reliability – if the kernel is smaller, it is easier to be sure it is correct; the L4
kernel has been proved mathematically to be correct [Klein et al. 2009], not
feasible with a code as big as the Linux, Windows or macOS kernel

• fault tolerance – if services and drivers are outside the kernel as in L4 and
Minix 3, the system can in principle be designed to recover from faults in
this kind of code whereas any crash in the kernel is hard to recover

The Mach project was one of the earlier microkernels and because it performed
poorly, the view arose that microkernels were inherently slow. Later projects like
L4 and Minix 3 have to some extent addressed that issue. L4 is able to run the
Linux kernel as a user-level task by handling interrupts in L4 and passing back
anything that Linux has to handle with a performance penalty of about 2% [Härtig
and Roitzsch 2006]. Linux in this case is runs in a kind of emulation mode and a
2% performance hit is good in that scenario.

The take home message? A microkernel is inherently slower than a
monolithic kernel because it requires more switches in and out of kernel
mode. That performance cost can be reduced by very efficient IPC and by
the kernel having a smaller resource footprint than a monolithic kernel.
As system requirements evolve, microkernels may become more popular.

2.3 What the Kernel Does
Now we have some idea of the design choices, what are the essentials of what a
kernel does?

First, it must manage processes. A process is the embodiment of a program
when it runs. It has memory, a share of the CPU and may also get to control
specific files or other machine resources. The main process-related kernel

18 CHAPTER 2. THE KERNEL

functions we will examine are scheduling – deciding which process runs when
– and IPC. We in addition look at how processes can cooperate using IPC and
synchronisation primitives, and how multithreading differs from coordination of
multiple processes sharing a specific workload.

Second, it must manage memory. Memory management cannot be seen in
isolation from managing processes because launching a new process requires an
efficient strategy for allocating its memory and some types of IPC work through
shared memory.

Third, it must manage input and output. IO involves devices that vary a lot in
how they are controlled, and outer layers of the operating system (not the kernel)
try to make them look more uniform. The kernel handlers the lower-level details,
particularly responding to interrupts, and managing the way memory interacts
with IO.

The take home message? The kernel has certain core functionality –
managing processes, memory and IO. The extent to which the detail of
this is in the kernel or outside defines the difference between a monolithic
kernel and a microkernel.

Exercises

1. The original Mac OS and MS DOS, the text-only predecessor of Microsoft
Windows, ran all code in one mode (no separate user and kernel modes).

(a) Both were originally designed to run only one program at a time.
Discuss whether in such a system a separate kernel mode is useful.

(b) Early versions of Windows and the Mac OS evolved to run multiple
programs simultaneously still without hardware separation of user and
kernel mode. Discuss why the OS designers may have made this
choice and positive and negative consequences.

2. The Mac OS X kernel is a composite of the Mach kernel and several
layers. Discuss why it was designed this way, rather than using Mach as
a microkernel.

3. Explain why efficient IPC is such a big factor in the viability of a
microkernel.

Exercises 19

4. Explain why the MIPS processor allows 256 bytes for each location in the
interrupt vector when an instruction is only 32 bits (4 bytes).

5. A typical current generation CPU has about 64KiB of first-level (L1), i.e.,
fastest, cache. Discuss how a very small microkernel may have less impact
on overall system performance than much bigger kernel, taking into account
memory hierarchy.

6. The L4 and Minix 3 kernels place device drivers in user space. Discuss how
such a device driver can work when some hardware it has to access can only
be reached in kernel mode.

7. If a device driver crashes, the system has to be rebooted. True or false?
Discuss.

8. A system with protection from badly behaved user code needs hardware
support for kernel mode. Explain what has to be done to enter or leave
kernel mode to avoid security violations.

9. Explain what has to go into a PCB to make it possible to restart a process.
Some detail we need is missing; focus on what we have already covered.

10. Did the Mach project advance the popularity of microkernels? Explain.

3 Schedulers

DDECIDING WHICH PROCESS or – sometimes which thread – to run next is
a core function of most operating systems. Only very simple devices that
run the same process all the time do not need a capability of switching

between processes. Deciding which process or thread should go next is called
scheduling. Scheduling is important because a good approach maintains a balance
between allowing processes that are computation-heavy to make good progress,
while allowing those that are IO heavy to make up for lost time.

To keep things general, I adopt the Linux terminology of tasks, which can be
either processes or threads where I do not need to distinguish the two.

Managing the balance between requirements for different kinds of tasks is
a moving target. Early operating systems, designed for computers with much
smaller memories than we generally have today, had an easier task as a limited
number of processes could be active at any time. With memories in multiple
gigabytes, a hundred or more processes can be active at once and a poor approach
to scheduling could make for a system that is unresponsive for interactive use or
that does not allow fair progress of longer-running, less interactive tasks.

Schedulers split into two broad categories: general-purpose and realtime
schedulers, with other subdivisions as we will see shortly.

A general-purpose scheduler aims to handle a range of workloads; a realtime
scheduler aims to provide time guarantees for processes that have a realtime
requirement. Realtime further divides into two categories: hard realtime requires
that a given transaction complete within a given deadline otherwise the system is
broken. Soft realtime softens this requirement to allow an approximate version of
the transaction if time runs out.

An example of a hard realtime requirement is an anti-lock braking system on
a car. If the calculation is not done in time, the braking system does not work as
designed and is flawed. An example of soft realtime is video streaming. If the
sound breaks up a bit or the picture pixellates, within some tolerance of the user,

20

Schedulers 21

the system is not broken.
Soft realtime can be implemented in a general-purpose scheduler by giving

realtime processes a higher priority than normal so they have a high probability
of running when they have to and completing a task in time, provided they are
programmed sufficiently efficiently. Hard realtime cannot be implemented on top
of a scheduler not designed for guaranteed response times.

Hard realtime is a specialised subject and designs can be very specific to the
particular application domain. I mainly described general-purpose systems here.
To start, I present some theoretical variations, then make them more practical. I
then describe how some of these general concepts apply in particular systems.

Another variant on scheduling is a long-term scheduler, which decides
whether to admit a process to the system, and a short-term scheduler, which
decides which of the currently active processes should run next. The long-term
scheduler is usually very simple and lets any new process move to the ready
queue immediately, unless the system would be overcommitted for memory or
the number of allowed active processes.

A process can become inactive if waiting for a resource, e.g., an IO event. In
its simplest form, a scheduler has three queues:

• admission – processes that have not yet been started

• ready – processes that can run but are not active

• waiting – processes that cannot run until a resource constraint like waiting
for an IO operation is lifted

Corresponding to these queues, a process can be in one of four states, as illustrated
in figure 3.1:

• not admitted – in the admission queue

• ready – as above

• waiting – as above

• active – the active process on a given CPU

On systems with more than one CPU (multicore systems, for example), there may
be more than on active process. Such systems may also have separate queues for
each CPU to avoid bottlenecks in accessing a single central queue of each type.

22 CHAPTER 3. SCHEDULERS

not admitted ready

activewaiting

admitted

scheduled

IO event

IO done

exit done

interrupt

Figure 3.1: Process states. Circles are states and arrows are labelled with
reasons for transitions between states. An interrupt that does not cause an IO
wait puts an active process back into the ready queue.

Another less common distinction in schedulers is preemptive versus coop-
erative. A preemptive scheduler interrupts a task either when it runs out of
allocated time, the task itself causes an interrupt (e.g., a system call, or something
the memory system must pay attention to), or some external event interrupts
execution. Another task can be scheduled at that point, and the interrupted task
resumed later. A cooperative scheduler relies on the user-level code to invoke an
operating system service that signifies it can give up control at that point. Early
versions of the Mac OS and Windows used cooperative scheduling. In general, a
separate kernel makes it possible to do preemption; any OS where user-level code
can directly access OS data structures cannot safely implement preemption, as an
interrupt may leave an OS data structure in an inconsistent state.

3.1 Theoretical Approaches

Most schedulers in common use are preemptive, i.e., a process does not run as
long as it likes but is forced to give up the CPU after a time interval if it does not
do so itself. To simplify initial presentation, I describe approaches first without
preemption.

Non-preemptive scheduling

First, what do we look for in a scheduler? The most significant properties are:

Theoretical Approaches 23

• fairness – no process should experience starvation, where it gets no share
of the CPU and ideally each process should receive an equitable share of
the CPU

• responsiveness – processes should not wait an unacceptable time to make
progress, especially those that interact directly with the user

• minimal wait time – a process would spend as little time as possible in
queues, when it could be ready to run

Related to fairness is the expectation that a process will make progress, so a
process that waits a lot of the time for IO, for example, should get enough use
of the CPU to compensate as far as possible for time lost to waiting.

The absolutely simplest scheduler is first come first served (FCFS). An FCFS
scheduler runs each process to completion in the order it arrives. FCFS has two
advantages: simplicity and fairness. While it may not be the most efficient at
minimising wait time and responsiveness, it is very simple to implement. All it
needs is a queue in the order of arrivals so it can schedule the job that has been in
the system longest.

In practice, FCFS is unlikely to be used for anything but the long-term
scheduler, since real schedulers use preemption, and waiting for IO events soon
makes order of initial entry to the system irrelevant as IO-bound processes drop
behind and small CPU-intensive processes complete.

Another theoretical approach is shortest job first. The value of SJF is that it
minimises wait time because a long-running process waiting for all the smaller
processes only sees their run time as wait time, whereas anything waiting for a
long-running process sees its lengthy run time as wait time. SJF can also make
for a responsive system, since user interactions may be short-lived processes
compared with e.g. running a large weather model. SJF has two problems: it
is not possible to implement, because it requires future knowledge of how long
a process will run, and it can result in starvation. SJF is nonetheless useful in
simulation studies to compare against other approaches to measure the trade-off
in minimising wait time with SJF versus a more practical algorithm.

The take home message? SJF minimises wait time, but is not a practical
strategy as it requires prediction of future run time of each process.

24 CHAPTER 3. SCHEDULERS

Preemptive scheduling

A real process very seldom starts from the beginning and runs to completion
because almost all processes do some IO, and IO is so slow that a process waiting
for IO should give up the CPU to another while it waits. A scheduler could let
each process run until it has to wait for IO but that would be unfair on processes
that do a lot of IO. They would spend a lot of time waiting not only for their IO
to complete, but for any long-running compute-intensive process that grabbed the
CPU while they were waiting for an IO event.

Early versions of the Mac OS used a form of non-preemptive (cooperative)
scheduling where a process could lose control of the CPU when it invoked one of
a list of operating system services (these were not systems calls, because the OS
did not have a separate kernel). The theory was that developers would frequently
use system services related to the user interface in programs that were designed to
be interactive. A program that did not behave cooperatively or that ran into a bug
like an infinite loop could hog the CPU in this model of scheduling.

A preemptive scheduler grabs control of the CPU away from a process without
waiting for it to give up control. A process can lose the CPU as a result of any type
of interrupt. In general, an interrupt is any event that breaks the flow of execution.
Most interrupts are caused by events outside the currently running code but a
trap is an interrupt that is specifically signalled by the code, most commonly in a
modern OS to cause a system call. Other kinds of interrupt include:

• timer – a specific time interval has elapsed and the program is interrupted:
this can be because the program itself has set a timer, or because the
scheduler has set a timer

• page fault – an attempt at a memory access fails in a virtual memory system
(see Chapter 5)

• IO event – an IO event has started and needs attention, e.g., a network packet
has arrived

• IO completion – an IO event has finished, and has been set up to interrupt
when it completes

• protection fault – attempt to access or modify hardware state not allowed at
the current protection level

Theoretical Approaches 25

• floating point exception – obtaining a result or using value that is invalid
e.g., dividing by zero

In some cases, interrupts (like a protection fault) are errors and your program will
be terminated by the OS. Recoverable kinds of interrupt like page faults, timers
and IO-related interrupts result in the process being suspended. Depending on the
reason for suspending the process, the process’s state changes from running to
either ready or waiting, depending on whether the interrupt causes an IO event for
the current process.

A preemptive scheduler will generally set a timer for a particular time quantum
or time slice, the maximum time that a process can run. If it does not complete
or there is no other interrupt but the time the timer goes off, the process loses the
CPU and the scheduler picks the next ready process to run.

One of the simplest models of preemptive scheduling is a round robin
scheduler1. A round robin scheduler organizes active processes in a circular queue
(a data structure in which the last entry points back to the start) and as each process
gives up the CPU without losing its ready status, the next ready process becomes
the active process. Any process that rejoins the ready queue can be inserted at
the “head” of the queue (the next location to be processed), giving any process
that has had to wait a burst of CPU time to make up for lost time, as illustrated in
figure 3.2 (ignore the bird2).

A round-robin scheduler ensures fairness but it does not assist IO-bound
processes with making progress as the only way they catch up is by being put
at the head of the queue when their waiting ends. If the process has a burst of
CPU activity that exceeds the time quantum, it in effect goes to the back of the
ready queue, so this is not really a significant advantage.

The take home message? The round robin approach provides a basic
model that is a starting point for a practical scheduler but it does not
have the flexibility to deal with a diverse workload.

1Aficionados of wildlife will be wondering what a fat bird has to do with scheduling. The term
“round robin” originally applied to a petition written on a circular ribbon, so ringleaders could
not be identified and punished by a vengeful monarch. The “robin” part is a corruption of the
French for ribbon, “ruban”. What does this all have to do with schedulers? Nothing, except the
origin of the name, which has also come to mean everyone taking their turn one after another.

2Source: Pixabay, http://pixabay.com/en/red-robin-bird-animal-winter-157576/.

http://pixabay.com/en/red-robin-bird-animal-winter-157576/

26 CHAPTER 3. SCHEDULERS

0 1ready queue 2 3

next to run

0 4ready queue 1 2

next to run

3

4exited from wait queue

(a) About to add previously waiting process

0 1ready queue 2 3

next to run

0 4ready queue 1 2

next to run

3

4exited from wait queue

(b) Peviously waiting process added

(c) A fat bird

Figure 3.2: Round-robin scheduler. When a process (“4” here) exits the waiting
queue, it becomes the next process to run as illustrated. Otherwise each process
runs in turn, with a circular queue formed by linking the last to the first entry.

3.2 More Practical Approaches

More practical approaches to scheduling have to take into account the mix of a
typical workload, which can include IO-bound and CPU-bound processes, as well
as processes where the IO component is mostly user interaction. If IO is mostly
user interaction, a particular concern is making it appear responsive to the user.

As speed and size of computers vary, the workload mix also varies. Since
rapid advances in cost lowering make bigger and bigger configurations more
commonplace, adjustments to design trade-offs can be necessary. Here, I examine
general principles and look in the next section at specific examples to show how

More Practical Approaches 27

rapidly designs can evolve.
The most important addition to the basic round robin scheme is priority.

Priority is any scheme that adjusts the order of processing to take into account
differences in units of work. A process that is IO bound should in principle have
higher priority than a CPU-bound process, while an interactive process should
have higher priority still. Soft realtime can be accommodated by giving realtime
processes higher priority than others; hard realtime is more difficult.

There are various schemes for taking priority into account. The simplest is
to have different ready queues for different priorities: this approach is called a
multilevel queue. The next process scheduled is the next one in the highest-
priority ready queue that is not empty. In this scheme, starvation is a risk
because processes in lower priority queues will never be scheduled if there are
always processes in higher priority queues. Starvation is addressed by a multilevel
feedback queue, in which processes can migrate between priorities. A common
approach is for a process to drop a level (go to lower priority) each time it finishes a
time quantum without being interrupted and to go up a level (higher priority) each
time it re-enters the ready queue after an interrupt is processed. In such schemes,
it is also common to limit the number of levels a given process can migrate up
or down in priority, and adjusting the place a process starts and how far it can
migrate are tuning parameters. For example, a soft realtime process may start at
the highest priority, and be limited in the number of levels of priority it can drop
to avoid failing to respond in time. Figure 3.3 illustrates the basic idea, without
complications like limiting the range of variation of priority of a given process.

Another approach to varying a simple round-robin scheme is taking into
account each task’s share of elapsed CPU time as a measure of how much progress
each task has made relative to others. The idea starts from the notion that if a CPU
could somehow magically allow all ready processes to run at once, dividing CPU
time equally between them, you would have a fair scheduler. Since this is not
possible, a measure of progress based on dividing actual elapsed CPU time by
number of ready processes, called virtual CPU time, is used to estimate elapsed
time across all processes. An approach based on virtual CPU time can replace
priorities by ensuring that the process with the shortest elapsed virtual CPU time
goes next. For this to make sense, any new process arriving in the system needs
to have its elapsed time initialised based on the shortest elapsed virtual CPU time
of any task already in the system, otherwise it could hog the CPU until it caught
up. This scheme can give tasks weights corresponding to priorities that make
lower-priority tasks exhaust their allocated run time faster [Pabla 2009].

28 CHAPTER 3. SCHEDULERS

ready queue[0]

ready queue[1]

ready queue[2]

ready queue[3]

finished tim
e quantum

interrupted

highest priority

lowest priority

Figure 3.3: Multilevel Feedback Queues. If a task uses up its time quantum
it goes to a lower-priority queue. If interrupted, it resumes in a higher-priority
queue.

Another issue with real schedulers is dealing with competing users. If one
user e.g. schedules 100 tasks and another schedules 10 tasks, should the first user
get 10 times the CPU time of the second user? A related issue is where the OS
supports threads. If a group of threads is scheduled completely independently,
they may get held up if a result needed by one thread is not ready when the others
need it. Treating all tasks equally without taking cooperative and competitive
effects into account may not always give the best result.

Gang scheduling attempts to schedule a group of related tasks that have
dependences between each other as a group. On a multiprocessor system,
that implies scheduling them at the same time so any bottlenecks arising from
one task waiting for a result from another are eliminated. Although originally
developed for large-scale multiprocessor supercomputers [Feitelson and Jettee
1997], gang scheduling has in recent times also been explored as an option for
cloud computing [Moschakis and Karatza 2012].

Implementing hard realtime is very different. Each task has to have a
time deadline, and has to be scheduled taking into account its predicted run
time and time deadline. Dynamic priority changes in a realtime scheduler
break determinism, predictability of time to complete [Schaffer and Reid 2011].
Systems differ: the time deadline may simply be a property of determinism and
the design of the particular process, i.e., if it has time N to complete a task, it is
coded to take less than that time and relies on the scheduler to prioritise it over
non-realtime tasks, and to schedule it without delay if an external event triggers it.

Examples 29

Getting hard realtime right goes beyond scheduling: it creates big challenges for
the memory hierarchy as a factor of a million or more difference in timing would
really matter for hard realtime, so a page fault in a hard realtime process would
almost certainly result in missing its deadline; a delay of a few tens or hundreds
of clock cycles to handle a cache miss is less problematic but makes coding for
the general case difficult. An embedded system, which contains a computer as
part of a machine, appliance, etc. is often custom-designed with a few additional
requirements as possible to avoid problems with determinism.

The take home message? Priority can be implemented directly with
multilevel queues and indirectly with virtual CPU time. Hard realtime
presents another whole set of problems and cannot easily be handled in
the same framework as regular scheduling.

3.3 Examples

Evolution of the Linux scheduler is an interesting case study because there have
been major changes in strategy. Windows provides a contrast of a relatively stable
design. I contrast two Linux schedulers, the O(1) scheduler and the completely
fair scheduler (CFS), to illustrate how fast the free software world can move.

To understand the design issues, you need to be clear on notation used
in algorithm analysis for predicting scalability. I present a very approximate
reminder here presuming you will know this from prior study of algorithms;
any good algorithms book should explain the notation properly [Cormen et al.
2009]. We care about how fast the function describing execution time grows (and
sometimes memory use, if that grows significantly more than the original data).
We do not care as much about constant factors or lower-order terms. A function
like 12N2 + 2N + 4 will be bigger than 1000N logN + 106 if N is big enough.
So we focus on the largest term in the function using the “big-O” notation. The
first example is O(N2) and the second is O(N logN). We also do not concern
ourselves with the base of a log, because you can covert between log bases by
multiplying by a constant. The best we can do in general is constant time, i.e.,
time that has a fixed upper bound, which we write as O(1). A big-O function is
used to characterise time complexity – in essence a prediction of how fast time
grows as N grows. An O(N2) algorithm, for example, takes 4 times as long (to a
good approximation, since we dropped lower-order terms) every time we double
N because (2N)2 = 4N2.

30 CHAPTER 3. SCHEDULERS

Heads up: Algorithm analysis teach us that, unless we are dealing with
very small N, there is little point trying to improve an algorithm whose
time complexity predicts it scales poorly. Rather, we need to find a better
algorithm with lower time complexity.

Prior to the 2.6 version of the Linux kernel, Linux used an O(N) scheduler
[Aas 2005, p 15], i.e., one in which at least some scheduling operations scaled
linearly in time required with the number of active processes. A number of factors
make it useful to have a scheduler (and in general, other kernel operations) scale
better than O(N). With growing memory sizes and CPU speeds typical users even
with a desktop system have a growing number of active processes. With support
in the kernel for threads, the number of tasks (threads or processes) to be managed
grows even more. In a big server, even more active tasks may exist.

In kernel version 2.6.23, the O(1) scheduler was replaced by the completely
fair scheduler (CFS). While CFS takes time O(logN), this function grows so
slowly that even for very large values of N efficiencies introduced by the CFS
make the tiny extra overhead worthwhile.

Linux O(1) scheduler

In algorithm analysis, as noted above, O(1) time means the upper bound on
execution time is a constant, and does not vary as problem size N varies.

Here are a few details of the O(1) scheduler, considered so good at the time
that there was little room for improvement [Aas 2005]:

• there were 140 priority levels, each represented by a run queue

• only tasks in the highest-priority queue with runnable tasks are scheduled

• when a task uses up its time slice, it is moved to an expired priority list and
at the same time, its time slice is recalculated

• when the ready list is empty, a pointer swap exchanges the roles of the ready
and expired lists for that priority

• tasks have a static priority assigned at launch (a nice value in the Unix
world, range -20..19 and default value 0 – smaller values are higher priority)

• as a task runs its dynamic priority adjusts ±5 from its static priority

Examples 31

ready queue[0]

ready queue[1]

ready queue[2]

ready queue[39]

less interactive
m

ore interactive

highest priority -20

lowest priority 19

: :

expired queue[0]

: :

expired queue[1]

expired queue[2]

expired queue[39]

Figure 3.4: Linux O(1) Queues. When a ready queue empties, the ready and
expired pointers are swapped. Heuristics adjust priorities up and down based on
“interactivity” of tasks.

All these operations are possible to do in a bounded amount of time. Finding the
highest priority non-empty queue is done by keeping a bitmap in which a 1 at bit
b means queue b has at least one entry. Finding the position in a bitmap with the
lowest-numbered set bit, if there is an upper bound on the number of bits (here,
140 – rounded up to a whole number of machine words), this operation can be
found in O(1) time. Moving a task to an the expired list and recalculating its time
slice can also be done in a constant amount of time: a pointer swap to can be done
in O(1) time. Figure 3.4 summarises the major features.

This then is an efficient implementation of a multilevel feedback queue;
the complication comes in the feedback part, where priorities can be adjusted
according to how interactive a process is. The degree of interactivity is estimated
from how much sleep time a task racks up. A highly interactive process should in
principle spend a lot of its time sleeping: waiting for IO, particularly from really
sluggish devices like humans. Since this is not something that can be calculated
accurately, the O(1) scheduler uses complex heuristics to work out how interactive
a given task is, and uses this calculation to adjust its priority up or down. A
heuristic is an informed guess – in general, an approximation technique you use
when an accurate answer is either not possible or too inefficient to calculate.

The O(1) scheduler includes other details like preventing a user from creating
multiple new tasks that take advantage of apparently “interactive” behaviour to
gain an unfair share of the CPU.

32 CHAPTER 3. SCHEDULERS

The take home message? The Linux O(1) scheduler was much more
efficient than its predecessor and needed constant time as opposed to
O(N) time to choose the next task to run at the expense of complex
heuristics to adjust priorities.

Linux CFS scheduler

In practice, though the O(1) scheduler worked well and was more efficient
than its predecessor, finding correct formulations for heuristics turned out to be
difficult, and unwanted behaviour could result. The heuristics were also complex
to calculate, to some extent negating the value of the other efficiencies of the
scheduler. For these reasons, CFS was created [Molnar 2007], and first appeared
in the 2.6.23 version of the Linux kernel.

The CFS is based on attempting to simulate the effect of an idealised multi-
tasking CPU, where all tasks ready to run at the same time run simultaneously,
hence having a fair share of the CPU. A real CPU cannot run a multitasking
workload that way, so CFS attempts to fake this by keeping track of the amount
of time each task has previously run, and allowing the task with least elapsed run
time to go next to catch up. This run time is measured as virtual runtime, actual
time scaled by the number of active tasks, to simulate the effect of each task
getting a fair share of the CPU. A task is allowed to run until its virtual runtime
puts it ahead of the next-worst-off task, when it goes back into the queue. The
actual amount it is allowed to run is a little past the point where it has had more
of the CPU than the next task to schedule, so each task gets a reasonable stretch
of runtime before losing the CPU.

The trick used to make all this possible without unacceptable overheads to find
the next task is each task is put into a red-black tree, a binary search tree ordered
the usual way, but kept balanced as nodes are added or removed. Keeping the tree
balanced ensures that all operations are O(logN).

Whenever a task becomes active, its virtual runtime is reset to a new value
based on the smallest in the tree (with a slight adjustment so it and the current
most deserving task can run for a reasonable stretch).

CFS implements priorities by weighting each task, based on its static priority.
Lower-priority tasks in effect run a faster virtual clock, so their realtime clock
times out faster.

Current versions of the Linux scheduler implement a mix of schemes including
CFS. What is interesting is the relatively rapid evolution: in 2005, the O(1)

Examples 33

scheduler was well-established as efficient and hard to improve. In April 2007
Ingo Molnár3 announced the first release of CFS.

The take home message? The Linux CFS scheduler is marginally less
efficient than its predecessor at choosing the next task – O(N logN) time
– but does away with the need to calculate complex heuristics to adjust
priorities.

Windows scheduler

The Windows scheduler by contrast is relatively stable. The original Windows
scheduler, reflecting the transition from MS DOS and the relatively primitive
CPUs available at the time for personal computers, had two layers of scheduler.
It had a preemptive scheduler that could switch CPU use between a DOS and
a Windows virtual machine, and a cooperative scheduler to manage Windows
applications [Pietrek 1992].

The Windows NT scheduler [Russinovich 1997] introduced a modern preemp-
tive scheme with support for threads. To be different from the Unix tradition, a
higher priority is a higher number. NT assigns priorities at thread granularity,
with priority 0 reserved for a system idle thread, which executes when nothing
else is able to run. Priorities 16 to 31 are for realtime tasks, and administrator
privileges are required to access these priorities. As with Linux implementations
of a multilevel feedback queue, NT tasks priorities vary within a range. On NT’s
case, that range is defined by a priority class, which can be one of realtime, high,
normal or idle. When a time quantum expires, a task is interrupted or another
task’s state changes from waiting to ready, the scheduler decides which task to
run next. If a task has switched from waiting to ready, it runs next if it is the
highest-priority ready task, otherwise the next ready task with highest priority
runs next.

Dynamic priorities adjust within the allowed range (e.g., a high priority thread
cannot decay to normal or rise to realtime): if a thread finishes a time quantum,
it goes down by 1. If an external event corresponding to user interaction like a
mouse click completes, the receiving task receives a big boost in priority. A task
can increase its priority repeatedly through a series of such events until it reaches
the maximum for its class.

NT also has an anti-starvation mechanism. The OS periodically scans the

3http://lwn.net/Articles/230501/

http://lwn.net/Articles/230501/

34 CHAPTER 3. SCHEDULERS

ready queues for tasks that have not run for at least 3 seconds. Any such task is
temporarily given the highest priority of its class and is put on a queue of tasks to
be scheduled; it runs just that time with double the usual time.quantum.

Later Windows schedulers have not changed much in basic approach, though
details such as handling of multiprocessor scheduling have been refined [Russi-
novich et al. 2012, Chapter 5]. Microsoft in 1999 decided to drop the NT name,
since it required payment of royalties to Northern Telecom [Smith 2010], but
current Microsoft kernels are based on the original NT design.

The take home message? The Windows scheduler is classic example of
multilevel feedback queues. The basic design has been stable over a long
time, with fine-tuning of details as requirements have evolved.

open versus closed

Aside from the fact that Linux kernel development is open to everyone because
of free availability of source code, another key philosophy difference between
the two kernels is the way they cater for different market segments. From the
start, Microsoft differentiated the server and desktop versions of NT, and more
recently Microsoft further subdivides the space into server, desktop and mobile
versions. While the Linux scheduler architecture is designed to be modular,
allowing the possibility of changing the scheduler for different niches, there is
no marketing-driven pressure to enforce artificial differences. For this reason, the
default Linux scheduler needs to work well for scenarios like a computer that
doubles for desktop and server use. Microsoft, on the other hand, is able to tune
the scheduler differently (e.g., adjusting the time quantum) for different markets,
even if the underlying code does not change.

The take home message? Linux and Windows kernels have both been
very successful and operate on scales from small custom devices to large
servers. The free software philosophy and lack of market pressures to
constrain design have resulted in greater flexibility in development of the
Linux scheduler, while Microsoft has relied on their ability to tune the
scheduler to particular market niches to adapt to change.

Exercises
1. Explain why shortest job first is impractical, even if approximated.

Exercises 35

2. In a real system, is first come first served practical? With preemption, what
is the nearest equivalent?

3. The early Mac OS used cooperative scheduling, where a program could
only give up the CPU if it called one of a number of OS services. Discuss
strengths and weaknesses of this approach.

4. Aside from accessing a file in user-level code, what else could cause an
IO interrupt? Would any of these causes of an IO interrupt result in any
significant difference in any OS activity other than handling the interrupt
and moving the interrupted processes from ready to waiting, then back to
ready?

5. Explain why a round robin scheduler is not a good solution to scheduling a
mix of IO-intensive and CPU-intensive tasks.

6. Explain why implementing hard realtime is difficult in a general-purpose
operating system.

7. Explain how virtual CPU time takes into account long-running processes
when sheduling a new task.

8. A process is split into 4 cooperating threads that exchange information
on a regular basis. On a quad-core machine (4 cores), explain how gang
scheduling could be useful in this scenario.

9. Explain the key differences between the Linux O(1) scheduler and the
Linux CFS scheduler.

10. A new OS is being designed and has to support hard realtime processes as
well as a Linux-compatible application layer. Comment on the strengths
and weaknesses of each of the following approaches:

(a) Add hard realtime as an extra scheduling option on a Linux kernel

(b) Start from a barebones kernel like L4, add a hard realtime scheduler
with application support and run Linux as in emulation mode for the
Linux application layer

(c) Design a realtime kernel from scratch, port the Linux application
layer and system calls, and include lower-priority scheduling for non-
realtime processes

4 IO and Files

INPUT AND OUTPUT is an area critical to the performance of a computer
system. A disk can be a million or more times slower than the average
time to process an instruction; network latency is of a similar order. Devices

using faster storage like flash reduce the scale of the problem, but IO remains a
bottleneck. The operating system has to address this bottleneck by a variety of
tricks and techniques all of which add up to latency hiding – the basic time for a
single IO operation is not improved by these things, but is hidden so it is either
less obvious or obscured entirely.

How can this be done?
First, most operating systems do not run a single program at a time. By using

multitasking, an operating system can ensure that there is some work available to
do rather than stalling for an IO operation.

Second, if the operating system is aware of the device characteristics, it can
use tricks like clustering multiple nearby accesses to reduce the penalty of setting
up an access. This trick works because many devices take a lot more time to set
up an access than to transfer data but accesses to similarly located regions can be
faster if they are grouped together.

Third, tricks specific to an operation can speed it up. For example, there is
no need for a process to wait for a write to a device to complete because the
process doesn’t need the result, so the write can be dumped to faster memory and
completed in the background while the process continues. This technique is called
buffering. A buffer can also be used for reads – but for a different purpose. By
exploiting the fact that it is quicker to read a big chunk of data in one go than with
a sequence of small operations, buffering for reads works by reading more than
the single request into memory, in the expectation that more of the neighbouring
contents will be needed soon. This is an example of the locality principle. A
buffer is usually in main memory (RAM).

A variant on the buffer idea is spooling. Originally an acronym (SPOOL,

36

Device Interface 37

track head

cylinder

rotation

Figure 4.1: Conceptual layout of a disk. Tracks and cylinders are marked using
magnetic storage and are not actually visible. An optical drive stores information
by changing the reflectivity of a spot on the disk. A cylinder is a logical grouping
of tracks through vertically stacked platters.

for simultaneous peripheral operations on-line), spooling is a kind of buffering
that applies to devices like printers that cannot interleave operations. If you print
a document, you expect the entire document to go through the printer without
being mixed with other print operations – even if someone else (or even you if
you are impatient) sends something to the printer before your document is done.
Waiting for a printer is much the same issue as waiting for a write to a disk –
there is no need for the printing process to stall until printing finishes. The only
real difference is that where spooling is involved, the OS has to take a full print
job as an entity, which requires a bit more management than ordinary buffering.
Spooling can also use a slower device like a disk, since the delay for a printer is
long by standards of computer speeds.

We look at some if this separately when considering processes and scheduling;
the main focus here is the lower level, up to the file system, which provides a
common abstraction for multiple device types.

4.1 Device Interface

At the lowest level, each hardware device could work differently. A disk requires
its head to move to or from the centre of the disk in a seek to find the right
track. Most disks have multiple platters, so tracks are grouped logically together
vertically as a cylinder. Once at the right track or cylinder, the disk has to rotate
to the right position for the required access. Flash is completely different: it is a
special kind of RAM that doesn’t lose its connects when power goes off. Unlike

38 CHAPTER 4. IO AND FILES

main memory, flash is much slower for writes than for reads, and can wear out if
the same location is frequently modified.

For a disk, seek time is a major part of the time for any transaction, and
rotational delay is not far behind. Unless data is transferred in a really big quantity
at once, transfer time is a smaller component of total time. Reads and writes take
much the same time, unlike flash, where there is a big penalty for writes.

These and other differences have to be hidden from the programmer, including
programmers who are coding higher-level parts in the OS, otherwise every new
device type would require extensive recording. Also, the device-level operations
are not convenient for programmers, who want to see a device in terms of logical
units, not low-level locations. At the lowest level of the programming, those
logical units can be blocks on disk (seen as an array indexed from zero, much
as bytes are addressed in RAM). Mostly, programmers do not need to go to such
a low level, and see a disk organised as a file system, in which the logical units are
files and directories (folders, in a graphical viewer). The file system can also be
organised into volumes, a kind of virtual disk, that can be part of a disk, or even
span multiple disks.

The very low level device-specific detail is hidden by a device driver, code
that provides standardised operations to the operating system so similar types of
device can be handled in similar ways. Above the device driver level, the operating
system still has to know what type of device it is so it can offer appropriate
operations, but the device driver takes care of details like how to find a given byte
on the device. Despite the abstractions provided by device drivers, the operating
system still needs to know if the device can support operations like random access,
read and write. Devices also may be character-oriented (like a keyboard) or block-
oriented (like a disk). Here is a summary of some of the variations:

• read – ability to retrieve data on a device; most devices are readable but
there are exceptions, like printers and the screen

• write – ability to modify data on a device; most devices are writeable but
there are exceptions, like a CD ROM or a keyboard

• block-oriented – ability to transfer data in big chunks; a disk is a good
example

• character-oriented – ability to transfer data a character at a time, such as a
keyboard

Device Interface 39

• sequential – access limited to going from one end to the other, like a tape

• random access – access can be to any location without a time penalty
(though in practice, some devices like disks do score if you access regions
close together, to reduce seek and rotational delay)

And here are some of the performance parameters for different some common
device types:

• disk

– seek time – time for the head to move in or out to the right track;
usually measured in milliseconds (ms)

– rotational delay – time for the disk to move the right area to the head
as it spins; on average, half a rotation

– transfer time – number of bytes transferred divided by transfer speed

• flash

– read delay – measured in microseconds (µs)

– write delay – measured in milliseconds but faster than disk; slower
than reads

Transfer time for flash and disk vary a lot more than the setup time to access a
specific location, since that depends on the type of interface.

To the user, a file is a single entity that contains a specific kind of information
like data or code; that it is implemented using blocks that may be randomly
scattered over one or more physical devices is hidden by lower-level abstractions.

Some systems implement a virtual file system (VFS) that can make remote and
local devices or even file systems spanning multiple devices look the same to the
user as a single local device. Sun Microsystems (now part of Oracle) implemented
an early version of a VFS for their Network File System (NFS), now common on
other Unix-style platforms, to make remote disks look like local disks as far as
possible at the programmer level [Sandberg et al. 1985].

There is significant overlap between the issues concerning file media and
networks, including tricks for hiding latency. Since networks are a large subject
on their own, I leave them for others to cover in detail. When reading about disks
and flash devices, bear in mind that similar issues apply to networks.

40 CHAPTER 4. IO AND FILES

4.2 Files and Devices
The Unix operating system (and descendants including Linux and macOS)
abstract the properties of a device by treating it as a file wherever possible. A
keyboard or screen, for example, is a special kind of device. A keyboard can be
read from in and is character-oriented. A screen in its simplest form can only
be written to as a character-oriented device (graphics is handled differently: in a
modern system what used to be a screen is now often a terminal program).

Files nonetheless are a higher-level abstraction than a logical way of handling
devices consistently. The file system as a whole has a structure, usually
hierarchical, and allows you to have logical names for files without having to
know how they are represented and even on what media they are stored. The
storage medium only matters in terms of details specific to it. Some variations
include:

• removable – can be logically and probably physically ejected

• read-only – such as prerecorded CDs or DVDs (whether with media or
regular data content)

• write-once – such as some kinds of writeable CD

These variations, like other properties of a device, should not effect the way you
treat a file if it doesn’t run into a medium-specific limitation.

The hierarchical structure of a file system divides into directories, and can also
subdivide a disk or collection of disks into logical volumes. A volume is a logical
unit that you may think of as a single disk even if it is actually part of a disk
or may span multiple disks. In the Microsoft world, volumes are distinguished
by a single-letter label; most other file systems allow more generous and flexible
naming.

One of the most important aspects of a file system is the mapping from the
logical file to the physical device. There are two methods in common use: a file
allocation table or FAT and variants on the Unix inode (index node) structure. An
inode can point to the start of a file or a directory, and a directory in a FAT system
is represented in a special file. FAT was used in older Microsoft systems and is
still in wide use in portable devices.

In recent years Microsoft has migrated from FAT file systems to NTFS (New
Technology File System) but maintains compatibility with FAT devices because
they are in such wide use. Portable flash drives or USB sticks commonly usually

Files and Devices 41

use FAT because they are relatively small and portability across different systems
is an important consideration in this case.

FAT has two major drawbacks. Because the FAT is stored in memory, it is a
big overhead for very large devices. Random access for large files is inefficient,
since the entry for each block must be checked to find the nth block.

If for example a block size is 8KB, a 1TB disk would require a FAT with 125-
million entries. If each entry was 4 bytes, that would be 500MB of RAM just for
the FAT. While RAM is increasingly inexpensive, this would be a huge overhead –
on a machine with 8GiB of RAM, the FAT would take up about 6% of total RAM.

FAT and a basic inode system both have the drawback that the system can
become damaged by an out of control reboot or power outage.

What I aim to do here is provide a sense of how you weigh up alternative
approaches by contrasting the main ideas behind FAT file systems and inodes.
I do not cover full details of implementation; there are many variations in
real systems accommodating growth in device sizes since each approach was
originally designed.

FAT

The essential idea of FAT is to keep a linked list in RAM representing the blocks
(called clusters in the DOS and Windows world, because each logical block is
a group of lower-level device-specific blocks) on the device. The linked list is
stored as an array indexed by block number so if you can find each block quickly
in the table if you know its block number.

This table is a copy of the same structure on disk, where it remains available
across reboots or power failures, so changes must be copied back to disk.

To find a file, you need to know its starting block. From there, each successive
block is found by a pointer into the table (stored as a block number rather than
a pointer, so the table need not be modified each time it is stored in a different
region of memory).

Figure 4.2 illustrates a simplified FAT representing two files, test.c and
README. In this simplified FAT, there are 16 blocks, and an invalid block number,
-1, is used to mark the last block of a file. Each entry in the table contains a
number indicating the next block.

In a real FAT, the lowest-numbered blocks may be reserved for system use,
and the directory structure has to be represented in the file system so individual
files can be found.

42 CHAPTER 4. IO AND FILES

Figure 4.2: Conceptual File Allocation Table (FAT). The file test.c is shown
with its blocks coloured and arrows showing the order of sequential access. File
README is shown uncoloured, with no arrows. A next block “pointer” of -1
indicates there is no following block. Empty spaces indicate unused blocks.

For purpose of creating simple examples, let’s assume we have the following
functions:

• int start(char*) – given a file name will return the block number where
the file starts, or a value less than zero if it doesn’t exist

• char *readblock(int) – given a block number, allocates a char array
buffer big enough for a block, reads the block into the buffer and returns a
pointer to it; the caller must deallocate the newly allocated memory

Assume also:

• the FAT is in an global int array called FAT

• block size is defined in a preprocessor symbol BLOCKSIZE

Here is an outline of code to access each block number (not the contents of the
block) of a specific file, if we know its starting block.

block = start (filename);
while (block != -1) {
// do something with current block
block = FAT[block];

}

Files and Devices 43

How about accusing a specific byte in a file? We can do it with the given functions.
We need to determine which block the byte falls in, read in that block and extract
the relevant byte. Let us create a function to do this:

char byteAt (char * filename, int whichByte) {
int target block = whichByte / BLOCKSIZE,

offset = whichByte % BLOCKSIZE,
startblock = start(filename);

char * buffer = NULL,
returnval = '\0';

for (int i = 0; i <= targetblock) {
block = FAT[block];

}
buffer = readblock(block);
returnVal = buffer[offset];
free (buffer);
return returnVal;

}

Random access, then, requires that we process each block sequentially until we
find the one we need, because of the linked-list structure. This is not quite as
inefficient as it sounds. If the block size is large enough, though time to do a
random access is linear, the actual time is a small fraction of the time to do linear
search a byte at a time. Also, accessing the FAT in RAM is so fast compared with
a disk access that we can get away with thousands of accesses of the FAT table
without taking time significant compared with the disk operation.

This function is only a rough outline. It should also include error checking
such as attempting to read a file that does not exist, or reading past end of file. In
a real system, such errors would be caught and either result in a termination of the
read operation with an error code, or a program crash.

Check through the code to make sure you understand what it does. Why for
example do I calculate the value offset? Relate the code to figure 4.2.

The take home message? A FAT file system is reasonably efficient for
small devices. Though random access requires a linear search for the
right disk block, accessing a FAT table in RAM is so much faster than
disk accesses that linear search is acceptable in most cases.

44 CHAPTER 4. IO AND FILES

Figure 4.3: Conceptual index node (inode). The top-level block contains file
attributes, 12 direct pointers, an indirect pointer, a double-indirect pointer and a
triple-indirect pointer. Each pointer block is the size of a disk block and contains
as many pointers as fit into that size.

inodes

Take a look at figure 4.3, which illustrates the inode concept, omitting most of the
double-indirect pointer blocks and not even more of the triple-indirect blocks. All
files are represented by at least one inode block, containing file attributes (such as
access permissions) and a block of 15 pointers. The first 12 of these pointers point
directly to blocks on disk. The next pointer is a single-indirect block. It points
to a disk block that contains pointers to disk blocks. A double-indirect pointer is
next. It points to a disk block containing pointers do disk blocks, each of which is
also pointers to disk blocks. Finally, there is a triple-indirect pointer, which points
to two layers of blocks of pointers before you reach the actual file.

Note that “pointer” here means a block number on disk, not a memory address.
This organization allows small files to be represented efficiently, and scale to

very large files.
An example illustrates how this scheme works. We can also use this as a

design case study to work out how big we need to make our pointers in order
to make full use of the capabilities of an inode. One inode only represents the
contents of a single file, but we also need to think through how big a pointer needs
to be to be able to number every block on a disk. The inode structure does not
define the size of a pointer or the size of a disk block: these are numbers we must

Files and Devices 45

set to allow a particular maximum file size as well as to set the maximum number
of disk blocks we can reference.

So size here depends on two things: how big a disk block is and how big a
pointer to a disk block is. First, I focus on how big a file we can represent, then
look at how big a disk can be represented with the chosen parameters. Let us work
the numbers based on an 8kB disk block and a 32-bit pointer (32b=4B). These
numbers mean a pointer block can contain 8000

4 = 2000 entries. We can construct
a formula for maximum file size, based on generalizing from the description of
an inode. The top-level block stores 12 pointers to blocks. Let us number levels
from the top down as levels 0, 1, This way the single-indirect pointer is L1,
the double-indirect level is L2 and the triple-indirect level is L3.

Let us call block size in bytes s and pointer size (also in bytes) p. Then we
can store s

p pointers in a block, and the disk space a block points to is s
p× s, since

each pointer points to one block of size s. I now generalise this observation to all
levels of inode pointer.

Heads up: The equations presented here are useful for finding the
maximum size of a file in an inode system but if you want to do
calculations such as finding how many pointers are needed to reach a
specific block, it’s easier to work through the inode from the top down
and count from there.

The size of file that can be represented purely by using L0 is 12× s. For L1,
we need to know the number of pointers in the block (2000 in our example, but
let us keep it general for now). The size of file we can represent using only L1 is
s
p × s bytes. To that we need to add L0 since we only use L1 if L0 is full, but let

us work out each layer separately then add them all. L2 adds s
p

2× s bytes and L3

adds s
p

3× s bytes. So putting this all together, this is the maximum file size smax

in bytes that can be represented using inodes with up to triple-indirect pointers:

smax = L0max +L1max +L2max +L3max

= 12× s+
s
p
× s+

(
s
p

)2

× s+
(

s
p

)3

× s

= 12s+
s2

p
+

s3

p2 +
s4

p3 (4.1)

Back to our example. What is the biggest file we can represent with s = 8000 and
p = 4? Plug into equation 4.1. First, note that s

p = 8000
4 = 2000 and so each time

46 CHAPTER 4. IO AND FILES

we go up by a factor of s
p , the next term increases by 2000 times:

smax =

(
12s+

s2

p
+

s3

p2 +
s4

p3

)
B

= (12×8K+16M+32G+64T)B

≈ 64TB

This is a rather large number: 64 terabytes is quite large for one file – and we are
assuming we can access the entire file using 32-bit block numbers. Luckily our
file pointers in inodes only need to be able to be able to address at block level,
so the biggest number we actually need to represent in an inode pointer is about
8-billion (because block size s is 8000). We need more than 32 bits to represent
this range of block numbers. 232 is a bit over 4-billion, and allowing that we
multiply each pointer by block size, we can address 34TB with unsigned 32-bit
inode pointers. Assume for now this is enough for the size of one file.

An actual location within a file is a byte offset from the start; to find that byte,
we need to know which block it is in, then recalibrate the byte offset to be from
the start of the block. The actual location within the file cannot be a 32-bit number
if we can have a file bigger than 4GiB, even if we can make do with a 32-bit block
number. So in our code, if we want huge files, we will need to use something like
a 64-bit number (the next size up from 32 bits).

Heads up: We need more bits to represent a position within a file than we
need to represent block pointers; each block is a lot bigger than one byte.

It is a slight inconvenience that our inodes store 32-bit numbers internally but
we will need bigger numbers to represent an exact location on the disk. More
of an issue though with using 32-bit numbers for block numbers (which we call
pointers here) is that this restricts us to a maximum disk size (or logical volume
size) of 34TB with 8kB blocks. Given that in the consumer space disks of a few
terabytes are commonplace, this limit is starting to look low even for the consumer
space, let alone large-scale servers.

Can we fix this by upping the block size? Doing so is wasteful if we have
small files: the bigger the block size, the more likely we are to waste a significant
amount of space for small files that are not an exact multiple of a block size. For
a very large file, wasting a few kB or even tens of kB is a minor overhead but if a
file system contains a lot of small files, the wastage if the block size is very large
can be a significant fraction of the used disk space.

Files and Devices 47

What if I change the pointer size to 64 bits, keeping block size s at 8kB?
264×8000B =≈ 1.8×1019×8000B ≈ 1.5×1023B or 150 zettabytes (ZB). This
may be good for the lifetime of any computer we buy today. Keeping the block
size at 8kB, this means we have now 1000 pointers per inode block, and p = 8:

smax =

(
12s+

s2

p
+

s3

p2 +
s4

p3

)
B

= (12×8K+8M+8G+8T)B

≈ 8TB

For most purposes, a limit on file size of 8TB should be more than sufficient, and
this can easily be changed on moving to a bigger disk where files bigger than this
are needed by changing the block size. Although we have limited the number of
blocks that can be in one file, the disk can be as big as is reachable by 64 bits (the
size of each stored file pointer, representing a physical or device block number),
which is a reasonable compromise.

Heads up: Making the block size bigger means the pointer reach of the
inode scheme is bigger but a bigger block size is wasteful for small files as
a larger amount of wastage as a fraction of useful disk allocation occurs
as the block size increases.

From here on, for simplicity, I introduce Pb for the number of pointers per
block, so:

Pb =
s
p

(4.2)

This out of the way, how do we access a particular byte at a known offset from
the start of a file? Remember with a FAT file system, we had to do linear search
through the FAT, though the time penalty is somewhat justified by the fact that the
FAT is stored in RAM and therefore quick to access, and a big enough block size
to limit the number of searches makes the linear search overhead tolerable for files
that are not very large.

For an inode-based system, you can calculate based on position in a file which
block you want. For the first 12 logical blocks, you can look up the device block
directly, otherwise you need one of the various levels of indirect pointer.

I sketch out the code here for finding the device block number an inode-based
file of a given size, given the relative block number in the file. Appending to a file
follows similar logic, except you may need to allocate the final block, so I do not
present that separately.

48 CHAPTER 4. IO AND FILES

Assume there is a preprocessor symbol BLOCKSIZE corresponding to the value
s. We need to divide the location in the file by BLOCKSIZE to find which logical
block our desired location is in. If the block is one of the first 12, we can look it up
in the top-level (direct) pointer table in the inode itself, load that block into RAM
and access the required byte1. Assume also we have a directory data structure that
includes in it the identity of the underlying device. We need the following:

• some types:

– typedef unsigned int fileptr_size_t – so we can easily change
the size of our pointers

– typedef unsigned int file_size_t – so we can easily change
the representation of the size of a file

– typedef unsigned int error_t – error values; each error type is
a power of 2 so I can combine multiple error codes in one value

• some functions; in all cases involving file access, if something fails, set the
error code by calling error then return 0:

– fileptr_size_t blockFromOffset (file_size_t offset) – given
a location (byte offset) within a file, return the logical block containing
that byte

– void error (error_t type) – set up an error code to be handled
elsewhere

– fileptr_size_t getindirect (inode_t *inode, fileptr_size_t
logicalblock, unsigned level) – for indirect blocks in an inode,
with level 0 indicating indirect, 1 double-indirect and 2 triple-indirect,
find the device block number in the inode

– fileptr_size_t getDiskBlock (fileptr_size_t logicalblock,
inode_t *inode) – for a given logical (relative) block number, bR,
find the corresponding device block number, bD

Whether we append to a file or are finding a specific location, we need to translate
a byte offset within the file to a specific block and offset within that block.

To find a block number given an offset within the file is easy: we just do an
integer divide. So the hard part is, given a block number find the actual block by
navigating through the inode structure. Let us focus on that.
1For simplicity I assume all reads are a whole block.

Files and Devices 49

What we are doing is translating the relative block number within a file (how
far into the file we are, counting in units of blocks), bR into an absolute (device-
level, D) block number bD, counted over all blocks on the device.

The basic idea: start with the relative (logical) block number within a file. As
you eliminate part of the inode structure as being too small to contain that block
number, reduce relative the block number by the number of blocks in the earlier
part of the inode structure. At the end, we translate relative block number bR to
device block number bD (assuming bR is a valid block number, not off the end of
the file). At each step, if we reach bD, we stop. When we need a pointer block, we
do not concern ourselves here with whether it is on disk or in memory. The steps
in outline – stopping as soon as you find bD – are:

1. bR < 12? If so, is use bR as an index into the direct blocks and retrieve bD

2. replace bR by bR−12. Is the new bR < Pb? If so, use bR as an index into the
indirect pointer block to retrieve bD.

3. replace bR by bR−Pb. Is the new bR <P2
b ? If so, find out which second-level

block bR as in and look up bD in that indirect pointer block.

4. replace bR by bR−P2
b . Is the new bR < P3

b ? If so, find out which second-
level block bR as in, then which third-level block bR is in and look up bD in
that indirect pointer block.

If you find it hard to read mathematical notation take it a step at a time, each time
subtracting off the blocks you are skipping over from the position you are trying
to find. Is the block within the first 12? If so, you can use a direct pointer. If not,
ignore the first 12 blocks and start counting off blocks up to the number you can
reach in one pointer block. Still not there? Start counting again from the block
after those you could reach so far. Now you are using double-indirect pointers
so you can square the number of blocks you can reach. If you are still not there
again, skip over all those blocks and the block should be somewhere reachable
through a triple-indirect pointer (or the block number is too big to represent).

What follows is very conceptual. Much detail is left out and the division
between what should be in the header file and what should be in the compiled
file is left open, so you can see everything in one place. Note when defining a
preprocessor macro for a calculation, it is safest to enclose it in parentheses so it
will be calculated as a unit wherever the macro is expanded.

The data type for an inode is left undefined except for the part that identifies
blocks and the size of the represented file to keep things as simple as possible.

50 CHAPTER 4. IO AND FILES

Figure 4.4: Minimal inode pointers: A full complement of indirect blocks is
illustrated with the artificially small example of only two file pointers per block.

The most tricky part of finding the right disk block is navigating triple-indirect
blocks. Each pointer in the first block refers to another block containing pointers.
Each pointer in the first block takes you to a block of pointers, each of which
takes you to another block of pointers. So each position in the first block takes

you ultimately to one of
(

s
p

)2
positions. This to find the right index in the first-

level block, we need to divide by this number. That gives us an index in the
first-level block that takes us to a second-level block. The offset in this block is
the remainder from the previous division.

Figure 4.4 illustrates detail of a a full set of the indirect pointer blocks, cut
down to only two file pointers per block, so we can see a whole example in a
small picture. It is easier to visualize the whole scheme like this than with a
realistic example with thousands of pointer blocks.

Here is our algorithm sketch converted to C code capturing the major details.

typedef unsigned int fileptr_size_t;
typedef unsigned long int file_size_t;
typedef unsigned int error_t;
typedef struct INODE inode_t;

// error codes + each a power of 2 so we can add them
#define GOOD 0
#define NOFILE_ERR 1
#define EOF_ERR 2

Files and Devices 51

#define BLOCKSIZE 8000
// number of direct pointers
#define MAXDIRECT 12
// pointers per block
#define POINTERSPERBLOCK (BLOCKSIZE / sizeof(fileptr_size_t))

struct INODE {
// file attributes go here
file_size_t allocated; // number of bytes allocated
fileptr_size_t direct[MAXDIRECT];
fileptr_size_t * indirect,

* doubleindirect,
* tripleindirect;

};

// rescale an offset in bytes to an offset in blocks
fileptr_size_t blockFromOffset (file_size_t offset) {

return (fileptr_size_t) (offset / BLOCKSIZE);
}

// set up an error condition that will be handled elsewhere
void error (error_t type);

// get the logical block in an inode indirect structure, given
// level depth, with 0 for single-indirect; the given logical
// block numbered from the start of this section of the inode
fileptr_size_t getindirect (inode_t *inode, fileptr_size_t

logicalblock, unsigned level);

// in our scheme disk block of 0 signifies an error
fileptr_size_t getDiskBlock (fileptr_size_t logicalblock,

inode_t *inode) {
if (logicalblock > blockFromOffset(inode->allocated)) {

error (EOF_ERR);
return 0; // a disk block of 0 is never valid

}
if (logicalblock < MAXDIRECT)

return inode->direct[logicalblock];
// rescale the problem to start from the first indirect block
logicalblock -= MAXDIRECT;
if (logicalblock < POINTERSPERBLOCK)

return getindirect (inode, logicalblock, 0);
// rescale problem to start from the first double indirect block
logicalblock -= POINTERSPERBLOCK;

52 CHAPTER 4. IO AND FILES

if (logicalblock < POINTERSPERBLOCK*POINTERSPERBLOCK)
return getindirect (inode, logicalblock, 1);

// rescale problem to start from the first triple indirect block
logicalblock -= POINTERSPERBLOCK*POINTERSPERBLOCK;
// no need for if here because we checked we aren't past EOF
return getindirect (inode, logicalblock, 2);

}

We have now isolated the hard part to function getindirect. To implement it you
need to do some arithmetic to divide the residual logical block number (relative
block bR after subtracting the block numbers representing the previous parts of the
inode) into pieces. If the block you want is found via double-indirect blocks, you
will need to do this twice, once to find the right entry in the top-level (L1) table
of block pointers and a second time to find the right entry in the second-level (L2)
table. For triple-indirect pointers, you need another layer of arithmetic to get to
the right L3 pointer block, then into the right entry in that block.

Heads up: The hard part of inode block look-up is the fact that each of
the pointer blocks has a different number of layers of indirection but it is
worth working out a general solution so any future change in design can
easily be accommodated.

All of this is a great programming exercise: complete the example.
What I have left out so far is where all this is stored. Obviously so files can be

found between shutdowns, the inodes need to be stored on disk. For fast random
access, should the inodes for a particular file currently being accessed be stored in
RAM? Let’s work through this as another design exercise.

The fact that pointers are allocated as a whole disk block means that you incur
a penalty of a disk access only once for each pointer block (in our examples,
containing 1000 or 2000 pointers). For a single-indirect block, that means you
incur this penalty once, then you can access each block pointed to by that
pointer block without having to go to disk again. If you work with the figure
of 1000 pointers per block, even going to triple-indirect pointers adds at worst an
overhead of 3 extra disk accesses per thousand for sequential access, an acceptable
overhead.

Only strictly random access then is a problem in terms of extra overhead if
inodes are not cached in RAM (the way FAT is), and that problem is in any
case addressed to some extent by file buffering (or cacheing). File buffering can
also apply to storing inode pointer blocks, since they are also disk-based data.

Files and Devices 53

Handling file buffering as a separate concern helps to reduce complexity of inode
lookup code.

A major detail left out is how all this is stored on disk: that varies from system
to system, and can become quite complex. An example of a design trade-off: are
inodes and pointer blocks stored in a predefined region to make lookup faster, at
the cost of limiting the total number of files, or is a more flexible scheme used that
allows unlimited growth in number of files, at the expense of complexity?

The take home message? The inode scheme allows for much bigger
files than FAT at the expense of making random access more complex.
The benefit of FAT in keeping file lookup information in RAM is relatively
minor as the overheads of looking up inode pointers on disk are a small
fraction of total disk accesses and can be offset by cacheing, which
reduces overall disk accesses.

journalling

Both inode and FAT schemes have the problem that an unclean shutdown can
leave the disk-based version of their data structures in an inconsistent state.

Generally, updating a file system for a particular operation involves more
than one step. For example, in an inode-based system, changes may require
alterations to the directory entry as well as the inode pointer structure. If the
system shuts down partway through a multi-step transaction or even partway
through one transaction, the file system could be inconsistent. Examples of how
that inconsistency could manifest include a directory entry to a file that is meant
to be deallocated, an inode pointer that no longer points to valid data, or valid data
that does not have an inode pointer that points to it.

One way of dealing with this problem is to traverse all the data structures in
the file system to check for inconsistencies. In the Unix world, the program that
does this is called fsck2 (for file system check). For smallish file systems, having
to wait after an unclean restart for fsck to run was annoying; with disks in the
terabytes containing millions of files, the wait would be worse than annoying.

A journalling file system solves the problem by keeping a journal: a log of file
transactions. Each transaction requires a single write to the log to record, making
it unlikely to be interrupted partway through. If it is, the logged transaction hasn’t
happened anyway, since the order of operation is log first, then do transaction.

2Pronunciation is left to the imagination.

54 CHAPTER 4. IO AND FILES

After an unclean restart, the operating system detects that there has been a
problem and replays any entries in the log that have not correctly completed.

The common approach to journalling, which keeps a logical journal, only
records metadata (such as updating the directory entry or the inode structure),
not the actual content of update. After a crash, the user should check whether
whatever file was being worked on at the time of the crash contains garbage.

Where more robust fault recovery is required, a physical journal, which
records contents as well, can be used, at the cost of doubling the number of disk
accesses.

Most file systems in common use at time of writing use a logical journal.

The take home message? Journalling allows a file system to be kept
consistent without having to check it in detail across unclean reboots.
A logical journal only records file system structure; a physical journal
records file contents as well.

file organization

In most file systems, files are organised into directories, visualised as folders
in a file viewer. Directories provide a hierarchy to make large numbers of files
manageable, and also provide a larger unit of granularity than a single file for
managing access rights.

In some systems, a directory is a special case of a file; in others it is a
completely separate structure. Making a directory a special case of a file makes
it easier to treat the two similarly when similar abstractions apply. For example,
Unix-based systems, which do not treat directories was a special case of a file,
have hard links, which are in effect another name for a file. A hard link is
represented by more than one directory entry pointing to the same inode. If a
directory was just a special case of a file, a hard link to a directory could be
handled the same way as a hard link to a file. In practice, though, you cannot
make a hard link to a directory in Unix-style systems because they implement
directories differently to files.

A Unix-style hard link only works in the same file system or volume, since an
inode may not be meaningful outside the context where it is defined so Unix-style
systems also have a soft link, which is a representation of the location where a file
is stored. The hard link mechanism relies on the fact that essential metadata like
ownership and permissions is stored in the inode so more than one reference to
the same inode will not result in possible inconsistencies in metadata. Whenever a

Files and Devices 55

new hard link is created, a count is updated in the inode so that “deleting” the file
has the effect of removing one of its directory entries until the link count reaches
zero, when the file is really deleted.

If a file is moved or deleted, a hard link is more robust than a soft link. If
the file is renamed, moved or deleted from one directory location, any hard link
to it elsewhere can still access it. A soft link, on the other hand is specific to the
original name and location.

Other file systems have similar concepts. On macOS, for example, an alias is
a slightly smarter version of a soft link that follows the original file if it is renamed
or removed, but still points at the original location if the original file is overwritten
by a new one of the same name. Windows has a similar concept called a short cut.

All of these variations on the soft link concept are implemented as a small file
containing some kind of representation of what the link refers to.

On Unix-style systems, if you do an ls -l command (long form of directory
listing), between the permissions string and the user name, there is usually a “1”
indicating that there is only one name for the file. Each time you create a hard link,
that number increases. Remove one instance of the hard link, and the number goes
down. For example:

$ ls -l test.txt
-rw-r--r-- 1 philip 501 208 Oct 3 2013 test.txt
$ ln test.txt test2.text
$ ls -l test.txt
-rw-r--r-- 2 philip 501 208 Oct 3 2013 test.txt

To get rid of this file, you need to remove it in both places where it now exists –
remember, a hard link is another name for the same file.

To create a hard link on a Unix-style command line, you use the ln command.
The first item is an existing file, the second its alternative name. Either name may
include a path. A soft link is created by adding the -s option. A soft link can
point to a directory. Here is an example:

$ ln -s /tmp/ test
ls -l test
lrwxr-xr-x 1 philip 501 13 Feb 11 21:44 test -> /tmp/

Note the extra “l” (lowercase “L” not a one) at the start of the permissions string,
indicating that this is a soft link.

56 CHAPTER 4. IO AND FILES

The take home message? A file system’s user-level abstractions are files,
directories and various kinds links. In graphical interfaces some of these
concepts may have different names like folders, aliases and short cuts.

4.3 Performance

Performance falls into two broad categories: speed and error-free operation. These
categories further subdivided. Speed can be see in terms of latency (time to
complete one operation) or bandwidth (also called throughput), average amount
of work done over time. Error-free operation can arise either from two properties.
The first, reliability, is the probability of running without a fault. The second,
fault tolerance, is the probability of keeping running even if there is a fault.

These concepts apply across the system, but are most important for IO since
IO is the slowest part of the system and also the part most likely to fail. These
competing measures are often in conflict. It is easier to achieve low latency if
bandwidth can be sacrificed and fault tolerance can be achieved by adding extra
redundant parts, at the expense of increasing the probability that a part will fail.

An example of how overall throughput can be sacrificed for latency is in
the design of a phone, which is designed to respond instantly user requests like
picking up a phone call. This low latency is achieved by making the phone
waste CPU cycles waiting for user actions. We will see how reliability and fault
tolerance interact when we look at RAID disk systems.

Heads up: Be clear on the difference between latency and bandwidth and
why it is possible (sometimes desirable) to trade the one for the other.

4.3.1 Speed

disk timing

Let us look at the general issue of performance for a disk – for flash the issues are
similar but the latencies are caused by very different physics and are much lower.
The other main differences between disk and flash is that flash writes are much
slower than reads and flash wears out if written often. Disks can also become
damaged with use, but the cause of the damage is less predictable. I return to
these issues further when looking at reliability.

Performance 57

To access as specific block on the disk (or sector when we are looking at low-
level disk units), there are three components of the total time:

• rotational delay – on average, half a rotation3

• seek time – the time for the head to move to the correct track (or more
correctly, with a multi-platter disk, cylinder); this time is usually advertised
as an average for a given disk

• transfer time – this is the time for the given number of bytes to move (on or
off the disk), usually much less than the other components of the total time

To calculate these numbers is reasonably straightforward. Seek time is usually
given by the manufacturer (though it should be measured for a given system, since
files organization may change the average). Rotational delay can be calculated
from the disk rotation rate, usually given in revolutions per minute. Transfer time
can be calculated by dividing the number of bytes to transfer by the transfer rate.

An example illustrates how to calculate the total time (as an average). Here
are some numbers for a specific disk:

• rotation speed: 14400rpm

• platters: 6

• track size: 500,000B

• average seek time: 10ms

First, let us calculate rotational delay. A rotation speed of 14400rpm means 1
60 th

of that number of rotations per second. So that means the disk does 240 rotations
per second. One rotation then takes 1

240s or about 4.2× 10−3s. Half a rotation
then takes 2.1×10−3s (or 2.1ms).

What about transfer time? That is limited by the interface and controller, but
we can work out the maximum rate the disk could move the desired data by using
the track size, number of platters and rotation speed. In this case, because a track
is 500,000B and there are 6 platters, we can move 6×500,0000B in one rotation,
or in 4.2×10−3s. That means the maximum rate data can move from the disk is:

5×105×6
4.2×10−3 B/s ≈ 700MB/s

3It is possible to use rotational position sensing to reorder requests to minimize rotational delay,
but we ignore this possibility since it is not a feature of consumer-technology disks.

58 CHAPTER 4. IO AND FILES

If we translate that to time per byte, it is 1
7×108 ≈ 1.4ns – or, to put on the same

scale as our other times in ms, 1.4×10−6ms.
This is a hard limit on how fast data can move on or off this disk purely based

on device speed. Short bursts of faster access may be possible if the disk has a
fast RAM buffer on board. Buffering writes to disk is easy, provided you do not
run out of memory. The writer dumps to the buffer and goes away. A read buffer
needs smarter organization, as it needs to anticipate future reads.

Let’s put all these numbers into a formula:

ttotal(bytes) = tseek + trotation + ttrans f er×bytes (4.3)

Time units depend on the numbers we plug in. Since the biggest is in ms, we
can standardise on that unit; anything very much smaller will be close to zero and
disappear as roundoff error.

How long, given these numbers, does it take to move various sizes of data off
the disk if it is contiguous on the disk, so you only incur rotational delay and seek
time once? Let us look at 1 byte, 1000 bytes and 1,000,000 bytes. Here is each
plugged into equation 4.3.

ttotal(1) = (10+2.1+1.4×10−6×1)ms

= 12.1000014ms

≈ 12.1ms

So if we transfer 1 byte, the biggest single factor is seek time, then rotational
delay. Transfer time is insignificant.

For 1000 bytes:

ttotal(1000) = (10+2.1+1.4×10−6×1000)ms

= 12.1014ms

≈ 12.1ms

the transfer time is still so small as to be insignificant. Finally, for 1,000,000 bytes:

ttotal(1×106) = (10+2.1+1.4×10−6×1×106)ms

= 13.5ms

Even in this case, disk transfer time is only about 10% of the total elapsed time.
Can you see why, even if you logically want one byte, it makes more sense to
move a big chunk into RAM on the off chance that you will want the rest of it?

When we measure IO performance, we split our measure between

Performance 59

• latency – time to complete a whole transaction

• bandwidth or throughput – average time per unit of work

If we are accessing a single byte off a disk, latency is about as good as it gets. We
retrieve it in about 12ms. Throughput in this case is 1B

12.1×10−3s , or about 83byes/s.
If we retrieve 1000 bytes, latency is only a tiny amount worse. But bandwidth is

1000B
12.1×10−3s , or about 83kbyes/s. What if we retrieve 1MB? Latency is now a little

worse: 13.5ms. But bandwidth is now 1×106B
13.5×10−3s , or about 74Mbyes/s.

What this example illustrates is that there is often a trade-off between latency
and bandwidth. If the goal is to make each individual transaction as fast as
possible, the average rate of work per unit time may drop.

Our ideal case is to create the appearance of low latency because that is what
the user sees – click the mouse, and you don’t expect to wait – while maximising
bandwidth, because that is a measure of how efficiently the system is being
used. When hardware is very cheap, it becomes possible to favour latency over
bandwidth. A cell phone, for example, dedicates most of its computing power to
instant responses rather than ensuring the hardware is kept busy.

We now turn to various methods of hiding latency; scheduling another task
(chapter 3) is another strategy for latency hiding.

The take home message? In a disk, latency is dominated by seek time
and other overheads to get started unless very big amounts of data are
moved once the access is set up.

buffering

A buffer is a region of fast memory between devices of different speeds that allows
the faster device to carry on after depositing data in the buffer. A buffer can also
hold data placed there from a slower device in anticipation of demand from the
faster device. These two modes are respectively write and read buffering4.

Write buffering is easier than read buffering. As long as the buffer is not full,
a write can dump to the buffer and the faster device can continue without waiting.
In the case where the faster device is the CPU and the slower device is a disk,
the speed gap may be factors of millions so no buffer will be big enough if there
are continuous writes without a break. Fortunately most workloads are not that
unforgiving: bursts of writes are followed by bursts of computation.

4Usually, reading and writing are from the perspective of the CPU, the fastest part of the system.

60 CHAPTER 4. IO AND FILES

For read buffering to be effective, it is necessary to anticipate future reads.
A simple way to do this is to read a larger amount than a given request, in
anticipation that the surrounding content will be needed. When we study memory,
we will see that it is quite common that memory accesses are followed by others
in the same region. This is called spatial locality. The same principle applies to a
lot of IO. It is very seldom that data is accessed in truly random order from a file.

Return to our example of total transaction time for a disk. Since the time
difference between transferring a few kilobytes is virtually indistinguishable from
the time to transfer one byte, most disk IO is actually results in a transfer of at least
a few kilobytes even if only one byte is wanted. There is a huge payoff for this
“wasteful” disk access if any of the extra content is needed: the cost of a modest
amount of extra memory for the buffer is easily worth the time saving of avoiding
another disk access.

The take home message? Write buffering is straightforward: writes are
stored in RAM until it is worth writing to a slower device. Read buffering
requires anticipation of future demand by reading more than is requested.

spooling

Spooling applies when a device has to have all its output in a single unit. The
usual application is a printer. A print job has to be handled as a complete unit,
but a printer is so much slower than most of the rest of the system5 that it is
impractical to manage a print job from the process that created it. Instead, the
data and instructions on how to process it are dumped into a file and queued for
later processing.

Spooling differs from buffering in that buffering does not force a particular
request to run to completion – a disk, for example, is capable of accepting requests
in pretty much any order, as long as they do not alter the intended content.

The take home message? Spooling applies to output, usually printing,
that has to be handled as a complete unit once the device is ready.

cacheing

Cacheing is storing content in a faster memory than that in which it is normally
stored to speed up access. Cacheing differs from buffering in the sense that the

5A human may be slower but not much else is.

Performance 61

lifetime of the contents is not clearly defined. Whereas a buffer empties as its
contents is used up, a cache keeps a copy of its contents unless it has to be evicted
to make room for new content.

In some systems, a disk buffer is called a file cache. A disk buffer can operate a
bit like a cache in the sense that its contents may not be immediately flushed after
the last request completes in case the contents may be needed again. Whether the
term cache or buffer applies is not always clear.

The term cache6 is most clearly applicable at the hardware level, where
the memory hierarchy starts with registers and first-level cache. Caches at the
hardware level are mostly invisible to software other than as a performance
enhancement. File caches, on the other hand, are managed in software, if
transparently, as part of the operating system.

The take home message? Anything that redirects access from a slow
kind of memory to a faster one is a win. Cacheing differs from buffering
in intent: a cached item stays there as long as possible whereas a buffer is
more transient. This can be a subtle difference, so there is overlap in the
concepts, hence the fact that file buffers are sometimes called a file cache.

disk scheduling

Since seek time is one of the bigger components of disk access time, minimizing
seek time is a useful goal. If the disk is relatively idle, it has only one access at a
time; we are interested in the scenario where accesses are queued, so the OS has
the option to choose which to schedule next.

The simplest approach to disk scheduling is to take access requests in the order
they arrive. A more sophisticated approach is to order the requests, and take all
the requests that can be serviced while moving the head in a particular direction.
Once the head reaches the inner or outer edge of the disk, it takes all requests in
the opposite order. These basic schemes can have variations:

• first come first served or FCFS – take requests in the order they arrive

• elevator algorithm – like an elevator (lift), process requests in the same
direction up to the innermost or outermost track, then start over; variations:

6Pronounced like “cash”: it is after all one of the more expensive kinds of memory.

62 CHAPTER 4. IO AND FILES

– one-way versus two-way – either only process requests in one direction
(one-way algorithm) and skip back to the start, or process requests in
both direction; a two-way algorithm is sometimes called circular

– stop at last request versus move head right to edge – when moving the
head towards the centre or towards the outermost track, either stop as
soon as there are no more requests in that direction, or carry on moving
the head all the way before stopping

These different approaches have advantages and disadvantage. For a flash device
where seek time is not a big issue (there is some latency to set up a new request,
but there is only really a saving if adjacent accesses are for a part of flash very
close to the previous access), FCFS is acceptable. For a disk with significant seek
time, some variant on an elevator algorithm is likely to give better performance.

Flash gains from requests relatively close together but that gain is mostly
made by choosing a suitable block size; there is no equivalent to seek time that is
much higher than any other component of access time. While writes to flash are
relatively slow, that latency can be masked by buffering.

The take home message? For a disk, seek time is the biggest component
of latency so ordering requests to minimise seeks is worthwhile. For flash,
there is less incentive to reorder requests, since latencies of shifting to
another part of flash are pretty much invariant.

4.3.2 Reliability and Fault Tolerance

I describe reliability and fault tolerance and use RAID as a case study. Reliability
and fault tolerance, like latency and bandwidth, are concepts that can be traded for
each other, depending on requirements. RAID provides an example of how these
trade-offs can apply.

First, let us consider some causes of unreliability.
A disk is a rapidly rotating piece of machinery with heads that move in and

out across its surfaces very fast. Mechanical failure can damage a disk, often but
not always beyond repair – particularly with low-cost drives where repairs would
cost more than they are worth. Repairing – or recovering data from – a physically
damaged drive is usually only worth the effort if data of value has not been backed
up. The recordable surface can also become unreliable, in which case blocks (or
sectors, if we are thinking at a lower level) can get mapped out. Usually the drive
itself manages this level of error handling. A block that is hard to read or write

Performance 63

may result in multiple retries before there is a good result. In such a case, the
drive’s low-level controller (often part of the drive itself) will mark the black as
bad, and not make it available (ideally after copying the contents elsewhere). This
level of error handling may be invisible to the user or even the operating system.

Flash has no physical moving parts, but has a limited number of write cycles
so frequently written parts wear out faster than less frequently written regions.
A flash device that is meant to replace a disk in regular use (as opposed to a
simpler one for a purpose like moving data around on physical media) often has
wear levelling: the device’s internal controller detects when a block is written
frequently, and copies that block to a less frequently modified region. Wear
levelling can also be implemented by the OS. In either case, the result is longer
lifetime of the flash device at the expense of overheads of moving frequently
modified data – which should ideally be done when the system is relatively idle,
but may have a noticeable performance impact if that is not possible.

Since flash is a rapidly-evolving technology it is easiest on the whole to build
wear levelling into the device’s own controller than for the OS to do wear levelling,
even if this carries a risk of a particular device having a sub-optimal strategy. The
best wear levelling strategy depends on how the device is used, so a flash device
intended for relatively rare writes (e.g., a portable backup device) may not have
the best strategy for a dissimilar purpose (e.g., using it as a high-traffic database).

There are various techniques for keeping track of whether a block whether on
disk or flash is good, including a checksum (calculated over the contents: if any
contents change, there is a very low probability that the checksum will still be
correct) and more advanced error checking and correcting codes.

The take home message? A disk can break because it has rapidly-moving
parts; flash can wear out from excessive writes to the same bits.

RAID

RAID originally stood for redundant array of inexpensive disks [Patterson et al.
1988]; disk manufacturers, possibly with an eye to selling RAID drives at a higher
price point, changed the acronym to stand for redundant array of independent
disks. RAID is based on two ideas:

• smaller mass-market disks that are less expensive than bigger server-
oriented disks can be scaled up by operating them in parallel

64 CHAPTER 4. IO AND FILES

(a) Mirroring: each disk is an exact copy of
the other

(b) Striping: accesses are split across
disks

(c) Striping with parity

Figure 4.5: Mirroring versus striping. The numbers show order of accessing a
disk for a request. An access labelled “p” is a parity block. Schemes with parity
blocks generally need more disks in parallel to allow for this extra redundancy.

• multiple smaller disks are more likely to fail than one bigger disk; fault
tolerance can be added with error checking and correcting information

RAID can dramatically improve bandwidth over a single drive but cannot improve
latency for small accesses because the individual drives must still do seeks and
incur rotational delay.

RAID comes in many variations from a limited number of drives in parallel
with no extra ability to correct failures, to multiple drives in parallel with error
correction capability7.

Heads up: Increasing the number of parts to implement something makes
it inherently less reliable. The more parts there are, the more likely
something is to break. Adding in error checking and correction adds fault
tolerance, the ability to recover from failure. It is important to distinguish
these two concepts. A RAID device is not more reliable than a single disk
even if it is sometimes incorrectly marketed as such. It is, however, if it
implements error checking and correction, more fault tolerant.

I present here a brief summary of RAID variants. The most elementary
versions of RAID do either striping or mirroring, as illustrated in figure 4.5.

In mirroring, disk contents are replicated. The goal is fault tolerance not
performance (figure 4.5a). Read speed can be improved by mirroring since the

7More here: http://en.wikipedia.org/wiki/Standard_RAID_levels.

http://en.wikipedia.org/wiki/Standard_RAID_levels

Performance 65

same block is in more than on device, but write performance is inherently slower
because each write must be duplicated and is held up by the slowest drive.

In striping, disk accesses are split across two or more drives. Striping can be
at various levels of granularity. If at block level, sequential block accesses each
are from a different disk. Figure 4.5b shows accessing three blocks, numbered
1, 2 and 3 on a block-level striped disk. If organized right, the accesses can be
overlapped, speeding up overall transfer rate. Figure 4.5c shows an additional
disk added with parity check information. A parity check, depending how much
information is stored, allows testing for errors and may also allow correcting
errors. RAID drives can have a single disk dedicated to parity, or distribute parity
blocks over all the drives..

Distributed parity is more complicated to implement than a dedicated parity
drive but has the advantage of relatively even use of all the drives, whereas a
single parity drive is modified every time a block is modified no matter which of
the other drives it is on. In either case, the goal is to allow failure of a disk (or
more than one disk, depending on the scheme) to be tolerated.

Some RAID systems support hot swapping, the ability to remove and replace
a damaged drive without shutting the system down or losing information

RAID levels are numbered from zero (simple striping) through six, with
increasing ability to recover from errors. Remembering what each RAID level
signifies is not of vital importance since this is a shifting terrain. What you do
need to know when specifying RAID is:

• is read performance more important than write speed? In this case, a RAID
scheme with extensive parity checking can be win even though creating
parity data is an overhead for writes

• is fault tolerance more important than speed? If so, maximising parity
information is important

• is speed more important than fault tolerance? In this case, striping only
may be acceptable provided data is recoverable or backed up periodically

A simple mirroring scheme can be relatively fast since all the fault tolerance is
from simple replication, at the cost of doubling the needed storage.

The take home message? There are many variants on RAID, with
different balances between fault tolerance, speed and cost.

66 CHAPTER 4. IO AND FILES

4.4 Protection and Security
Protection and security are huge subjects; I only touch on them briefly here as
they are implemented in file systems.

The Unix model is protection at the file and directory level using permissions:
in the simplest system, the world is divided into the user (owner), a group (which
can have multiple users) and others. Each file or directory has 9 permissions bits,
3 for each category, representing read, write and execute. For a directory, execute
permission means you can make the directory your working directory. If you do
ls -l on the command line (long form of directory or file listing), the first thing
on each line is the permissions, in order user, group, others, for example:

-rwxr-xr-x

In this case, the file listed is an executable: all users can execute it (“x”
permissions are on for all three categories of user). A directory that all users make
their working directory (using cd on the command line) has “x” permissions set
as well. The “r” for a directory singifies being able to list its contents; a “w”
signifies being able to alter its contents (e.g., create a new file or remove a file).
Here are permissions for a directory that everyone can view or make their working
directory but only the owner can modify:

drwxr-xr-x

Note the “d” at the start of the permissions, indicating this is a directory.
The Unix permissions model is limited in flexibility. If you have a group of

people with different roles depending on context, the user-group-others model is
too inflexible. A more recent model, an access control list (ACL), allows finer-
grained control over permissions. Each file or directory can have a list of users
and their rights.

ACLs are available as an additional option in recent versions of Linux as well
as in Microsoft Windows and macOS.

As distributed computing (§6.5) becomes more commonplace more sophis-
ticated modes of access control that were perviously used in research may be
revived. One example is a capability, a data structure representing a particular set
of permissions for a particular object [Jatho 2014].

The take home message? Unix-style permissions and ACLs are the two
most common modes of permissions and file system security.

Other Device Types 67

4.5 Other Device Types

Aside from disks and flash drives, there are many other types of device than can
attach to a computer. Some are so slow, the computer is better off doing other
work rather than wait for them. Others, though slow, need to be responsive.

A computer screen, though an output device, operates at the low level through
the memory system and a graphics processing unit (GPU). The key attribute
of graphics processing is a combination of large data flows with (by computer
standards) long breaks between and specialist computation. A screen that redraws
100 times per second needs to be able to move the necessary data in a small
fraction of 1

100s to avoid the appearance of flicker. A reasonably large screen with
a resolution like 2560×1440 pixels that needs to move 4B per pixel through the
memory system in less than 1

100s requires a data rate of around 1.5GB/s. Luckily
much of the actual data transfer happens between the GPU and a dedicated
memory, so a graphics device really looks more like a specialist CPU than an
IO device to the rest of the system.

At the other end of the scale, a keyboard needs very little processing power
to handle since people are very slow by computing standards. Such advice also
works best with some dedicated hardware, a buffer to dump keystrokes to, that
can be processed when the CPU gets around to it. In practice, since we expect
a keyboard to be responsive, handling keystrokes needs a reasonable level of
software intervention. However, that intervention is usually in the application
layer so the programmer in effect gets to decide whether to make keyboard
operation feel interactive or not.

Networks open up another whole range of issues so complex that they are
generally handled as a separate subject. Networks have similar latency-bandwidth
trade-offs to disks: a single transaction takes a long time to set up compared with
the average time per byte for a transfer. However, reliability dictates that network
data be sent in relatively small units, up to a few kilobytes, even if it would be
faster on paper to send larger units.

The take home message? There is a huge range of device types with
speed variation from slowest to fastest of a factor of a million or more,
and big variations in reliability and modes of access.

68 CHAPTER 4. IO AND FILES

Exercises
1. Look up specifications of real disks and SSDs, and rework the numbers in

the example on page 57.

2. Here are numbers for another device:

• rotation speed: 7200rpm

• platters: 4

• track size: 500,000B

• average seek time: 12ms

Calculate:

(a) Time to transfer 1 MB (only transfer time)

(b) Time to transfer 1 byte (only transfer time)

(c) Average rotational delay

(d) Total time to transfer 1 MB (including seek time and rotational delay)

(e) Total time to transfer 4KB (including seek time and rotational delay)

(f) Total time to transfer 1 B (including seek time and rotational delay)

3. Comment in the light of the answer to question 2 on why operating systems
attempt to transfer relatively large units at a time.

4. Add error checking to the FAT random access read code (function byteAt
on page 43). Your revised function should set a global variable errno to a
value indicating the type of error, and return a null char (the value '\0').
You should also check if the value returned by readblock is not a NULL
pointer (what should you do if it is NULL?).

5. Relate the code of the FAT random access read code (function byteAt on
page 43) to figure 4.2. Assume block size is 8KB and that you want the
byte at position 25,000. Work through the code and check that you get to
the right block, and see how to use the offset value.

6. How many machine-code instructions in the MIPS instruction set is the FAT
random access read code (function byteAt on page 43) per loop iteration?
If you had to find block number 10,000 and each MIPS instruction takes 1ns

Exercises 69

(10−9s), how long does it take to find block number 10,000 as compared
with a disk read taking about 10ms (10−2s)? Considering that most CPUs
execute instructions at a rate faster than one per nanosecond, comment on
whether the linear search of FAT is a real problem.

7. Calculate how big a file can be stored using inodes with triple-indirect
pointers if a disk block is 8KiB in size and each pointer is 40 bits.

8. Complete the code for inode allocation (page 50) for:

(a) Double-indirect pointers

(b) Triple-indirect pointers

9. A general formula for the number of disk accesses needed to fetch every
pointer block if the maximum-sized file is created using all levels of
indirection in the inode scheme described in this chapter would be useful.

(a) Derive this formula.

(b) Use this formula to calculate the number of disk accesses for pointer
blocks if every block in the maximum-sized file is accessed once.

(c) Calculate overhead as a fraction: extra accesses ÷ data accesses.

10. Extend the given inode access code to implement appending N bytes to a
file. Your code should handle the following cases

• the extra bytes fits into the last existing block

• the extra bytes require one or more additional blocks at the same level
of indirection of pointer blocks

• the extra bytes require another level of indirection of pointer blocks

11. You are designing a large web site that is updated relatively infrequently,
has a very high rate of visits and needs high read performance. Discuss
what variant on RAID would suit the problem.

12. Look up what role-based access control is and contrast it with Unix-style
permissions and ACLs.

5 Memory

MMANAGING MEMORY IS a core operating systems function. Only very
early or very primitive OS designs do not have OS-managed memory,
and most rely on hardware support for memory management. Managing

memory is important for two reasons: memory access is a critical performance
bottleneck that has to be managed right to avoid performance problems, and
protecting against invalid memory accesses is important for both correctness and
security.

In this chapter I examine core ideas of memory management and some
variations in implementation strategy.

First, I present some history and a rationale for memory management. Then I
go on to key VM concepts, followed by more advanced concepts. I finish off with
examples of real systems.

5.1 History and Rationale

In the very early days of computers, memories were too small for much of an
operating system but the smallness of memories also created an incentive to
manage memory efficiently. The idea of a memory hierarchy goes back a long
way and early systems required the programmer to manage what was in each
level.

Virtual memory (VM) is the concept of an automatic mapping between
programmer and hardware addressing. A virtual address, as seen by a program,
appears to define an offset from the start of memory. The VM system hides the
fact that the actual location in memory is different. VM allows programs to run
as if they have the entire address space to themselves, even though multiple other
programs are running with the same illusion.

VM provides four major benefits, which I expand on later:

70

History and Rationale 71

• it protects programs from each other

• it allows each program to be written without knowledge of what else is using
memory

• it allows the address space to be extended to a backing store (in recent times,
a disk or flash solid-state drive), also known as swap or swap space

• it allows a program to be loaded into memory without requiring a contigu-
ous region of memory to fit its entire requirement

The Ferranti Atlas [Lavington 1978] was one of the first computers to feature VM.
Designed in the late 1950s and launched about 1962, it used fixed-size pages as
the unit of transfer between fast and slow memory. Unlike a modern disk, its
secondary storage was a magnetic drum, a cylinder with read-write heads on the
outside. Pages were 512 words; a word was 48 bits or 6 bytes, making a page
3KiB in modern terms.

Despite this early start, VM took a while to be universally accepted. Some
large-scale computers 10 years later still required the programmer to manage
occupancy of main memory and early PCs also did not have virtual memory. Part
of the reason for the slow acceptance of VM is that it is difficult to implement
properly and hardware support must be designed with software in mind. The Atlas
project was an example of close collaboration between hardware and software
designers. Without this collaboration, it is difficult to make VM efficient.

Also, early PCs were designed more for the hobbyist than the professional
user, so reliability was a low priority as compared with cost and simplicity. The
original IBM PC, running MS DOS, was only intended to run one program at a
time, though workarounds for that were soon found. Once Microsoft introduced
Windows, running multiple programs was more commonplace but even so it was
only Windows 3.0 in 1990 that first supported virtual memory. Apple too was
slow – the early Mac OS ran all programs in the same address space. Even when
VM was introduced by Apple in 1991, it just extended the address space that all
programs ran in with swap space on disk to support using more memory than the
physical RAM, rather than giving each program a separate address space.

Microsoft and Apple eventually rewrote their systems substantially to create
a true VM with a separate address space for each process. In Apple’s case, that
involved rebuilding the entire OS on a new kernel; Microsoft gradually rewrote
their OS so it had a proper kernel with separate address spaces rather than with
everything running in one address space.

72 CHAPTER 5. MEMORY

Figure 5.1: Memory external fragmentation. After the small program C finishes,
there is enough space to launch E but not all in one place.

5.2 Key Concepts of VM

non-contiguous loading

One of the most important benefits of VM is non-contiguous loading of programs.
If the entire address space of a program had to be loaded into an unbroken
sequence of memory, as time went on and programs started and finished, memory
would increasingly be broken up into small unusable fragments. Figure 5.1
illustrates external fragmentation, the situation where usable free memory is
scattered outside areas in use. Though the total free space is more than enough to
launch a new program E in the illustrated example, there is not enough in any
one place for that new demand. Virtual memory fixes external fragmentation
by allowing a program to have its memory use non-contiguous, i.e., while the
program sees its address space as continuous without gaps, its actual real memory
usage can be relatively scattered.

Figure 5.2 shows how in a scheme where memory is allocated in fixed-sized
pages, which need not be contiguously allocated. As programs leave the system,
if they do not leave a big enough contiguous free space for a new program, it
doesn’t matter. The pages for the new program can be scattered around, as shown
for program E. Notice the white spaces at the end of the address space of programs
that do not use up their last page. This is internal fragmentation, memory wasted
because it is not fully used by the program that owns it. On average, a program
wastes half a page out of its total address space (or, more accurately, half a
page for any subdivision of address space, e.g., the stack). Mostly, this is an
acceptable price to pay for avoiding external fragmentation. For this reason, most
VM systems allocate memory in fixed-size pages.

Key Concepts of VM 73

Figure 5.2: Paging and internal fragmentation. Now after the small program
C finishes, there is enough space to launch E because it does not all have to be
in one place. The price of fixed-size pages is a fraction of a page lost at the end
of the address space when it is not an exact multiple of page size. This is called
internal fragmentation.

Internal fragmentation is an issue for very large memory systems where very
big page sizes may be desirable. In systems designed to run very large programs,
a solution to this problem is to allow more than one page size.

The take home message? Fixed-size pages solve the external
fragmentation problem at the expense of internal fragmentation. Usually
internal fragmentation is a relatively small fraction of total memory used
– on average, half a page per subdivision of the address space – and is an
acceptable price.

address translation

A core component of any VM system is translation from the virtual address
space (as seen by the program) to the physical address space (as seen by the
hardware). This translation is not that different in concept from mapping logical
block numbers in a file to physical block numbers on a device. However, a big
practical difference is the fact that address translation is in the critical path of
execution, i.e., if it is slow, it slows down the fastest part of the system, the CPU.
Finding the right physical or device block in IO need not be super-fast because it
is part of IO, which is already very slow.

There are various ways of representing the translation from virtual to physical
addresses. Almost all systems today use fixed-sized pages, so I focus on
that. In the past, some systems organised memory into variable-sized segments.
A segment usually corresponded to a logical software component such as an

74 CHAPTER 5. MEMORY

Figure 5.3: Page translation. The virtual address is translated to a physical
address by looking up the physical page number that corresponds to the virtual
page number. The offset within the page remains unchanged.

independent piece of code (like a function) or a data structure. External
fragmentation as well as the relative complexity of keeping track of segments
has made this approach unpopular, though at least one family of machines had
a successful VM system based on segments [Mayer 1982] and the Intel 286
architecture (the last before the 386 introduced 32-bit addressing) had hardware
support for segments.

Another benefit of paging over segments is it is easy to do page address
translation. If each page is sized a power of 2 bytes, then a fixed number of
bits represents the page number, and remaining bits the offset within the page.
Translation is then a matter of looking up the physical translation of the virtual
page number; the offset within a page is unchanged. Figure 5.3 illustrates the
general scheme for a 32-bit address, pages of 4KiB size. A 4KiB address range
requires 12 bits so the offset is 12 bits and the page number is 20 bits.

A page in physical memory is often called a page frame. I prefer to refer to
physical and virtual pages to keep the distinction explicit. However since others
use this terminology, I echo it when discussing real systems.

Heads up: Actual page sizes can vary: 4KiB is a convenient size for
illustrating examples, and is a size used on many real systems.

In paging, a page table keeps track of page translations, usually for each
separate address space (corresponding to a process). Two schemes are a forward
page table, usually implemented as a multilevel page table, and an inverted page
table. I focus mainly on forward page tables since they are more common.

An inverted page table is a hash table with one entry per physical page number.
Virtual page numbers are used as a hash index and if there is no hash collision, the
corresponding physical page belongs to that virtual page number. An inverted

Key Concepts of VM 75

page table can be a lot smaller than a forward page table; it is possible to
implement a single page table for the entire system. However in practice it turns
out be to very complex to implement.

A forward page table is an array indexed by virtual page number, containing
entries with a physical page number and status bits for each page. It may also
include information on where the page is on the backing store (disk or SSD).

For a reasonably large address space with significant gaps a page table
representing the entire address space will have a high number of unused entries.
A multilevel page table solves this problem by splitting the address bits used to
index the table. A second-level (or lower) table is split into chunks that need not
be allocated if the part of address space covered by that chunk is not used.

To see how a forward page table works, assume a 32-bit address space. The
size of the page table depends on the number of page numbers. In the example
illustrated in figure 5.3, the page number requires 20 bits, meaning the table has to
have 220≈ 1-million entries1. How big must each entry be? It must contain the 20
bits that replace the virtual page number, and status bits. At minimum, each entry
needs to be 24 bits2; 32 bits is more convenient since 24 bits on some machines is
not an efficient unit to fetch from memory. That means the page table would need
4MiB of memory. Every separate virtual address space would have to have such
a table. If 100 processes were active at once, the page tables alone would use up
400MiB, a sizeable chunk even out of a few GiB of RAM. To make things worse,
with 64-bit addressing, the page table would be enormous. With the same-sized
pages, a 64-bit machine would need a page table with 264−12 = 252 ≈ 4.5×1015

entries. We need not even multiply this number by the number of bytes per entry
to know it is impractically large for an in-memory table.

Figure 5.4 contrasts a single-level and a simplified two-level page table. If
the single-level table was illustrated completely it would cover the entire address
space. The two-level table shown mostly has unused entries in its L1 table and
therefore only needs two L2 tables, a small fraction of the total space the L1 table
needs. In a more realistic situation, there would be more L2 tables than this, but
the total size of the table would in most cases be much smaller than a single-level
table. How do we mark an entry as unused? The trick is to think of a two-level
table as a top-level page table that maps the memory the page table requires – so

1220 = 1,048,576
2The absolute minimum status bits would be one for showing the page is valid and another showing
whether it is modified relative to other levels of memory, but it is impractical to use data structures
that are not allocated in whole bytes.

76 CHAPTER 5. MEMORY

(a) Single-level

Unused
Unused

Unused
Unused
Unused
Unused

Unused
Unused
Unused
Unused

Unused
Unused

Unused

Unused
Unused
Unused
Unused

Unused

L1 page table L2 page tables

(b) Two-level (simplified)

Figure 5.4: Two forward page table schemes. In a two-level page table the first-
level (L1) table refers to multiple second-level (L2) tables, each of a subset of a
single-level table. The L1 table entries for unused (hence unallocated) L2 tables
are marked as “not present”. The single level page table if drawn completely
would cover the same address space as all L2 tables combined with no gaps.

each L2 table is a page in memory containing a portion of the full page table. If
that portion of the full table is unused, the L1 entry is marked as “not present”,
the same as a normal page that is not in physical memory.

Figure 5.5 illustrates the difference in the lookup methods of a single-level
and a two-level table. In the single-level table, the virtual page number can be
used directly, at the cost of the table being very large. In the two-level table, the
virtual page number is split in two. The high-order half is the page number of
a page containing an L1 table. Provided it does not translate to an invalid entry,
the L1 table entry in effect points to the correct L2 table and the low-order bits of
the virtual page number can be used to index into the L2 table. Figure 5.5b only
shows one L2 table to avoid clutter but in general there will be multiple L2 tables.
To make it real, figure 5.5c illustrates the status bits in one of Intel’s schemes
[Intel 2011, p 4-16]. We will not explore all the detail of a real example; compare
the bits used here with those in our more abstract example that follows shortly.

Why is the high-order part of the virtual page number used to index L1 and
the low-order part to index L2? Doing it this way around, if a large stretch of the
address space is not used (e.g., if the stack is put at high memory, leaving a big

Key Concepts of VM 77

(a) Single-level (b) Two-level

Unused
Unused
Unused

Unused
Unused
Unused
Unused

Unused
Unused
Unused
Unused

Unused

Unused
Unused

Unused
Unused
Unused
Unused

L1 page table L2 page tables

physical address ignored G PAT D A PCD PWT U/S R/W P

bit 31 … 12 11 10 9 8 7 6 5 4 3 2 1 0

(c) Intel IA32 page table entry

Figure 5.5: Page translation. Two-level translation steps are: the correct entry
in the L1 table is found and used to find the right L2 table, then the translation
is found as an offset into the L2 table. The final example is the structure of an
Intel 32-bit page table entry for 4KB pages, used for a 2-level scheme.

gap between it and the rest of the address space), any invalid entries in the L1
table will represent a big range of addresses. Reversing the order of indexing will
not have this useful feature of making it possible to skip large parts of the address
space easily. What does it mean if an entry in the L1 table is invalid? Depending
on the implementation of the page table this could indicate an invalid memory
reference, or a need to allocate a new L2 table. In Intel’s scheme, the present bit
covers both cases: hitting a “not present” L1 entry can indicate that the L2 table
has been swapped out of main memory or that it is not a valid part of memory.

The scheme generalises to more levels; two suffice for a 32-bit address space.

Heads up: Only lowest-level page tables contain translations for process
pages. The higher-level (level one, L1, is the top level) tables contain
translations that point to lower-level tables. The lowest-level tables each
contain a page-sized fragment of what would be in a single-level table.

To implement a page table, in addition to the page number translation, the
page table needs status bits to represent the state of the page. There is a lot of
variability in the status bits used. Here are some examples:

• present or P – the page exists in memory (can also indicate whether this part
of the address space is valid, if there is no separate valid bit)

78 CHAPTER 5. MEMORY

• valid or V – the page may be used (or a TLB entry is usable – see page 83)

• dirty or D – the page has been modified since being copied to the current
level of the memory hierarchy (could also be called the modified bit)

• no-execute or NX – this page may not be executed, i.e., it is data

• accessed or A – periodically unset; set only when the page is accessed, to
keep track of pages not used recently

• read-write or R/W – indicates whether the page may be modified

Each bit can be on (set to 1) or off (unset to 0). Compare these bits with those in
figure 5.5c – where the same status bits are used, I use the same abbreviation.

If the present bit is off and a page is not in memory, it has to be fetched from
backing store. Usually, each page table also has a directory data structure that
shows where each page is actually found and may also indicate the limits of the
allowed address space. The dirty bit is set whenever a page is modified. If the
page loses its memory occupancy, it has to be copied to backing store so changes
aren’t lost. It is not practical to do this every time the page is modified (this is
called write through) because backing storage is so slow compared with RAM, let
alone the CPU. Copying a page to backing store can be done periodically when
the IO system is not busy to reduce the need to do a write back when a page is
evicted from memory: this is called cleaning the page. The no-execute and read-
write status bits have some overlap – but for finer-grained security policies it is
useful to distinguish the cases. We will see more on how the accessed bit is used
when looking at replacement policy.

How could we code page translation and checking or modifying status bits in
C? We need bit-level logic operations. Let us look first at separating out the page
number and offset. What we need to do is to split a 32-bit number into the lower
12 bits and the upper 20 bits. We also need to adjust the lower 20 bits so they are
in the low 20 bits of a word, so they represent a number in the range 0 . . .220 to
use as an index into a single-level page table. Splitting the virtual page number
again to form an L1 and an L2 index is easy once we know how to do this.

First, eliminating unwanted bits can be done using a bit mask (often shortened
to mask). The idea derives from logic identities A∧ 1 = A and A∧ 0 = 0. Do a
bitwise and of a word with a word-sized mask containing 1s in the positions you
want to keep. The result is all zeroes except where there is a 1 in the mask.

Key Concepts of VM 79

operator logical effect example
& bitwise and A & 0x7 extracts low 3 bits of A
| bitwise or A | 0x1 == A except lowest bit is always set
~ bitwise negate ~A inverts bits of A (1’s complement of A)
ˆ bitwise exclusive or A ˆ B contains 1s only where A and B differ
<< bitwise left shift A << 7 shifts A 7 places to the left (== A×27)
>> bitwise left right A >> 7 shifts A 7 places to the right (≈ A÷27)

Table 5.1: Bitwise operations useful for masking. Most C compilers use logical
right shift for unsigned types and arithmetic right shift for unsigned types.

In C, we write a bitwise and using the & operator – not to be confused with the
memory reference (pointer creation) operator spelt the same way. That is distinct
from logical and: &&. See table 5.1 for C bitwise operators.

For example, if we want the low 4-bits of a byte containing 01101110, and
want the rest to be zeroed, our bitwise and looks like this:

01101110 &
00001111
00001110

In C code, we can initialise the mask using hex notation (I use unsigned char
because that is C’s 8-bit unsigned int type) :

unsigned char mask = 0x0F; // binary: 00001111
unsigned char value = 0x6E; // binary: 01101110

That technique, adjusted to 32 bits, tells us how to extract either the low 12 or the
20 high bits. We need to construct a mask containing 32 bits with the relevant bits
set to 1. The C type unsigned is a synonym for unsigned int since that is the
most common unsigned type. Define the masks as follows, and also the number
of the bits in the offset, which we need soon:

unsigned offsetmask = 0x00000FFF;
unsigned pagemask = 0xFFFFF000;
unsigned offsetbits = 12;

Putting the leading zeros in offsetmask is not necessary but makes it easier to
see how the two masks differ.

It can also be convenient to use a preprocessor symbol to define a mask.
This makes it a constant value seen by the compiler but not allocated memory

80 CHAPTER 5. MEMORY

unnecessarily. Doing this is convenient if you want to put a mask in a header file
and do not want it to be created as a new variable every time the header is included
(which requires working around the fact that the linker will see it as a duplicate):

#define OFFSETMASK 0x00000FFF
#define PAGEMASK 0xFFFFF000
#define OFFSETBITS 12

I prefer to spell preprocessor symbols in all capitals to distinguish them from
variables, functions and types. That is just a convention; the preprocessor does
not care how they are spelt. For the human reader, this is a useful convention, and
is widely used by C programmers. Preprocessor symbols are expanded before the
compiler sees the code; think of them as if you used search and replace in a text
editor to replace the symbol by what it stands for. From here on, in examples I
use these symbols instead of the variables I defined previously.

With either of these approaches, finding the page offset is easy; I will use the
preprocessor symbols from here on:

// address known here and of type unsigned
unsigned pageoffset = address & OFFSETMASK;

How do we find the page number? We can use our other mask, then shift the
resulting number right. But we do not really need the first step because shifting
the number right will also make the low 12 bits disappear. So here it is in one step:

unsigned pagenumber = address >> OFFSETBITS;

This works on most C compilers because a right shift is interpreted as a logical
right shift if the value is unsigned. To be safe, using both steps in the opposite
order to that you may feel is natural ensures that even if the compiler generates
code for an arithmetic right shift3 you get the correct result. For this to work, you
need a version of PAGEMASK shifted to the low end of the word:

#define PAGEMASKSHIFTED 0x000FFFFF

Finally here is the correct (safer) code:

unsigned pagenumber = (address >> OFFSETBITS) &
PAGEMASKSHIFTED;

3An arithmetic right shift shifts copies the sign bit to the right, rather than filling with zeroes from
the left, on a machine that uses two’s complement for negatives.

Key Concepts of VM 81

Preprocessor symbols can also define macros, a piece of text with parameters that
you fill in when you use them. This is different from a function in that macro
expansion happens in the preprocessor stage before the compiler sees your code.
So you can “pass in” arbitrary chunks of text, including type names. For example:

#define RIGHTSHIFT(A,N) A >> N

To use the correct terminology, a plain preprocessor symbol is a macro and this
new notation is a function-like macro. However, I find it tedious to use such a long
name and so I prefer to use preprocessor symbol for a regular macro, and macro
for a function-like macro.

Note that it is essential to have no space before the open “(” of the parameter
list, otherwise the parameter list is treated as part of the text the symbol stands for.

If you use RIGHTSHIFT anywhere in your code, whatever appears in parenthe-
ses after the name gets substituted in. It is common practice to put parentheses
around the right hand side so the macro expansion can be done without worrying
about operator precedence:

#define RIGHTSHIFT(A,N) (A >> N)

With this defined (usually in a header though that is not essential since a macro
generates no runtime resources except by virtue of being expanded), we can
rewrite our example as:

unsigned pagenumber = RIGHTSHIFT(address,OFFSETBITS) &
PAGEMASKSHIFTED;

Macros can be a big convenience but can also lead to code that is hard to
understand so I use them sparingly. You will not find a lot of them in my examples.

Heads up: Function-like macros can be a very useful feature to avoid
writing repetitious code where you cannot write a function. But they
can lead to unreadable, unmaintainable code so beware of using them
extensively.

I am assuming here that I know that a machine address is 32 bits and the
page offset needs 12 bits. Can we generate these masks in a more general way,
rather than hard-coding them? In principle, yes, because we can use sizeof to
determine the size of any pointer type, which tells us how many bytes a memory
address is. We can then use bitwise operations to construct masks with the
requisite number of 1s. Assume we have a data type mask_t that has enough

82 CHAPTER 5. MEMORY

bits to contain the mask. This is how we can go about constructing a mask with N
ones in the low end of a variable of type mask_t:

mask_t mask = 0;
for (int i = 0; i < N; i++) {

mask <<= 1; // shift left 1 position
mask |= 1; // make the low digit 1

}

To create a mask at the high end of the word, the body of the loop changes to this:

highmask >>= 1; // shift right 1 position
highmask |= 0x80000000; // make the high digit 1

If we need a mask that does not start at the high or low bit, we can create it using
one of these techniques then shift it to where we want it.

On the whole though it is easier to hard-code masks in the place where we set
the size of pointers in global system data structures that relate to paging, since this
is not something that changes often.

What about extracting status bits? That is a very similar concept. If we want
to test if a bit in a given position is 1, we make a mask that only has that bit set.
Then a bitwise and will reveal whether that particular bit is set in the status.

If we have a pointer to page table entry, PTentry, how to we use this to
calculate the physical address? First, we check the status bits. If the page is
present, we are good to go, otherwise we signal a page fault, signifying that the
OS must handle the case where the page is not in memory. If the page is in
memory and we are doing a write (the data reference of a store instruction in a
RISC architecture), we turn on the dirty bit. Finally, we can translate the virtual
page number to physical and combine it with the offset to create the real address.

Here is an outline of code to do this, assuming we have defined preprocessor
symbols for the various status bits (write indicates a memory write):

address_t translate (PTable * table,
address_t v_address, bool write) {

address_t virtual_page = get_page(v_address);
address_t *entry = get_entry (table, virtual_page);
if (!entry) { // could be e.g. not VALID

// SIGNAL MEMORY FAULT
}
if (*entry & PRESENT) {

if (write) { // set dirty bit

Key Concepts of VM 83

*entry |= DIRTY;
}
address_t physical_page = (*entry >> OFFSETBITS) &

PAGEMASKSHIFTED;
address_t offset = v_address & OFFSETMASK;
return (physical_page << OFFSETBITS) | offset;

} else {
// SIGNAL PAGE FAULT

}
}

What happens if a page fault occurs? Since accessing backing store is so much
slower than CPU operations or accessing RAM, most operating systems suspend
the current process while waiting for the missing page to be fetched. Another
complication is that if physical memory is almost full, another page has to be
chosen as a victim for replacement. Replacement is complicated, so I handle that
separately in §5.3 More Advanced Concepts. In a real OS, page replacement
happens long before real memory is really used up to avoid a situation where
handling page replacement itself runs out of memory.

The take home message? A page table is needed to translate from virtual
to physical page numbers. C provides simple bitwise operations so where
manipulation of table entries must be done in software, C works well. I
cover single-level and two-level page tables in some detail here. A real
page table will contain other details I omitted for clarity.

hardware support

For all this to work, hardware support is essential. Every time an instruction is
fetched, its address must be translated, as do branch and jump targets and data
addresses (in loads and stores on a RISC architecture; other types of instruction
set may access memory in other ways making things even more complicated). If
page table lookups were implemented purely in software, a VM machine would
run many times slower than a machine that only accessed memory physically.

A common solution is to keep a small fraction of the current page table in a
very fast, specialized cache called a translation lookaside buffer or TLB. The TLB
can be looked up fast enough that it does not slow down processing in the case
where the required translation is in the TLB. A TLB generally is relatively small
so this speed is possible. Sizes typically range from 32 to 128 entries, and it is

84 CHAPTER 5. MEMORY

Figure 5.6: A TLB hit. If the TLB finds the desired virtual page number in its
subset of the page table, it provides the physical page translation. A match is
only reported if the valid bit in the tag is also set.

also common to have a separate TLB for data references (DTLB) and instruction
references (ITLB) for three reasons:

• instructions and data are often separated out into distinct parts of the address
space and there may be protection against executing data as code

• data and instruction referencing often follow very different patterns – e.g., a
tight loop may access a very narrow range of code addresses while stepping
through a large data structure.

• the first-level (L1) cache is often split into instruction and data caches that
are separately accessed and since the TLB is the critical path for L1 cache
access (i.e., it limits how fast the cache can be accessed), it makes for a
simpler design if the TLB is also split in the same way

When an address appears in the CPU, the first step is to check if that address is
found in the TLB. The virtual page number is compared in hardware with virtual
page numbers stored in every location in the TLB where that virtual page number
could be stored. If it is found, the page translation continues in a hardware
implementation of the software algorithm I describe. If it is not found (a TLB
miss), the correct page table entry must be found, a location in the TLB selected
for this translation and the page table entry is installed in the TLB. If the page

Key Concepts of VM 85

table entry has to evict another entry, the victim entry’s status has to be copied
back to the page table in case it has modified any status bits. On some systems,
there is hardware support for looking up the page table to handle a TLB miss.
Even with this hardware support, a TLB miss can cause significant slowdown, so
minimising TLB misses is essential for good VM performance.

A TLB may contain tag bits in addition to those in the page table, including a
valid bit to signify that the location in the TLB contains a valid page translation.
When a different process is given control of the CPU, a simple strategy is to
invalidate the entire TLB, which can be done by setting each valid bit to zero.
With this strategy, it is not necessary to keep track of which process or page table
is represented in the TLB.

Heads up: TLBs rely on locality at page granularity. Programs that
access a lot of pages, even if total memory accessed is small and mostly
fits in the caches, perform poorly because of a high number of TLB misses.

The TLB does not eliminate the need to access the page table in software.
Even on systems with hardware to look up the page table to handle a TLB miss,
page table contents must be initialized in software, and handling page faults is
done in software. Techniques for C coding using bit operations do have real use,
even if the common case is that the TLB handles the translation in hardware, and
finding a page table entry that is not in the TLB is also often handled in hardware.

Because hardware support is so critical to achieving acceptable performance,
page table design is relatively inflexible. An OS pretty much has to use whatever
options are on offer from the hardware design. At best, the OS designer can make
creative use of the provided design, at risk of making design choices that do not
work with a hardware upgrade or bug fix.

The take home message? The TLB makes page table access viable:
in the common case of a TLB hit and no page fault, VM has little
performance penalty over direct real memory accesses. The importance of
hardware support for performance means the OS designer cannot choose
a page table organization not anticipated by the hardware designer.

replacement policy and locality

Choosing which page to replace (evict from memory) – the victim page – is an
important design consideration in VM.

86 CHAPTER 5. MEMORY

Locality is an important principle at all levels of the memory hierarchy. As
with caches, VM relies on a combination of two types of locality:

• temporal locality – any item referenced is likely to be referenced again soon;
this implies a page, once resident, should be kept in main memory as fast as
possible and that a TLB entry should be kept in the TLB as long as possible

• spatial locality – when an item is referenced, items close to it are likely to be
referenced; this implies that pages should be big enough that neighbouring
items that will be needed soon are likely to be in main memory after a page
is fetched from backing store

A “memory reference” means any of an instruction fetch or either kind of data
operation: a read or a write.

What makes VM different from caches is the huge penalty for accessing the
slowest level. For this reason, pages are a lot bigger than the units used in caches
(called blocks or cache lines), typically 4KiB or bigger. Also, because of the high
cost of a mistake, it is worth managing what is in main memory in software.

How to decide which page to evict when memory runs out is a critical aspect
of the performance of VM as evicting the wrong page, one that is needed soon,
has expensive consequences. For this reason, a clear understanding of locality is
important if page replacement is to be implemented efficiently.

A key insight into how to manage main memory occupancy is the working set,
originally defined as follows [Denning 1968]:

a working set of pages is the minimum collection of pages that must
be loaded in main memory for a process to operate efficiently, without
“unnecessary” page faults

An operational definition of a working set is the set of pages accessed over a
defined time period. The exact time period chosen is tuned to take into account
the relative cost of accessing backing store, as well as typical characteristics of
programs. In general, the aim is to maximise the number of processes that can
make progress by giving each the biggest possible amount of physical memory,
within the constraints of available memory.

If the working set is bigger than it needs to be, some processes will be allowed
more memory than they absolutely need to make progress, forcing other processes
to incur more page faults than necessary.

Accurately calibrating the working set is useful for a global page replacement
policy: the next page selected for eviction should be one that is no longer in any

Key Concepts of VM 87

process’s working set. That can be determined by keeping track of how recently
each page has been accessed, as well as how many pages each process has in main
memory. In practice, a policy exactly like this is impractical to implement as it
would require time-stamping all memory references (at least the most recent to
each page), and an efficient way of finding the least recently referenced page.

The absolutely ideal replacement policy is the one that evicts the page next
used furthest in the future. That is even less practical as it requires foreknowledge
of the exact order of memory accesses into the future. Here are policies in order
of increasing simplicity to implement:

• optimal – not practical to implement but can be simulated to compare
against realistic policies: it replaces the page used furthest in the future

• least recently used – or LRU: based on locality principles, the page last used
longest ago is likely not to be needed soon

• first in first out – or FIFO: easy to implement as pages can be kept in a
simple list and the page at the older end of the list is evicted first

FIFO is not a great approximation to optimal because the oldest page may also be
one that is referenced often, e.g., if it contains a critical data structure. It is possible
to construct an order of references to pages that makes a FIFO scheme have more
page faults if memory size increases. This effect is called Belady’s Anomaly,
after the person who discovered it. LRU is impractical to implement exactly but
can be approximated using a clock algorithm [Carr and Hennessy 1981]. The
clock name derives from visualising all physical page frames arranged in a circle
with a pointer like a clock hand moving around the circle. When a page has to
be replaced, if the pointer is pointing at a clean page (dirty bit not set) with the
accessed bit not set, that page becomes a candidate for replacement. If not, the
pointer moves on. Each time it encounters a page with the accessed bit set, it
unsets the accessed bit. Each time it encounters a dirty page, it schedules it for
cleaning (writing back to backing store). Eventually it will encounter a clean page
with the accessed bit off, and that page becomes a candidate for replacement.

The clock algorithm works on the assumption that pages that have their
accessed bit set are not likely to be least recently used, if the accessed bit is set on
every reference. While a dirty page may also have not been accessed recently, it
is more efficient to schedule it for cleaning so it will be ready next time the clock
hand reaches it than to write it back at the same time as another page has to be
read from backing store.

88 CHAPTER 5. MEMORY

A further refinement on approximating LRU is to maintain a page standby list,
a list of recently selected victim pages, and only evict the oldest page on that list.
That way, any page erroneously selected as a candidate for eviction can be rescued
if it is needed soon after being selected as a victim.

Real systems try to balance the requirements of each process against global
free memory and approximate working set by calculating a resident set – pages
used over a predefined time interval. A process in general should not drop below
its resident set in main memory but can be expected to give up pages in excess of
its resident set. A global strategy for page replacement can balance requirements
across processes, using this principle.

The take home message? Page replacement policy is a trade-off between
approximating the optimal strategy and ease of implementation, with
approximations to LRU a good compromise.

protection

If each process has its own address space, the OS can ensure that no process, no
matter what bugs there are in its code, can access another process’s address space.
In practice, this level of protection can be thwarted by exploiting security holes in
system calls, which run in kernel space and hence are not protected, except in a
true microkernel OS.

Before VM with separate addresses spaces was commonplace, a bug that took
down a whole system was commonplace. Early versions of the Mac and Windows
suffered from this.

The take home message? Without hardware protection, memory
addressing, particularly with languages like C that do not manage
memory automatically, makes for unreliable systems. Even if memory
is sufficient not to need swap space, VM is worthwhile for protection.

5.3 More Advanced Concepts

efficient process launching

As we see where we study processes, when a process is launched, the fundamental
operation is copying an existing process’s address space. While more efficient
approaches to launching a new process have been devised since early days of

More Advanced Concepts 89

Unix, it is still sometimes necessary to copy the entire address space when
launching a process that duplicates the code of an existing process (e.g., to split a
workload between similar processes running independently).

Copying the entire address space is inefficient particularly as each process
will start out the same then start modifying memory where they differ in their
behaviour. One approach to this problem is copy on write (COW): instead of
copying the address space, the page table is copied and each entry is marked as a
COW page (a COW status bit is needed for this). When a page is modified, it is
copied and the COW status cleared in all page tables pointing to it.

COW has another use: zeroing memory before launching a process. If all
pages initially point to a COW page that only contains zeroes, the entire address
space appears to the code as if it is zeroes. As soon as anything is modified, the
zeroed COW page is copied, the page table entry for the page that was modified
changes so it is no longer a COW page and points to a new physical page frame
that has to be allocated by the OS. In this way a very large address space can be
zeroed without actually having to allocate the pages or execute the code that fills
them with zeroes, until a particular page is modified at which time it has to be
allocated a new physical page frame and copied.

The take home message? Copy on write (COW) allows for efficient
initialisation of an address space to zeroes as well as efficient copying
of the address space of a process, which is needed when a process is a
duplicate of another, usually to split a large workload.

sharing

Sometimes forcing each process into a separate address space is too restrictive
and sharing information between processes is required. One mechanism for this
is a shared segment, a region of the address space that is available to more than
one process. In the Unix world, there is a standard for creating a region of shared
memory and attaching it to another process. The approach used relies on the same
permissions system as is used for files so that it should not be possible for someone
without the correct permissions to see or modify a shared segment.

Here are some system calls used for shared segments.

• shmget – obtain a shared-memory identifier to use with other system calls;
can also create the shared segment

90 CHAPTER 5. MEMORY

• shmctl – adjust permissions of the shared segment; can also remove a
shared segment

• shmat – map (“attach”) a shared segment into the current address space –
usually you supply a NULL pointer to the system call and let it decide where
to place the shared segment

• shmdt – unmap a shared segment from the current address space

There is a fair degree of complexity in setting up these calls so I skip the detail
here: this is a good example for an exercise in reading documentation.

Another approach to sharing is to memory map a file to the virtual address
space. The effect of memory mapping is as if the file contents were in memory
and sharing is an option, with a result similar to a shared segment. The main
difference is that since the sharing happens though a file, the memory mapped file
can be reloaded if the process dies or quits and then restarts. While it is possible
to memory map a file to a specified address, implementation of this varies so it is
better to leave the placement in the address space to the mmap system call.

Here are some system calls used for memory mapping:

• mmap (void *addr, size_t len, int prot, int flags, int fd, off_t
offset): for this one example I supply some detail to give a taste of how
such system calls are set up:

– addr – start address in the address space for mapping: easiest to set as
0 (NULL) so the system can choose where to place the memory mapped
content

– len – how many bytes to copy from the file to the memory-mapped
region (may be rounded up to a whole number of pages)

– prot – set the protections that apply (access, read, write, execute)

– flags – controls extent of sharing or not with other processes

– fd – file descriptor: a number associated with an open file (usually;
their are some other options)

– offset – how far into the file to start mapping

• munmap – given a start address and length, removes a memory mapping
from the address space

More Advanced Concepts 91

As with shared segments, the system calls are quite complex but I supply more
detail in this case to illustrate the general idea. As with the shared segment calls,
you should look up documentation to understand them.

Whether with a shared segment or a memory-mapped file, sharing should
generally not use pointers to data in the shared memory that assume a fixed
location in the address space because there is no guarantee that any other process
will see the shared data as being in the same part of its address space.

The take home message? Shared memory or a shared memory-mapped
file provide ways for processes to exchange information. See more detail
on how processes or threads can share information in Chapter 6.

Performance: OS Design and User-Level Programming

Mostly, when we program, we do not need to think about memory hierarchy
because locality (temporal and spatial) takes care of things for us, but we can
write code that trashes these assumptions. For example, the following

for (int i = 0; i < 1024*1024; i+=1024)
a[i] = b[i] + i;

makes poor use of the TLB. Why? Assume an int is 4 bytes. Then each memory
access is 4KiB apart. On a machine with a 4KiB page size, each reference to
a[i] and b[i] will be on a different page. The code therefore will reference
2048 different pages (1024 pages for each of a[i] and b[i]). Since each iteration
uses 2 new pages, the TLB will exhibit no locality and every loop iteration will
experience two TLB misses. If the arrays have already been accessed and are in
caches and main memory, this code could run anywhere from 10 to 100 times
slower than a loop with much better locality like the following (which does the
same work but on adjacent data items):

for (int i = 0; i < 1024; i++)
a [i] = b [i] + i;

In this particular example, the first version of the loop will also have poor locality
for all levels of the memory hierarchy since it could incur a page fault and cache
miss for every memory reference. However, if another loop repeats the same
memory accesses soon after, the second version will not have page faults and not
many cache misses, but will still incur about as many TLB misses, since the TLB
is unlikely to be big enough to hold 2048 page translations.

92 CHAPTER 5. MEMORY

It is also useful to understand the limits of virtual memory. If you have a very
large data set that is too big for main memory, VM will cope with this but not
necessarily optimally. For example, if you have to sort data that is too big to fit
in RAM, you could just use the standard quicksort library algorithm and hope
that VM will save you. In practice, you may achieve better performance with a
disk-based merge sort, in which you explicitly move data between disk and RAM.
Why? Because you can do your data transfers in much bigger units than one page,
because you know the order your data is going to be accessed.

The take home message? Even with the TLB where performance
penalties are nowhere near as high as unnecessary page faults, a program
can suffer significant slowdown if you do not understand how VM works
when coding. The memory hierarchy is designed to work well in the
common case, but you need to understand where the design assumptions
can go wrong to avoid serious performance pitfalls.

5.4 Examples

An inverted page table is used in IBM’s POWER architecture and the less
expensive PowerPC derived from it.

It is common for processors to have hardware support for page-table walking
so that time for TLB misses can be minimized. The MIPS family of processors,
back in the day when they were used for high-end systems, had software man-
agement to TLB misses. The design trade-off: hardware TLB miss management
is much faster, but allows no flexibility to adjust policy on what should be in the
TLB, or page table design [Nagle et al. 1993].

Intel’s x86 range uses a hardware-managed TLB that in earlier designs
assumed the TLB represented a single address space and had to be flushed
whenever there was a switch to a new address space. To make virtualising
more efficient, more recent Intel designs have added tags to each TLB entry to
identify which process an entry belongs to so more than one address space can
be represented at once in the TLB [Neiger et al. 2006]. In the simplest case, the
design defines a two-level page table and TLB entries are assumed to relate to
exactly one page table so changing to another process requires flushing the TLB.
Intel’s two-level scheme is similar to that I describe here. The L1 table is exactly
like an L2 table except the L1 “page translation” takes you to a page containing
an L2 table. There is also a directory structure that shows where the page is stored

Exercises 93

on swap (or that it should not exist), and this same structure applies to both pages
in a process’s address space and the pages making up a page table.

VM performance efficiency is tied to using the available hardware support, so
a portable OS like Linux has to have an adaptable abstract page table structure that
fits different architectures at the hardware level. Linux structures its page tables as
a tree: a good fit to the Intel model with very little difference between the abstract
version and the hardware implementation. The inverted page table organization
on a PowerPC is very different from a tree structure, which makes it more difficult
to map to the Linux abstraction4. A key strategy for achieving portability is to aim
for hardware-independent design wherever possible. The Linux approach works
to the point where that goal is frustrated by reality.

Linux page replacement has gone through several iterations [Van Riel 2001].
It is difficult to describe the Linux approach in simple terms because it combines
page management with managing disk buffering (file cacheing) and memory-
mapped files. Linux page replacement uses the page frame reclaiming algorithm
(PFRA). PFRA starts by selecting page frames not owned by any process, such as
disused memory mapped files [Bovet and Cesati 2005, Chapter 17].

The take home message? There are many variations on page table
management and replacement strategy but a practical OS must base its
strategy on the underlying hardware. Even a portable OS like Linux has
to adapt to significantly different page table organizations for each CPU
architecture it runs on.

Exercises

1. A program accesses about 1MiB of data, in steps of 4KiB. This data fits the
L2 cache and the penalty for accessing the L2 cache is not high and does
not cause a significant speed loss. The data is all in main memory so there
are no page faults. Explain what could cause the program to run about 10
times slower than with an ideal memory hierarchy.

2. Explain the trade-off between internal and external fragmentation.

3. As relates to extracting and processing components of a page table entry:

4Outlined by Linus Torvalds, 2002: http://yarchive.net/comp/linux/page_tables.html

http://yarchive.net/comp/linux/page_tables.html

94 CHAPTER 5. MEMORY

(a) Write C code to calculate the page number mask and number of offset
bits given the page size in bytes and the fact that sizeof can calculate
the size of a pointer type.

(b) Assume a page table entry is stored as an unsigned int and the
high 20 bits are the page number and the next 4 bits are status bits,
representing present (P), dirty, (D), accessed (A) and no-execute (NX).

i. write out masks in both unsigned int initializations and prepro-
cessor macro format needed to extract each of the page number,
the P, D, A and NX bits.

ii. write code to use a mask (either format) to extract a page number
from a page table entry and right-shift it to the low end of a word

iii. write out a mask in both formats again to extract the page offset
from an address

iv. write out code to replace the virtual page number in an address
by the physical page number, given the address and the page table
entry containing the page translation

v. write out code to check a given bit in the status bits, given the
mask and a page table entry

vi. write out code to set a given bit in the status bits, given the mask
and a page table entry (your code should not change anything else
when setting the bit)

vii. rewrite the examples in the chapter that use left and rights shifts
using function-like macros and comment on whether this aids
readability (base your macros on RIGHTSHIFT on page 81)

4. Explain advantages and disadvantages of each of the following page
replacement strategies:

(a) optimal

(b) FIFO

(c) LRU

(d) clock

5. When an entry has to be replaced in the TLB, explain steps necessary to
ensure the page table is correct before that entry can be overwritten. Take
into account possible values of the tag bits.

Exercises 95

6. Two processes, reader and writer share information between them
through shared memory. Give the system calls first for a shared segment
then for a memory-mapped file to create such a shared-memory region in
the writer process, make it available to the reader process then remove it
from the system in the writer process. You need not worry about actually
using it or ensuring that the other process has finished before removing it.

7. A cache usually contains tags based on the physical address to identify
which memory locations a particularly cache block contains (a physically-
addressed cache). In a virtually-addressed cache, the tags are based on the
virtual address. A virtually-addressed cache reduces the importance of a
TLB in achieving performance at the expense of making aliases (different
virtual addresses that refer to the same physical address) harder to handle.
Discuss advantages and disadvantages of a virtually-addressed cache taking
into account these points; include examples of how aliases could occur.

8. Discuss why the page table strategy required for a PowerPC processor
cannot be used simply on an Intel CPU.

9. A page table entry is 32 bits and a pointer is 32 bits. If an address space
consists of the following range of virtual page numbers, calculate how big a
single-level and a two-level page table are, and comment on the difference.

• global variables – 1–256

• constant pool – 4,096–8,191

• heap – 32,768–131,071

• code segment – 262,144–327,679

• stack – 523,778–524,287

10. What data structures would you need, in addition to a page table for each
process, to implement a global clock algorithm?

11. Sketch out system calls to do each of the following (see page 89 for shared
memory system calls; look up the details or read the man pages):

• Create a key for a shared segment

• Use the key to create a new shared segment

• Attach the shared segment to the process that created it

96 CHAPTER 5. MEMORY

• Attach the shared segment to another process

• Put a data item into the shared segment in the creating process

• Extract a value from the shared data item in the shared segment in the
a process that did not create the data item

• Remove the shared segment.

12. Write code to (see the system calls for memory mapped files on p 90):

• Map a newly created file to memory

• Map it to the memory space of another process

• Put a data item into the memory mapped region in the creating process

• Extract a value from the memory mapped region in the a process that
did not create the data item

• Unmap the file.

13. Which is easier to use: a shared segment or a memory-mapped file? Why?

14. Information on where to find a page if the present bit is not set is not stored
in the page table. It may take several software steps to find this information.
Considering the following outcomes of a present bit being unset, explain in
each case why it it not critical for performance that the directory is separate
from the hardware-managed page table:

• The required page is not in RAM but exists in backing store (swap
space)

• The required page is outside the address space allowed for this process
and the memory access is an error that must be trapped.

15. Look up how the Intel page table entry illustated in Figure 5.5c is actually
used and contrast that with the simplified description of page table entries
in this chapter.

6 Parallel Programming

PROCESSES ARE THE FUNDAMENTAL UNIT of work allocation in an OS. A
process is the representation of a program when it is running. Each process
in a modern operating systems has a separate address space meaning that

launching a process requires a new page table and a new allocation of physical
memory, corresponding to the process’s minimum requirements to run. A thread
is a lighter-weight concept: a separate thread of execution that can be scheduled
separately without a new address space.

I cover memory issues in Chapter 5; the important details we need here are
that in most operating systems, a process has a separate address space represented
by a page table that translates a virtual address (in the address space as seen by the
process) into a physical address (in the address space of the actual real hardware).

In Chapter 3, I cover scheduling processes and threads. Here, I focus on what
processes and threads are, how they are launched, how they share information and
how that information sharing is managed. The focus in this chapter is on user-level
programming, not on how threads and processes are implemented in the OS.

Processes and threads are not the only way to achieve parallel execution.
Another approach is a distributed system, in which processing can be spread out
over a network of computers. This is a large complex subject, so I only introduce
the basics and relate the concept to the growing trend of cloud-based computing.

To start, I outline the major concepts then go on to expand on each of
thread and process launching, sharing and communication and synchronization,
mostly using examples from Unix-style systems. I end with a brief overview of
distributed systems and how they relate to the cloud.

6.1 Concepts
A process is the embodiment of a running program, in its simplest form. However
a process can spawn another instance of itself (or in the Unix world, fork). More

97

98 CHAPTER 6. PARALLEL PROGRAMMING

accurately a process is defined as a separately scheduled unit of execution in its
own address space. Ordinarily, that is exactly what a program is embodied as
when it runs. It has an address space that is distinct from any other instance of the
same program that could be running simultaneously, and is scheduled as an entity.
The ability to create more than one instance out of an existing process is useful
for spreading out a large workload.

Why would you want to split a workload into separately scheduled compo-
nents?

First, you may have more than one CPU available (almost always the case,
since multicore systems become commonplace) and splitting the workload means
each separate component can work in parallel. Second, a single thread of
execution could be blocked, e.g., waiting for an IO event, and splitting the
workload means other parts can continue without being stalled.

Why do we distinguish processes and threads?
In earlier designs, the kernel could only schedule processes. A process is

a relatively heavyweight unit to manage, with a page table corresponding to its
address space and data representing resources it controls like open files. Switching
between processes could involve expensive operations like flushing the TLB
(resulting in TLB misses until the TLB refilled). The overheads of switching
between processes discourage writing multi-process code except in situations
involving a relatively large workload. For this reason, threads were invented.

Early versions of threads were implemented strictly at user level, though
they used system calls for purposes like setting a timer so a thread could be
preempted. In recent systems, thread scheduling is implemented in the kernel.
While managing threads in the kernel increases overheads in the OS compared
with user-level thread management, the OS is able to use tricks like scheduling
related threads simultaneously (see gang scheduling, page 28), which it cannot do
if it is not aware of threads.

There are various different approaches to implementing threads. The approach
most widely supported across different platforms is Pthreads, based on the POSIX
standard (Portable Operating System Interface), an attempt at providing platform-
independent abstractions based on Unix-style functionality. Pthreads is one of the
earliest POSIX standards [Mueller 1993] and is widely implemented across Unix
variants including Linux and macOS, as well as Windows (though not supported
by Microsoft, who have their own threads implementation).

In some systems, Pthreads are layered on top of a lower-level thread imple-
mentation; for our purposes, we will use Pthreads as if it is a native API, since this

Concepts 99

chapter is about using threads not how they are implemented.
There is more variation across operating systems in how processes are

launched. In Unix-type systems, the standard is a system call fork, which copies
the entire address space of a process and launches a new copy with the newly
copied address space. When the new process being launched is a new program, the
fork system call is immediately followed by an exec system call, which replaces
the address space by that needed to launch a new executable file.

In Windows, more complex system calls are used to create a process. The
Unix philosophy of separating out fork and exec is designed to allow arbitrary
code to run between the two calls so neither needs to have a complex interface.
The consequence of this simplicity is that the fork system call possibly needlessly
results in an entire address space being copied only to be wiped out by exec. For
this reason, some systems implement an alternative, vfork, which does not copy
page tables, with the expectation that a variant on exec, execve, will be called to
create the new process’s address space. We will not explore all the complexities
of variants on fork and only look at the simple case of creating a duplicate of the
parent process.

Why would anyone want to call fork and exec, only to waste a copy of the
parent process’s page table? This sequence is common in a shell, the simple
command interpreter that runs in a terminal session. If you type the name of
an executable file on the command line, the shell calls fork creating a new copy
of itself, and that new copy calls exec to launch the new program. Since the shell
is a very small simple process, it does not have a very large page table, so copying
it is not a very big operation.

Aside from these differences in setup, how else do threads and processes
differ?

Because a thread is not launched in a new address space, it can share
information with its parent process and other threads in the same process through
ordinary variables. Cooperating processes cannot do so because they do not see
each other’s address space and must instead use one of the following mechanisms:

• shared segment – as outlined in Chapter 5, processes can create a shared
segment that can be made known and accessible to other processes

• memory-mapped file – also in Chapter 5, one or more processes can memory
map a file and share information through memory that way

• pipes – a pipe on the command line (using the “| symbol) can also be

100 CHAPTER 6. PARALLEL PROGRAMMING

implemented in code: “file” output can be sent to one end of a pipe, while
“file” input can be received from the other end of a pipe

• sockets – a generalisation of pipes that allows the source and destination to
be different machines on a network

You can think of a pipe as a form of buffered IO similar to file IO but with no
file in-between; sockets are more like network communication. In either case,
the sender does not have to wait for the recipient, but the recipient blocks if
there is nothing to receive. However, because of its similarity to networking,
socket communication also allows unreliable communication like a datagram on
a network [Sechrest 1986].

All of these communication mechanisms are variations of interprocess com-
munication (IPC). This is not an exhaustive list; microkernels for example
sometimes implement IPC with short messages that are passed through the kernel
to other processes.

A final consideration with tasks is synchronisation. If two or more parts
of a program are running simultaneously (either really, on more than one
core or CPU, or conceptually, through scheduling each in turn), it is possible
that inconsistencies in accessing shared data occur. Think how a variable is
implemented in machine code. It may be held for some time in a register and only
later written back to memory. If a variable is updated in one task, then inspected
or updated by another, if it has not been written back to memory after a change in
the first task, the version the second task sees is not up to date and inconsistencies
can ensue. For example, if process A updates a shared variable counter by adding
1, and process B also updates it by adding 1, the following sequence can occur,
assuming count = 0 at the start:

Process A Process B count
action reg action reg in mem
reg=count 0 reg=count 0 0
reg++ 1 reg++ 1 0
mem=reg 1 mem=reg 1 1

What has happened? Shouldn’t the final value of count be 2 if both processes
incremented it? Writing to memory has to happen sequentially – one process gets
in before the other. Since both set count to 1, whichever got in last set the value
in memory. Imagine now that Process A for some reason runs faster than Process
B and increments count 4 times between where Process B copies it to the register
and where Process B writes it back to memory. What will happen now is that

Concepts 101

Process B will have updated count to 4 the Process B, instead of updating it to 5
as you would expect, sets it back to 1. Here is such a sequence of events (in which
“reg” is the register used to hold count, and “me” is where “count” is held in
memory):

Process A Process B count
action reg action reg in mem
reg=count 0 reg=count 0 0
reg++ 1 reg++ 1 0

1 reg++ 2 0
1 reg++ 3 0
1 reg++ 4 0

mem=reg 1 mem=reg 4 1

I show the last step as simultaneous but even if this is true, only one process can
update the memory at once, so the last step is really one of:

1 mem=reg 4 4
mem=reg 1 4 1

Or:

mem=reg 1 4 1
1 mem=reg 4 4

This could arise from a loop like this, where Process A has N = 1 and Process B
has N = 4, and the compiler keeps count in a register for the duration of the loop:

count = 0;
// something here forcing count to spill to memory
for (int i = 0; i < N; i++) {

count ++; // count in register here
// do some useful work

}
// compiler spills count to memory only here

The two processes either run on a separate CPU so “reg” for each is a different
piece of hardware, or they are separately scheduled on the same CPU, in which
case the kernel has to save and restore the registers at each context switch, so the
practical effect is as if “reg” is a different physical piece of hardware for each
process. At the end, the value in memory could be either 1 or 4, depending which
process completed its memory update last, as illustrated.

102 CHAPTER 6. PARALLEL PROGRAMMING

A situation like this where the result depends on which process or thread gets
there first is called a race condition and is usually a programming error. Any
piece of code that contains an update to a shared data structure is a critical section
and updates in a critical section should be protected by one of several forms of
synchronisation, mechanisms to enforce sequential updates.

Threads and processes assume all the computation is on one machine.
Network-based computing allows parts of a workload to be on another computer.
Distributed systems go a step further and abstract away the network: is a
distributed system uses a resource on a remote machine, that is a performance
detail, rather than integral to the design of the system. As far as the user
is concerned, it is a single system. Cloud-based services contain aspects of
distributed computing as well as aspects of network-based computing.

Following sections expand on these concepts.

The take home message? A task (thread or process) can get launched in
various ways. A Unix-style processes launch combines fork and exec.
Communicating threads can use their shared address space. Cooperating
processes need to be able to communicate outside their own address
space. Synchronisation is necessary to protect critical sections to ensure
consistency in updating shared data structures. Distributed systems
abstract away the network so the physical location of a service becomes
an implementation detail rather than being integral to the design.

6.2 Launching

I start with launching a process the traditional Unix way, since that is relatively
simple. You only need understand the fork system call. Complications arise with
sharing (§6.3) and synchronization (§6.4).

fork to launch child processes

The fork system call looks very simple. It takes no parameters, and can return
one of three kinds of value:

• success, still in parent process – returns a positive integer, the process id of
the new child process

• fail, still in parent process – returns -1

Launching 103

• success, in child process – returns 0

Since the child and parent process are (almost) exact copies of each other, you
have to use the value returned by fork to work out if you are in the parent or
child process (after checking it is not negative, indicating failure). It is easy to
remember that the child process sees a value of zero as its returned value, as a
process ID will in general be a positive integer and it makes sense that the parent
knows the identity of any process it creates so it can control it if necessary, whereas
a child process should in some cases not be able to do that. For example, if a child
process is created by a command shell, it would be strange if the new process
could terminate the process that created it.

What could make fork fail? There are three possible causes. Creating another
process could exceed a system-wide limit on active processes, it could exceed the
limit for the current user or the system could be out of swap space (VM backing
store). Older Unix versions only had a system-wide limit on active processes but
that meant a single user could make the system unusable by writing a problem
that carried on calling fork in a loop. Any attempt at shutting the program down
would fail because launching a new process to kill the program doing all the fork
calls would fail because running the kill command would require starting a new
process. Forcing a logout of the user is possible if the user exceeds their limit
on active processes but does not exceed the system-wide limit: another user with
administration privileges could log in and put a stop to the errant log in session.

Here is a simple example of forking processes:

// test effect of fork
// picks up N from command line
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define NUM_PROCS 5

void perform_work (int passed_in_value) {
printf("In process %d\n", passed_in_value);

}

void print_usage (char *name) {
fprintf(stderr,

"Usage: %s N\n"
"where N is number of processes to launch\n"

104 CHAPTER 6. PARALLEL PROGRAMMING

"default: %d\n",
name, NUM_PROCS);
exit (1);
}

int main (int argc, char *argv[]) {
int result_code;
int N = NUM_PROCS;
pid_t wpid;
int status = 0;

if (argc == 2) {
char *end;

N = (int)strtol (argv[1], &end, 10);
if (*argv[1] == '\0' || *end != '\0') {

print_usage (argv[0]);
}

} else if (argc != 1)
print_usage (argv[0]);

// create all processes one by one
for (int i = 0; i < N; i++) {

printf("In main: creating process %d\n", i);
pid_t pid = fork ();
assert(pid >= 0);
// child process? do work and get out of loop
if (!pid) {

perform_work (i);
return i; // use exit(i) if not in main

} else {
fprintf(stderr,

"successfully launched process %d, pid=%u\n",
i, pid);

}
}

// wait for each child to complete
while ((wpid = wait(&status)) > 0) {

if (WIFEXITED(status)) {
status = WEXITSTATUS(status);
printf("Exit status of %d was %d (%s)\n",

(int)wpid, status,
(status % 2) ? "odd" : "even");

}

Launching 105

}
printf("All child processes completed successfully\n");
exit(EXIT_SUCCESS);

}

Note a couple of tricks in the code. First, the “usage” message is split over several
lines for readability. In C, ending a string constant and immediately after starting
another treats the two constants as if there was no break. So:

"Usage: %s N\n"
"where N is no. processes to launch\n"
"default: %d\n"

has the same effect as writing:

"Usage: %s N\nwhere N is no. processes to launch\ndefault: %d\n"

but the former is easier to read. The line breaks outside the double-quotes have no
effect – they are just to aid the reader of the code. Without the '\n' characters in
the string, it would display without line breaks.

Another detail: assert. If a condition passed to assert is true, it does
nothing. If false, it kills the program with a message showing the line and source
file of the assertion. You can turn off assertions with compile option -DNDEBUG.

Finally, waiting for each process to terminate is a little complicated. Calling
wait suspends the process if there are any child processes and returns if any of
them exits. On exit, wait returns the child process ID, and sets the value pointed
at by its parameter, packing two 16-bit numbers into an integer, representing the
returned status (as returned by a value passed in to exit or a value returned, if
the child process completed by a return statement in the main program) and the
cause, if not a clean exit. Preprocessor macro WIFEXITED extracts true if it was
a clean exit and the macro WEXITSTATUS extracts the returned exit or return
value (which only makes sense to do if it was a clean exit). The loop checking for
child processes terminates when wait returns a process ID of 0, indicating there
are no waiting child processes.

Here is an example of running the program on the command line:

$./forktest 3
In main: creating process 0
successfully launched process 0, pid=50141
In main: creating process 1
successfully launched process 1, pid=50142

106 CHAPTER 6. PARALLEL PROGRAMMING

In main: creating process 2
In process 0
In process 1
successfully launched process 2, pid=50143
Exit status of 50141 was 0 (even)
Exit status of 50142 was 1 (odd)
In process 2
Exit status of 50143 was 2 (even)
All child processes completed successfully

launching a thread

Launching a thread, like fork, splits a program into two separately scheduled
units of code. For consistency with the way we think of cooperating processes, it
is useful to think of the main program as a thread though it is actually launched
as a process. The difference between the main program and any other thread
is that if the main program quits, it ends the process, so it would also end any
threads it launched, even if it returned or did an exit system call without explicitly
terminating any threads it had launched.

Launching a thread is different from fork: it is more like calling a function,
though each new thread gets a new stack so it can call and return from functions
(or methods in an object-oriented language) independently. I focus here on the
Pthreads approach. To launch a thread, you call pthread_create and pass in

• a pointer to store the thread id – of type pthread_t* (an internally-defined
type that identifies a thread)

• thread attributes – NULL if you want the default attributes

• pointer to start routine – a function called to launch the thread; if it returns,
it has the same effect as calling pthread_exit

• argument to pass in to the start routine – of type void* to allow a pointer
to any type of value

If a call to pthread_create succeeds, it return 0, otherwise the return value is
an error code. To ensure that a thread has completed, the launching thread should
usually call pthread_join. Calling pthread_join results in waiting for the
given thread to terminate. A call of pthread_join requires:

• pthread_t* value – to identify the thread being waited for

Launching 107

• void** a pointer to return a value from the thread – (NULL if no value is
required)

The type for returning a value is void** because it is a pointer to a location that
could contain a pointer, which allows an arbitrary type of value to be sent back.

Al these void pointers and pointers to pointers require type casts to extract the
actual value pointed to, and hence require very careful programming to avoid mis-
takes – a hazard arising from the fact that C does not have checkable mechanisms
for implementing generality as are found in object-oriented languages (classes
with inheritance for example).

Here is a small example illustrating how to launch threads, pass in values and
wait for threads to complete. If each thread takes about the same amount of time,
they will usually run in approximately the same order, so outputs in this case will
look as if the threads ran sequentiall.

// http://en.wikipedia.org/wiki/POSIX_Threads
// adapted to pick up N from command line
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define NUM_THREADS 5

void *perform_work (void *argument) {
int passed_in_value;

passed_in_value = *((int *) argument);
printf("In thread %d!\n", passed_in_value);

/* optionally: insert more useful stuff here */

return NULL;
}

void print_usage (char *name) {
fprintf(stderr,

"Usage: %s N\n"
"where N is number of threads to launch\n"
"default: %d\n",

name, NUM_THREADS);
exit (1);
}

108 CHAPTER 6. PARALLEL PROGRAMMING

int main (int argc, char *argv[]) {
pthread_t *threads;
int *thread_args;
int result_code, index;
int N = NUM_THREADS;

if (argc == 2) {
char *end;

N = (int)strtol (argv[1], &end, 10);
if (*argv[1] == '\0' || *end != '\0') {

print_usage (argv[0]);
}

} else if (argc != 1)
print_usage (argv[0]);

threads = malloc(sizeof (pthread_t)*N);
thread_args = malloc(sizeof (int)*N);

// create all threads one by one
for (index = 0; index < N; ++index) {

thread_args[index] = index;
printf("In main: creating thread %d\n", index);
result_code = pthread_create(&threads[index], NULL,

perform_work, (void *) &thread_args[index]);
assert(0 == result_code);

}

// wait for each thread to complete
for (index = 0; index < N; ++index) {

// block until thread 'index' completes
result_code = pthread_join(threads[index], NULL);
printf("In main: thread %d has completed\n", index);
assert(0 == result_code);

}

printf("In main: All threads completed successfully\n");
exit(EXIT_SUCCESS);

}

Here is an example of running the program on the command line:

$./pthreads 3
In main: creating thread 0
In main: creating thread 1
In main: creating thread 2

Sharing and Communication 109

In thread 0!
In thread 1!
In thread 2!
In main: thread 0 has completed
In main: thread 1 has completed
In main: thread 2 has completed
In main: All threads completed successfully

6.3 Sharing and Communication
Chapter 5 outlines two approaches to sharing in a processes: shared memory
and memory-mapped files (see page 89). I revisit these concepts briefly here to
illustrate how they can be used between cooperating processes. I also briefly
examine other interprocess communication mechanisms. IPC in general can be a
complicated subject; I focus here on the use of pipes, since that is a mechanism
you should be familiar with from using the UNIX command line.

Threads do not need these concepts since threads in the same process share
an address space and therefore can use global variables or pointers to shared data
with no complication – except preventing race conditions, as explored in §6.4.

shared memory

Creating a shared segment takes some setting up, and it is also necessary to
understand how it is named so it can be found by any child process that needs it.
The simplest approach is to do all the set up before forking child processes: that
way they will have all the necessary information in their new copy of the parent’s
address space. Here is a very simple example that creates a shared segment and
if a word is supplied on the command line, writes it to the segment then detaches
from it. If the word on the command line is "delete", the program removes the
shared segment. If the program runs without a word on the command line, it prints
whatever is in the shared segment.

// adapted from http://stackoverflow.com/questions/5656530/
// how-to-use-shared-memory-with-linux-in-c
// adaptations:
// use the executable name from command line to make the key
// if "delete" is all that's in shared memory, remove the segment
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

110 CHAPTER 6. PARALLEL PROGRAMMING

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHM_SIZE 1024 /* make it a 1K shared memory segment */
#define USAGE "usage: %s [data]\n" \

" data given: write to shared segment\n" \
" data not given: write out shared segment\n" \
" data=delete removes shared segment\n"

int main (int argc, char *argv[]) {
key_t key;
int shmid;
char *data;
int mode;

if (argc > 2) {
fprintf(stderr, USAGE, argv[0]);
exit(1);

}
// make the key:
// file must exist: safe to use executable from command line
if ((key = ftok(argv[0], 'R')) == -1) {

perror("ftok");
exit(1);

}
// create the segment:
if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {

perror("shmget");
exit(1);

}
// attach to the segment to get a pointer to it:
data = shmat(shmid, (void *)0, 0);
// returns -1 for error: assumes this is never a valid pointer
// so we can cast away the pointer and treat bit pattern as int
if (data == (char *)(-1)) {

perror("shmat");
exit(1);

}

// read or modify the segment, based on the command line:
if (argc == 2) {

printf("writing to segment: \"%s\"\n", argv[1]);

Sharing and Communication 111

strncpy(data, argv[1], SHM_SIZE);
} else

printf("segment contains: \"%s\"\n", data);

// if the entire contents is "delete", remove the segment
if (strcmp (data, "delete") == 0) {

if (shmctl (shmid, IPC_RMID, NULL) == -1)
perror("shmctl");
exit(1);

} else // detach from the segment:
if (shmdt(data) == -1) {

perror("shmdt");
exit(1);

}
return 0;

}

A few things to note about the example. First, to create a multiline string
represented by a preprocessor symbol (USAGE), though C permits splitting a
string into segments surrounded by double-quotes that can be separated by any
whitespace including a line break, a preprocessor symbol has to be defined all on
one line. Putting a "\" character just before the line break makes the preprocessor
treat the line break as part of the text the symbol represents, rather than ending the
definition at the line break.

In all the system calls, a return value of -1 signals an error. If the
value returned is supposed to be a pointer, the presumption is that the integer
representation of -1 will never be a valid pointer, and the pointer can be cast to an
int type to check if it matches the bit pattern for -1 (or the value -1 can be cast
to a pointer type to compare with the returned value1.

Next, look at ftok. This uses a file name that has to exist to create a unique
key that can be used to identify a shared segment. In the example

ftok(argv[0], 'R')

the first parameter is the file name. It can be any file that exists on the system,
but it is a safe bet that the executable name as typed on the command line exists,
which is why I use argv[0]. If you really are being cautious about not recycling

1In a 2’s complement world this is not such a bad assumption. The machine representation of -1
in 2’s complement is a word with all 1s. Even in a machine that allowed the full range of machine
addresses, none of these calls can reasonably be expected to return a pointer to the very last byte
in the address space.

112 CHAPTER 6. PARALLEL PROGRAMMING

the same file name in more than one ftok call, using argv[0] is not completely
safe as you could run the same executable name from a different directory. The
'R' is an extra identifier (it can be any int value) that can be used to alter the key
if the same file name is used again.

Having obtained a key, we can use it to create (or do nothing except check our
permissions to access it, if it already exists) a shared segment using shmget. In the
call, we use the key, specify how many bytes we want and create flags combining
values using a bitwise or. The first part, 0644, specifies permissions in octal (a
number starting with a zero is read as octal, or base 8, in C). Why octal? Three
bits are used to specify permissions: read, write, execute. A 6 has the read and
write bits set (110 in base 2), whereas a 4 only has read permission set (100 in
base 2). So this permissions string allows the current user (the first three bits) read
and write permission, and the rest of the user’s group (next three bits) and others
(last three bits) only read permission. The result of the system call is an id that
can be used to attach to the shared segment, the final step before we can use it.

The shmat call puts the shared segment into the current address space and
returns a pointer to it so we can access it. Calling shmat is much like calling
malloc: you get a pointer to a chunk of data. There are a few other details to how
you can use shmat; this should be enough to give you a sense how things work.

By this stage we have a shared segment, but we are still in the same process.
If you called fork at this point, you would have two processes that each could
talk to each other through the same shared segment. The sample program keeps
things simple. It either puts something in the shared segment or reports what was
there before, based on the command line. If the command line contained the word
"delete", the program calls shmctl, a complicated system call that can do many
different things but in this example deletes the shared segment. If you do not
choose to remove the shared segment, the program detaches from it. Once the
program exits, the shared segment is still there and can be found on the next run
if you calculate the key correctly and use the same ID.

memory-mapped file

Here is a simple example of using a memory-mapped file, illustrating the
essentials of the mmap system call. First, the parameters passed into mmap are:

• void *addr – start address of the new memory map; complicated to use
and easiest left at 0 (NULL)

Sharing and Communication 113

• size_t len – how big the region should be (rounded up to a whole number
of pages; any extra length will be zero-filled, if mapped from a file)

• int prot – specified by the bitwise or of any of:

– PROT_NONE – no access permitted

– PROT_READ – read access permitted

– PROT_WRITE – write access permitted

– PROT_EXEC – execution permitted

• int flags – various including MAP_ANONYMOUS meaning no file associated
with the mapping; the offset is ignored in that case

• int fd – file descriptor of an open file or -1 if not based on a file

• off_t offset – useful if the memory map is based on actual file: the offset
from the start of the file (should be a whole multiple of page size)

It returns a value of type void *, the start address of the newly mapped region.

Heads up: mmap, because it interacts with both the VM system and file
buffering, can have significant variations across systems. Check your
system documentation starting from the man page for details that may
differ from this description.

Now the example:

// simple demo of memory mapping
// stackoverflow.com/questions/
// 13274786/how-to-share-memory-between-process-fork
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

static int *glob_var;

int main(void)
{

glob_var = mmap(NULL, sizeof *glob_var, PROT_READ | PROT_WRITE,

114 CHAPTER 6. PARALLEL PROGRAMMING

MAP_SHARED | MAP_ANON, -1, 0);

*glob_var = 1;

if (fork() == 0) {
*glob_var = 5;
exit(EXIT_SUCCESS);

} else {
wait(NULL);
printf("%d\n", *glob_var);
munmap(glob_var, sizeof *glob_var);

}
return 0;

}

A few things to take note of: the example uses an anonymous map, i.e., there is
no file specified. So after munmap, there is no version of the data saved in a file.
Note that flags are specified as “MAP_SHARED|MAP_ANON”2. An alternative to a
shared map (changes in any process are reflected in any other sharing the map) is
a private map, which uses copy on write.

There are many variations on how to set up a memory map; this example is
sufficient to do the equivalent of a shared segment. The setup is a little simpler,
and mmap has the advantage of allowing significantly more variations, such as
attaching the map to a file so it still exists when the process terminates. If you
use a significantly more complex call to mmap, you run into potential for system-
dependencies. That can be seen as a problem, or an advantage, depending how
you look at it. More complex users of mmap carry the risk of not being portable,
but there is the potential to use large amounts of memory efficiently in a way
sympathetic to the overall VM and file buffering system.

The take home message? In its most basic form, memory mapping
provides exactly the same service as a shared segment with simpler set
up. Memory mapping can do a lot more, at the expense of variations
across systems. A shared segment works consistently on all Unix-derived
systems. However if you keep use of mmap simple and avoid non portable
details, many prefer it as the more modern approach.

2The proper spelling of the second flag is MAP_ANONYMOUS but macOS only supports the shorter
spelling and Linux accepts both.

Sharing and Communication 115

pipes

Communicating with pipes is very like reading and writing files. You open a pipe
using a 2-element int array to represent file descriptors for respectively the input
and output ends of the pipe. In a simple example, you do this before calling fork,
which means the two sets of file descriptors are exact copies of each other. After
calling fork, you close the file descriptor that does not apply (either the read or
write end of the pipe, depending whether the parent or child process is doing the
reading or writing). Then the writing process can write whatever it likes using any
file output operation to the output “file”. The other process reads until it detects
end of file. The following example is straight from the Linux man page for pipe:

#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int
main(int argc, char *argv[])
{

int pipefd[2];
pid_t cpid;
char buf;
if (argc != 2) {
fprintf(stderr, "Usage: %s <string>\n", argv[0]);
exit(EXIT_FAILURE);
}
if (pipe(pipefd) == -1) {

perror("pipe");
exit(EXIT_FAILURE);

}
cpid = fork();
if (cpid == -1) {

perror("fork");
exit(EXIT_FAILURE);

}
if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */
while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);
write(STDOUT_FILENO, "\n", 1);
close(pipefd[0]);
_exit(EXIT_SUCCESS);

116 CHAPTER 6. PARALLEL PROGRAMMING

} else { /* Parent writes argv[1] to pipe */
close(pipefd[0]); /* Close unused read end */
write(pipefd[1], argv[1], strlen(argv[1]));
close(pipefd[1]); /* Reader will see EOF */
wait(NULL); /* Wait for child */
exit(EXIT_SUCCESS);

}
}

A detail to note in this example: using _exit rather than the usual exit system
call is a little safer in a child process: this new variant on exit omits a few IO-
related details like flushing buffers, which may interfere with the parent process.

Use of pipes is relatively simple in the case where you are launching the child
process after creating the pipe. It is also possible to create a pipe using a file-like
construct called a FIFO (for first-in-first-out), also called a named pipe. A FIFO is
created using the mkfifo system call, and is given a name within the file system.
It looks like a regular file, but has to be opened for both reading and writing before
any IO operations take effect. If a process opens a FIFO for reading or writing
and attempts either operation, the process blocks until another process opens the
other end of the FIFO for the opposite operation.

The take home message? Pipes and sockets do not share data structures,
while shared memory and memory mapped files do. Pipes and sockets
avoid race conditions by avoiding use of shared data; the cost is that
changes have to be passed to a cooperating task through a system call, a
much higher overhead than reading or writing a memory location. Saving
on the need to lock and unlock to some extent reduces this disadvantage.

6.4 Synchronization

All synchronisation starts from the problem of a race condition. Any solution must
solve the problem of inconsistent updates in its own implementation, otherwise we
are back where we started. I outline the simplest approach to start, then show how
it can become part of more sophisticated approaches. The Pthreads library calls
can be set up to work across cooperating processes as well as threads. If these
operations are to work across separate processes, the data structures have to be in
shared memory, and the constructs may need to be initialised with a specific status
bit to indicate they are in shared memory between separate processes.

Synchronization 117

The simplest way to ensure consistency is to allow only one process or thread
at a time to enter a critical section. The simplest mechanism for ensuring this
mutual exclusivity is a lock and the simplest kind of lock is a spinlock. Any lock
requires an identity (otherwise you would be restricted to a single lock for the
entire set of cooperating threads or processes) and a way of recording whether it
is set or unset – the state of the lock. The simplest way of encoding both the lock’s
identity and its state is to use a single variable that can be 1 for set or 0 for unset.
The lock’s identity then is the specific variable and the state is its value.

Next simplest is a mutex, which also only allows one task into a critical section,
but uses a queue to order requests to prevent starvation (ensure fairness) and
puts waiting tasks to sleep so they do not waste CPU time or cause unnecessary
contention for memory when a lock releases.

A semaphore generalizes a mutex to allow up to some number N tasks past a
certain point. A semaphore has a counter and a queue. If the count is above zero,
a task can proceed and lower the count. If not, it is queued. A semaphore with
N = 1 is much like a mutex except a mutex can only be unlocked but the task that
locked it, whereas any task can increase the count on a semaphore. Semaphores
can be tricky to program, and are not widely used in practical code.

Finally, a barrier forces a fixed number (call it N again) of tasks to wait when
they reach the barrier until the last of that number of tasks reaches the barrier,
then they are all woken up. A barrier also is usually implemented with a queue. A
barrier is a useful construct for workloads where each task can work independently
then must pause until all other tasks reach a particular stage of computation,
usually to swap data and go on to the next parallel stage of computation.

In what follows, I use task and thread interchangeably, since most Pthreads
primitives can be configured to work on processes as well as on threads.

spinlock detail

A lock has three basic operations (with more complications available in some
implementations, like testing the lock without stalling if it is set):

• initialise – usually to unset (0)

• lock – set the lock (to 1): wait if already set; also called acquiring the lock

• unlock – unset the lock (to 0); also called freeing the lock

118 CHAPTER 6. PARALLEL PROGRAMMING

Setting (acquiring) the lock requires a way to test if it is already set and only
actually complete the setting operation if this task is the one that actually acquired
the lock. The basic mechanism of a spinlock is:

while (lock == 1) ; // spin
lock = 1;

and unlocking is dead simple:

lock = 0;

The empty loop keeps checking the lock variable until it becomes 0 then grabs
it by setting it to 1. This has an appealing simplicity: we can represent the lock
as an int variable, and the code is easy to understand. However, there are a
few problems with this as it stands. First, if a compiler puts the value of lock
in a register, the loop will never terminate because the code generated will keep
checking the copy in a register, not the value in memory that another task could
update. We can fix that in C by making the variable volatile:

volatile int lock = 0;

That however does not solve the race condition between exiting the loop and
setting the lock variable. For that we need an atomic memory operation,
something that lets us exit the loop only if we simultaneously manage to set the
lock variable. There are various primitives that can be used to implement this:

• test and set – write to memory and return the previous value in one step

• load-link store conditional – (ll-sc) a pair of instructions: load-link (ll)
reads a memory location and store-conditional sc only succeeds if the
memory location has not been written since the previous load-link.

• compare and swap – swap a register value with memory contents only if the
two values are the same and report success if the swap happened

Of these, test and set is the least general because it requires that all contending
lock setters use the same value for set and unset; using ll-sc, it is possible to
use a different value identifying each holder of the lock if necessary. We will not
consider complications arising out of these variations and just assume we can do
a machine code equivalent of a spinlock loop that works properly. In the MIPS
instruction set, if an ll instruction followed by a sc succeeds, the register used

Synchronization 119

to store a value to memory is overwritten with , otherwise 0. A failure in MIPS
can occur if there is an interrupt between the pair of instructions; success if only
guaranteed if they follow one after the other. From here on, I use two primitives:

• lock(var) – use var to represent the lock value and spin until it can be set

• unlock(var) – unset the lock held via variable var

Initialising the lock is trivial: var is set to 0. So now we can protect a critical
section, provided all tasks competing for it can access the same lock variable:

lock(var);
// update shared data

unlock(var);

That looks pretty simple, but a spinlock has a number of disadvantages, so other
synchronisation mechanisms are more common in real code:

• a spinlock does not guarantee fairness: every acquisition of the lock is a
race; if there is heavy contention for a lock a task could be starved

• a spinlock keeps the CPU busy doing no useful work

• a spinlock can be a huge bottleneck on the memory system

In a multiprocessor system, caches have to be kept consistent, so no cache may
modify a value that is shared in another cache. If two or more CPUs share access
to the same memory location (as with a shared segment, threads in one address
space or a shared mapped region), they can only have a duplicate if no CPU is
trying to modify it. Any memory write has to have exclusive access: the cache
block containing the write location has to be invalidated from all other caches.
Any further attempt at accessing that data will incur a cache miss in the non-
writing CPUs. The CPU that did the write has to write back the modified data.
In multicore systems, it is common for all cores to share a cache and any write
backs may have to go through that (usually lowest-level) shared cache. If there is
no shared cache, write backs have to go through RAM, which is even slower.

Figure 6.1 illustrates how locking an unlocking a spinlock generates memory
traffic. In 6.1a, both CPUs (labelled as ALUs here because the L1 and L2 caches
are part of the CPU chip) see the value in its unlocked state and neither is trying
to modify it. In 6.1b, ALU0 has just locked the spinlock and that forces an
invalidation: it is flushed out of any other cache so no other CPU sees the value in

120 CHAPTER 6. PARALLEL PROGRAMMING

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU1

L1 cache

L2 cache

0

0

0
0

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU2

L1 cache

L2 cache

1

0

0

0

(a) Unlocked

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU1

L1 cache

L2 cache

0

0

0
0

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU2

L1 cache

L2 cache

1

0

0

0

(b) Locked in ALU0

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU2

L1 cache

L2 cache

0

0

0 0
0

1

2

3
4

shared L3 cache

core ALU0

L1 cache

L2 cache

core ALU2

L1 cache

L2 cache

1

1

0 1
1

1

2

4

3

(c) After unlock

Figure 6.1: Spinlock and caches. Whenever a lock value is updated, it must
be invalidated from other caches. When a CPU that no longer has a valid copy
reads its value, it has to be updated through the cache hierarchy.

an inconsistent state. In 6.1c, ALU0 has changed the value back to 0 and ALU1 has
simultaneously tried to read it. ALU1 has a cache miss and the cache mechanism
forces ALU0 to write it back to the shared L3 cache via its own L2 cache so ALU1

can handle the cache miss correctly. Finally, ALU1 has the updated value in its
own L1 cache via its L2 cache. In a situation of multiple tasks on multiple CPUs
all contending for the same lock, a flurry of invalidations and misses will ensue.

Pthreads includes a spinlock (invoked by pthread_spin_lock, using a data
structure of type pthread_spinlock_t* to hold the lock state); we will not
explore its use in depth. A spinlock, while inefficient, can be used as a building
block for better primitives, because it is reasonable to use for a lock that is held
for a very short time, minimising the chances of contention for the lock. Other
primitives that are in general more efficient have more overhead to set up.

Synchronization 121

The take home message? Spinlocks are quick and efficient if held for
a short time when overheads of a more sophisticated primitive are not
worthwhile, and are also used as building blocks for other more complex
primitives. The do not ensure fairness and the memory system can become
a major bottleneck if multiple tasks contend for the same lock.

mutexes

A mutex (for mutual exclusion) is a more sophisticated form of lock. Like a
spinlock, it only allows one contending task in at a time. Unlike a spinlock, it
puts waiting tasks on a queue, with two benefits:

• fairness – if waiting tasks are processed in the order they are enqueued, no
task will wait indefinitely

• efficiency – unlike a spinlock, a waiting task is put to sleep, meaning its
CPU can be used for other things, and the unlock operation wakes up the
next task on the queue, avoiding a flurry of contention for the lock variable

Drawbacks include:

• overheads – setting up the queue data structure and enqueueing are more
work than testing a spinlock a few times

• overheads of sleep and wake – a task put to sleep may lose its working set
in the caches or worse still in main memory so waking from sleep can be
expensive even where all tasks on the same CPU are threads in the same
process, avoiding the need for a heavyweight context switch

Overall, unless you are sure a lock will be held a very short time, a mutex is better
than a spinlock. Since updating the data structures needed for a mutex require a
lock to be held for a very short time, it is reasonable to use a spinlock to protect
updating the internal data structures of a mutex.

Pthreads implements mutexes. It has a data type to store state of a particular
lock, pthread_mutex_init, usually used through a pointer. The major calls are:

• pthread_mutex_init – pass in a pthread_mutex_init* pointer as well
as attributes which can be NULL

• pthread_mutex_lock – pass in a pthread_mutex_init* pointer: sus-
pend the thread if the lock is already held, otherwise acquire the lock and
continue

122 CHAPTER 6. PARALLEL PROGRAMMING

• pthread_mutex_trylock – like pthread_mutex_lock except the re-
turned value indicates whether the lock was successfully acquired or not,
without suspending the thread

• pthread_mutex_unlock – unlock the mutex, allowing the next queued
suspended thread (if any) to continue

The take home message? A mutex is the best approach to implementing a
simple critical section in the general case, though a spinlock may be better
if the lock is held a very short time. Spinlocks are used to protect the basic
operations used to implement a mutex, which is acceptable since each
basic operation is very quick, usually less than 10 machine instructions.

barriers

The typical use of a barrier is to intersperse periods of parallel computation with
pauses to exchange data. Often, barriers are paired, so the data exchange phase can
be completed before the next parallel computation phase. Here is a typical outline
of a parallel algorithm that uses barriers (assume each task looks like this):

while (MoreWork) {
// parallel computation not accessing shared data
Barrier(P); // wait for all N threads
// update shared data
Barrier(S); // wait for all N threads

}

The shared data-updating phase may use mutexes to ensure consistency. Code
written in this style will usually avoid doing synchronization in the parallel phase.

Heads up: Barriers are an optional part of the POSIX standard so be
prepared for the possibility that you may have to implement your own, or
find an implementation that is not part of your existing POSIX library.

Another thing that may be done between two barriers is rebalancing workload.
If some tasks finish a lot faster than others, a bigger share of work could be
allocated to them. Load balancing in general is tricky and could be the subject
of a whole book on its own.

Pthreads also provides a barrier construct. The major calls are:

Synchronization 123

• pthread_barrier_init – pass in a pthread_barrier_t* pointer as well
as attributes which can be NULL, and the number of tasks (N) the barrier
needs to see before it allows all to restart

• pthread_barrier_wait – pass in a pthread_barrier_t* pointer: sus-
pend the task unless it is the Nth to reach the barrier, otherwise restart all
tasks waiting on the barrier

The take home message? A barrier is a relatively easy synchronisation
primitive to use. As long as you get the basic concept and can configure
your parallel code to split into purely parallel sequences split by pauses
to exchange data, you can simplify algorithm design over most other
approaches.

language-based versus library-based synchronization

Some programming languages (e.g., Java) have synchronization primitives built
into the language. In C and many other languages, synchronization is provided by
library calls. There are advantages and disadvantages of both approaches.

For features built into the language, like synchronized methods in Java,
advantages are:

• automatic locking and unlocking – the programmer, once a method or block
of code is declared as synchronized, need not remember to lock and
unlock

• improvements affect all code – any improvements, particularly if they are in
the runtime environment or dynamically linked libraries and do not need a
rebuild, improve all code without programmer effort

• standard approach – programmers can see where synchronization is used
by looking for standard language constructs

• efficiency – since the approach is built into the language, significant effort
can be invested in the compiler to make it work well with other aspects of
the code like memory allocation that can affect performance

Downsides of features built into the language include:

124 CHAPTER 6. PARALLEL PROGRAMMING

• inflexibility – if a fundamentally new approach to synchronization is
developed, it cannot be used unless the language-based approach fits it or is
abandoned

• over-use – a method or code block declared synchronized (or equivalent
in languages other than Java) still requires the overheads of synchronisation
even when used in a context where this is not needed

For a library-based approach, some advantages are:

• flexibility – fundamentally new approaches can easily be adopted

• focused use – synchronisation need not be used where it is not required

• language portability – widely-used standards like Pthreads can apply across
languages (e.g., C and C++), making it relatively easy to change the
implementation language

Drawbacks of a library-based approach include:

• programmer error – for example, forgetting to unlock a lock is a more likely
error with a library-based approach than a feature built into a language

• possible interactions with other language features – e.g., the way memory
is used can make a big difference to performance and if the compiler
is unaware that data is used to implement a synchronization primitive,
inefficiencies can result

• rebuild to see improvements – although improvements in a dynamic library
can be seen without a rebuild, other changes may require a recompile to see
an improvement

In C++, a neat approach to the problem of forgetting to unlock is to use class
constructors and destructors. If you have a Lock class that represents the fact that
you want a lock, the trick is to put the lock operation into the constructor for Lock
and the unlock operation into the destructor. You need an object representing
whether the lock is held or not. For purpose of example, assume that class is
called Lock_data. Then you can code a critical section as follows, if variable
lockstate of class Lockdata represents the lock you want to hold here:

Distributed Systems and the Cloud 125

{ // open a block for local variables
Lock lockvar(lockstate);
// do stuff that needs to be protected

} // destructor unlocks here

This approach relies on the fact that in C++, when an object is defined, its
constructor is invoked before any following code and, when it is about to go
out of scope, its destructor is invoked. Placing “{ }” around the critical section
containing the Lock variable ensures that the variable’s destructor is invoked at
the closing “}”. Any other piece of code that does the same thing using the same
Lock_data variable will be controlled by the same lock3.

The take home message? Language-based primitives are less common
than library-based approaches, in part because there is no consensus on
the best approach to parallel coding. Even if you have language-based
primitives, it is useful to understand what is happening underneath them.

6.5 Distributed Systems and the Cloud

The cloud has in recent years become the big new thing. But is it so new? I start
by explaining the general concept of distributed computing then relate it to what
is now called the cloud.

Networked services are characterised by being named by their location. The
name www.google.com identifies a particular web site at a particular location.
By magic of the domain name system, Google (and other big service providers)
convert this single address to multiple servers to spread the load. But you are
nonetheless presented with the service as if you have to know where it is located.

Distributed computing abstracts away location. A service is named so it can
be identified but whether it is on your computer, implemented on a server in
your building, a local cluster of computers or spread out over multiple remote
computers is not explicit in the name. So distributed systems are distinguished
from networked services by location-independent naming and the fact that
whether a service is local or remote is an implementation detail, not implicit or
explicit in the name of the service.

3In general, you can create constructs in C++ that use a constructor-destructor pair like this. This
coding idiom is called resource acquisition is initialization (RAII). RAII works correctly if you
break or return from the code block.

www.google.com

126 CHAPTER 6. PARALLEL PROGRAMMING

In networked computing, there are abstractions that simplify communication
over a network. Remote procedure call (RPC) for example wraps an API targeting
remote services in something that looks like a function or method call. Java
includes support for RPC in the form of Java Remote Method Invocation (RMI)
[Waldo 1998]. There are newer approaches like REST (REpresentational State
Transfer) [Fielding 2000, Chapter 5], which is suited to web services, and ways
of invoking remote functionality will continue to evolve.

Distributed computing attempts to disguise the remote nature of services and
resources as far as possible. Some mechanisms to support distributed computing:

• location-independent naming – names of services are not related to where
they are physically located so whether they are local, on a local network or
remote is an implementation detail that can change

• disconnected operation – when the network breaks a distributed service
may have a fallback option to keep working without access to networked
resources

• replication – to promote scalabillity, devices or services may be replicated,
ideally transparently to the user, who accesses them via a single name

Are cloud-based services network services or distributed computing? Most have
attributes of both.

Consider Google Drive, for example. You can access it through a web
interface, which makes it look like a networked service. You can mount a Google
Drive on a regular computer system and it functions just like part of the file
system, except it is accessible in more than one place. It interacts with Google
apps in a way that does not always make clear whether it is transporting data
over the network or not. Underlying all Google services is a distributed file
system [Ghemawat et al. 2003]. Yet many of those services look to the user like
networked services – accessed through a web page.

In the mobile app space, these things look more like true distributed systems
in that a specialist app often does away (at least at the user interface level with the
appearance of domain names, URLs, and the like.

Peer-to-peer (P2P) apps in some ways have attributes of distributed systems in
that they have little or no central control, though they often retain network-based
interfaces and users are very much aware of what is happening over the network
and what is not. P2P traffic introduces new challenges for network operators in

Parallel Programming Hazards 127

that much of it is local and does not reach the higher-volume parts of the network
where the big operators do traffic monitoring and modelling [Otto et al. 2011].

The interaction of cloud and P2P promises interesting new developments in
systems design. BitTorent Sync for example has an API to build services on top
of P2P file sharing, which could solve one of the harder problems of large-scale
distributed systems: scalability [Farina et al. 2014; Machanick and Hunt 2014].

The take home message? In a true distributed system a logical name
is location-independent and whether an object, service, etc. is local or
remote is a implementation detail. True distributed systems have not
found their way out of the research lab; P2P and cloud systems have
some of the benefits and properties of a distributed system, even if they
are compromises on the pure idea.

6.6 Parallel Programming Hazards

In general parallel programming is harder than sequential programming. In a
edition to the usual kinds of bugs, you have to worry about race conditions, correct
use of synchronisation primitives and the challenge of repeatable testing when
the exact ordering of events between tasks can vary, since the scheduler is not
guaranteed to schedule each task in exactly the same order with exactly the same
timing between interrupts on different runs.

One of the issues that can arise is a deadlock. A deadlock occurs when two
or more tasks block each other on synchronisation. The following is one of the
simpler ways this could happen:

Task 0 Task 1
lock A lock B
lock B lock A
wait for B Wait for A

As shown, the locks are simultaneous but this is not necessary: as long as both
tasks hit the second lock after the other task has locked it, neither can continue.

Avoiding deadlocks is a problem in parallel code design. Deadlocks seldom
arise in a situation as simple as this where it is obvious that there is a problem.
If Task 0 managed to lock both locks before Task 1 tried to lock the first time,
there would be no problem. A program could run many times before the deadlock
manifested. Minimising the use of locks is a good design principle, particularly
also avoiding the need to hold more than one lock at a time. Using higher-level

128 CHAPTER 6. PARALLEL PROGRAMMING

constructs like barriers can also help. In general, a defensive approach of avoiding
the kind of situation that can lead to hard-to-discover bugs is the best strategy.

There is a significant amount of theory about deadlock avoidance and de-
tection; in practice, implementing algorithms that do any of this as part of
the operating system is impractical because there are so many different ways
deadlocks can arise – not only as a result of locks, but also holding resources
that only one task can hold, like open files. Deadlock avoidance is usually seen
as a programming problem rather than as something to design into the OS. When
you write your own parallel code, keeping things simple is a good strategy, as
deadlocks cannot occur if no process ever holds more than one exclusive resource
(lock, open file, etc.). The closer you get to this ideal, the less likely you are to
create a deadlock in your code.

In distributed systems, deadlock can be difficult to handle and there, some of
the theory of deadlock detection such as constructing wait-for graphs, is useful
[Mitchell and Merritt 1984; Raynal 2013].

A more subtle problem is called livelock: two or more tasks, while changing
state rather than waiting, cannot make progress because they need something from
each other. This can arise if there is some attempt at breaking deadlocks, e.g.,
releasing a lock if there is no progress and trying again. Another example is if
each task has to tell the other it has passed a certain point in a computation, and
it cannot do so unless the other has passed that point. Each task tells the other:
“sorry, not there yet” and makes no progress.

Parallel programming is a large area, with new ideas arising out making
best use of warehouse-scale computing [Barroso et al. 2013], used to implement
massively scalable services like Google search, Facebook and Amazon’s Elastic
Cloud Computing. This is an exciting subject and well worth studying further in
your future work.

The take home message? Parallel programming in general is hard
– deadlocks are just one problem you can run into. Using high-level
abstractions and well-tested methods is a good starting point.

Exercises

1. For the thread launch code on page 107, work out how to add a delay that
is larger, the lower the number passed into the thread as a parameter. See if
you can make the threads

Exercises 129

(a) Produce output in the thread in a different order

(b) Finish in a different order.

If you fail in either case, explain why.

2. In the barrier outline of page 122, why do I use two different barriers? What
could go wrong if I used the same barrier variable in both places?

3. Look up the detail of each of the following Pthreads primitives and expand
on the basic calls I outline. Explain what else you can do with each
primitive.

(a) spinlock

(b) mutex

(c) sempahore

(d) barrier

4. Expand figure 6.1 to 4 CPUs, each contending for the same lock when it is
released. Draw the sequence of cache operations as each processor tries to
modify the lock variable. Each processor will try to get exclusive access,
invalidating it from other caches. Whichever wins will modify the variable
then have it invalidated from its local cache. Use this example to discuss
why a spinlock can be inefficient.

5. Explain the advantages and disadvantages of memory mapping versus
shared segments. In a simple case, which would you use?

6. Explain advantages and disadvantages of using fork versus threads, and
give examples where each is the better approach.

7. Explain how COW aids in implementing Unix-style process launching.

8. Another atomic memory operation is atomic swap: contents of a register
are swapped with memory contents in a single indivisible operation. Sketch
out a spinlock implementation using atomic swap.

9. Create a pipe for each of the following scenarios:

(a) you launch a child process that processes outputs from a parent process

130 CHAPTER 6. PARALLEL PROGRAMMING

(b) you launch a new process that has to write values that a separately
launched process will read

10. Two processes reach a barrier. Each process can only continue to the next
step if the other reports it has completed a specific computation. If the two
processes both have not done the required computation at the barrier, could
this lead to livelock or deadlock? Explain.

11. Is email implemented as a distributed system or a networked service?
Explain.

12. Is Dropbox a distributed system or a networked service? Explain.

References

Aas, J. (2005). Understanding the Linux 2.6. 8.1 CPU scheduler. Technical report, Silicon
Graphics, Inc. http://joshaas.net/linux/linux_cpu_scheduler.pdf.

Barroso, L. A., Clidaras, J., and Hölzle, U. (2013). The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis lectures
on computer architecture. Morgan & Claypool, 2nd edition. http://www.
morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024.

Bovet, D. P. and Cesati, M. (2005). Understanding the Linux Kernel. O’Reilly,
Sebastopol, CA, 3rd edition.

Carr, R. W. and Hennessy, J. L. (1981). WSCLOCK – a simple and effective algorithm
for virtual memory management. In Proc. 8th ACM Symp. on Operating Systems
Principles, SOSP ’81, pages 87–95.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT Press, Cambridge, MA, 3rd edition.

Denning, P. J. (1968). The working set model for program behavior. Commun. ACM,
11(5):323–333.

Farina, J., Scanlon, M., and Kechadi, M.-T. (2014). BitTorrent Sync: First impressions
and digital forensic implications. Digital Investigation, 11:S77–S86.

Feitelson, D. G. and Jettee, M. A. (1997). Improved utilization and responsiveness with
gang scheduling. In Job Scheduling Strategies for Parallel Processing, pages 238–261.
Springer.

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google file system. In Proc.
19th ACM Symp. on Operating Systems Principles, SOSP ’03, pages 29–43.

131

http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024

132 REFERENCES

Härtig, H. and Roitzsch, M. (2006). Ten years of research on L4-based real-time systems.
In Proc. 8th Real-Time Linux Workshop.

Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum, A. S. (2006). MINIX 3: A
highly reliable, self-repairing operating system. SIGOPS Oper. Syst. Rev., 40(3):80–89.

Intel (2011). Intel® 64 and IA-32 architectures software developer’s manual. Technical
report, Intel. http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf,
accessed 26 July 2015.

Jatho, III, E. W. (2014). A survey of distributed capability file systems and their
application to cloud environments. PhD thesis, Naval Postgraduate School, Monterey,
CA.

Kernighan, B. W. and Ritchie, D. M. (1988). The C programming language. Prentice
Hall, Englewood Cliffs, NJ.

Klein, G., Derrin, P., and Elphinstone, K. (2009). Experience report: SeL4: Formally
verifying a high-performance microkernel. In Proc. 14th ACM SIGPLAN Int. Conf. on
Functional Programming, ICFP ’09, pages 91–96.

Lavington, S. H. (1978). The Manchester Mark I and Atlas: a historical perspective.
Commun. ACM, 21(1):4–12.

Liedtke, J. (1993). Improving IPC by kernel design. SIGOPS Oper. Syst. Rev., 27(5):175–
188.

Machanick, P. and Hunt, K. (2014). Preliminary thoughts on services without servers. In
Proc. SATNAC 2014, pages 469–470, Port Elizabeth.

Mayer, A. J. W. (1982). The architecture of the Burroughs B5000: 20 years later and still
ahead of the times? SIGARCH Comput. Archit. News, 10(4):3–10.

Mitchell, D. P. and Merritt, M. J. (1984). A distributed algorithm for deadlock detection
and resolution. In Proc. 3rd annual ACM Symp. on Principles of distributed computing,
pages 282–284. ACM.

Molnar, I. (2007). Modular scheduler core and completely fair scheduler [CFS]. http:
//lwn.net/Articles/230501/. Linux-Kernel mailing list; Accessed: 5 June 2015.

Moschakis, I. A. and Karatza, H. D. (2012). Evaluation of gang scheduling performance
and cost in a cloud computing system. The J. of Supercomputing, 59(2):975–992.

http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://lwn.net/Articles/230501/
http://lwn.net/Articles/230501/

REFERENCES 133

Mueller, F. (1993). A library implementation of POSIX Threads under UNIX. In Winter
USENIX, pages 29–42.

Nagle, D., Uhlig, R., Stanley, T., Sechrest, S., Mudge, T., and Brown, R. (1993).
Design tradeoffs for software-managed TLBs. In Proc. 20th Int. Symp. on Computer
Architecture (ISCA ’93), pages 27–38, San Diego, CA.

Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uhlig, R. (2006). Intel virtualization
technology: Hardware support for efficient processor virtualization. Intel Technology
J., 10(3).

Open Kernel Labs (2012). Open Kernel Labs software surpasses milestone
of 1.5 billion mobile device shipments. http://www.ok-labs.com/
releases/release/ok-labs-software-surpasses-milestone-of-1.
5-billion-mobile-device-shipments.

Otto, J. S., Sánchez, M. A., Choffnes, D. R., Bustamante, F. E., and Siganos, G.
(2011). On blind mice and the elephant: Understanding the network impact of a large
distributed system. In Proc ACM SIGCOMM 2011 Conf., pages 110–121.

Pabla, C. S. (2009). Completely fair scheduler. Linux J., 2009(184):4. http://www.
linuxjournal.com/article/10267.

Patterson, D. A., Gibson, G., and Katz, R. H. (1988). A case for redundant arrays of
inexpensive disks (RAID). In Proc. 1988 ACM SIGMOD Int. Conf. on Management of
Data, SIGMOD ’88, pages 109–116.

Pietrek, M. (1992). Inside the Windows scheduler. Dr. Dobb’s J., 17(8):64–71.

Raynal, M. (2013). Distributed deadlock detection. In Distributed Algorithms for
Message-Passing Systems, pages 401–423. Springer.

Richards, M. (1969). BCPL: A tool for compiler writing and system programming. In
Proc. Spring Joint Computer Conf., pages 557–566.

Ritchie, D. M., Johnson, S., Lesk, M., and Kernighan, B. (1978). The C programming
language. Bell Sys. Tech. J, 57:1991–2019. http://www3.alcatel-lucent.com/
bstj/vol57-1978/articles/bstj57-6-1991.pdf.

Russinovich, M. (1997). Inside the Windows NT scheduler, part 1. Win-
dows IT Pro Magazine. http://windowsitpro.com/systems-management/
inside-windows-nt-scheduler-part-1.

http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.linuxjournal.com/article/10267
http://www.linuxjournal.com/article/10267
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf
http://www3.alcatel-lucent.com/bstj/vol57-1978/articles/bstj57-6-1991.pdf
http://windowsitpro.com/systems-management/inside-windows-nt-scheduler-part-1
http://windowsitpro.com/systems-management/inside-windows-nt-scheduler-part-1

134 REFERENCES

Russinovich, M., Solomon, D., and Ionescu, A. (2012). Windows internals. Microsoft
Press, Redmond, WA, 6th edition.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1985). Design and
implementation of the Sun network filesystem. In Proc. Summer USENIX Conf., pages
119–130.

Schaffer, J. and Reid, S. (2011). The joy of scheduling. QNX White Paper, http://qnx.
symmetry.com.au/resources/whitepapers/qnx_joy_of_scheduling.pdf.

Sechrest, S. (1986). An introductory 4.4 BSD interprocess communication tutorial.
In Unix Programmer’s Supplementary Documents, volume 1 (PS1). 4.3 Berkeley
Software Distribution, Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

Smith, M. (2010). Windows IT Pro: A 15-year perspective. Windows
IT Pro Magazine. http://windowsitpro.com/windows-server/
windows-it-pro-15-year-perspective.

Stallman, R. (2002). Chapter 1 The GNU project. In Free software, free society: Selected
essays of Richard M. Stallman, pages 13–25. GNU Press.

Tanenbaum, A. S. (2016). Lessons learned from 30 years of MINIX. Commun. ACM,
59(3):70–78.

Tanenbaum, A. S. and Woodhull, A. S. (2006). Operating Systems Design and
Implementation. Prentice Hall, Upper Saddle River, NJ, 3rd edition.

Van Riel, R. (2001). Page replacement in Linux 2.4 memory management. In USENIX
Annual Tech. Conf., FREENIX Track, pages 165–172.

Waldo, J. (1998). Remote procedure calls and Java Remote Method Invocation. IEEE
Concurrency, 6(3):5–7.

http://qnx.symmetry.com.au/resources/whitepapers/qnx_joy_of_scheduling.pdf
http://qnx.symmetry.com.au/resources/whitepapers/qnx_joy_of_scheduling.pdf
http://windowsitpro.com/windows-server/windows-it-pro-15-year-perspective
http://windowsitpro.com/windows-server/windows-it-pro-15-year-perspective

	List of Figures
	List of Tables
	Definitions
	Introduction
	Exercises

	The Kernel
	System Calls and IPC
	Kernel or User Space?
	What the Kernel Does
	Exercises

	Schedulers
	Theoretical Approaches
	More Practical Approaches
	Examples
	Exercises

	IO and Files
	Device Interface
	Files and Devices
	Performance
	Speed
	Reliability and Fault Tolerance

	Protection and Security
	Other Device Types
	Exercises

	Memory
	History and Rationale
	Key Concepts of VM
	More Advanced Concepts
	Examples
	Exercises

	Parallel Programming
	Concepts
	Launching
	Sharing and Communication
	Synchronization
	Distributed Systems and the Cloud
	Parallel Programming Hazards
	Exercises

	References

