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Preface

HY THIS BOOK? Some years ago I took part in a panel discussion
s;s/ titled “Programming Early Considered Harmful” at the SIGCSE 2001
conference [Hitchner et al. 2001]. Once of those present was Yale
Patt, whom I had met briefly on a sabbatical at University of Michigan, where
he was at the time a professor working in computer architecture. His role
on the panel was to proselytise his book, Introduction to Computing Systems:
From bits & gates to C & beyond [Patt and Patel 2013], which introduced
programming from the low level up. I found the idea intriguing particularly as
I also was concerned with the problem that students tend to stick with the first
thing they learn. If my concern was correct, it should be better to start with the
programming model you want them to internalize, rather than start with machine-
level programming. Nonenetheless, I am always open to new ideas, and when the
opportunity presented itself to run a computer organization course followed by a
C course, I decided to try the idea for myself.

After reviewing the latest edition of Patt and Patel [2013], I saw a gap for a
treatment that focused more on assembly-level programming as it relates to C, and
less on the hardware. For any who disagrees, there is another book out there.

Another problem is that text books are becoming increasingly expensive.
Patt and Patel [2013] retails for over $150; the fifth edition of the classic
Computer Organization and Design: The Hardware/Software Interface [Patterson
and Hennessy 2014] lists at almost $90.

That takes me to another motivation for writing this book: affordability.
Where I live, South Africa, we are charged European prices for books. While
publishers do sometimes try to lower prices when we ask nicely, books are very
expensive in relation to earning power. We also have a significant fraction of
students from very low income groups. All of that motivates me to explore ways
of pushing cost down. One way I am doing that is by publishing this book with
a Creative Commons Attribution-NonCommercial license, which makes it free to



copy for non-commercial purposes. Another way I aim to bring costs down is by
publishing using print on demand (PoD). The cost per book printed using PoD
publishing is higher than the cost per book of a large print run, but a large print
run is only economic if a significant fraction of the books is sold. By using PoD,
I can also cut out the overheads of a publisher, who has to make money out of
successful books to pay for warehouses full of unsuccessful titles.

How well does it work?

My students do this course after a year of object-oriented programming so
it is not in that sense a low-level first approach. They find it hard to break out
of calling functions “methods”, as an example of an entrenched habit. Overall
though my experience is that the approach works. To some extent starting with
a relatively high-level language with classes and objects makes it easy to code
things that provide tangible results. Taking a dive after that into the low level is a
bit discomforting, but so is any real learning.

A few thoughts on my approach.

Standard MIPS-based treatments generally follow a particular standard for
compiler calling conventions; I construct my call stack slightly differently for
two reasons. The first is I find my approach a bit easier to explain. The second is
to get across to students that the stack is not a fixed structure in memory, but the
consequence of conventions that you can change.

I try to avoid teaching things in a way that has to be undone later. Rather,
I use simplifications, then fill in the gaps. For example, I introduce templates
for coding statements into assembly language (such as if statements or for loops)
without taking into account all the requirements for generality, then add in those
requirements.

Tuse C as a “pseudocode” deliberately in the first part of the book, even though
C is clearly a real language, to create familiarity with the syntax. For students
with a background in a C-like language, this should not present a major issue.
For others, the “pseudocode” is mainly used in small examples and should be
understandable from the context.

My intent is to put students in a position to understand topics like compilers,
recursion and data structures by seeing what happens underneath. I think the
approach works, though the best test is whether graduates who have learnt this
way are able to work more efficiently and with more insight later in life.

Finally, I look forward to hearing from others who use this material. If you
choose to use the free version, your views will be just as valuable as if you pay
for a commercially published copy.
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Definitions

A

absolute address — Address that can be used directly. See also address, relative address.

absolute path — A path from the root of the file system, in UNIX designated by starting with /.
See also system path, relative path, path.

abstraction — The principle of hiding all but the most essential details.

activation record — See stack frame.

actual parameter — See parameter.

address — Number signifying position relative to the start of main memory (RAM); usually
numbered in bytes. See also absolute address, relative address, pointer.

ALU - See arithmetic-logic unit.

Amdahl’s Law — A version of the speedup formula that emphasises the sequential fraction.

architecture — A consistent design that allows a range of implementations, each running the same
code subject only to available resources (memory, speed, connected devices). The Intel
IA32 architecture for example runs the same 32-bit instruction set across many designs
going back to the 80386, also called Intel386, 1386, or 386, going back to 1985.

argument — See parameter: term used in C-family languages for the value passed in.

arithmetic-logic unit (ALU) — component of CPU that decodes and executes instructions.

array — Data structure: elements accessed by (usually) integer index; in C, all elements are the
same type and an array is represented by the address of (pointer to) the first element.

ASCII — American Standard Code for Information Interchange — a 7-bit, extended to 8 bits, code
for representing characters. See also Appendix A.

assembler — A program that translates assembly language to machine code. See also assembly
language.

assembler directive — An instruction to an assembler that does not generate code. See also
assembler.

assembly language — A symbolic representation of machine code that mostly translates directly to
machine code instructions. See also assembler, pseudoinstruction, assembler directive.

B

bias — A way of representing positives and negatives where a bias has to be subtracted from the
number to represent its true value. In IEEE floating point, the exponent is represented this
way (bias = 127). Also called offset or excess.

big endian — Ordering of smaller items like bytes within a word that starts at the high-order (big)
end of the word, so bytes within a word appear in memory in order 0,1,2,3. See also little
endian, endianness.

X1



xii DEFINITIONS

bit — Binary digit (0 or 1 in a number represented in base 2).

boolean algebra — Rules for arithmetic with true (1) and false (0) values.

branch delay slot — The instruction immediately after a branch that is executed whether the branch
is taken or not. See also delayed branch.

branch instruction — Changes flow of control conditionally; encodes a condition and also has a
target address. A branch is faken if the condition is true. The address is usually relative.
See also jump instruction, delayed branch.

bytecode — A machine instruction set designed to be portable, usually interpreted or translated to
actual machine code.

C

cache — A fast memory that is used to fake the effect of the entire memory being faster than a
reasonably affordable memory technology. Decisions as to what is in a faster layer are
made in hardware. The fastest cache is integrated into the CPU in recent designs, and is
the highest-level or level 1 (also: LI cache). There can be 1 or more lower levels of cache,
usually in current designs integrated into the CPU chip, numbered L2, . ..

CISC — See complex instruction set computer.

compiled — Translated with significant changes in amount and style of code from a high-level
language to a lower-level language (usually machine code.

complement — In logic, inversion of all bits. See also two’s complement.

complex instruction set computer (CISC) — Any design that does not fit the RISC definition.
For example, with variable instruction lengths, instructions that only work with specific
registers and instructions that do arithmetic or logic on memory contents.

complexity — Growth rate of time or extra space needed by an algorithm expressed as the largest
term of a function of size of data N. See also space complexity, time complexity, complexity
class.

complexity class — Classification of a function in terms of its growth rate based on the largest term.
See also complexity.

constant pool — Region of memory containing constant values such as strings. See also heap,
stack, globals.

conditional — A C operator that given a boolean value selects between two alternatives. Written
bool 7?7 alt; : altjp.

contradiction — In logic, any formula that is false for all values of variables (or in a logic circuit,
all inputs). See also tautology.

coprocessor — An auxiliary processor outside the main logic path. See also floating-point unit,
graphics processing unit.

core — In designs with multiple CPUs on a chip (rmulticore), each CPU is called a core. Cores
often share the lowest-level on-chip cache.

CPU - See processor.

D

declaration — In C, the place where the type of a program construct (function, type or variable) is
known but does not require runtime resources. See also definition.

definition — In C, the place where a program construct (function or variable) requires runtime
resources. See also declaration.



Xiii

delayed branch — A branch instruction that executes the following instruction whether the branch
is taken or not. See also branch delay slot.

De Morgan’s Laws — In logic, rules to redistribute negation over and and or.

digit signal processor (DSP) — A specialized CPU that is designed for efficient digit-analog
conversion as in audio or video.

dispatch table — Table of addresses that can be used in a jump or similar instruction to direct to
code based on an index. See also jump table.

DRAM — See dynamic random access memory.

DSP — See digit signal processor.

dynamic instruction count — Count of instructions executed in a particular run of a program. See
also static instruction count.

dynamic linking — Linking that is delayed until a program runs. See also linker, library, static
linking, executable file, object file.

dynamic random access memory (DRAM) — RAM usually implemented with a capacitor storing a
bit that needs to be refreshed periodically to maintain its value: relatively inexpensive, but
not as fast as SRAM.

E

embedded system — A computer that is part of another machine or device.

endianness — Intel architectures are little-endian; MIPS can be either. See also little endian, big
endian.

excess — See bias.

executable file — A file that can be run directly. See also linker, object file.

F

floating point — Computer representation of numbers that can include fractions. Most CPUs
that support floating point have a separate set of registers for floating point values. The
IEEE 754 standard defines a range of different sizes of floating-point numbers and includes
concepts like representing +oo and not a number (or NaN).

Sfloating-point unit (FPU) — Component of a CPU that handles floating-point instructions, usually
with its own register set. See also coprocessor.

formal parameter — See parameter.

FPU - See floating-point unit.

frame pointer — Register to keep track of the start of the current stack frame. MIPS machine code
convention: register 30 ($£p or $30). Some compilers do not use a frame pointer (if you
know the size of the stack frame, you can work out everything you need from the stack
pointer).

function (procedure, subroutine) — Unit of code that can be invoked with a return address to return
to the point immediately after invocation; optionally can include parameters passed in, local
variables and a return value. In object-oriented languages, a method is the same thing with
added features: the ability to reference a specific object, and the possibility of finding a
different version of the method by inheritance.

G

garbage collector — Recovers memory no longer accessible by a program, usually when memory
starts to fill up. See also heap, managed-memory language — not a feature of C.

gate — Elementary logic function implemented in hardware. See universal gate.



Xiv DEFINITIONS

general-purpose computing on graphics processing units (GPGPU) — Using a GPU to speed up
non-graphics computation.

GPGPU - See general-purpose computing on graphics processing units.

GPU - See graphics processing unit.

graphics processing unit (GPU) — Component of a CPU that handles graphics instructions,
sometimes on a separate chip. See also coprocessor.

H

hard real time — A real-time requirement that if not met means system failure. See also real time,
soft real time.

heap — Region of memory containing dynamically allocated and deallocated data (also the name
of a data structure). See also globals, stack, constant pool.

hexadecimal (hex) — Base 16 — convenient for representing binary numbers since grouping bits in
4s starting from the low end of the number converts directly to hex.

high-level language (HLL) — A language designed for human convenience of programming, not
close to the machine. See also assembly language.

HLL architecture — Machine instruction set designed to be closer to a high-level language than
traditional machine code.

I

IEEE 754 — See floating point.

ILP — See instruction-level parallelism.

immediate operand — An operand value encoded into the instruction. See also operand.

infix notation — Function names are written between operands, as in arithmetic expressions. See
also postfix notation.

inheritance — Ability in object-oriented languages to derive a new class from a parent class with
the option to reuse or override methods of the parent class — not a feature of C (can be built
up laboriously in machine code).

instruction count — See static instruction count, dynamic instruction count.

instruction issue — Transition of an instruction to the execute stage (or first execute stage, with a
deeper pipeline).

instruction-level parallelism (ILP) — Increasing CPU throughput by overlapping execution of
instructions.

instruction set architecture (ISA) — Instruction set as seen by the programmer or compiler.

interpreted — Executed line-by-line, as opposed to compiled.

interrupt — Event that breaks the sequence of execution, often resulting in use of a jump table to
find an interrupt handler. See also interrupt handler, interrupt vector, jump table.

interrupt handler — Code invoked to handle an interrupt. Generally must be short to minimise
backing up other interrupts.

interrupt vector — Sequential (possibly with gaps) locations to which control transfers on an
interrupt, with one location for each type of interrupt.

ISA — See instruction set architecture.

issue — See instruction issue.
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J

JIT — see just in time compiler.

Jjump instruction — Changes flow of control unconditionally; a jump and link instruction stores the
return address. The address may be immediate or from a register but is usually absolute.
See also branch instruction.

Jjump table — Table of jump instructions that can be used to transfer control code based on an index.
See also interrupt, dispatch table.

Jjust in time (JIT) compiler — A compiler that translates to machine code immediately before the
particular code is needed; sometimes used as an alternative to interpreting bytecode.

L

L1, L2, etc. — First, second, etc., levels e.g. of a cache hierarchy in which L1 is the fastest and
closest to the CPU.

label — A name used in assembly language to mark a location in memory (an instruction or a
location where a constant has been placed; in SPIM’s assembly language, a label has a “:”
after its name where it is defined.

library — Precompiled code available to link into programs. See also linker, dynamic linking, static
linking.

linker — A program that combines separately compiled files. See also object file, library.

little endian — Ordering of smaller items like bytes within a word that starts at the low-order (little)
end of the word, so bytes within a word appear in memory in order 3,2,1,0. See also big
endian, endianness.

load — An instruction that copies memory contents to a register (in MIPS, there are different load
instructions for different sizes and types of operand, e.g., 1w loads a word into an integer
register). See also store.

locality — The principle that a program uses a small subset of memory at a time. See also spatial
locality, temporal locality.

M

machine code — Instructions that are directly interpreted by hardware with no further translation.
See also assembly language.

macro — Named text that can be substituted into other text by use of its name. Macros can also
have parameters; distinguished from functions in that they have no clear existence at run
time.

make — A UNIX utility that uses a Makefile (capital “M” optional) containing dependence rules
and actions to resolve failed dependences.

managed-memory language — A language in which inaccessible dynamically allocated data space
is automatically. See also garbage collector.

memory leak — A program not written in a managed-memory language starts to run out of memory
because the program does not correctly deallocate dynamic data when it is no longer
accessible.

method — not a feature of C or machine code (directly — you can make up a similar concept with
some effort) — see function.

MIPS — A RISC processor architecture common in embedded devices.

multicore — See core.
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N

null pointer — A pointer value that represents no memory location, usually a zero. See also pointer.

(0]

object file — A compiled portion of a program that must be combined with other files to make an
executable file. See also linker.

one’s complement (1’s complement) — A way of representing integer negatives, by inverting all bits.
Not widely used since unlike two’s complement, it has a wasted value with zero represented
two ways, as all Os or all Is.

offset — See bias.

opcode — Part of an instruction that signifies what operation it performs (in MIPS, modified by
function bits).

operand — In a MIPS instruction or C expression, value to be used or in MIPS a destination for
computed value. See also immediate operand, register, infix notation.

operator — A built-in function with a special symbol, usually in infix notation, such as + or *.

P

parameter — value passed in to a function. In the function definition, called a formal parameter
and in the call, an actual parameter. In C, a formal parameter is called a parameter, and an
actual parameter an argument.

path — Sequence of directory names, in UNIX separated by “/”. See also system path, relative
path, absolute path.

pipeline — Organization of instruction execution overlapping sequential instructions. See also stall.

pointer — A value that contains a memory address. See also null pointer, reference.

pop — Remove an item from the top of a stack, adjusting the stack pointer back an item. See also
stack, push.

portable — Designed to run on more than one machine, possibly very different machines.

postfix notation — Function names are written after an operand, as in arithmetic expressions. See
also infix notation.

procedure — See function: a name used in older languages including Pascal.

processor — Logic unit that interprets instructions and includes the fastest layers of memory,
registers and caches. Also called central processing unit (CPU). See also core, arithmetic-
logic unit.

program counter (PC) — Register to keep track of the current instruction being executed. On
MIPS, it always is a multiple of 4 since instructions are word-aligned. Advances by 4 each
instruction, unless a flow control instruction changes it (jump or branch).

pseudoinstruction — An instruction in assembly language that is not a real machine instruction but
translates to one or more real machine instructions. See also assembler.

push — Add an item onto the top of a stack, advancing the stack pointer. See also stack, pop.

R

RAM — See random access memory.

random access memory (RAM) — Any memory that has an addressing scheme that equally allows
any item to be accesses without e.g., a delay to make that region accessible.

real time — A requirement that a task be done by a time deadline. See also hard real time, soft real
time.

recursion — See recursion.
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reduced instruction set computer (RISC) — An architecture in which all memory accesses are via
loads (copy to a register) or stores (copy a register to memory), all arithmetic and logic
is through registers, and instructions have relatively simple formats without variations in
instruction length. Also has a large set of general-purpose registers (MIPS has 32 integer
registers, though register zero —$zero or $0 — is hardwired to zeroes and register 31 — $ra
or $31 — is hardwired as the return address register). See also CISC.

reference — Slightly disguised pointer in languages with a higher-level approach than C.

register — Extra-fast memory designed into the CPU logic; usually a very limited number. Register
addresses are usually hard-coded into instructions for speed. See also spill registers, frame
pointer, stack pointer, program counter, reduced instruction set computer.

relative address — Address that must be added to a given location (usually the PC). See also
address, absolute address.

relative path — Path in UNIX starting with anything but “/”, relative to the current working
directory. See also system path, path, absolute path, working directory.

return address — Usually the address of the next instruction after a call instruction (e.g., jump and
link, jal). The MIPS architecture stores the return address in register 31 ($ra or $31, but
you can overrule this with the jalr instruction, which encodes a return address register).

RISC — See reduced instruction set computer.

S

shell — In UNIX-like systems, the environment where you run programs including a scripting
language.

short-circuit evaluation — Evaluation usually of logical or boolean expressions that stops as soon
as the answer is known.

sign bit — A bit used to signify negative (usually 1) or positive (usually 0). See also fwo’s
complement and signed magnitude.

signed magnitude — A way of representing integer negatives, by using the same bit representation
for a negative and positive, except the sign bit is 1 for a negative. Used in IEEE floating
point. See also two’s complement.

spatial locality — The principle that a program tends to use memory close to each other. See also
locality, temporal locality.

soft real time — A real-time requirement that if not met can be handled by a fallback option like a
drop in quality. See also real time, hard real time.

space complexity — Complexity expressed in terms of extra space needed by an algorithm over and

above the initial data. See also time complexity, complexity class.
tbefore
. tafrer .
spill registers — Save registers to RAM, usually on a function call.

speedup — After a change, . See also Amdahl’s Law.

SRAM - See static random access memory.

stack — At hardware level, a region of memory used to represent the state of function calls including
local variables, values that have to be saved across calls, parameters and the return address.
See also push, pop, heap, globals, constant pool, spill registers.

stack frame (activation record) — Contents of the stack representing the state of one particular
function call.

stack pointer — Register to keep track of the top of the stack. In MIPS machine code, by convention,
this is register 29 ($sp or $29). See also frame pointer.
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static definition — In C: function or variable with a name only visible in one compiled source file.

static instruction count — Count of the number of instructions in a program. See also dynamic
instruction count.

static linking — Linking that is done when creating an executable file. See also linker, library,
dynamic linking, executable file, object file.

stall — One or more lost cycles when a pipeline is unable to continue.

static random access memory (SRAM) — RAM usually implemented with a transistor storing a bit
that does not need to be refreshed periodically to maintain its value: relatively expensive,
and is faster than DRAM. Also requires more components than DRAM per bit, and hence
not as dense, which is why it is more expensive. Generally used for caches.

store — An instruction that copies register contents to memory (in MIPS, there are different store
instructions for different sizes and types of operand, e.g., sw stores a word from an integer
register). See also load.

structured data — A data type composed of one or more elements, not necessarily of the same type.
Called a struct in C; a class is the same concept but with methods and inheritance added.

subroutine — See function: a name used in older languages including FORTRAN.

system path — Sequence of path names, in UNIX separated by “:” used to find executables run
with no path name. See also path, relative path, absolute path.

T

taken branch — When the branch condition is true and the branch instruction jumps to the target
address rather than falling through to the next instruction, the branch is taken. See also
branch.

tautology — In logic, any formula that is true for all values of variables (or in a logic circuit, all
inputs). See also contradiction.

temporal locality — The principle that a program is likely to use the same memory again some time
soon. See also spatial locality, locality.

time complexity — Complexity expressed in terms of run time of an algorithm. See also space
complexity, complexity class.

truth table — Table showing all possible values of a logical or boolean function, given all possible
inputs.

two’s complement (2’s complement) — A way of representing integer negatives, by inverting all
bits and adding 1. In 2’s complement arithmetic, an overflow occurs if there is a carry in or
out of the sign bit, but not both. See also one’s complement.

U

universal gate — A gate that can be used to implement all other logic functions.

W

word-aligned — On a byte-addressed machine, an address that is an even multiple of the word size
(in MIPS, a multiple of 4).

working directory — Directory relative to which paths are defined. See also path, relative path,
absolute path.

y/

$zero — See reduced instruction set computer.



From the Machine...



1 Introduction

ROGRAMMING IN MANAGED-MEMORY LANGUAGES like Java, Python and

P C# takes a lot of pain out of programming, but also takes away the need to

understand at a deep level what is going on. Often, that is good enough.

You just want to get the job done with minimum pain, and with minimal chance
of programmer error.

By “managed-memory language”, I mean one where you do not have to
deallocate memory explicitly. Such languages also often include large libraries
of carefully-worked-out data structures and algorithms, so you don’t have to code
these rather basic things from scratch.

Why, anyway, would anyone want to get rid of such conveniences as automatic
memory management, high-level abstractions of data structures and classes with
inheritance? There are times when extreme efficiency is a concern, such as
programming a very small device, or where a task has to finish within a predicted
time.

How real are these scenarios?

Embedded

Don’t most computers you buy today have multiple cores running at over 2GHz
and RAM measured in Gbytes? Wrong. Most computers sold today are very
small devices that are part of another machine. There are obvious ones like
MP3 players, that you would know are in essence a scaled-down computer, and
slightly less obvious ones like a home ADSL router. But small computers are
part of many other things in less obvious ways — washing machines, cars, smaller
home appliances — to quote a few examples. When a computer is part of another
machine, it is called an embedded system and embedded systems may have severe
cost and power-use constraints. What’s more, they may have to continue running
unattended for years in the field, so they need to be simple and robust — and not

2



Introduction 3

run out of memory or processing speed because of minor efficiency issues.

Real Time

What of systems where time to complete is critical? A real-time system is one
where specific tasks have hard time limits. A hard read-time task is one where
failure to complete in time means the system is broken. Think anti-lock brakes on
a car. If the computer controlling the anti-lock system doesn’t react in time, the
system is flawed. A soft real-time task is one where there is an acceptable failure
mode if you run out of time. Think digital TV that pixellates when the signal is
lost — quality suffers but to a point you can tolerate that sort of failure.

While real-time and embedded systems can be programmed with managed-
memory languages, there are times when efficiency and timing predictability
are important enough to justify a language close to the hardware so you know
exactly what is going on without a few layers hiding how things work from the
programmer.

Why

Those examples are a partial justification. In addition, for someone studying
Computer Science (or related subjects), a deeper understanding is called for. You
need to know what is going on under the hood, just as a mechanical engineer who
wants to design cars needs to understand how they work, not just how to drive
them (or plug in an automated diagnostic tool).

Abstraction is an important design issue both in programming language design
and in programming — hiding the how and allowing the programmer to focus
on the why. Nonetheless, someone has to know what is going on underneath,
otherwise we cannot create new programming languages and tools like compilers.

So, in this book, we take a break from the world of managed-memory
languages and high-level abstractions, and start from the bottom up to see how
things work. By the end of the first part, you should have a good idea of how a low-
level language like C is implemented, and some idea of how higher-level concepts
like objects map to the hardware. The second part switches to C programming to
build on your understanding of the low-level concepts.

The aim is to give you base from which you can move in any direction,
from learning more about hardware to using higher-level languages with a clearer
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understanding of how they work.

To help you see the big picture, every now and then you will see a grey box.
These are of two types to emphasise different kinds of important points.

The first is a “takehome”, as illustrated here:

The take home message? Sometimes it is useful to focus on one point to
understand the purpose of a particular section.

The second is a “headsup”, of which an example follows:

Heads up: Sometimes you need to know that a particular point or issue
could cause confusion, so you need to pay particular attention to it.

1.1 Some Basics

At its lowest level, a computer is an electronic device that responds to different
voltage levels you can think of as representing Os and 1s. These binary digits or
bits each represent one of two values but in combination represent as wide a range
of values as we need. Because a 0 can be thought of as a logical false value and a
1 as alogical true value, we can build up complicated operations by combinations
of simple boolean logic. Everything stored in a computer is represented as bits;
the actual interpretation of a given string of bits depends on the program. An
instruction at the machine level is just a string of bits; the same sequences of Os
and 1s could represent a location in memory, an integer value, a floating-point
value or a sequence of characters.

If you program in a managed-memory language, this very basic feature of a
computer is hidden — you don’t get to see how, for example, locations in memory
are represented, or manipulate them. You may have a high-level construct like
a reference that allows you to store the location of an object in a variable, but
you probably cannot do something like add 4 to the reference to make it point to
another part of memory, or reinterpret the bit string representing the reference as
another type of data.

Why would you want to do things like this?

If you are writing a compiler, one of the things you need to do is create
machine-level instructions. A machine-level instruction, as we will see, includes
components that are a fixed bit pattern, and may include other components
representing data values or locations in memory. To create a machine instruction,
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Table 1.1: ASCIl encoding example: the per cent symbol

char H encoding
%“ Jofl1]olo[1]o]1

you need to be free to switch what a given bit pattern represents at one point (for
example, an integer) to something else containing the same bits (a segment of a
machine instruction). Here, we are not going to look at machine instructions as
bit patterns too often: we use a slightly more convenient notation called assembly
language that can be translated relatively straightforwardly to machine code by a
program called an assembler.

Let’s look at some examples.

Characters at machine level can be represented in various ways. A simple
approach is to use 8 bits to represent characters, as in ASCII (American Standard
Code for Information Interchange). A more modern design, Unicode, uses 16 bits,
sufficient to represent more complex alphabets. For our examples, to keep things
simple, we’ll stick with ASCII. ASCII was originally designed as a 7-bit code,
and the first 32 codes (numbered 0-31) are non-printing characters designed for
purposes like controlling printers or inserting codes in a data stream (such as an
end of file marker). ASCII evolved to an 8-bit code with several variants allowing
for extensions like accented characters in languages that use them. We will stick
to the simple alphanumeric subset of ASCII, including punctuation and control
characters — the original 7-bit design.

Here is an example. The character “%” is encoded as the number 37, or the
bit pattern in table 1.1. This bit pattern represents the binary number 1001015,.
There is a full listing of printable ASCII characters and a partial list of the more
interesting non-printing characters in Appendix A.

Already, we have seen that this one bit pattern can represent two completely
different things. In the MIPS instruction set (of which more later), 6 bits are
used to signify operations. The same 6 bits that represent the “%,” character (not
counting the O at the high end of the number) as a MIPS operation signifies a
logical or between two registers.

The take home message? A bit pattern can represent many things, and
the context and how it is used determines what it actually means.
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1.2 Machine Language versus High-Level Language

How different are the low-level machine instructions from a language you may be
familiar with?

To start with, I will use a made up assembly language to express machine
instructions to give you a taste of what they look like; we will later graduate to
using the MIPS instruction set, which is only a little more difficult. I will express
programs in a pseudocode similar to C and translate them to assembly language.
We will later use a systematic approach for this, to get a feel for how a compiler
would do it.

Let’s take a simple construct — a for loop that adds the first N numbers from 0
up. Here it is in my C-like pseudocode:

sum = O;
for (1 = 0; 1 < N; i++)
sum += 1i;

Heads up: You may notice that my “pseudocode” looks suspiciously
like a real programming language rather than an approximate design
notation. This is deliberate: we will do C properly later so we might
as well get used to how it looks. A real pseudocode notation of course
does not follow syntax rules of a programming language and is allowed
to leave out inessential details.

An instruction in general is divided into an operation, encoded in an opcode,
and operands representing the data or machine address to be operated on. Our
machine language has special fast memory locations called registers that we use
to hold data values we are currently working with. Let’s call these RO...R16,
and assume that RO always contains the value zero. Our machine has operations
like test a value against a register for less than, and jump to a location if the
test is true (a branch instruction, written as brlt Ra,Rb,target, meaning go to
target if Ra < Rb - also sometimes called a conditional branch). We also
assume a brge Ra,Rb,target instruction that tests for Ra > Rb. We also can
jump unconditionally to a location in our code (a jump instruction, written as j
target). We can also do arithmetic between a pair of registers and store the result
in a destination register. Finally, we can add comments to our code using a “#”
symbol (the rest of the line after that is purely for the human reader). Our machine
code looks something like this:
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# assume N is in R1, use R2 to hold sum
# use R3 to store the loop counter i

add R2,R0,RO # sum = 0;
add R3,RO,RO # for (i = 0; i < N; i++)
test: brge R3,R1,done # test before first iteration
add R2,R2,R3 # sum += i;
addi R3,R3,1 # increment loop counter
j test # back to the test
done: nop

A few more details: note the addi instruction. This has an example of an
immediate operand — a value built directly into the instruction, rather than fetched
from elsewhere. In this case, the immediate value is a 1. Also note the nop (no-
operation) instruction at the end of the loop. This is to provide a place to branch
to — usually, there would be an actual instruction there that did something useful.
Also note the use of labels — a word followed by a “:” in the left hand margin.
There is a fair amount of variation in notation in assemblers, aside from the
fact that the actual instruction set differs from machine to machine. Some, for
example, use a “;”” symbol to mark comments. Another variation is using a “#”
symbol to mark an immediate operand (obviously not so useful if the same symbol
is used to start a comment), or a “$” symbol at the start of a register name. When
we look at how to program a MIPS machine we will see a few of these variants.
If you use a specific assembler, you need to learn its conventions — but the main
thing you need to learn if you switch to a different machine is how its instruction

set differs.

Heads up: The MIPS assembler we use uses the “#” comment convention

but when displaying programs at run time in the debugger, uses a ;" as
a comment separator to keep things interesting.

Here is another variation. If we do the test at the end of the loop, our code
saves one instruction execution every time it goes through the loop body, at the
cost of a wasted jump instruction at the top. Also, if we branch from the test at
the end of the loop, we can eliminate the need to the extra nop instruction:

# assume N is in R1, use R2 to hold sum
# use R3 to store the loop counter i
add R2,R0O,RO # sum = O;
add R3,R0O,RO # for (1 = 0; 1 < N; i++)
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j test # test before first iteration
body: add R2,R2,R3 # sum += 1i;
addi R3,R3,1 # increment loop counter

test: brlt R3,R1,body # not done? Go again

The number of instructions executed in a particular run of a program is called
the dynamic instruction count. The number of instructions you count by reading
the program is called the static instruction count. If you don’t count the nop
instruction, the two versions of the code have the same static instruction count
(6 instructions). The dynamic instruction count, however, is lower since the
repeated parts of the loop are shorter by 1 instruction. That may not look like a
lot, but loops are where many programs spend most of their time, and shortening
the loop dynamic instruction count by 25% per iteration (reducing from 4 to 3
instructions) is a significant improvement. Usually, if memory is not tight, you
are prepared to make your code take up more memory (higher static instruction
count) in exchange for reducing execution time (usually lower dynamic instruction
count — though there are other tricks like more efficient memory access that can
reduce run time without reducing the number of instructions executed. For more
on performance, see chapter 6).

The notation I use here for our machine instructions is of course rather
different from the actual machine code on a real machine, which is just a string
of 1Is and 0s. Assuming we know how to encode instructions (which bits
signify the operation, which signify the register names, and so on), it is mostly
straightforward to convert our notation to machine code (if tedious and error-
prone). We also need to convert the names “test” and “done” to a numeric
representation in the instructions that use them. Hardly anyone actually programs
directly in machine code because an assembler, a relatively simple program, can
do this sort of conversion from a convenient notation for machine instructions,
assembly language, to real machine instructions. Though assembly language rules
are simple, an assembler can still throw out a program for violating the rules.

In our simple loop example, the conversion from C-like code to assembly
language is quite straightforward. As we will see with MIPS machine code, the
assembly language for which is not far from my made-up assembly language
example, things get a lot more complicated when you deal with examples with
more intricate logic or data structures.
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The take home message? An assembler provides a more convenient
notation than machine code, though that notation is still very close to
the machine and not at all similar to a programming language you may
be used to.

1.3 Code Translation

An assembler is a relatively simple program — mostly, there is a one-to-one
mapping between lines of code and machine instructions. The assembler must
keep track of names you use for labels, and needs to know how to create the
bit pattern for every instruction. Some assemblers include pseudoinstructions —
instructions that don’t translate directly to machine code, but still can convert to
at most one or a small number of instructions.

In my small example, I translate

sum = 0;

add R2,RO,R0O

This is not the only way to zero a variable. You could also do a logical and with
zero. However, to the human reader, an instruction that copies the zero register
(RO) to another register is easier to understand. So an assembly may include a
pseudoinstruction like

copy R2,RO

and this instruction actually translates as machine code for something like
add R2,R0,R0. Since there is no real copy instruction, this is an example of
a pseudoinstruction. The MIPS assembler we will be using has a number of
pseudoinstructions. You do not need to know that they are not real machine
instructions in most cases because the assembler takes care of translation to
machine code. However, in a few cases, a pseudoinstruction translates to multiple
machine code instructions, so it is useful to understand what is going on when you
inspect the program in a debugger.

Converting to machine code where the gap between the language and machine
is bigger is not so trivial. A language that is significantly different from the
machine instruction set is called a high-level language (since “low-level” implies
closer to the hardware). Languages with complex features that have no direct
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representation in the hardware like methods, objects, variable-sized arrays or lists
require complex translation to machine code. The nearest we see to any of this is
understanding how function call (also called procedure or subroutine call) works,
and how to access data via a memory address. A function call is like a more
primitive version of a method, in which you do not have the benefit of knowing
the identify of the object that invoked the function (there are no objects at machine
code level), or inheritance. Things like inheritance are of course layered on top of
the machine by the language implementation. We get a sense of how that works
in chapter 5.

There are two major approaches to translation to machine code. The first
is compiling, where the original code is translated once to machine code, and
the machine code (possibly with some additional work) can run directly on the
machine. The second is interpreting, where the program is not converted to
machine code but rather a program called an inferpreter examines each program
construct and decides what to do with it as the program runs.

Compilers are generally used for languages where it is hard to make sense of
the code by looking at one line at a time. Interpreters tend to be used for simpler
languages like scripting languages, where it is possible to make sense of the code
without reading a lot of surrounding context.

An in-between case is a language that is translated to an intermediate form by
a compiler, and that intermediate form (which is not machine code) is interpreted.
An example is Java, which is compiled to an instruction set called bytecode, which
can then be interpreted. Java is implemented this way for portability: any system
that can interpret the bytecode program can run it. If a program is compiled to the
real instruction set, it won’t run directly on a different machine. Interpreting is
generally slower than compiling so Java systems generally include a just in time
or JIT compiler that converts bytecode to machine code the first time it’s run.

At hardware level, machine code is run by an interpreter, but one implemented
in hardware. Each instruction has to be loaded from RAM, analysed for the type of
instruction, any data movements necessary set up and executed by the appropriate
part of the CPU’s logic.

The take home message? Compilers convert to machine code or
something like it. Interpreters work with a program a small piece at a
time but do not convert the program to machine code.
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1.4 Machine Instruction Sets

There are many different machine-level instruction sets. The most widely used
in commodity computers is Intel’s instruction set. In the 1970s and 1980s, there
was intensive debate as to the best way of designing machine instruction sets. On
the one hand, there were those who advocated high-level language architectures
(or HLL architectures) — machine instructions that had a direct correspondence
to constructs in programming languages, often a specific language. On the
other hand, there were those who advocated simpler designs that were easy to
implement in hardware. These simpler designs, the argument went, would be
easier to make fast because the hardware logic would be simpler, while any HLL
machine designed to be optimal for a particular language would be bound to have
the wrong design trade-offs for another language.

These arguments came to a head with the case for a reduced instruction set
computer (RISC): the argument was that a very regular design with very simple
modes of memory access would be faster overall, even if it resulted in a higher
instruction count than a more complex design [Patterson and Ditzel 1980]. What
followed was a move to quantitative design, an approach where philosophical
argument gave way to measurement using tools like simulators that allowed
comparison of different design choices [Hennessy and Patterson 2012].

Generally speaking, a RISC design has the following features:

* arelatively large number of general-purpose registers
* simple instruction formats, with all instructions the same length

* memory accesses either copy memory contents to a register (a load
instruction), or copy a register to memory (a store instruction)

The last detail is so important that another name for a RISC design is a load-
store architecture. Why is this a big deal? Registers are the fastest level of the
memory hierarchy, and managing their contents is an important part of machine-
level programming. Ordinary memory is so much slower that allowing arbitrary
instructions (e.g., an arithmetic operation) to work with slower memory makes it
much harder to design hardware for speed.

Instruction sets that do not fit the RISC definition are generally labelled as
complex instruction set computers or CISC.
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The Intel design is firmly in the CISC camp, with details like instructions that
can act directly on memory, different lengths for different types of instructions,
and instructions that only work with specific registers.

This being the case, why is Intel so successful? A comprehensive answer
requires an advanced architecture course as background. A simple answer is
that Intel had the combination of economy of scale and very smart engineers
who rescued a flawed design by very good implementation and industry-leading
fabrication technology. A more complicated answer would have to go into details
of why multicore designs became popular [Olukotun et al. 1996], and the effect
of something called the memory wall, where chasing raw instruction execution
speed became increasingly wasted as the speed gap between conventional RAM
and processing speed grew [Wulf and McKee 1995].

Why did Intel designers make life so hard for themselves? When the
prehistoric predecessor of the Intel 32-bit (extended to 64-bit) instruction set was
designed, memory was very expensive, and an instruction set design that reduced
the memory footprint of compiled code was not a bad choice. A typical RISC
design uses about 25% more memory for compiled code than a typical CISC
design though in some cases the difference can be a lot bigger [Steenkiste 1989].
Unfortunately design trade-offs that made sense in the past are hard to change.
IBM invented the concept of an architecture in the 1960s. Up till then, each new
computer design ran different instructions. The IBM 360 family changed that:
it was a range of computers that could all run the same code, only subject to
constraints like speed, memory and attached devices [Amdahl et al. 2000]. That
was a huge gain, since one set of programming tools and a single operating system
worked across the whole range. Computer designers have since discovered the
cost of a consistent architecture: it’s hard to change once you have thousands —
possibly even millions — of different programs in wide use that rely on decisions
that in retrospect turn out to be mistakes.

If Intel is so successful, why are we looking here at the MIPS instruction set,
a RISC design? Two reasons. The Intel instruction set is very complex compared
with the MIPS design, and MIPS is widely used in embedded systems, so you
are more likely to actually need to know how to program it at hardware level. In
general, RISC designs are most popular at the very high end, where companies
like IBM make very fast designs that are too expensive for the commodity market
(their POWER architecture) and at the very low end, where Intel loses on energy
efficiency. Aside from MIPS, other players in the low-level market are ARM and
PowerPC (a low-cost version of IBM’s POWER architecture). At the high end,
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the Alpha processor used to be a leader but was discontinued after a series of
mergers, and the SPARC architecture (Sun Microsystems; now part of Oracle)
is still in relatively wide use. ARM is widely used in mobile devices from entry-
level cell phones to high-end smart phones and tablets. ARM gained its initial start
in the market by focussing on low-energy design. MIPS (owned since February
2013 by UK company Imagination Technologies, but founded in Silicon Valley
by Stanford University professor John Hennessy in 19921), like ARM (also a UK
company), does not fabricate its own chips, but licenses designs to others. There
are many niches besides desktop computers — some very big, with annual sales in
the hundreds of millions of units.

Aside from the RISC-CISC divide, there are other specialised architectures
like graphics processing units (GPUs). A GPU is very fast, and some advocate
using a GPU for general-purpose computation, where speed gains are possible
(sometimes. .. [Caragea et al. 2010]) at the cost of high program complexity.
Another specialist style of processor is a digital signal processing unit (DSP), de-
signed to do very specific computations in areas like image and audio processing.
DPSs are in reasonably wide use too — but we do not look at any of these designs
since the complexity involved is not worth mastering unless you specifically need
to do so.

Although there are significant differences between RISC designs, knowing
one puts you close to knowing all of them, since they have a common design
philosophy. Learning a more difficult design only really teaches you that specific
design at the cost of significantly more pain.

All of these issues have roots in the relatively distant past (for a field that
advances so fast) but understanding a little history is always useful — mistakes are
often repeated by those who know no history.

The take home message? RISC designs are simple and regular, and only
access main memory to move data to or from registers (respectively, loads
or stores).

1.5 The Machine

Let’s now take a slightly more detailed look at the machine — what things like
registers are, layers of the memory hierarchy and flow of instructions through the

"http://www.stanford.edu/ hennessy/cv.html
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core core core core
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main memory (DRAM)
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sw ¢ l file
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1
(a) Memory hierarchy and (b) Registers and ALU

logic

Figure 1.1: Major components of the memory hierarchy and CPU

Processor.

First, look at figure 1.1a. In most designs you can buy today, the central
processing unit (CPU) or processor is replicated, and each one is called a core. A
multicore design is one in which there is more than one CPU on the same chip.
As illustrated, there are four cores and the memory system is in layers. The cache
is a very fast kind of memory usually made of static RAM (SRAM). SRAM uses
transistors to store bits, and is fast, at the expense of lower density than dynamic
RAM (DRAM), which is used for the main memory. DRAM uses capacitors to
store bits. Lower density means you get fewer bits for your money. Because the
speed of cache is essential to performance, managing what is in cache is usually
done in the hardware to minimise delays. The virtual memory system manages
maintaining most recently accessed items in the main memory, made of DRAM.
Because the paging device is thousands to millions of times slower than DRAM,
managing what is in DRAM and what can be sent out to the paging device is
usually managed in software, though generally by the operating system rather
than by user-level programs.

Figure 1.1a does not show how the fastest level of memory, registers, is
organised. Registers are part of the CPU logic, and are fast enough to access
without delaying instruction execution. Figure 1.1b provides an overview of data
flows in the CPU. Each core has a complete set of logic including an arithmetic
logic unit (ALU) and registers. Not shown are details like communication with
main memory through the cache. For a typical ALU operation in a RISC machine,
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L1 cache L1 cache L1 cache L1 cache
L2 cache L2 cache L2 cache L2 cache

shared L3 cache

Figure 1.2: Multilevel caches in a multicore deisign

a value is retrieved from two source registers, the ALU is signalled as to what to
do with these values and produces a result. The result is steered to the destination
register. The instruction encodes which registers to use for both the source and
destination, as well as what operation to perform.

Heads up: Registers are very different from the rest of memory. Because
there is a limited set of them, you can think of each one as having a name
even if that name looks remarkably like a number. On most machines,
the specific register name is built into the instruction somehow. That is
different from accessing main memory, which is accessed by an address,
and can be many different sizes depending on the specific machine and
how much money you have. A cache is in different category: you generally
do not know it is there, and it is managed purely in hardware. The
operating system may have access to special instructions to do things like
clear a cache but to user-level programs, a cache is invisible.

Real systems often have two or more layers of cache, with the highest-level
cache (sometimes called L/ for first-level cache) tightly integrated into the CPU
for maximum speed. Because the fastest kind of memory is relatively expensive
and consumes a lot of power per bit, lower levels of cache that are still faster than
main memory but slower than L1 provide a compromise solution. The CPU uses
L1 cache whenever it can, and drops down a slower bigger layer if the item it
needs is not in L1. The ideal effect is a memory as big as you can afford based
on the cheapest technology but as fast as the fastest you can buy. In practice, we
achieve something in between — not quite as cheap as the cheapest technology, and
not quite as fast as the speediest kind of RAM. Figure 1.2 illustrates a multicore
design (a general concept, not a specific system, though some Intel designs have a
similar cache hierarchy) with 3 levels of cache — darker colouring implies faster.
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The cores each have their own caches down to L2, but share LL.3. Note how the
cache size increases as we go down the hierarchy. In a real design, the lowest-level
cache may be the largest single piece of logic on the chip, as depicted.

We will see more detail later, particularly of how memory is used under
programmer control — a programmer here meaning one who has access to the
hardware. For high-level languages, the “programmer” who sees the issues we
will be exploring is usually a compiler. Nonetheless, even in a managed-memory
language, there are aspects of memory usage you can control with useful (or the
opposite) effects on performance.

The take home message? Memory is organised in a hierarchy from
fastest (smallest) to slowest (biggest). Machine code has more control
over the memory hierarchy than an HLL does, so learning about machine
code is a useful start to understanding performance issues that arise from
memory use.

1.6 Practicalities

While there is a lot of MIPS hardware out there, it is often not in a convenient form
to program, like part of a network switch. So we will use a MIPS simulator called
SPIM. SPIM runs on a variety of platforms, meaning we do not need to worry too
much what sort of computer you want to use to run examples. A simulator is also
a little more forgiving than a real machine. You can crash programs on it as much
as you want, and not risk crashing the whole machine. You can also look in detail
at the state of registers. Unlike simulators used in computer architecture research,
SPIM does not aim to provide accurate statistics on execution time, or allow you
to change fundamental design parameters.

SPIM is a fairly faithful implementation of a MIPS assembler including
pseudo-instructions designed to simplify programming a bit. The notation differs
a little from that introduced on page 6. For example, register names start with “$”,
and some of my previous examples need more MIPS code to do the same thing.
But these are minor details. If you learn assembly-language programming for a
different instruction set, you will find much bigger differences: the approach to
machine instructions will differ a lot more than minor tweaks in syntax. A CISC
instruction set, like Intel’s, is a lot different, and other CISC instruction sets differ
a lot from each other. RISC instruction sets also differ from each other but not
nearly as much.
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To program using SPIM, you create a text file in a plain text editor. The
SPIM program expects your assembly-language file to have a name ending in
one of “.s”, “.a” or “.asm”. We will stick with “.s” in our examples, which is
consistent with UNIX-type systems. Once you have created your program, you
can load it into SPIM and if your code is syntactically correct (even with a very
simple language you can get this wrong), you can run it. SPIM includes features
to step through a program one instruction at a time, and allows you to see contents
of memory and registers.

Another significant advantage of SPIM is it has a highly simplified system
call interface, allowing you to do things like display numbers as output without
all the complications of the real system calls you would need to do output and the
like on a real machine (all of this is usually hidden from you by the programming
language). The available system calls are listed in Appendix C.

SPIM started as an undergraduate student project in 1990. The author James
Larus now works at Microsoft Research after a long career at the University of
Wisconsin-Madison. You can find extensive documentation on SPIM and the
MIPS instruction set at his web site: http://pages.cs.wisc.edu/ larus/
spim.html. Some history and details of how SPIM runs are in appendix E. Will
any of your projects be this successful? Let me know in 20 years . ..

Finally, a note on units. In the decimal world, we are familiar with multiples
of powers of 10 with prefixes like £ for 1,000. In the computer world, particularly
with RAM, which for practical reasons is sized in powers of 2, we use multiples
of powers of 2. Traditional decimal multiplier names, kilo, mega, giga, etc. are
sometimes misused for binary multiples rather than the official standard names
(kibi, mebi, gibi, etc.). We will avoid confusion by using abbreviated prefixes as
in table 1.2. As a general rule, anything that is traditionally made of digital logic
uses powers of 2 multipliers and everything else uses decimal multipliers. The one
exception is flash, which, despite being made of digital logic, usually has sizes in
powers of 10, in keeping with disk sizing?.

The take home message? Programming at machine level can be very
hard. A simulator like SPIM takes away some of the pain and makes it
easier to understand how your code relates to the machine, which is the
whole point of this book.

Disks were originally sized in powers of 2, until marketing people noticed that decimal units are
smaller and hence make disks sound bigger than when sized in power of 2 units.
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Table 1.2: Binary and Decimal Units
decimal binary
prefix multiplier | name || prefix multiplier | name
k 103 =1,000 | kilo Ki 210=1024 | kibi
M 10% = 1,000,000 | mega || Mi 220 = 1,048,576 | mebi
G 10° = 1,000,000,000 | giga || Gi 239 =1,073,741,824 | gibi
T 102 | tera Ti 240 | tebi
P 10'5 | peta || Pi 250 | pebi
E 10'8 | exa Ei 200 | exbi
Z 102! | zetta || Zi 270 | zebi
Y 10%* | yotta || Yi 280 | yobi

1.7 Further Reading

A good source on architecture material including the MIPS processor is Patterson
and Hennessy [2014]. Another take on programming from hardware up is Patt
and Patel [2013].

Exercises

1. Look up Appendix A and compare the encodings of uppercase and lower-
case letters.

(a) Assuming you have a lowercase letter, what arithmetic would you use

to convert it to the representation of the same uppercase letter?

(b) How would you do the reverse conversion (upper to lower)?

(¢) How would you check if a character was a digit?

(d) How would you check if a character was a letter of the alphabet?

2. For the two variations on implementation of a for loop, for N=10 (§1.2,

page

6):

(a) Count the number of instructions executed for each of the two

variations (dynamic instruction count). Do you need to include the
nop instruction in the count? Why?

(b) How much do the counts of executed instructions differ between the
two versions of the loop? What percent change does that represent?
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(c) Was changing the code worth the effort?
(d) Is eliminating the extra nop instruction significant? Explain.

(e) You could eliminate the wasted j instruction in the second example by
testing the loop condition at the top as well as at the bottom.

1. Write out this new version.

ii. Is the change worthwhile? Explain, comparing with the two
versions I give in §1.2, referring to the answers from previous
parts of this question.

3. Java compiles to bytecode and often uses a JIT compiler to achieve
reasonable speed. Find out how Python and C# are usually implemented.

(a) Are they compiled, interpreted or intermediate languages?

(b) Is it possible for a language to be compiled in some implementations
and interpreted in others? Explain.

(c) Aside from achieving portability, why else is Java compiled to
bytecode rather than machine code?

4. When the original predecessor of the current Intel instruction set was
created, a home computer had 16KiB of memory. That’s 16384 bytes.
Really. Discuss why an instruction set design that minimised memory
footprint may have seemed like a good idea at the time.

5. A typical CPU has anything from less than 10 to about 30 registers. A cache
is measured in thousands to a few million bytes. Main memory is billions
of bytes. “The ideal effect is a memory as big as you can afford based on
the cheapest technology but as fast as the fastest you can buy.” Discuss how
this could be possible.

6. Give advantages and disadvantages of using a simulator like SPIM to learn
assembly-language programming.



2 Numbers and the Machine

incidence. Electronic logic is very easy to construct using exactly two
values that can be represented as two different voltages, or two different
switch positions. Back in the 19th century, an English mathematician, George

COMPUTERS GENERALLY DO THINGS BY POWERS OF TWO. This is no co-

Boole, invented a form of algebra for expressing logic. He saw this as an
application of mathematical methods to philosophy. Most people would regard
pure mathematics and philosophy as far removed from practicality, yet his work
became the basis for one of the fastest-developing industries of all time.

Out of recognition of Boole, we often talk of boolean values for data
types representing values in logic (in some languages shortened to bool for
the type name), and we use the terms “boolean” and “logical” interchangeably
when talking about operations (basic built-in functions) and functions (more
complicated logic built up out of basic operations).

In logic, there are two values: false and true. These two values can be
represented, respectively, by the numbers 0 and 1. If you represent numbers in
base 2, each digit is either a 0 or a 1. Operations on numbers can be thought of
then as combinations of logical or boolean operations. To understand how this
all works, we need a little logic and some concept of working with numbers in
different bases.

Integers are relatively straightforward; representing fractions gets more com-
plicated. Let’s start with the absolute simplest thing, logic, and work our way
through to the harder stuff. As we go along, I point to examples in real computers.

2.1 Logic

Logic operations at machine level are very efficient because the machine can work
on a whole machine word at a time. Exactly what constitutes a word depends on
the specific machine, or even on the specific mode in which it is running. It is

20
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Table 2.1: Truth table example: nand

A B | Anand B
0 O 1
0 1 1
1 0 1
1 1 0

common for a machine word to be 32 bits long (or 4 bytes), though 64-bit words
are increasingly common. Most instruction sets also allow operations on smaller
and sometimes larger units. To keep things simple, I restrict examples in this
chapter to byte-width (8-bit) operations where possible.

The most basic operation at machine level for our purposes is nand or not
and. At hardware level, basic logic operators are implemented in gates — a unit
of hardware that takes one or more inputs and usually has one output. A nand
gate can easily be built out of basic electronics and has the useful property that it
can be used to construct any other logic operation, meaning it is a universal gate.
We can express values of a logic operation with a truth table — a representation of
the output for any input. We can do this because there are only two values, so a
complete table (at least for simple logic operations or functions) is small enough
to write out. Table 2.1 is an example, illustrating the nand operation.

Since we are working close to the machine it is convenient to express boolean
values as 1s and Os, and I will mostly do that from here on, but remember that
these values represent true and false.

Let’s take a closer look at the table to see how we can use nand to express
other logical operations. Tie both inputs together so A=B, and it becomes an
inverter, i.e., a logical not or negation function. In the truth table, this situation
corresponds to the two lines where A and B have the same input. Satisfy yourself
that this situation corresponds to the truth table for an inverter.

Figure 2.1 illustrates how to implement a not gate using a nand gate; see figure
2.2 for how common gates are illustrated in logic circuits.

Once you have a logical not, you can use your nand to make an and — just
negate its output. How about making a logical or? A logical or produces a 1 if any

A pa

Figure 2.1: A nand gate used to implement a not gate
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of its inputs is a 1; it produces a 0 only if both inputs are 0. The nand operation
does the opposite: it produces a 0 only if both inputs are 1, and 1 otherwise. So if
we invert both its inputs, we get an or.

Table 2.2 illustrates the and and or functions. Relate table 2.2 to table 2.1 and
make sure you understand the explanation of how the and and or operations can
be derived from nand.

It is tedious to write out and and or in long boolean expressions. There are
several alternative notations for shortening their names. The simplest if you are
in a plain-text world is to write and as a “.” and or as a “+”. This is because and
is a little like multiplying by 1s and Os (anything you multiply by 0 is 0) and or
is slightly less like addition. Adding any combination of a 1 and a 0 gives you
a 1; adding two 1s should give you the value 2, which is not quite right. And
of course adding O to itself should result in 0. The problem with this notation is
that it looks too much like arithmetic and is not exactly the same thing. For this
reason, programming languages often use another notation for logical or boolean
operations. In C-like languages, we use the symbols “&&” for a logical and, or
“&” if we want the operation to apply a bit at a time, and or is spelt as “| | or “|”
for the bitwise equivalent.

For handwritten equations, the most convenient notation is A for and and V
for or. If you remember that the version pointing up looks like an “A” for and, it
is easy to remember which symbol is which. Exclusive or (often abbreviated to
xor) is effectively a not equals operation, and is written as a circle around a plus
sign: @. Drawing a tight border around a plus sign makes it look kind of exclusive
(like a gated community with a high fence).

Finally, we need a notation for negation. In C-like languages, a logical not is
“1” , written before the
expression to which it applies — much as you would put a minus sign before an
arithmetic expression to negate it. Yet another notation (called overbar) is to draw

(13 2

. Another common notation is “—”, as with

‘6'9’

written as

a horizontal line above an expression you are negating.

Table 2.2: Truth table example: and and or

A B|AandB | AorB
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 1
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The following two pairs of equations collectively express De Morgan’s
Laws, often useful for simplifying logical expressions, using alternative negation

notations:
AVB = AAB
—-AV —B —(AAB) 2.1)
ANB AV

BN

~AA-B = —(AVB) (2.2)

I will generally use the A (overbar) notation, since it is a little quicker to write
and easier to read. Also, the overbar notation reduces the need to bracket
subexpressions, since a line over a subexpression indicates that you must calculate
that subexpression as a unit before negating (inverting) it.

De Morgan’s Laws can be summarised like this, for any expression containing
an and or an or:

 swap the and for an or — or vice-versa

* swap negating from the whole expression to the subexpressions joined by
the and or the or — or vice-versa

The following identities are also useful for simplifying logical expressions (it
should be obvious from truth table 2.2 why equations 2.3-2.8 hold):

AV1 = 1 or-tautology (2.3)
AV0O = A or-identity 2.4)
ANO = O (2.5)
ANl = A and-identity (2.6)
ANA = 0 (2.7)
AVA 1 (2.8)
AN(BVC) = (AAB)V(AAC) distribution of and overor  (2.9)
AV (BAC) = (AVB)A(AVC) distribution of or over and (2.10)

A few points to note:

 any formula that is always true no matter what the values of the variables
is called a rautology
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Table 2.3: Truth table example: proof of one of De Morgan's Laws

A B|A|B|AVB|AAB|AAB
0 0|11 1 0 1
0 1]1|/0]| 1 0 1
1 0/0|1]| 1 0 1
1 1/]0/0| O 1 0

Table 2.4: Truth table example extended: xor added

A B|AANB|AVB | A®B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

* any formula that is always false no matter what the values of the variables
is called a contradiction

In a logic circuit, a tautology (contradiction) is always true (false) for all inputs.

Back to truth tables — simple proofs in logic can be constructed by writing out
a truth table. Let’s try that with equation 2.1. Table 2.3 demonstrates that for all
possible values of A and B, equation 2.1 holds. To check, identify the columns of
the table that represent the left and right hand sides of the equation, and note that
every entry is the same. To help you, the relevant columns of the table in are in
bold text.

Finally, let’s look at notation for describing logic circuits. There are various
variations again, but we will stick with the most common version, illustrated in
figure 2.2. I’ve added one more useful operation, exclusive or.

If you start from thinking of the symbol for and as looking like the “D” in
“AND”, it becomes easy to remember which is which. A small circle on the
output indicates negating, so it should be clear why a nand looks like an and gate
with a circle at the output. And exclusive or? It has an extra curve at the inputs
like a fence to make it look exclusive. For completeness, table 2.4 extends table
2.2 to include xor.

Ironically the symbol for nand looks as if it is made out of and and an inverter,
whereas in hardware, a nand gate is likely to be a fundamental building block. But
from here on, we use the logic operations and diagrams without worrying about
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A— A A— A
Q
D 0 e -

() 0=ANAB (b) 0=AVB (c) 0=ANAB (d) 0=A®B

Figure 2.2: Logic gate symbols

A DO—I_ Q
D= D

Figure 2.3: Exclusive or from nand gates

what the hardware building blocks really are.

The symbols for logic operations are useful for visualising logic circuits.
Designers generally draw diagrams representing logic with information flow from
left to right and secondarily top to bottom.

To illustrate how a single universal gate like nand can be used to build other
operations (nor is also a universal gate), take a look at figure 2.3'. Looks
impressive. But is it correct? Let’s write out the exclusive or circuit as a logical
expression (reading left to right and if there is any vertical arrangement, top to
bottom):

QO = (ANAANB)A(BANAAB) (2.11)

This doesn’t look promising as a start — writing a truth table for something this
complicated wouldn’t be much fun, with a lot of potential for error, so let’s try a
little logic algebra. We can simplify this using De Morgan’s Laws (remember, the
overbar groups terms, so we have to add bracketing when we take it away):

Q = (ANAAB)V(BANAAB)
Apply De Morgan’s Laws again (this time, we do need additional brackets):

Q = (AN(AVB))V(BA(AVB))

Image source: http://en.wikipedia.org/wiki/XOR_gate.
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This is not looking a whole lot simpler. We will make it look worse in one more
step, then collapse it down to something manageable. Apply equations 2.3-2.10:

Q = ((ANA)V(AAB))V((BAA)V (BAB))
= (AAB)V(BAA) (2.12)

This now is a simple enough expression to put into a truth table to verify that it
matches the xor definition (A & B) in table 2.4.

There is a lot more to digital logic than this; a logic design course would cover
design simplification techniques, how design elements like adders and flip-flops
(that can store a bit) work, how clock signals are used, and much more. What
we have covered here should be sufficient to get you started on a programmer’s
perspective of logic. We will go into a little more detail, but not nearly as much
as you would see in a logic design course.

The take home message? Understanding a little boolean algebra can do
wonders for simplifying logic. Even if you never get into logic design, you
can use these concepts in programming.

2.2 Numbers

On now to numbers. Remember, everything in the hardware world is a 0 or a
1. That rather limits your options for counting unless you can represent bigger
numbers using binary digits or bits. First, let’s start with some basics on how we
represent numbers, then look at how we can take this to the logic space.

Regular numbers we use are expressed in base 10. The rightmost (low-order)
digit represents values from O to 9. The next digit to its left represents values (if
not 0) from 10 to 90. In general, the digit in position j, numbering from O and
from the right, represents its value times 10/. If we want to extract the decimal
digits one at a time starting from the low-order digit, we can divide by 10, and the
next digit is the remainder of this division. For example, if the number is 342, we
can extract the digits one at a time as follows:

next divide divide result remainder

342 =10 34 — 2
34 +10 3 —4
3+10 0 —3

This example shows how we can create a formula for base conversion. If we
want to see how a number is represented in base 2 — as it would be in computer
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hardware — instead of dividing by 10 and keeping the remainder, we can divide by
2 and keep the remainder. Let’s do that for 342 and see what we get.
next divide divide result remainder

342 =2 171 —0
171 =2 85 —1
85 +2 42 —1
42 =2 21 —0
21 =2 10 —1
10 -2 5 —0
5+2 2 —1
22 1 —0
1+2 0 —1

So this means the base 2 (binary) representation of 342, is (low digit from the

first row of the calculation) 101010110,. Let’s check by writing each position as a

multiple of a power of 2, this time starting from the high digit and working down:
power power value multiple contribution

28 256 1 256
27 128 0 0
26 64 1 64
27 32 0 0
24 16 1 16
23 8 0 0
22 4 1 4
2! 2 1 2
20 1 0 0

total 342

Heads up: For base conversion, it is not too hard to remember that you
divide to obtain the next digit of a whole number because dividing is like
shifting the number to the right, with the low digit dropping off at the
right end. For obtaining the digits of a fraction, you move the number the
opposite way to obtain the next digit, hence multiplying — as we will see
shortly.

Once we have a number in binary, it is rather long and unwieldy, so a common
trick is to write binary numbers, unless we need to see the bit pattern explicitly,
in hexadecimal (base 16 — commonly called hex). Converting a binary number
to hex is pretty easy. A hex digit represents values from 0 to 15. We write the
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values that require 2 digits in decimal as A-F, representing the decimal values 10-
15. Since a hex digit represents 16 different values and 4 bits also represent 16
different values, we can convert to hex simply by grouping bits in fours (starting
from the lowest-order digit, if the number of bits isn’t a multiple of 4). Here’s an
example (note the split between groups of 4 bits in the binary representation):

42 = 0010[1010,
= 2A6

Since writing a subscript 16 is tedious (and not possible in a simple programming
editor), we write hex numbers as “0x” before the digits instead. In this case: 0x2A.

Integers

A practical issue with computer representation of numbers is that we have a fixed-
length storage unit at machine level. In §2.1, I mention units like words and bytes.
Any arithmetic instruction at hardware level (at least in designs in common use)
specifies the size of the operand. If, for example, we have a byte-sized operation,
we have 8 bits, meaning we can represent 28 different values. If you look at the
3420 to base 2 conversion example, we used 9 bits to store that number. What
would the largest number be that we could store in 8 bits? We know it has to be
smaller than 256, because we write 256 in binary as a 1 followed by 8 zeros. In
general, for base r, the biggest number we can store in j digits is 7/ — 1. Think of
base 10: if you have 3 digits, the largest number you can represent is 999, which
is 10> — 1. So the biggest number we can store in 8 bits is 255, which is 28 — 1,
which is not too surprising really because 2% is the smallest number that needs 9
bits, because it has the 9th bit set, and all the others zero.

This is all well and good if we are only dealing with positive numbers, but we
sometimes need negative numbers as well. There are many ways to represent
negative values but the most popular at hardware level for integers is two’s
complement, also called 2’s complement. In 2’s complement notation, you convert
between positive and negative by two simple steps:

1. invert all the bits
2. add 1

2’s complement notation has several advantages. Negative values always have
the high-order bit set, so you can easily split positive and negative values on that
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Table 2.5: Two's complement examples, in 8 bits

positive base 10 base 2 complement 2’s complement
42 00101010 11010101 11010110

27 00011011 11100100 11100101

1 00000001 11111110 11111111

bit (which you can think of as the sign bif). Arithmetic operations just work.
Testing for ordering is simple: a test for example for “less than” can be done with
a subtraction and checking if the sign bit of the result is set. If you want to test
ordering directly, you have to treat the sign bit as a separate case but once you
have split positives and negatives, the same rule applies to testing for ordering.
A bigger number (closer to 0 if negative) has more bits set at the high end of the
word than a smaller number, whether it is positive or negative.

Another option is one’s complement, which omits the step of adding 1. It is
simpler conceptually but has the drawback that zero has two representations, all
0 bits or all 1 bits, and you cannot separate positives and negatives simply by
looking at one bit. Yet another option is signed magnitude: negation is simply by
flipping the sign bit. We will see signed magnitude and yet another variation on
representing negative values when we look at floating point numbers.

Heads up: Two’s complement representation only works if we store a
number in a predefined number of bits. If you need e.g. an 8-bit number,
you should use all the bits even if the high-order bits are zero, otherwise
you can make a mistake when negating.

Look at the examples in table 2.5. As the positive values get smaller, the base 2
representation has fewer and fewer set (1) bits in the higher positions. Look across
to the last column, which represents the negative version of the same number. As
the absolute value gets smaller, the number of high-order 1 bits increases. In fact
the “biggest” negative number is -1 (in the last row of the table). That is in fact
exactly what we want, since -1 is the largest negative integer.

Another nice feature of 2’s complement is it is easy to widen a number, i.e.,
represent it in more bits. All you have to do is copy the sign bit to the left (the
high-order direction) when copying to a wider representation. This is called sign-
extending. So a an 8-bit representation of 42 1s 00101010, and -421s 11010110. If
we want to move these to a 16-bit representation, all we need do is copy the high-
order (sign) bit to the left 8 times, in the high-order direction. This is obvious for
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the positive number: zeroes to the left of any number do not change its value. Let’s
complement and add 1 to make sure this works for the negative representation,
with the extra 8 zeroed bits added to the left of the binary representation of 42:
0000000000101010 4219 in binary
1111111111010101 complement

1111111111010110 add 1 to get —421
Check that the first line (42;¢) and the last line (—421¢) are the same as their 8-bit

representations except for sign extension to the left by 8 bits.
Let’s do an example of 2’s complement arithmetic. We will calculate 27 + -1.
From table 2.5 we can look up the 2’s complement representations to add and the

arithmetic is as follows:
00011011

+ 11111111

1+ 00011010
...and we have a problem — there is a 1 carried out of the last position, but we

only have 8 bits, so where does it go?

But first, what do we expect the answer to be? If the system works, it should
be 26, or, in 8 bits of binary, 00011010, — which is exactly our answer, so we are
OK if we can get away with losing the carry-out bit. That brings me to another
rule of 2’s complement arithmetic: if you carry in to the high-order digit (sign
bit), you have to carry out of it. If not, you have an overflow error. So this time,
we’re good. Also bad: if you carry out of the sign bit when you didn’t carry in.

In general, hardware supports a range of different sizes and formats: unsigned
integers are available if you don’t need negative values, and the extra bit you gain
approximately doubles the range in the positive direction. With 8 bits in unsigned
format you can represent numbers in the range ()..(28 — 1) or 0..255. With 2’s
complement representation, you can represent numbers in the range —27..(27 — 1)
or —128..127. Whether unsigned or 2’s complement values, there are 2% = 256
different bit patterns. There is one more negative than positive value because zero
takes up one of the bit patterns with the sign bit not set.

Multiplication and division at hardware level are much more complicated than
addition and subtraction. What we have so far is enough to illustrate the general
principles.

The take home message? Tiwo’s complement arithmetic relies on a fixed-
precision representation of integers. Converting between positives and
negatives is easy and arithmetic generally just works, as long as you check
correctly for overflows.
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1 bit 8 bits 23 bits

S exp significand

Figure 2.4: |IEEE 754 32-bit floating point

Floats

There are various ways of representing fractional values. The most common in
current usage is the IEEE standard for floating point. A floating point number
consists of the digits and an exponent, in effect a scale that positions the divide
between fraction and whole number. You should be familiar with scientific
notation for base 10, for example, 2,345,100 is written as 2.3451 x 10° in scientific
notation. Usually scientists write numbers in this format as a single non-zero digit
before the decimal, because that makes it easy to compare values across a wide
range of scales. Placing the split between fraction and whole number at a standard
position is called normalising.

In binary representation, a normalised floating point number is represented
with a 1 in the most significant position, and the fraction part starts immediately
after, as with a normalised decimal number. Since this 1 is always there, it does
not have to be stored. The only exception is where the exponent is all zeros.
This convention buys an extra bit of precision (all numbers except 0 have a 1
in them somewhere) at the expense of a little complexity, which is tolerable for
floating point since the basic operations are a lot more complex to implement
than for integer. In other words, we represent all numbers except those with zero
exponents as S1 . xXXXXXXXXXXXXXXXXXX X 24P but don’t store the high-order 1.

Rather than using 2’s complement, the widely-used IEEE 754 standard [IEEE
2008] uses signed magnitude, meaning a sign bit is used to indicate negative
numbers, and the bit string for a positive and negative value is otherwise the same.
In addition to the bits representing the digits of the number, there is an exponent.
In the IEEE standard, the exponent is represented in an offset or excess notation.
Just to be different, in the IEEE standard this approach is called the exponent
bias. An exponent uses 8 bits in 32-bit floating point, and the actual value of the
exponent is found by subtracting 127 (the bias) from the stored value. The IEEE
standard has tricks to identify special values representing c and —eoo, as well as
values that are “not a number” (or NalN), using the fact that the bit pattern of all 1s
for the exponent does not represent an allowed value. The effect of these special
values is to allow errors to propagate if they aren’t handled immediately.
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Figure 2.4 illustrates the layout of an IEEE-standard 32-bit floating point
number. Although only 23 bits are represented for the significand — the digits
of the number — remember there is an implicit leading 1 unless the exponent is
zero so in effect there are 24 bits of precision. The IEEE standard defines a range
of sizes from 16 bits to 128, though the 32-bit version and a 64-bit double are the
two sizes in common use.

Heads up: If you do anything related to two’s complement such as
inverting all or some of the bits of an IEEE floating-point number you
are doing the wrong thing. Two’s complement is for integer values only.

A number v represented in this format with sign bit S, exponent bias 127,
exponent E and significand F (for fraction) is not simple to define, with variations
using reserved bit patterns (not only the NaN and e concepts above). The common
case is

v = —15x(14F)x2E71%7 (2.13)

The —15 simply expresses the fact that the sign bit if 1 negates the number (x° is
always 1). The 1 + F part signifies the addition of the missing 1, which we can
add this way because we know the first bit represented is the start of the fraction
part after this missing 1. You should read the F' as the binary digits to the right of
the point.

You may be wondering why exponents are represented this way. Testing for
ordering is easier if the smallest exponent allowed is represented as all Os, and
they increase from there. Putting the exponent at the high end of the word just
after the sign bit, given this excess notation, makes comparison for ordering a lot
easier.

Floating point is a large complicated area of system design. For our purposes
it is sufficient to know the general principles. Let’s see how we represent a couple
of values. First, 12.1. We convert this to binary as follows, starting with the whole
number part:

next divide divide result remainder

12 -2 6 — 0
62 3 —0
32 1 —1
1+2 0 —1

So 1219 = 1100, (which you can check easily: 23422 +0+0=8+4 = 12).
To convert a fraction to another base, multiply by the new base, and the whole
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number part of the answer is the next digit to the right (starting at the point).
Each time, discard the digit you used to find the number to the right of the fraction
(unless it’s a zero). So to convert 0.1 to binary:

next multiply multiply result whole number

0.1 x2 0.2 —0
0.2 x2 0.4 —0
04 x2 0.8 —0
0.8 x2 1.6 —1
0.6 x2 1.2 —1
02 x2 0.4 —0

So far, we have the fraction part is 0.000110;, — and it seems a pattern is developing
since we got back to 0.4. So, strangely if you are used to base 10, 0.1;¢ is a
recurring fraction in binary. If we write out the first 32 digits, it comes out as

0.0001100110011001100110011001,
Putting this together, we have

12.119 ~ 1100.0001100110011001100110011001,
to more digits than we have space for in a 32-bit number. Let’s look now at how
we encode this in IEEE single format. We have 23 bits for the significand plus the
high-order 1 we do not represent, which goes before the point. That means our bit
pattern is

10000011001100110011001
Not quite — the next digit we discarded is a 1, so we should round up, and our bit
pattern then is the truncated bit pattern plus 1:
10000011001100110011010

Next, we need the exponent. If we put back the missing 1 and put the binary point
to its immediate right, how many bit positions must we shift the point to get the
right magnitude, and in which direction? To get our number back to looking like
this (with the discarded “1” temporarily back):

1100.00011001100110011010
we need to shift the binary (not decimal!) point 3 places to the right. Shifting a
point to the right is multiplying by a positive power, so our exponent value is 3.
In excess notation, that means the stored exponent value is 3 + 127 = 130 which
in binary is 10000010. Finally, we must set the sign bit, in this case, to 0. So let’s
pack this all into a 32-bit IEEE single. First the sign bit, then the exponent in 8
bits and finally the significand (without the leading 1) in 23 bits:

0110000010/10000011001100110011010
Now, let’s split the bits in 4s and express this as a hex number:
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0100/000110100/00011100111001/100111010

4 1 4 1 9 9 9 a
Here’s a trick to check this. Now we have the hex representation, launch SPIM
and change the register panel to FP Regs. Change any $f register to “4141999a”
in hexadecimal mode, then change the register panel to decimal.

Finally, go back to equation 2.13 and check the working against the equation.

One significant practical issue is that the number of digits represented (about
7, converted to decimal) is much smaller than the range of values (up to about
10®). This means you can easily lose precision by doing arithmetic in the wrong
order.

For example:

a = 1E20;

b = 1E-20;

c = 1E20 - 1;
d=(a+b) - c;

With this example we don’t have enough digits of precision to represent a number
representing the answer to 10?2 + 10720 so the result of a + b is 10%° after losing
low-order precision. The value of c is close enough to 10%° as well that we lose
the —1 to roundoff. So what is stored in d is 0. If we reorder the calculation as
follows:

d=(a-c) + b;

we still lose a little to roundoff, and get a tiny amount closer to the correct answer
(1 + 10~20; with available bits, the most accurate answer should in fact be 1).
What is now stored in d is 1 x 1072°. The FORTRAN programming language
is popular among those who do long chains of calculations because it respects
the order of computation as written by the programmer. Other languages that
take a more permissive approach to code optimisation can destroy the effect of a
carefully selected order of calculation where the programmer is aware of potential
for round-off error.

Heads up: We have only looked at a small fraction of the complications
of floating point. Try to understand what we have covered because it is the
essentials of the subject but if you ever do computations where precision
and error in calculation is really important, study the subject in more
depth.
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Table 2.6: Truth table: Half adder (S=A + B ignoring carry; C=carry bit)

C

—_ - O O
—_ O = Ol
S = = Ol
- o O O

Converting between integer and floating point is complicated by the fact that
integer and float registers can’t be used together in most instructions. If, for
example, we want to round a floating point number to the nearest integer, we
need to add 0.5 (or subtract if negative), truncate to an integer and transfer it
to an integer register. MIPS considers the floating point unit (FPU) to be a
coprocessor, and is numbered 1. Instructions specific to movement between the
ALU and the FPU refer to coprocessor 1 (not to be confused with a lowercase
“L”). Another example of a coprocessor is a graphics processing unit (GPU).
Historically, coprocessors were a separate chip, which is still the case for high-end
GPUs, but seldom today for FPUs, though some designs that don’t need floating
point and are cost-constrained leave out the FPU.

The take home message? Floating point arithmetic is very complicated,
and a specialist subject. We only need know generalities of how it works,
and the kind of traps and pitfalls that can catch the unwary.

2.3 Numbers and Logic

Let’s tie some of this together now and take a look at how computer logic to
do simple arithmetic works. Adding numbers is one of the simpler arithmetic
operations, so let’s take a brief look at that. If you add one bit at a time, what are
the possible outputs? If you add anything but a pair of 1s, your answer can only
be a single bit. If you add a pair of 1s, your answer carries out. So the minimum
operation you need is one where you can add a pair of bits and carry out another
bit.

We can draw up a truth table to cover all the variations. Table 2.6 describes
a half adder, so called because it lacks a crucial detail to implement addition: a
carry in from the next lower bit. Observe that the carry bit is only 1 in the case
where the two inputs are 1, as noted above. What kind of logic circuit could
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Figure 2.5: Half adder logic
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Figure 2.6: Full adder logic block

realise this function? Let’s start with the carry, since that has one distinct case:
both inputs 1. What logic function only produces a 1 exactly when both its inputs
are 1? That looks like and. Now, what about a logic function that produces a 0
when its inputs are the same? That would be xor. We can write this as a pair of
equations for the two outputs, the sum S and the carry out C:

S = A®B (2.14)
C = AAB (2.15)

Figure 2.5 illustrates the logic circuit?>. Now we have the low-level construct right,
we can apply our old friend, abstraction, and hide the details. A logic block such
as a half adder can be drawn as if it’s a primitive. However, that’s not terribly
useful as we really want the real deal, a logic block that can take a carry in as
well. Let’s start from what we want the logic block to look like in figure 2.6, then
look at what we need to add to the logic circuit. We want a carry in bit Cj,, two
input bits A and B, a sum bit S and a carry out bit C,,;. Earlier you may recall I
said we generally want our logic diagrams to flow left to right, then top to bottom.
You will see shortly why this logic block has the flow backwards.

Having decided what we want out of the logic block, let’s define it as before
with a truth table. This time, we have an additional input, the carry in, so that will
double the number of rows of the truth table. The first half is exactly as before,

’Image source for logic circuits in this section: http://en.wikipedia.org/wiki/Adder_
%28electronics’29.
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Table 2.7: Truth table: Full adder (Cj,=carry in, S=C;, +A + B ignoring carry
out; C,y=carry out)

Cin A B|S Cout
0O 0 0(0] O
0O O 1/|1] 0
0O 1 0|1 O
0O 1 1|0] 1
1 0 O0(1, O
1 0 10| 1
1 1 0(0] 1
I 1 11 1

OT’T’
Y

o

COUt

0
5

Figure 2.7: Full adder logic circuit

and the second half reflects the case where there is a carry in.

There are many ways this function could be implemented. You could for
example combine two half adders. The circuit in figure 2.7 is an example. You
can show it implements the truth table of table 2.7 by writing out the truth table of
the circuit and showing the outputs are the same (S and C,,;) for the same inputs
(A, B and Cy).

Let’s see how we can use this full adder to build a circuit that can add more
than one bit at a time. Simple. We can cascade our adders. Note now why it makes
sense for the logic to go from right to left. The low-order bits are added on the
right, the natural place for them if we are writing out a number, and carry outs feed
to the left as input to the carry in of the next higher-order bit. Figure 2.8 illustrates
a 4-bit adder using this approach. This is not a super-efficient way of adding, as
there is a delay for the carries to propagate through the entire width of the number.
A real adder will do more of the work in parallel, requiring more complex logic,
and could also use custom-designed components rather than standard logic gates,
since an adder is such a highly used component.
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Figure 2.8: Four-bit adder block diagram

Also missing is logic to check for overflows. For two’s complement arith-
metic, the condition of no overflow requires checking if there is either:

* neither a carry in to nor out of the highest bit or
* both a carry in and a carry out

If neither of these conditions holds, an overflow should be signalled.

2.4 The Machine

Now we have some theory, let’s see how this looks at machine code level, this
time taking a look at actual MIPS instructions rather than our previous simplified
machine code. Recall that on page 11, I said a RISC instruction set has a large
number of general purpose registers. The MIPS design has 32 integer registers
though, strictly speaking, some are not general-purpose. For example, register
0 is hardwired to contain the value 0, and some other registers are reserved by
convention for specific purposes. Since 32 registers is a high number to manage,
when programming at assembly level, the assembler provides special names to
subsets of the registers. One register is reserved for the assembler’s own use (e.g.,
it can construct instructions for you in some cases to keep things simple, and may
sometimes need an extra register). Here are a few more categories of register:

* temporaries — registers that could be overwritten when you call a function

* saved temporaries — registers that are guaranteed not to be overwritten when
you call a function

* result registers — used to return function values as well as targets for
arithmetic expressions
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» parameter values — used to pass parameters to functions

* context setup — stored memory locations that help us keep track of where
we are relative to function calls

global pointer — where to find global variables

— stack pointer — keeps track of where we can add local memory for
function calls and local variables

Jframe pointer — where we can find local variables and parameters that
aren’t in registers

return address — where to go to when we return from a function

We will return to details of function calling, so this is just background for now. At
this stage we will mainly use temporary registers.

The whole register set is numbered from 0 to 31. $0, register number 0, is
the zero register, also called $zero. In simple examples to get us started we will
use temporary registers named $t0-$t9. Let’s work our way towards reusing our
simple for loop example, but this time rewritten as proper MIPS code, starting
from the second version (page 7).

But first, we need some standard details that go with every example. Here are
some preliminaries:

» segment type — we need to tell the assembler whether we are introducing
new code or writing out data values

— text segment — contains code (the reasons for this mysterious usage is
lost in the mists of time>).

— data segment — usually constant values that you will load into registers;
we generally store constant values here, rather than variables, which
go in other memory that we will see later

We can put data and text segments wherever we like but it is easier to see
what is going on in a code file if you have one data segment at the start, and
a single code (text) segment after that

3Why text? This usage goes back at least to the Multics operating system, a project that started
in 1965. Possibly back in those days, machine code was something programmers routinely read?
More about Multics here: http://www.multicians.org/history.html.
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* entry point — in SPIM, the convention is you label an instruction as “main”
to indicate where execution starts

* exit from your code — you need to pass control back to the “operating
system” (OS); in this case, the simulator fakes a minimal OS that you can
return to when your code completes

Here is a minimal example — a program that has no data segment, and its text
segment only sets up a system call to exit:

.text
main: 1i $vO, 10 # system call code for exit = 10
syscall # call OS

Lines in assembly language may be labelled, and you can use these as names
representing a location in your program in branch and jump instructions, among
other things. A label is the first word on a line and is followed by “:”. Here, we
have the required label for the code entry point, ‘main”. Words starting with a “.”
are directives — they generally do not define a machine instruction, but contain
information for the assembler, such as divisions of memory (like .text, which
means what follows goes into the text segment), or indicating the type of data to be
loaded at a given location. The first instruction is a load immediate, an instruction
that puts the value given in the instruction into the named register. Note we are
using a register $vO0 to pass a value into our system call. The next instruction is
a system call, a special instruction that takes us out of normal execution and into
the operating system.

Let’s see what happens if you type this program into a text file, “minimal.s”
and load it into SPIM.

First, we need to see what SPIM looks like before we load our program. If
you launch SPIM, it has a big window showing register contents and preloaded
code, as in figure 2.9. There should be another window called “Console”, used for
simple input and output. The smaller top section of code (“User Text Segment”)
is where your code will slot in, and the code (“Kernel Text Segment”) below fakes
the effect of part of the operating system. The user text segment contains code to
pass in information from the environment where the program runs, which we will
ignore. Figure 2.10 shows the part of the user text segment we are interested in.

Let’s take this from left to right, then top to bottom. The first number in “[ ]~
is the machine address. This is displayed in hexadecimal and goes up in steps of
4. Why? Because MIPS addresses refer to bytes, and each machine instruction
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[-XeX¢) QtSpim
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FPRegs | IntRegs[16] | Data Text
006 Int Regs [16] o6 Text
PC =0 U xt Segment [00400000]..[00440000]
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cause 0 00400004] 27250004 addiu’$s, $29, 4 7 addiu sal $sp 4 # argv
BadvAddr = 0 08 426 4 addiu $6, 55, 4 7 addiu $a2 Sal 4 # envp
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0] 0000000c all 7 192: syscall # syscall 10 (exit)
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° Kernel Text Segment [80000000).. (80010000
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=0 0000184] 3c019000 lui $1, -28672 7 92: sw $v0 sl # Not re-entrant and we can’t trust $sp
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08] 0000000c  sys syscall
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Copyright 1990-2012, James R. Larus.
All Rights Reserved.

SPIM is distributed under a BSD license.

[00400014]
[00400018]
[0040001c]
[00400020]

0c000000
00000000
3402000a
0000000c

Figure 2.10: SPIM user text

See the file README for a full copyright notice.

Figure 2.9: SPI

jal 0x00000000 [main]
nop

ori $2, $0,
syscall

10

M at launch

; 188: jal main
; 189:
; 191:
; 192:

nop
1i $v0 10
syscall # syscall 10 (exit)

segment at launch
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is 4 bytes (32 bits). The next number is the machine instruction, also displayed
in hex (in the actual hardware, all numbers are binary — hex is commonly used to
display memory and register contents and machine addresses because it’s much
easier to read but easy to convert to binary when you need to). After that is the
representation of the machine instruction in human-readable (assembly-language)
form. Next is a line number from the original source file and finally the instruction
as it appeared in the original source file. We will see shortly why we need the
instruction displayed in two variants. The first instruction, a jump and link, is the
basis for creating function calls. It not only goes to the named location, but also
records the location of the next instruction (in register 31, also called $ra, for
return address — needed to get back when the function returns). We will return to
function calls later, so don’t worry about the detail. Next is a nop. For now take
it that this does nothing.

The third instruction has an interesting feature: the original source instruction
has been translated to an ori. What’s going on here? There isn’t actually a
load immediate instruction in the MIPS instruction set, but the assembler is
kind enough to fake the effect with another instruction, ori. The or immediate
instruction takes the logical or of a register value and a value embedded in the
instruction and stores the result in the destination register. Here, the first source
operand is $0, which always contains the value 0 and, if you recall our standard
logic identities, A V0 = A, so the effect of this instruction is exactly the same
as a load immediate. We could of course write our code using the ori instruction
directly, but li makes the intent clearer. This li is an example of a pseudoinstruction
(remember that concept from page 9?): an “instruction” that does not exist in
machine code, but which the assembler fakes with one or more real instructions.

What happens if you try to run SPIM in this state? You should see a complaint
something like figure 2.11. Why is it complaining? It points to a specific machine
instruction, at location 0x00400014, the jal instruction. What does it mean by
“Instruction references undefined symbol”? The predefined jal instruction wants
to jump to a location labeled main and there is no such location — we need to add
in some of our own code before it will run. At this point, SPIM has not actually
run much code — it has given up when trying to jump to a non-existent instruction.
When SPIM starts running, it runs whatever has been put into memory. If it runs
into something that is not properly defined (in this case, the main program), the
run can fail in interesting ways. SPIM includes an assembler, which translates to
machine code when you ask it to load a new program. When it assembles your
code, translating from assembly language, it can pick up some mistakes, but not
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niv |oe) — v

R19 [83] = 0 [800001c4] 3c019000 1lui $i, -28
=t L ———— 0l =l 81, o1
RO OO $4, 384(

jcall
Instruction references undefined symbol at :}: 223
0x00400014

[0x00400014] 0x0c000000 jal B
0x00000000 [main] ; 188: jal main $0, 54,
$2, 5o,

$2, s0,
1, -
CAbort | [ ok | [3%sh

$4, 526

Figure 2.11: SPIM upset about no main entry point

User Text Segment [00400000]..[00440000]
[00400000] 8£fa40000 1w $4, 0($29) ; 183: lw sa0 0(Ssp) # argc
[00400004] 27a50004 addiu $5, $29, 4 ; 184: addiu Sal S$Ssp 4 # argv
[00400008] 24a60004 addiu $6, $5, 4 ; 185: addiu $a2 Sal 4 # envp
[0040000c] 00041080 sl1l1 $2, $4, 2 ; 186: sl11 $v0 $Sa0 2
[00400010] 00c23021 addu $6, $6, $2 ; 187: addu $a2 sa2 $v0
[00400014] 0c100009 jal[0x00400024] [main] ; 188: jal main
[00400018] 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)
;

[00400024]| 3402000a ori $2, $0, 10 ; 2: 11 $v0, 10 # system call code for exit = 10

[00400028] 0000000c syscall ; 3: syscall # call 0S
Figure 2.12: SPIM user text segment: minimal program
nearly as many as with HLL compilers.

Luckily we have an example all ready — the minimal example on page 40.
Here it is again for ease of reference:

.text
main: 1i $vO, 10 # system call code for exit = 10
syscall # call 0S

Ask SPIM to reinitialise and load this file, minimal. s.

Now take a look at the text segment (assuming nothing broke). Note that the
Jal instruction now has the correct target address as marked in figure 2.12 — and
the corresponding address in the left column is also marked. Take close look and
identify where our own code is patched in to the predefined SPIM code. As in the
previous example, the li pseudoinstruction is replaced by an ori — but now in two
places, in our own code and in the pre-defined SPIM startup code.

Now we finally have the pieces together to implement our for loop. Let’s start
by rewriting it in MIPS format, and add initialisation of the loop limit N to 4.

.text
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[00400024] 340a0004 ori $10, $0, 4

[00400028] 00004021 addu $8, $0, $O : move S$t0, Szero # sum = 0;

[0040002c] 00004821 addu $9, $0, SO ; 8: move Stl, Szero # for (i = 0; 1

[00400030] 0810000f 3j 0x0040003c [test] ; 9: j test # test before first iteration

[00400034] 01094020 add $8, $8, $9 ; 10: add $t0,$t0,5tl # sum += i;
2‘:dy-0x004

: 1i §t2, 4 # N = 4;

N N
® N %

[00400038] 21290001 addi $9, $9, 1 ; 11: addi st1,$tl1,1 # increment loop counter
[0040003c] 012a082a |slt $1, $9, S10 ; 12: blt $tl,$t2,body # not done? Go again

[00400040] 1420fffd |bne $1, $0, -12 00040]
[00400044] 3402000a ori $2, $O0, 10 ; 13: 1i Sv0, 10 # system call code for exit = 10
[00400048] 0000000c syscall ; 14: syscall # call 0S

Figure 2.13: SPIM user text segment: for loop

# register use:

# $t0 : sum
# $t1 ;4
# $t2 : N
main: 1li $t2, 4 # N = 4;
move $t0, $zero # sum = 0;
move $t1, $zero # for (i = 0; i < N; i++)
j test # test before 1st iteration
body: add $t0,$t0,$t1 # sum += 1i;
addi $t1,$t1,1 # increment loop counter
test: blt $t1,$t2,body # not done? Go again
1i $v0, 10 # system call code for exit = 10
syscall # call OS

Note use of comments — mainly the original C-style source code, but with a
few explanations of non-obvious details. I also document register usage. Since
this piece of code stands alone and doesn’t call any functions, I can safely use
temporary registers that aren’t saved across a function call.

Load this code into SPIM (using Reinitialize and load file to clear out the
previous example).

Heads up: If you load the file without using the “Reinitialize” version of
the command, SPIM will add the file to the existing contents of memory,
something we don’t want. At least, not right now.

The standard initialisation code is the same; look for your main program
(jal 0x00400024 [main] tells you where to look). Figure 2.13 contains the
relevant part of the user text segment. Note how the test label in the j instruction
is replaced by 0x0040003c by the assembler.

The blt instruction is more interesting. Note that it has been replaced by two
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Table 2.8: Register conventions

symbolic name register number usage

$zero 0 zero constant (HW)
$at 1 assembler temporary
$vo-$vi 2-3 function or expression result
$a0-$a3 4-7 function parameters
$to-$t7 8-15 temporary

$s0-$s7 16-23 saved temporary
$t8-$t9 24-25 temporary

$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address (HW)

instructions (outlined with a rectangle). This is because MIPS does not have a blt
instruction and once again the assembler kindly creates one for us out of two more
primitive instructions. This is an example of a pseudoinstruction that expands to
more than one real instruction. Note also that the branch has the number -12 in
the place of the label. If the condition in the branch instruction is true, it transfers
control to an instruction at a position relative to itself. Since instructions take up 4
bytes (32 bits), an offset of -12 means go back 3 instructions (as indicated by the
arrow). The calculates this offset for us, which is just as well with complications
like pseudoinstructions that can expand to more than one real instruction.

To make it even more complicated, the number stored in the instruction isn’t
actually -12. Since machine instructions are always on whole word boundaries, it
isn’t necessary to store all the bits representing locations that can’t be instructions.
So the actual number stored in the branch instruction is -3 (check in binary: what
is -3 in two’s complement notation?).

It is useful at this point to list register conventions more completely. Except
for $zero (also called $0, fixed to the value O by hardware) and $ra ($31, used
to save a return address with a function call), these are strictly conventions,
and are not designed into the hardware. However being able to pass values to
functions, keep track of global variables and other similar purposes makes it
necessary that different parts of a program (possibly created at different times
with different tools) be able to communicate, hence standards for how registers
are used. Table 2.8 lists conventions for the 32 MIPS integer registers; only those
labelled “(HW)” have a purpose actually defined in hardware. This list is extended
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in Appendix B to include floating-point registers. Take a look now at the pair of
instructions highlighted in figure 2.13 that the assembler generated for us. Note
how both instructions use register $1, the register listed in table 2.8 as $at. This
register is reserved for the assembler so it can convert pseudoinstructions to actual
instructions even in cases where it may need an extra register. You should never
use this register in your own code.

Heads up: Many of the MIPS register conventions are purely
conveniences for the programmer: we enforce those conventions in the
way we code to make coding easier. A saved or temporary register (for
example) as far as the hardware is concerned can be used absolutely any
way we like but we should observe the standard conventions so our code
is understandable to ourselves and others and so it can be combined with
other code not written by ourselves.

One final detail: you may be wondering what the s1t $1, $9, $10 instruc-
tion does. If we translate it to the symbolic register names, it is a bit easier to
relate to the original code. Let’s also include the branch, with the label put back
to replace the -12:

slt $at, $t1, $t2
bne $at, $zero, body

In our code, we had:
blt $t1,$t2,body

The slt (set less than) instruction computes a less than comparison, and stores
it in a target register (in this case, $at, also known as $1). MIPS only has two
conditional branches, a bne for branch on not equal, and beq for branch on equal.
Other inequalities are constructed by the assembler in much the same way as the
blt pseudoinstruction.

The take home message? Though MIPS is a simple assembly language,
the large number of registers can be confusing, and we rely on conventions
to manage them conveniently. Pseudoinstructions as well as symbolic
register names make things easier for the programmer at the cost of
occasional differences between the real machine code and assembly-
language instructions.
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Exercises

1. Use a truth table to prove the second De Morgan’s Law in equation 2.2.

2. Write out truth tables for all the identities in equations 2.3-2.10 and show
that they all hold.

3. Exactly which simplifying equations apply to the simplifying step in
equation 2.12? Show each step in detail.

4. Use a truth table to prove that the final simplified version of equation 2.12
matches the definition of exclusive or in table 2.4.

5. Draw a logic circuit for the final simplified version of equation 2.12.

6. Convert 125 and 130 to binary, and add them using 8 bits, assuming 2’s
complement representation of negative numbers.

(a) Is your answer correct?

(b) Take the 2’s complement of your answer. What do you get now?

(c) Review the rules for detecting overflow in 2’s complement arithmetic.
Do you have a problem with this calculation? Explain.

7. Convert -14. 2 into IEEE 32-bit format, and check your answer in SPIM as
suggested on page 34.

8. Is there a way to reorder the calculation on page 34 so that the answer comes
out as 1? Is there a general rule you could apply to minimise roundoff error,
if you know the magnitude of the numbers?

9. Show that the logic circuit of figure 2.7 implements the truth table of table
2.7. To do this, write out the logic expression corresponding to the circuit.
Simplify if possible then write out a truth table for the circuit and compare
the outputs with table 2.7.

10. Design a full adder by combining two half adders. Study the truth table 2.7

to make sure you have the details right:

(a) Draw the logic blocks for two half adders, showing how they combine
to form a full adder, adding any additional logic you may need to link
them. Hint: you want to add the A and B inputs, then add the result to
the carry in Cj,, then combine the carry outs from the two half adders.
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(b) Expand your logic blocks to show the combined logic circuit the two
half adders represent.

(c) How much does your circuit differ from that in figure 2.7?
Work out the logic for checking for overflow in 2’s complement addition. If
there is a carry in to the sign bit, there must also be a carry out. The value

we are calculating is a bit V for overflow (O looks too much like a zero),
and the inputs are C;, and C,,,. V should be set to signal an overflow error.

(a) Write out the truth table showing when V' should be set, given inputs
Ci,, and C,,; for the sign bit.

(b) Find a boolean expression that implements the truth table.

(c) Draw a logic circuit that implements the boolean expression.

Why do you think only a restricted subset of registers is guaranteed to be
saved across a function call?

The SPIM assembler fakes a load immediate instruction (li) using ori
(or immediate), using the fact that AV 0 = A and register $zero. What
arithmetic operation could you use instead of ori to have the same effect?

Why do you think the MIPS designers did not provide instructions for the
full range of conditional branches?



3 Assembly by Example

EARNING TO PROGRAM IN ASSEMBLY LANGUAGE is a difficult skill. For-
L tunately, we only need to understand the general idea and how to construct
small examples for most purposes, because compilers handle large pro-
grams. The goal is to give you a sense of how high-level language constructs
are built up from below, so you will gain a better appreciation of efficiency issues.
Should you ever get into compiler writing, creating low-level device drivers, or
otherwise need to understand machine code in more detail, you will have the
basics to get started.

Once basics are out of the way, I show how to use standard templates to
generate your code. The first versions of these templates are as simple as
possible, and I later generalise them so they work for more complex scenarios,
like programs with more than one instance of the same control construct. While
assembly language gives you total freedom to write code as you like, using
templates has two benefits:

* you can focus on the hard parts of coding, rather than work out the logic for
basics like loops every time

* using a template gives you some idea how a compiler works, a useful start
if you go on to do a compiler course

In this chapter, I introduce a bit more detail of MIPS instructions and their
formats, then go on to translation of common constructs to MIPS assembly
language.

3.1 Instructions and their Formats

The MIPS architecture has remarkably few instruction types — just three basic
formats for most operations (operating system interactions like system calls are

49



50 CHAPTER 3. ASSEMBLY BY EXAMPLE

R opcode rs rt rd shiftamt |  function

31 26 25 2120 16 15 1110 65 0
| opcode rs rt immediate

31 26 25 2120 16 15 0
J opcode address

31 26 25 0

Figure 3.1: MIPS common instruction formats

an exception to the common layout; floating point instructions are based on a
similar pattern but differ in detail). Figure 3.1 illustrates these three formats.
The first thing to note is that the opcode is only 6 bits. That allows for 26 = 64
different opcodes. However, the function field in effect extends the opcode field
for instructions that don’t allow for an immediate operand in the instruction word.
The function field is also 6 bits long, so a fairly large instruction set could be
encoded if all available bit combinations were used. Even if half the opcodes
were used for the cases where the function field does not exist, encoding over
2000 instructions is possible with this scheme.

Heads up: An immediate operand must be a fixed value that you know
when you write down the instruction because it is embedded in the code
itself. In some cases you can use a name for a value, but that name has
to represent a value known to the assembler. It must also fit in the limited
number of bits allowed for an immediate operand.

Let’s look at the formats in a little more detail. In general, when we write
instructions in MIPS assembly language we usually put the destination — the
place where a value is stored — on the left, which is natural if you are used to
reading assignment statements in common HLLs that write an assignment with the
destination on the left. An exception as we see later is sfore instructions, where
the memory location to which the store is targeted is written last on the line, not
first, to put memory addressing into a position consistent with load instructions.

The R format is for instructions that use three registers, generally an operation
like

R[d] = R[s] OP R[t]

In this instruction format, you can think of d as specifying the destination. One
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exception to this general rule is logical shift instructions, which send the result to
R[d] after doing a left or right shift on the contents of R[t]; in this case R[s]
is ignored because the shift amount is built into the instruction. There are also
variable shift instructions where the shift amount is in R[s] (e.g., s11v: shift left
logical variable).

The I format is for instructions that use two registers, and an immediate
operand (a value built in to the instruction), generally of the form

R[t] = R[s] OP immediate

where immediate is a 16-bit value built in to the instruction. Load and store
instructions are of a similar format, but use the registers differently. In both cases,
R[s] plus the immediate operand (which is a signed number) form the address
and R[t] is the source of the value for a store instruction (copy from a register to
a memory location) or the destination for a load (copy from a memory location to
a register).

The J format is for instructions that have a single immediate operand, generally
of the form

OP immediate

where immediate here is a 26-bit value built in to the instruction. A j (jump, or
unconditional branch) instruction is of this format, hence the name.

In all cases, OP is defined by the opcode, as well as the function code in the
case of the R format.

Given that the immediate field is only 16 bits, how do you create constants
in your code that are longer than this? Let’s say you need to initialise a variable
called population with the value 420,000. This number translates to base 2 as
01100110 1000 1010 0000 (or in hex, 0x668 A0 — note the way I split the bits into
groups of four to make conversion to hex easier). This is clearly longer than 16
bits so how can we create this value in a register either to use directly or to put in
memory to use later (initialise a variable as the HLL types say)?

This is where logical shift instructions are useful. We can load the high 16 bits
into a register, shift left 16 bits, then put the low 16 bits into the register. The high
16 bits (4 hex digits) are 0x0006 and the low 16 bits are 0x68AO0.

To build up this example, we will assume we can put a variable in the data
segment. This is not what the data segment is usually used for: we need more
concepts than we have currently to implement variables properly. But first, we
will start with all values in registers.

We start from something like this in a HLL:
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lui $t0, 0x0006 0x000

lofolofoefofofofo oo oo [z [z o JorforferforfofoforororforforfoToToToTo]

Figure 3.2: MIPS load upper immediate instruction

population = 420000;

Now in MIPS code:

1i $t0, 0x0006 # population = 420000;
sll $t0, $t0, 16 # shift the high 16 bits left
ori $t0, $t0, Ox68A0 # combine high and low 16 bits

If you embed this in the minimal SPIM program and run it, you should end up
with register $t0 containing 668a0. Check the Int regs panel in the main SPIM
window. Confirm this is the value you want by switching the register view to
decimal (the heading changes to Int Regs [10]). Which real machine register is
this? If you want to see what the program does in detail, run it a step at a time.
Before you do this, clear the registers so it starts from scratch.

Loading a word in two 16-bit chunks is frequent enough requirement that even
the MIPS designers who favour simpler instructions relented and provide a single
instruction that does the first two lines of our example:

lui $t0, 0x0006 # population = 420000;

This load upper immediate instruction shifts the immediate operand 16 bits to the
left (zeroing the low bits), and puts the result in the target register (here, $t0).
Figure 3.2 illustrates how lui puts a value into a register. The shaded low 16 bits
are always zeroed by the instruction.

For completeness, here is the code with the extra wrappers needed for SPIM
execution. From here on, I assume you can add this extra material and leave it out
of small examples:

# initialize the population variable in register $tO
.text

main: 1i $t1, 0x0006 # population = 420000;
s11l $t2, $t1, 16 # shift the high 16 bits left
1i $t1, 0x68A0 # load the low 16 bits
or $t2, $t2, $t1 # combine high and low 16 bits
1i $v0, 10 # system call code for exit = 10
syscall # call 0S
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We used two instructions here to do something that is logically a single operation.
The MIPS designers deliberately made choices like this. Creating a large constant
is not something that happens often in code — it is more common to initialise
variables with small values like O or 1. If the designers created an instruction that
could initialise a register with a bigger value than 16 bits (e.g., by allowing an
instruction to be longer than one word), it would rarely be used, but would add to
the overall complexity of the design.

On now to a wider range of examples. We will start with memory accessing,
move on to arithmetic and logic operations, and conclude with control (we already
saw a for loop).

3.2 Memory access

Using registers is all well and good but since we only have 32 of them (and some
are not freely available, like $zero), we need to be able to access a bigger memory.
Registers are needed for arithmetic and logic operations, but we do not need to
have all our data available at once. When we are not doing computations on data,
we need to store it in a bigger memory — the main memory or RAM. We need to
be able to load values into registers as well and, to do all this, we need to be able
to access a specific location in memory.

You can think of MIPS integer registers as a small array called R, indexed
from O to 31. There are also floating-point registers, a similar-sized array called
F. Floating-point registers can also be combined in pairs to form a double-word
(64-bit) number, in which case you only have even-numbered registers (FO, F2
...F30). You can think of RAM as a giant array of bytes, indexed from 0. At
machine level, in fact, that is all it is. Other meanings, as indicated on page 5,
are imposed purely by the way the memory is interpreted. Sometimes, we refer to
registers as array elements, like R [n], when the MIPS assembly notation of $n is
not convenient or clear.

Heads up: Floating-point double precision registers are the same
hardware as single-precision registers, but used in pairs. If you use
double-precision registers, it is up to you not to use either half as a single-
precision register.

Let’s look at some examples of how memory contents is moved between RAM
and registers. Once in a register, any arithmetic or logic operation can be applied,
but any change in value is not permanent until copied back to RAM, because a
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register value at some point is likely to be overwritten simply because there are so
few registers.

An important thing to understand is the concept of a machine address. An
address is simply an index into the RAM array. An address can be absolute — an
index from the zeroth byte in RAM — or relative — an offset from a given location.
Machine addresses in our SPIM implementation of the MIPS instruction set are
32 bits though 64-bit addressing is increasingly common. Because addresses are
so big, relative addresses are useful because they allow much smaller numbers
to be used, an important consideration if the address is built into the instruction.
Machine addresses start from 0 and go up to whatever maximum size the particular
system supports. Absolute addresses consequently are represented as unsigned
integers. Relative addresses, on the other hand, can be negative, since they specify
an offset from a given location. Our simple loop example used both kinds of
address. A MIPS j instruction uses absolute addresses, while branch instructions
use relative addresses. Part of the reason for this distinction is a branch instruction
needs more bits for specifying the register containing the condition whereas a
Jump (unconditional branch) can use more bits for the address. Also, branches are
often used for shortish offsets to implement constructs like loops and conditional
code. A jump instruction can be paired with a branch if a branch needs to move a
longer distance than its offset permits.

Relative addresses are useful for another reason: they make it easy to relocate
code, i.e., load it into a different part of memory. If code is relocated, all absolute
addresses have to be adjusted so they work in the new location. We will look at
some of this in more detail later (§5.6, page 168). For now, we are going to do
some simple examples to get a sense of the issues.

First, clear out any previous example from SPIM using Reinitialize Simu-
lator. Now in the main window, click on the Data tab. Figure 3.3 illustrates the
top part of that view. The User data part is supposed to contain constant values;
for now we treat this area as if it contains global variables. We will now look at
how to create a global variable in that space with an initial value and load it into
a register. The way we are going to do this now is a rough approximation to the
way it should be done, to illustrate the principles.

The new instructions we need are one to load an address — the location in
memory where the variable is stored — into a register, and an instruction to use
that address to load the item it points to into a register. In our MIPS examples,
an address is 32 bits (MIPS also has a 64-bit mode, but we do not use that in any
examples). As we saw with the example on page 52, we can’t load a 32-bit value
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Text Data
Q @ Data
User data segment [10000000)..[10040000)
[10000000]..[1003££££] 00000000
User Stack [7ffffd6c]..[80000000)
[7£££fd6c) 00000002
[7££££470] 7ffffde3 7L££f£ffdb7 00000000 7Jf£ffffdd . . . . . . . 4 4 4 e 4 e e e
[7££££d80] TEE£££85 Tfffffac TELEffff3c TELE££29 s o s sbheoos®anal)sas
[7££££490] TEf££f1d 7fffffl0e 7ffffee3 7ffffeaZ . . . . « & v ¢ 4 4 4 4 4 0 . .
[7£££fda0] 7ffffeed 7ffffe39 7Jffffel? 7Jffffell Moo e 9 oo o000 00020s

Figure 3.3: SPIM data segment

immediately into a register; we need two steps to do this. That is not always true:
if the lower 16 bits are zero, we can do this in one step using a lui instruction.

Heads up: This method for accessing a “variable” will later be how
we access constants that we know before the program runs. To implement
variables properly, we need to know about concepts like how to implement
a stack and dynamic allocation, and where global variables are stored.

Fortunately, a MIPS assembler has a useful pseudoinstruction to save us
having to think through all this: la Rn, label. This load address pseudoinstruction
uses the assembler’s knowledge of the position the label represents in the data
segment to determine whether it can create an address in one or two steps. Assume
now we have our population variable set up as a global, and another variable,
max_age as well, and we want to load each into a register to perform arithmetic
or logic operations. We need assembly code that looks like this:

.data
population: .word 420000
max_age: .word 120
.text
main: la $t0, population # address of population variable
lw $t1, 0($t0) # load value at population
la $t0, max_age # address of max_age variable
1w $t2, 0($t0) # load value at max_age

In the data segment, you tell the assembler how big an item you want at a given
label and also give it an initial value. Here, we want our value to be stored in a
word (4 bytes). We will later see examples of other sizes.
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hex Text Data
0 @ Data

User data segment [10000000]..[10040000]

[10000000]..[1000££££] 00000000

[10010000] 000668a0 00000078 00000000 00000000 .h..x
[10010010]..[1003££££] 00000000

User Stack [7f£fffd6c)..[80000000)

[7£fffdéc] 00000002 e e

[7££££d470] 7ffffde3 7Tf£f£ffdb7 00000000 7Jfffffdd . . . & ¢ 4 4 4 4 4 2 = = = = =
[7££££d480] TEE£££85 Tfffffac TELffff3c TLL£££29 T A e
[7££££d490] TEE£££f1d Tfffff0e 7Tffffee3 7TffffeaZ . . & 4 4 4 4 4 2 & 2 = 2 = * =
[7£££fdal] Tffffeed 7Tffffe39 Tffffel7’ 7Tffffell Moo a9 0 0 v o o o o o o o
decimal

User data segment [10000000]..[10040000]

[10000000]..[1000££££] 00000000

[10010000] 0000420000 0000000120 0000000000 0000000000 .h..x
[10010010]..[1003££££] 00000000

Figure 3.4: SPIM data segment: intialized

[00400024] 3c081001 1lui $8, 4097 [population]; 6: la $t0, population # address of population variable
[00400028] 84090000 1w $9, 0($8) ; 7: 1w $t1, 0($t0) # load value

~

7

[0040002c] 3c011001 1lui $1, 4097 [max_age] ; 8: la $t0, max_age # address of maximum age variable
[00400030] 34280004 ori $8, $1, 4 [max_age]
[00400034] 8d0a0000 1w $10, 0($8) ; 9: 1w $t2, 0($t0) # load value

Figure 3.5: SPIM text segment: loads from memory

Heads up: The load address pseudoinstruction only applies when we are
dealing with a labelled location in our assembler code. When we deal
with variables properly, we need a different approach, since we cannot
rely on the assembler knowing where the variable is stored.

If you make a file with this (plus the usual glue at the end to exit to the
operating system) and load it into SPIM, take a look now at the data segment. In
figure 3.4 the top part shows the user data segment plus part of the stack (more on
that soon) in default hexadecimal view and the lower part of the figure in decimal
mode. See if you can find our initial values 420,000 and 120. What address do you
think 420,000 is stored at? Now click on the Text tab, and see what your loaded
and assembled code looks like (ignoring the standard stuff before your code).

Figure 3.5 shows the main parts of the text segment that are of interest. First,
note how the address of the population variable is loaded into register $t0 (real
register $8). The la pseudoinstruction is replaced by a single instruction, a lui.
Why is this possible? Because the start address of our variable area is an even
multiple of 2!6: 0x10010000 (you can see this by looking at the data segment; 2'6
in hex is 0x10000, 65536 in decimal, so any multiple of 216 viewed in hex, has at
least 4 zeroes at the low end of the number).
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no. _contents 0x1000FFEO |0x1
00 0x1000FFE4 |0
1lo 0x1000FFES |0x2
0x1000FFEC | 0XFF
2(0x10010000 el o
3o 0x1000FFF4 |0
0x1000FFF8|0x12
410 0x1000FFFC |0
5 (0x42 < : x10010000{0x42 )
value copied from RAMI 005 000 [oxal
6l0 by 1w instruction using
address in R[2] 0x10010008(0
7|0 0x1001000C |0
0x10010010 |0
0x10010014 |0

Figure 3.6: Registers (left) vs. RAM (right)

To obtain the address of the max_age variable, the same instruction is used,
followed by ori $8, $1, 4. The effect of this is to add a 4 into the low order bits
of the word. An addition could also be used but a logical or is generally preferred
over addition where possible, as unnecessary extra logic such as checking for
overflow need not happen in the hardware. Now we can do the load instruction to
place max_age in a register, ready for any further processing. Run the example,
and check that the registers $t1 and $t2 (real registers $9 and $10) contain the
correct values.

Note also in this example the use of the $1 register by the assembler, also
known as $at — the assembler temporary register.

You need to be very clear on the difference between a number that represents
a value, such as an integer, and a number that represents a location in memory —
an address. Figure 3.6 illustrates contents of machine registers (only 8 so we can
see clearly what’s going on) for an arbitrary example and a portion of memory
(from machine address 0x1000FFEO to 0x10010014). The numbers on the side
of the registers and RAM are not actually stored but represent where we are in the
register file or in memory. Register 2 contains a number that represents a machine
address and can be used by an instruction like 1w to copy the memory contents
into a register. Assuming that an instruction like 1w $5, (0) $2 has been executed,
the contents of the memory location pointed at by register 2 is now in register 5.
Note that I have illustrated the contents of memory with one row representing a
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machine word, which means that the machine addresses go up in units of 4.

For registers in a real MIPS machine, see table 2.8 on page 45.

Remember, a number represents exactly what you use it for. A processor has
no way of knowing whether bits in a register are a machine address (or pointer
in languages with that concept, like C), an integer, or a string of characters. HLL
programming insulates you from that reality because the compiler stops you from
using a bit pattern as something other than its original purpose (less so in C, as
we will see later). In assembly language, you can do whatever you like so, for
example, you can treat the number you have loaded into a register from a location
in memory as an address, even if it was not constructed as one.

If we can only use the efficiency gain of starting the data segment at an address
that’s an even multiple of 216 for the very first variable, that seems a bit of a waste.
The cost of starting variables at a 2!6-multiple address is wasting memory to place
variables at that location rather than the absolute first free spot in memory. If
you are a compiler, you should know what variables you have placed where, and
should be able to calculate the offset of each variable from the start of the data
segment. Since load instructions include a 16-bit offset, added to the address
given in the register, a compiler can use the offset to avoid using two instructions
to create an address. How big can this offset actually be? Since the offset is a
16-bit signed value, the biggest positive offset is 21> — 1 = 32767 and the biggest
negative offset is —2!° = —32768. The positive offset should be big enough to
deal with most global variables without having to use more than one instruction
to create an address.

When we get to the proper way to handle variables, the issues are a little
different — but this simplified view of how to create variables is a useful
introduction to offset addressing, which we will need later for offsets from the
start of the actual space in which variables are stored, and offsets from the start of
a data structure.

Back to our example. If we are a compiler, we know that the variable
population is at the start of an even 2!® boundary, so we can load the address
directly and use it with a zero offset. What about max_age? We know it is
the next variable after population, so all we need to know is how many bytes
population needs. In our definition of the data segment, we say it is a word,
which is 4 bytes. If you look at the code the assembler generated for the la
pseudoinstruction to create the address of max_age, it added 4 onto the address
of the first variable. So that is all consistent. We can now do our example more
efficiently:
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[00400024] 3c081001 1lui $8, 4097 [population]; 6: la $t0, population # address of population variable
[00400028] 8d090000 1w $9, 0($8) ; 7: 1w $tl1, 0($t0) # load value
[0040002c] 8d0a0004 1w $10, E]($8) ; 8: lw $t2, 4(st0) # load value at max_age

Figure 3.7: SPIM text segment: more efficient loads from memory

.data
population: .word 420000
max_age: .word 120
.text
main: la $t0, population # address of population variable
1w $t1, 0($t0) # load value at population
lw $t2, 4($t0) # load value at max_age

Load this version into SPIM and check again that it runs as it should, and the
right values are in the destination registers. Figure 3.7 illustrates how the new text
segment cuts our previous code from five instructions to load two variables to three
instructions, and only needs to use one lui instruction with no modifications to set
up the address for both load instructions. Note also the offset of 4 highlighted in
the figure.

From now on, when addressing variables in memory, we will use offsets and
create the base address once wherever possible. When we do proper methods of
accessing variables, we will still use offsets, but we will seldom need to create a
base address. There is a dedicated register, by convention, $gp (real register $28)
that should point to the start of the global variables. This means we only need set
up the global variable base address register once at the start of our program and
use it unchanged from there on. Take a look at the registers set up by SPIM. What
address does $gp point to? It is set to 10008000. Not exactly the start address
of our “variables”, 0x10010000. What’s going on? Remember, the area we have
been using for “variables” is in fact a region that would usually be used to store
constant values. I cheated a bit in using this as global variable space because it’s
a quick way of getting started. Let’s leave this for now and get back to memory
layout in detail later, where we can do this the proper way.

Just one more thing on memory referencing for now: storing register values
back into memory. Let’s just store a value already in a register. In the SPIM
register list, you will see R29, also called sp. if you look in the register panel on
the left hand side of the main SPIM window, you will see something like this:

R29 [sp] = 7ffffd6c
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User data segment [10000000]..[10040000]

[10000000]..[1003£f£££] 00000000
R29 [sp] = 7ffffdéc

User data segment [10000000]..[10040000]
[10000000]..[1000£f£££f] 00000000
[10010000] 7ffffdéc 00000000 00000000 00000000 1 o v v v e h e e e e e e e e

[10010010]..[1003££££] 00000000

Figure 3.8: SPIM data before (top) and after (bottom) saving SP

We will get to the purpose of this register (the stack pointer) in a while. For now,
since it has a value in it already, let’s see how to store that value to memory. Let’s
create a variable for it in the data segment called saveSP, then store the register
contents there. As before, we have to put the address of the variable into a register
and, as with the load operation, store the contents of the sp register using the $t0
register as the index into the RAM array:

.data

saveSP: .word O
.text

main: la $t0, saveSP # address of sp save location
sw $sp, 0($t0) # store stack pointer value

Try this example, and check that the memory contents is updated as indicated in
Figure 3.8. Whatever value the $sp register has should be repeated in memory at
the location labelled by saveSP. On page 50, I mentioned that store instructions
have the destination last, in contrast to other instruction types. This is so the
order of operands is consistent with a load, which has the memory address last.
Although this breaks an easy-to-remember rule, it does mean that if you line up
loads and stores, you can easily see if they refer to the same or nearby memory
locations, and if they use the same registers.

Storing the stack pointer in memory is something we will do frequently once
we get to more general code — if not exactly the way illustrated here.

The take home message? Registers are a small array of (mostly)
general-purpose memory. Main memory or RAM is a giant array of bytes
that can be used for longer-term storage. A memory address is a pointer
into the RAM array and is used in a load instruction to copy RAM contents
into a register and a store instruction to copy a register into RAM.
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4-bit number 8-bit number
decimal | original 2’s complement | original 2’s complement
3| 1101 0011 | 11111101 00000011

Figure 3.9: Sign-extending: extended bits shown in bold

3.3 ALU operations

Once we have values in registers, we can use them in arithmetic and logic
operations. Logic operations can be comparisons, as well as operations that
perform boolean algebra on register contents. We have already seen a few
examples — one is the use of an or operation to add in low-order bits after setting
the high order bits of an address. A lot of the rest you can pick up from examples
and the instruction summary (pages 307-316).

A few things might not be so clear though. First, when you have a negative
number in an immediate operand, before it can be used in arithmetic on a register
that is wider than the immediate operand, it must be sign-extended. As explained
on page 29, this means that to widen its representation, the sign bit (O or 1) has
to be replicated to the higher positions to the left of the narrower representation’s
sign bit. Figure 3.9 contains a reminder of sign extending. The numbers 3 and -3,
represented in 2’s complement, are shown in 4-bit and 8-bit versions. The wide
version of both the positive and the negative number is the same as the narrower
version, except the sign bit is repeated 4 more times in the high-order half of the
8-bit version.

Unsigned operations do not necessarily use unsigned data, but they do not
cause overflows to be picked up. So you can, for example, write something like
addiu $t0, $t0, -32768 (the addiu instruction is add immediate unsigned).
What happens is the immediate operand is converted to the bit pattern for —32768
(the 2’s complement of 0x8000 which for a 16-bit number is also 0x8000, because
the positive number 32768 is too big to fit in 16 bits).

Another thing to note is that as seen after we did the for loop on page 43, the
MIPS instruction set does not have branch instructions that compute comparisons
like less than. Instead, comparisons are generally done in registers exactly as
arithmetic is done. One of the reasons for that is it makes it possible for compiler
writers to use much the same approach for boolean (or logical) expressions as they
do for arithmetic. Everything takes the form of either two register operands used
to compute a value for a destination register operand, or a single register operand
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registers : memory contents

R8 [t0] = ffffface : User data segment [10000000]..[10040000]

R9 [tl] = face 1110000000]..[1000££££] 00000000

R10 [t2] = fffffffe: [10010000] 00feface 00000000 00000000 00000000
R11 [t3] = fe 1[10010010]..[1003ff£f£f] 00000000

R12 [t4] = 10010000 1"

R13 [t5] = 10010002 »

Figure 3.10: Effect of short loads

and an immediate used to compute a result for the target register operand.

ALU operations generally operate on a whole register, though you can load
load or store a halfword (16 bits) or byte (8 bits). When you load a halfword
or byte into a register in unsigned mode the high bits (that aren’t included in the
loaded value) are set to zero. In signed mode, it is sign-extended (the sign bit is
copied to the remaining high bits to make a valid 32-bit number). If you store a
halfword or byte, only that number of bits is written to memory, so stores do not
have an unsigned mode. You need to be careful that you do not lose information or
break negative numbers in halfword and byte mode. We will however mainly use
full words for numbers (almost always in signed mode) and bytes (using unsigned
loads) for characters, so we should not run into this issue.

Let’s do one example with a few pieces of arithmetic and a logic test to put all
this together. Here’s some C-like code that calculates a boolean value (true if the
given age is less than 10,000 days, false otherwise):

int age = 21;

int daysperyear = 365;

bool agelessThanlOk = false;
agelLessThanl0k = age * 365 < 10000;

This time since the example is a bit longer, here is the entire source code, including
the exit code:

# psuedocode with register assignments:

# $t0: base address for variables

# $t1 int age = 21;

# $t2 int daysperyear = 365;

# $t3 bool agelLT10k = false;

# agelLT10k = age * 365 < 10000;
.data

age: .word 21

daysperyear: .word 365
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age :daysperyear > ageLT10k

<

Figure 3.11: SPIM data layout with a short data item

>
>

ageLT10k: .byte 0
.text

main: la  $t0, age
1w $t1, 0($t0)
v $t2, 4($t0)
1bu  $t3, 8($t0)
mulo $t4, $t1, $t2
slti $t3, $t4, 10000
sb  $t3, 8($t0)

# standard exit convention
1i $vO, 10
syscall

age address

load value at age ($t1)
load value at daysperyear ($t2)
load value at ageLT10k ($t3)
templ = age * daysperyear
ageLT10k = templ < 10000

store value at agelLT10k

H OH OH OB H H O

+H

syscall code for exit = 10
call 0S

+*+

There are a few things to note here.

First, I put the boolean value in a byte rather than a word. Since I put it last, this
should present no complications. The MIPS instruction set prefers to load words
on a whole-word boundary (an address that is a multiple of 4). In fact if you try
to do a load or store at an unaligned address, you get an exception (crashing your
program). The MIPS instruction set has special instructions to do unaligned loads
and stores. If I placed another variable wider (including a 16-bit halfword) than a
byte after this byte-length variable, I would have to worry about that. The SPIM
assembler takes a helpful view of this: to avoid trouble, it starts each value at an
appropriate boundary (word, halfword, etc.), so you don’t run into trouble if you
follow a byte or a halfword by a longer data value. If you are creating your own
data layout in memory, this is an issue you need to pay attention to.

Figure 3.11 shows how our data is laid out (each block represents a byte).
With this layout, we need an offset of 4 from the start of our data area to get to
daysperyear and an offset of 8 to get to ageLT10k. If we had more byte-sized
data items, the assembler would continue filling the word. If in doubt about the
layout, create your data segment, load your program and see how SPIM has placed
the data items by viewing the data segment.

You may be wondering why, with an offset of 8 from the start of our data
area, why the ageLT10k byte is at the low end of the word, not the high end,
apparently leaving a 3-byte gap. This is because the version of SPIM I am running



64 CHAPTER 3. ASSEMBLY BY EXAMPLE

[00400024] 3c081001 1lui $8, 4097 [age] ; 12: la $t0, age # age address

[00400028] 8d090000 1w $9, 0($8) ; 13: 1w St1, 0(st0) # load value at age (s$tl)

[0040002c] 8d0a0004 1w $10, 4($8) ; 14: 1w $t2, 4($t0) # load value at daysperyear (S$t2)
[00400030] 910b0008 1lbu $11, 8($8) ; 15: lbu $t3, 8(S$t0) # load value at ageLessThanlOk ($t3)
[00400034] 012b0018 mult $9, $11 ; 16: mulo St4, Stl, S$t3 # templ = age * daysperyear

[00400038] 00000810 mfhi $1

[0040003c] 00006012 mflo $12

[00400040] 000c67c3 sra $12, $12, 31

[00400044] 102c0002 beq $1, $12, 8

[00400048] 0000000d break $0

[0040004c] 00006012 mflo $12

[00400050] 298b2710 slti $11, $12, 10000 ; 17: slti $§t3, $t4, 10000 # ageLessThanlOk = templ

Figure 3.12: SPIM expansion of mulo pseudoinstruction

uses little-endian ordering, which means that bytes are numbered from the little
(low-order) end of the word. MIPS supports both little-endian and big-endian byte
ordering. This is usually not an issue for programmers, except when interchanging
information at a very low level between different types of system (e.g. over a
network).

Second, I used an unsigned load byte instruction to load the boolean value.
This is not strictly necessary since it was a zero value, but signals my intent not to
use it as a signed value.

Finally, the multiply instruction (mulo for multiply with overflow) presents an
interesting issue: if you multiply two n-bit numbers, the product could require up
to 2n — 1 bits to represent — for practical purposes, double the width. The multiply
instruction in our code is yet another example of a pseudoinstruction. In this case,
it takes care of the possibility that we overflowed when multiplying. Load the
example, and see what the SPIM assembler generates. Figure 3.12 illustrates what
SPIM turns that one innocent-looking instruction into (look for the lines without
a comment on the side, starting from the mult instruction that SPIM created at
address 0x00400034).

Let’s take the real multiply code sequence one instruction at a time. First,
the real mult instruction does not store its result in a regular register but instead
in a pair of registers containing the high and low parts of the resulting value
(remember, it could be up to double the width, approximately, of the source
operands). So the instruction mult $9, $11 has no explicit destination (the
named registers are the real names of $t1 and $t3, as in the pseudoinstruction,
mulo $t4, $t1, $t3). Look in the SPIM register panel, and you will find two
registers there representing the multiply target called HI and LO. If all goes well,
only the LO register will contain the complete result. To test for this, we need to
check if the high-order bit of LO (the sign bit) is equal to all of the bits of HI. Why?
If the answer is positive, the sign bit of LO will be 0, and the entire contents of HI
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will be 0. If the answer is negative, the sign bit of LO will be 1, and the entire
contents of HI will be 1s. If either condition does not hold, we’ve overflowed.

Heads up: In addition to the mult, there is a mul instruction that has
the regular 3-register format. Only use this instruction if you are sure the
multiply will not overflow (a compiler can detect this if it has information
about the values being multiplied). This instruction is incorrectly listed
in the SPIM reference as a pseudoinstruction in the SPIM reference
(Appendix E).

The next two instructions SPIM generated copy the contents of the HI and LO
registers to regular registers, where their values can be checked:

mfhi $1
mflo $12

Register $1 is the assembler temporary, so that is OK. Register $12 is the
destination of the pseudoinstruction result, so it’s OK to use that because we
intend to overwrite it anyway. The next instruction needs some explanation:

sra $12, $12, 31

This is an sra (for shift right arithmetic) instruction. Note the shift amount in the
instruction, 31. This has the effect of replicating the sign bit (high-order bit) all
the way to the right of the number (the low-order bit). Since it’s an arithmetic
shift rather than a logical shift, if the sign bit is set, it will sign-extend as it shifts,
i.e., we will end up with $12 containing either all 1s if the sign bit was set, or
all Os if it wasn’t. A logical right shift by contrast always fills from the left with
zeroes. Remember, $12 was a copy of L0 before the shift and $1 is a copy of HI.
Once we have that straight, it becomes clear why the next instruction (branch if
equal)

beq $1, $12, 8

is a check for whether the HI register contains nothing but the sign bit extended
left from the LO register. If we pass this test, because of the 8 in the branch, we
skip ahead 2 instructions (remember, each instruction takes up 4 bytes). If we fail
this test, i.e., the branch falls through to the next instruction, we run into

break $0
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which forces your program to die with an overflow error.!

If on the other hand the test is passed, the final instruction generated from the
original mulo pseudoinstruction is

mflo $12

which puts the answer in the register where we want it ($t4, our name for the real
register $12).

At this point, it is worth a pause to thank the MIPS designers for the concept
of pseudoinstructions. Imagine if you had to get all this right every time you had
to do a multiply.

Why is this not all put into a real instruction? Multiplies are relatively
complicated to implement in hardware, so splitting some of the logic of how you
handle multiplies into multiple instructions makes it easier for hardware designers
to implement a faster clock speed. The price of 7 instructions instead of one may
seem high, but if the gain is even a modest increase in clock speed, you would have
to have a program with a high fraction of multiplies to lose. Also, compiler writers
can avoid all this complication if they know the answer will be too small to cause
an overflow, and there are special cases where less expensive instructions can
be used (in one instruction: mul $t4,$t1,$t3). The MIPS instruction set was
designed by a compiler expert (John Hennessy), who understood when a compiler
can make choices like this.

Let’s take an example where the compiler may know better: multiplying two
16-bit numbers. If we load two 16-bit (halfword in MIPS terminology, or short int
in C) numbers into a pair of registers, multiplying them should not overflow into
the HI register. On the other hand, if we want to copy the result back to a 16-bit
variable in memory, we need to check that we haven’t overflowed into the high
half of the 32-bit register in which we did the arithmetic. How can we check for
that? As with the 32-bit multiply, the high half of the register should contain the
same bit throughout as the sign bit of the low half of the register. Why? Because
with 2’s complement representation, all the bits to the left of the sign bit if we
widen the number should be the same as the original sign bit, as discussed on
page 29, and narrowing the number should follow the same rule in reverse.

How can we check if the high 16 bits of a word are all the same bit as the
highest bit of the lower half of the word? One trick is to shift the low halfword all

IThis is an error in the way SPIM displays the instruction because the break instruction takes an
immediate operand not a register. If you use a break in your own code, SPIM will object if you
use this syntax. It should actually be “break 0.
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Figure 3.13: Force high halfword to contain only low halfword sign bit

the way to the high halfword (16 bits to the left), then do an arithmetic right shift
back to where it started (16 to the right). Since an arithmetic right shift copies
the sign to the right, we can compare the result with the original value. If there
had been an overflow into the high halfword, at least one bit will be different from
the low halfword’s sign bit. We can do this by the following steps, assuming our
value is in register $t0:

s1l $t1, $t0 16 # shift tO 16 left into $t1
sra $t1, $t1, 16 # arithmetic shift t1 16 right
beq $t1, $t0, ok # shifts changed nothing? good
#
#

break 0O otherwise error

ok: nop or next useful instruction
Figure 3.13 illustrates the effect of the two shifts. Shading indicates bits whose
values are created by shifting.

Heads up: Arithmetic right shifts copy the sign bit (sign extension). All
other shifts fill in from the left or right with zeros. The MIPS instruction
set includes five bits in shift instructions so that the shift amount can be
hard-coded into the instruction (like an immediate operand, but using a
different part of the instruction word), but there are also instructions that
allow a register to be used for the shift amount.

Why will this work? If we have not had an overflow into the top half of the
word, all the high 16 bits should be the same as the low halfword’s sign bit. Our
left and right shifting ensures that this is true so our final result (in the example, in
register $t 1) should be the same as the original value (register $t0 in our example)
unless an overflow occurred.

You should convince yourself that the test will fail if any of the bits in the
higher halfword differ from the lower halfword’s sign bit. Give it a try. Put the
above code snippet into a runnable program, and run it first with 11 $t0, 32767,
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the biggest number that can fit into 16 bits using signed numbers, then with $t0
initialized to 32768, which should be an overflow. In 16 bits, the bit pattern for
32768 (hex 0x8000, binary 1000 0000 0000 0000) represents -32768, but if
you arrive at -32768 in a 32-bit calculation, all 16 of the the high-halfword bits
should be set. If on the other hand you arrive at +32768 in a 32-bit calculation,
none of the high-halfword bits should be set. To see what is happening clearly,
put the SPIM register view into binary mode.

This last example illustrates that you can find relatively simple solutions
to problems like this one if you take a bit of time to check through available
instruction options and think through how best to use them.

The take home message? Most ALU operations are a simple translation
from C-like pseudocode, but multiplies are a lot more complex because of
the high likelihood of overflow. You can use a pseudoinstruction rather
than have to work out all the detail of how to handle multiply overflows
yourself.

3.4 Control

We have already seen a few examples with conditional branch and jump (uncon-
ditional branch) instructions, including a for loop. Let’s now go on to a more
complete set of examples. But first a few definitions.

We have already seen two (real, not pseudo) branch instructions, branch equal
(beq) and branch not equal (bne). Both compare a pair of registers, and use a 16-
bit offset for the branch target address (the place to go to if the branch condition
is true). This 16-bit offset, though MIPS uses byte addresses, is stretched by the
fact that instructions can only occur at whole-word boundaries (every 4 bytes).
This means that the low 2 bits of every instruction address are zeroes, so MIPS
instructions containing instruction addresses simply leave out the low 2 bits. This
means that instead of 16 bits allowing a range of -32768 to 32767 bytes, the
range is stretched by a factor of 4. So most programs are not going to run into
a problem with constructs like for loops being unable to use branch instructions
directly (the alternative: branch to a j instruction to go further). There are a few
other conditional branches, but these plus pseudoinstructions for branches testing
inequalities will be good enough for now.
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# initialise loop counter

j test # test before 1lst iteration
body: # body of loop here j test # test before 1st iteration
# rest of body body: # body of loop here
# increment loop counter # rest of body
test: b R1,R2,body # not done? Go again test: b__ R1,R2,body # not done? Go again
(a) for template (b) while template

Figure 3.14: Loop templates

Loops

For completeness, figure 3.14a illustrates a generic template for a the for loop.
Compare it with the specific example we had before on page 43. We will later
generalise this to make it work for programs with more than one loop. Obviously
the branch condition depends how you set up the for loop, but it should be true
for the case where the loop continues.

Heads up: You can still write correct code if you ignore the template
concept but that is a bad idea. Totally unstructured assembly language
code is very hard to read and debug. By using these templates, you also
gain experience of thinking like a compiler, a useful skill if you later study
how to write a compiler.

Now on to another loop construct: while. The general form of a while loop is
in figure 3.14b. The branch condition at the test label is based on the condition
to keep going, as with the for loop. Here is an example, starting with C-like
pseudocode:

// how often can we double an age up to 1007
int doublings = O;
int age = 42;
while (age < 100) {
age = age * 2;
doublings ++;

}

Our example added into the template looks like this:

# register use:
# $t0 : doublings

# $t1 : age
# $t2 : holds const value 100
main: move $t0, $zero # int doublings = 0;

1i $t1, 42 # int age = 42
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1i $t2, 100 constant 100
while (age < 100) {
j test test before 1st iteration

body: add $t1,$t1,$t1
addi $t0,$t0,1
test: blt $t1,$t2,body

age = age * 2;
doublings ++;
} not done? (age < 100)

H OH H H H

The lines preceding the j test are initialisations, and the rest is just a matter
of substituting specifics into the generic template. This time I didn’t bother with
loading from memory; we have done that enough times now to leave that out until
we do memory layout properly.

What does the example do? It doubles the value we set up for age until it
passes 100. Since we initialise the value for the count of doublings to 0, what we
should end up with is a count of how often we can double the given age without
reaching 100, in this case, twice. Load the program into SPIM and verify that at
the end, $t0 has the value 2.

The two examples in figure 3.14 are obviously very similar, because a for
loop really does the same thing as a while loop, except it puts the initialisation
and increment into the loop header rather than allowing you to put them wherever
you like (or leave them out if they don’t apply).

The take home message? Creating loops using standard templates
reduces the chances of error. Look out for more templates.

Conditional Code

Finally, to straightforward conditional code, an if statement. Let’s take two
examples with and without an else branch. Take a look at the templates in figure
3.15. Unlike with the loops, we have to invert the condition because the branch
instruction jumps us around the true branch of the if. For the first example, ignore
the C syntax for reading a number if you don’t know the language (yet). You can
just take it that “scanf ("%d", &value)” does what you want.

// count numbers read in that are < O
int value;
int negatives = 0;
scanf ("%d", &value);
if (value < 0)
negatives ++;
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b__ R1, R2, else # invert condition
# true branch

j done
b__ R1, R2, done # invert condition else:
# true branch # false branch
done: nop # or next instruction done: nop # or next instruction
(a) if template (b) if-else template

Figure 3.15: if templates

To implement this example, which reads in a number and adds to a count if it’s
negative, we need a SPIM system call, coded 5, which returns a value in register
$vo0.

At this point it is useful to add another assembler feature: macros. A macro
is a piece of text that has a name and wherever the name appears, it is as if you
had typed that piece of text in. For system calls, it is inconvenient to memorise
what the number is that invokes a particular call. We now have two: one to exit
the program (coded 10) and one to read an integer (coded 5). So let’s give them
names, so we only need look this up once. The syntax for this is pretty simple:

NAME = value

Then, whenever the word NAME appears, whatever was after the = replaces the
word NAME. Let’s look at the whole example this time to see where the macro
definitions fit in as well as their use:

# // count numbers read in that are < 0

READ_INT = 5
EXIT = 10
.text

# register use:
# $s0 : value
# $s1 : negatives

main: 1i $s1, O # negatives = 0
1i $vO, READ_INT # sscanf ("%d", &value);
syscall
move $s0, $vO # copy read int into value
bge $s0, $0, done # if (value < 0)
addi $s1, $s1, 1 # negatives ++;

done: nop # or next useful instruction

# usual exit to 0S
1i $vO, EXIT # set up exit system call
syscall # call 0S
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Why did I use s registers this time rather than use one of our usual $t temporaries?
When you call a function, as we will see later, if the function changes any $s
register, it is required to restore the value. Here, I do not call any functions.
A system call in a real machine may have protocols on what registers it may
guarantee to save, but that is not an issue in SPIM because SPIM system calls are
faked in C code that runs outside the simulator. Here, for that reason, I could have
just carried on using $t registers, and we will soon see cases where we actually
do need to consider using $s registers. On the whole it is easier to keep track of
what you are doing to use either

* only unsaved ($t) registers in a leaf function (calls no functions)
* only saved ($s) registers if you call functions

At times, you will need to use $t registers when it is not ideal to do so because
there are more of them than $s registers but for simple examples, we will follow
the convention outlined here.

Load the above example into SPIM and run it a few times, resetting the
registers each time to start from scratch. You should see that when you enter a
negative number in the Console window, register $s1 (real register $17) becomes
I. Now let’s add an else branch (count positives including 0 in a different
variable):

// count numbers read in that are < 0O
int value;
int negatives = 0, positives = 0;
scanf ("%d", &value);
if (value < 0)

negatives ++;
else

positives++;

Here is the main body of the MIPS code for that:

main: 1i $si1, O # negatives = 0
1i $s2, O # positives = 0
1i $vO, READ_INT # scanf ("%d", &value);
syscall
move $s0, $vO # copy read int into value

bge $s0, $0, else # if (value < 0)
addi $s1, $s1, 1 # negatives ++;
j done
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# else
else: addi $s2, $s2, 1 # positives ++;
done: nop # or next useful instruction

Heads up: An if with or without an else is a little challenging because
you need to invert the condition fo jump past the true branch.

Finally, let’s consider a more advanced control construct, a switch statement.
If you are unfamiliar with C and its close relatives, this will be a new one. The
switch statement, given a value (in this case, our variable called value), contains
cases, each of which is labeled with a constant value. If the given value matches
a case label, the switch jumps to that case label, and continues down from there.
A break statement jumps out of the switch.

Here is an example to illustrate the concept. Assume we have an int variable,
value, and we want to update a count of how often we have seen a number in one
of these categories: zero, a 1 or a 2, or anything else. Here is a switch statement
that solves the problem:

switch (value) {

case O:
zeroes++;

break;

case l:case 2:
onesAndTwos++;

break;

default:
others++;

break;

}

To code a switch statement efficiently in assembly language requires some
concepts we haven’t covered yet. For now, contemplate the example, and try
to think how you could program it with what you already know already.

The take home message? Use named constants and templates to simplify
your code and make it easier to read. You will be thankful you did so when
tracking down bugs.
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3.5 Floating Point

Since floating point gets complicated without going far into it, I am not going to
do a lot of examples. Here is a complete example containing a few elements we
need for later programs:

* a wider range of system calls (Appendix C, table C)
* storing values that would appear inline in C code in a constant pool

Here is the program. It reads in a floating-point number representing a radius,
squares it, multiplies by 7 (to a reasonable approximation), prints out the area and
prints out the integer value of the area (rounded, after adding 0.5, so it rounds
to the nearest whole number). You may want to check table B.1 in Appendix B
for floating-point register conventions, though we only really need worry in this
example about registers used in system calls.

READ_FLOAT =

PRINT_CHAR = 11

PRINT_FLOAT = 2

PRINT_INT = 1

EXIT = 10
.data

consts: .float 3.141592653589793 0.5
newline: .ascii "\n"

.text
# registers:

# $s0: start address of constants
# $sl: newline character
# $t0: short-term temporary value
# $f0: value returned from syscall, short-term temporary
#  $£f10: short-term temporary value
# $£f12: passed in to syscall, working results
main: 1i $vO, READ_FLOAT # read radius
syscall # return in $£0
mul.s $£f0,$f0,$£f0 # radius square
la $s0, consts # no FP immediates

l.s $£10, 0($s0) # const: pi value

mul.s $£f12, $£10, $f0 # pi * radius * radius

1i $vO, PRINT_FLOAT # print radius (float)
syscall # prints the float in $£12
la $t0, newline # get newline char
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1b $s1 0($t0) # in saved temporary register
move $a0, $si

1i $vO, PRINT_CHAR # print newline

syscall

1.s $£f0, 4($s0) # const: 0.5 to round up

add.s $f0, $£f12, $£f0 # round up

cvt.w.s $£f0, $£f0 # convert single to int (word)
mfcl $a0, $£0 # move from coprocessor 1 = FPU
1i $v0O, PRINT_INT # print radius (int)

syscall

move $a0, $si # newline still in $s1
1i $vO, PRINT_CHAR # print newline
syscall

1i $v0, EXIT

syscall

A run of this program looks like this on the Console window:

12.1
459.96060181
460

The first line is input I typed. If you check this on a calculator (with the
same number of significant digits as mine), 12.1> = 146.41 and 146.41 x T =
459.960580412081593 so the answer is right to about 7 digits, about as good as
we can expect with single-precision floats.

Let’s go through the code. Reading a float is not a new concept — we need to
know the system call number and which register the result is in, otherwise it’s the
same as any other system call. We can’t load immediates for floats, so we need
to load constants like 7 and 0.5 from the constant pool. To do that, if we load
the address of constpool into a register we can use offsets from that register to
access each constant. We could name each constant but a compiler would not do
that, and it gets tedious with a lot of constants (though easier to see what’s going
on). Here, 7 is at offset 0 and 0.5 at offset 4, since each constant is 4 bytes long.

Floating-point operations have the size after a “.” to make it stand out, hence
“mul . s” for single-precision multiply and “1.s” to load a single-precision float.
Another giveaway of a floating-point instruction is the “$£” register operands.

Heads up: Double-precision floating point uses the same registers as
single precision in pairs. For double-precision operations, remember that
each register includes the next register in numeric order. So a double-
precision operation on F0 also uses F1 for the double-width number.
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Once we have multiplied by 7 (with the answer in $f£12 where it needs to be
for a PRINT_FLOAT system call), we can print it. To separate lines of output, I
also print a newline character. This time around, since I only want one character,
I don’t need a null-terminated string. I can load the address at the location in
the data segment labeled newline:, and use that address to load the byte at that
location into a saved temporary register so I can be sure it will be available later:
$s0. Then I copy it to $a0 to pass it into another system call, PRINT_CHAR. That
completes the floating-point result and output, so now we need to convert the
answer to an integer. I add 0.5 to round to the nearest whole number before
converting contents of register $£0 to an integer using cvt.w.s. We can’t use
the value like this since it’s not in an integer register. I use mfcl $a0, $£O,
which copies a value (“moves”) from coprocessor 1 (the FPU), register $£0, to
the main CPU, register $a0. We can now print the contents of $a0 (the parameter
register needed for the system call) as an integer, followed by another newline.

This is a lot to take in. Load the program into SPIM, and check which of the
instructions are pseudoinstructions. Single-step it to see what it does, noting you
can switch the register view to decimal to make it easier to see what a floating-
point value is (remember the trick on page 347).

The take home message? Floating point requires getting a lot of detail
straight. Aim to understand this example as a starting point for anything
more complex you may need to tackle.

Exercises

1. The SPIM assembler includes a pseudoinstruction lw Rn, address, which
gets converted to a lui instruction, followed by a proper Iw instruction using
a register containing the address to copy from RAM to destination register
Rn. When would you use this pseudoinstruction? Can you think of cases
when you wouldn’t use it?

2. How many times can you successively multiply 16-bit integers (assuming
you don’t know how big the numbers are) before you need to check the HI
register?

3. Redraw figure 3.13 for an example where there has been an overflow into
the high halfword (at least one bit will be different from the sign bit of the
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low halfword). Show that the left shift and arithmetic shift right by 16 no
longer produce the same result as the original register contents.

4. The MIPS instruction set has two instructions that can respectively count the
number of zeros or ones starting at the high end of the word: clz rd, rs
and clo rd, rs. Since the high word sign bit should be the same all the
way through at least to the low word sign bit, any word where there has
been no halfword overflow should have at least 17 leading Os or 17 leading
Is.

(a) Explain how you could use these instructions to test for halfword
overflow.

(b) Is there any advantage — or not — in this method over that given on
page 677 Explain.

5. Write MIPS code for the following, and check that you get expected results
in SPIM. In each case, document your register assignments. For variety, do
each example first purely in registers, and then using variables in memory.
Where initial values are not given, read them in using the method on page
71.

(a) First, a for loop:

// add the numbers from 1 to 10

sum = O;
for (i = 0; i < 10; i++)
sum += i+1;

(b) Now, a while loop:

// calculate sum of i-squared up to a max of 100
sum = O;
i=1;
while (ixi < 100)
sum += i*i;

(c¢) Now, an if statement:

// if size > max indicate error: set to -1
if (size > max)
size = -1;
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(d) Finally, an if statement with an else:

// if score < 0 error, else update total score
if (score < 0)

errors++
else

totalscore += score;

6. Do you have any ideas on how you could implement a switch statement?

7. In the if example on page 71, we copy register $v0 over to $t0 straight after
the system call.
(a) Is this step necessary?
(b) Why do you think I did it that way?

(c) Rewrite this example to remove the nop instruction.
8. For the floating-point example of page 74:

(a) Why can we not keep the pointer to newline in register $a0?

(b) In my example output, what difference would it make if I didn’t add
0.5 before converting to integer?

(c) How many digits of 7 are actually represented on the machine?
(d) Rewrite the example using doubles instead of floats.

1. How does the convention of using paired floating-point registers
simplify or complicate conversion to doubles?
ii. What difference does using doubles make?

iii. Can you justify the extra overheads of doubles in this case?

9. Implement the switch example on page 73 using an if-else template (figure
3.15b). How do you have to adapt the template to deal with multiple uses in
one program?



4 Memory and Functions

E NOW TURN TO HOW MEMORY is organised in real programs, which

s}s/ also presents an opportunity to talk about functions since memory has to

be organised so separate program components can work independently

of each other and share information in a controlled way. Some of that sharing, as
we have seen briefly, is through registers.

Remember how a system call is set up? You put a value into a register to
identify which system call you want and if the system call returns a value, you
get it back in another register. Remember how we have two categories of register
we can use to hold temporary values, unsaved ($t) and saved ($s) temporaries?
When we write a function, if we change a “saved” register, we need to save its
previous value and restore it before returning from the function.

All of this just relates to registers; we also need to have ways of handling
passing parameters that for whatever reason don’t fit the limited set of registers
allowed for this purpose, ways of storing variables that are local to the function in
memory if they don’t all fit in registers, and ways of accessing variables that are
global to the current function.

When a compiler allocates registers, the usual way is to take a conservative
view of the possibility for registers to be reused in other parts of code and copy
them more often than necessary. A compiler generally has several levels of
optimisation where among other things, it reduces unnecessary register copying.

A significant part of the organisation of memory to permit function calls is
maintaining a region of memory that grows as we call functions and shrinks back
as we return from a function. A data structure that works in this way is a stack. You
add to the top of the stack, and remove items only from the top of the stack. Figure
4.1 is an example of a stack containing arbitrary items. The common operations
on a stack are

* accessing the topmost item

79
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top| 0x84
top| 0 0
0 0
0x10010000 0x10010000 |top[0x10010000
0 0 0
0 0 0
0x42 0x42 0x42
0 0 0
0 0 0

push 1 item onto stack  pop 3 items off stack

Figure 4.1: Abstract stack example

* accessing an item an offset from the top within the stack

* adding to the depth of the stack by a push operation that adds an element
above the top of the stack

* a pop operation that removes the topmost item and reduces the size of the
stack accordingly

A stack is good for organising memory added when a function is called, because
function calls and returns happen in reverse order. In any chain of function calls,
you cannot return from a function called earlier in the chain until you have
returned from the functions that are called later. A variant on this behaviour
occurs with threads, which can execute in parallel and finish at times that don’t
necessarily relate to the order they started. Managing memory for threads is
outside the model we look at here. If you understand how functions work,
extending your knowledge to understanding threads is not a major extension.

In a typical machine-level memory setup, the stack and the rest of your
program’s address space start from opposite ends of available memory and grow
towards each other. This arrangement means that it is not necessary to decide
up front what fraction or memory to allocate to the stack versus other data
requirements. Consequently, the machine-level stack is a little different than a
stack as a conventional data structure. For one thing, the stack grows the opposite
way you would expect: it starts at the high end of its allocated memory space and
grows towards lower addresses. The reason for this is that global data for a simple
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global to whole program

global to compiled file 1

global to compiled file 2

constant pool

dynamically allocated data

7
/\

st