

PhD-FSTM-2024-024
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 17/04/2024 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE
by

Yan KIM
Born on 8 September 1994 in Karaganda (Kazakhstan)

FORMAL METHODS FOR ANALYSIS OF SECURE,
RELIABLE, AND VERIFIABLE VOTING SCHEMES

Dissertation defence committee

Dr Marcus Völp, Chairman
Professor, Université du Luxembourg

Dr Wojciech Penczek, Vice Chairman
Professor, Institute of Computer Science of the Polish Academy of Sciences

Dr Wojciech Jamroga, dissertation supervisor
Research Scientist, Université du Luxembourg
Professor, Institute of Computer Science of the Polish Academy of Sciences

Dr Peter Y.A. Ryan
Professor, Université du Luxembourg

Dr Carsten Schürmann
Professor, IT University of Copenhagen

UNIVERSITY OF LUXEMBOURG

DOCTORAL THESIS

Formal Methods For Analysis Of Secure,
Reliable, And Verifiable Voting Schemes

Author:
Yan Kim

Supervisor:
Prof. Dr. Wojciech Jamroga

Co-supervisor:
Prof. Dr. Peter Y.A. Ryan

Luxembourg, 2024

iii

Abstract

Voting procedures are of utmost importance for society and are widely believed to
be the foundation of democracy. They appear in different forms, in various scenarios,
and often within certain legal framework and operational context; naturally, they
encompass a broad range of interdisciplinary features and can be studied on different
levels (e.g., voting scheme, stand-alone voting mechanism, implementation, etc.)
under different perspective (e.g., legal, social, security, etc.). Recently proposed,
solutions for electronic voting offer a great range of improvements and enhancements
to speed, accuracy and overall efficiency, not to mention promises of integrity and
transparency. Their design and implementation are highly challenging tasks, which
should also be carefully planned to avoid shortcomings and thus not undermine
the voters’ trust in the technology itself. The formal analysis must consider both the
technological side and the human/social context, in which the system is embedded.

This monograph will focus on the verification of socio-technical aspects of voting
procedures using temporal model checkers.

Firstly, using the multi-agent formalism in our model we obtain a modular and
highly scalable representation of the system, as well as more realistically capture in-
teractions between human agents. The latter, unlike computer programs or machines,
can often deviate from their prescribed protocol: either intentionally (with some goal
in mind) or accidentally (due to mistake or lack of attention/understanding), and are
extremely difficult to predict. In our case study, we attempt to accommodate (and
often combine) ideas proposed in academic literature to consider human aspects in
the model.

A more sophisticated model with more details naturally leads to challenges as-
sociated with computation complexity arising sooner. This is mainly caused due to
the number of possible states of the system growing exponentially in the number
of components and their details (e.g., processes and variables). This brings us to
the second main contribution, which is the novel method for practical model reduc-
tion through variable-based abstraction. Furthermore, we establish the terminology,
which combines features from both mathematical objects (e.g., concurrent-game struc-
tures) and practice-oriented ones (e.g., program graphs), in a way that preserves
flexibility without abstracting much from the actual syntax of input models. We
demonstrate how to employ it on examples of case studies and evaluate the provided
benefits. Notably, with its help we were able to conduct verification of non-trivial
configurations of a voting model even with a generic personal laptop. While, this is a
speculation, the potential results on high-performance servers with more computa-
tional power/resources should be even more evident.

Lastly, we also show that the applicability of our method goes beyond that of
voting schemes, but is general enough for other kinds of multi-agent systems.

v

Acknowledgements
First of all, I would like to thank my supervisors, Prof. Wojciech Jamroga and Prof.

Peter. Y.A. Ryan, for granting me an exceptional opportunity to work on this research
and for their immense help as well as unwavering support over the years it took me
to complete this thesis. I would like to give special thanks to Wojciech for the kind
mentorship, in both professional and personal aspects of life. In particular, I thank
him for teaching me how to write academic papers, coaching me through my first
presentations, as well as exceptional patience, especially when reading all the drafts
or enduring my rehearsals. I also appreciate his tireless efforts to help me improve
my communication skills.

I thank the members of my CET commission, Prof. Wojciech Jamroga, Prof. Peter.
Y. A. Ryan and Prof. Wojciech Penczek, for counselling me throughout the PhD
studies and providing expert feedback on my ideas. They also provided helpful
remarks on the final structure of the thesis and pointed out some of my grammatical
errors.

I am grateful to my former supervisors back at Nicolaus Copernicus University
in Toruń, Prof. Piotr Dowbor and Dr. Marcin Piątkowski, for their guidance, encour-
agement and overwhelming belief in me, which often surpassed that of my own.

I want to thank my collaborators: Prof. Wojciech Jamroga, Prof. Peter Y.A. Ryan,
Dr. Peter Roenne, Damian Kurpiewski, Dr. Łukasz Mikulski, Mateusz Kamiński,
Witold Pazderski, Dr. Masoud Tabatabaei, Dr. David Mestel, and Marius Belly-Le
Guilloux. There were a number of collaborations that did not result in co-authorship,
but which certainly deserve recognition. In particular, Marius Belly-Le Guilloux
read through the early draft of pseudocodes for variable-based abstraction, Masoud
Tabatabaei gave valuable feedback on the earlier draft of the proposed formalism for
our abstraction method, and Damian Kurpiewski and David Mestel provided helpful
comments and suggestions for improving its presentation.

My gratitude also goes to Prof. Pierre Kelsen for entrusting me with the role of
assistant for practical classes and for all the patience and support.

I thank all the members of the APSIA group and its alumni for providing a
welcoming and supportive environment and many fascinating discussions, often
over exotic sweets and coffee. I feel privileged to have been part of this group and to
have had the opportunity to work with such interesting people. In particular, I want
to thank my wise seniors, Peter Roenne, Afonso Delerue Arriaga and Marjan Skrobot,
for uncountably many valuable hints and suggestions, and my former office-mates,
Aditya Damodaran and Fatima El Orche, for many uplifting discussions and help in
various matters.

I would also like to thank members of the TDCS research group from the Pol-
ish Academy of Science for the productive exchange of research ideas despite our
geographical distance.

Last but not least, I would like to thank my whole family for their support and
unconditional love: my dear parents Anastassiya and Vladimir, aunt Małgorzata and
uncle Andrzej, and cousins Karol, Łukasz, Marek and Mateusz.

This work was supported by the National Centre for Research and Development, Poland
(NCBR), and the Luxembourg National Research Fund (FNR), under the PolLux/FNR-CORE
project STV (POLLUX-VII/1/2019 & C18/IS/12685695/IS/STV/Ryan).

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background . 2
1.2 Examples . 4
1.3 Model Checking . 6
1.4 Contributions . 8
1.5 Structure of the Thesis . 12

2 Preliminaries 15
2.1 Temporal Logic . 15
2.2 Logic of Time and Strategies . 18
2.3 Adding Epistemic Operators . 21
2.4 UPPAAL Model Checker . 22
2.5 Related Work . 24

3 Towards Model Checking of Voting Protocols in Uppaal 27
3.1 Introduction . 28
3.2 Towards Model Checking of Voting Protocols 29
3.3 Outline of Prêt à Voter . 30
3.4 Modelling Prêt à Voter in UPPAAL . 31
3.5 Verification and Experiments . 40
3.6 Replicating Pfitzmann’s Attack . 44
3.7 Related Work . 46
3.8 Conclusions . 47

4 Practical Abstraction for Model Checking of Multi-Agent Systems 49
4.1 Introduction . 50
4.2 Preliminaries . 51
4.3 Variable Abstraction for MAS Graphs 56
4.4 Correctness of Variable Abstraction . 62
4.5 Complexity Analysis . 68
4.6 Case Study and Experimental Results 72
4.7 Related Work . 75
4.8 Conclusions . 76

5 EASYABSTRACT: a Tool for Practical Model Reductions for Verification of
Multi-Agent Systems 79
5.1 Introduction . 79
5.2 Formal Background . 80
5.3 Abstraction by Removal of Variables . 81

viii

5.4 Architecture of EASYABSTRACT . 83
5.5 Experimental Results . 83
5.6 Related Work . 85
5.7 Conclusions . 86

6 Modelling and Verification of Polish Postal Voting of 2020 87
6.1 Introduction . 88
6.2 Postal Voting Procedure . 89
6.3 Formal Model of the Procedure . 93
6.4 Verification . 98
6.5 Related Work . 103
6.6 Conclusions . 107

7 Hierarchical and Parameterized Specification of Polish Postal Voting 109
7.1 Introduction . 110
7.2 Voting Scenario . 110
7.3 Model . 111
7.4 Verification . 114
7.5 Experimental Results . 116
7.6 Related Work . 117
7.7 Conclusions . 118

8 Scalable Verification of Social Explainable AI by Variable Abstraction 119
8.1 Introduction . 119
8.2 Social Explainable AI . 121
8.3 Formal Framework . 121
8.4 Formal Models of SAI . 122
8.5 Experiments . 125
8.6 Conclusions . 128

9 Conclusions 129
9.1 Discussion . 129
9.2 Summary . 130
9.3 Future Work . 131

Bibliography 133

ix

List of Figures

1.1 Chapter dependencies . 14

2.1 UPPAAL locations and edges . 23
2.2 UPPAAL model specification - Toads&Frogs example 24
2.3 UPPAAL simulator and verifier - Toads&Frogs example 25

3.1 Prêt à Voter ballot . 30
3.2 Voter template for the model of Prêt à Voter 33
3.3 Coercer template . 34
3.4 Mteller template . 35
3.5 Dteller template . 36
3.6 Auditor template . 38
3.7 Module Sys . 39
3.8 Knowledge operator simulation in UPPAAL 42
3.9 Coercer module augmented with the converse transition relation . . . 42
3.10 Voter1 with reversed transitions . 43
3.11 Voter2 with reversed transitions . 44
3.12 Mix Teller with reversed transitions . 44
3.13 Decryption Teller with reversed transitions 45
3.14 Sys module with reversed transitions . 46
3.15 Corrupted Mix Teller module . 47

4.1 MAS graph for ASV . 53
4.2 Combined MAS graph of ASV; may-abstraction for Voter agent graph 54
4.3 Unwrapping for ASV . 56
4.4 Unwrapping for the may-abstraction . 61
4.5 MAS graph for simple postal voting . 72

5.1 Voter template . 81

6.1 A simplified diagram of the voting process 90
6.2 Election Package content . 91
6.3 UPPAAL GUI . 92
6.4 Voter template . 94
6.5 Municipal Office Template and Time singleton 95
6.6 Electoral Commission template . 96
6.7 Flowchart . 100
6.8 Abstraction example for REnv and BEnv 101

7.1 An example static-configuration . 112
7.2 Hasse diagram example for dynamic configuration space 112
7.3 Voter agent graph template . 113
7.4 Templates for activities: Voter__intention and Voter__acquire 114
7.5 Election package template . 115

x

7.6 Templates for activities: Voter__fill and Voter__cast 116
7.7 Templates for activity Voter__handout and Intention Form 117

8.1 AI agent template example . 123
8.2 Network topology illustration . 124
8.3 Verification results cube for model checking SAI 125

xi

List of Tables

3.1 Verification results for Prêt à Voter model 41
3.2 Verification results for Prêt à Voter model (with corrupt mix teller) . . . 45

4.1 Reachability index and local domain approximation example 60
4.2 Experimental results for model checking of φbstuff in may-abstractions

of postal voting . 73
4.3 Experimental results for model checking of φdispatch in must-abstractions

of postal voting . 74

5.1 Verification of φbstuff on models with 3 candidates 84
5.2 Verification of φcompr on models of social AI 85

6.1 Experimental results for model checking of φP1 104
6.2 Experimental results for model checking of φP2 105
6.3 Experimental results for model checking of (under-approximating)

φ−
¬P3 and φ++

¬P3 in a model, where MO may prepare EP without a valid
stamp . 106

7.1 Experimental results for selected static-configurations 116

8.1 Results of model checking φ3 on meta-configuration with ring-network,
sharing via average, no attacker . 127

1

Chapter 1

Introduction

1.1 Background . 2
1.1.1 Privacy . 2
1.1.2 Verifiability . 3
1.1.3 Other Important Properties . 3

1.2 Examples . 4
1.3 Model Checking . 6
1.4 Contributions . 8

1.4.1 Publications . 10
1.4.2 Presentations and Talks . 11

1.5 Structure of the Thesis . 12

Voting is a mechanism that plays a critical role in many social processes and is of-
ten regarded as the cornerstone of democracy. It comes in various forms (conventional,
electronic and hybrid) and features a plethora of application scenarios. Among the
common application domains are: government elections and/or referenda, univer-
sity (and other organizations) internal decision-making, corporate statutes, papal
conclave, etc.

In recent years, there were numerous voting schemes proposed, which offer
various improvements in almost every possible aspect of the process [Rya+09; Rya10;
Riv06; Bel+13; Cul+15]. A notable example is e-voting [JCJ05; AM07; Adi08; RRI16;
HR16; CGG19; CFL19], whence solutions can greatly increase the efficiency (e.g.,
reduce the managing cost, also in terms of time required before/after the actual
voting), if implemented correctly are often more reliable, and mainly designed to
be resistant to possible malicious behaviour of some participants. However, apart
from new solutions, there are also novel threats and sophisticated attacks that should
be considered. With e-voting in particular, the stakes are very high: not only does
the voting system have to operate correctly, but also believed to do so. Examples of
public discontent outbreaks — often in the form of protest or even riot — caused by
the failure to provide credible or convincing enough results can easily be found all
over the world. In the recent decade alone, we have witnessed the drastic magnitude
of societal events during the US presidential elections 2016 and 2020, the Belarusian
presidential election 2020. Altogether this brings up great challenges in the design,
implementation, and analysis of voting protocols.

In this research, we will focus on the analysis of secure, reliable, and verifiable
voting schemes, explore the application of automata-based techniques from formal
methods and endeavor to combine certain concepts from adjacent disciplines, such as
game theory and multi-agent systems. The goal is twofold: firstly, to provide stronger
guarantees by conducting verification of voting systems, and secondly, to ensure

2 Chapter 1. Introduction

disambiguation of properties/requirements through their formal specification. The
latter would further facilitate a better understanding of how the system works and
how it should work, as well as help better recognize some of their internal differences
and similarities.

Research Hypothesis

This thesis is about formal verification of voting procedures (including the socio-
technical aspects) using temporal model checking. The research hypothesis is there-
fore stated as follows:

Voting procedures, which are intrinsically versatile and typically notori-
ously complex systems from the start or eventually evolving into such,
can be verified using state-of-the-art model checking tools to provide solid
guarantees against well-defined system requirements.

1.1 Background

There might be no universal consensus on what the ultimate requirements of the
voting system must be — depending on the scenario the set of requirements as well
as their interpretation may be greatly varying. Nonetheless, we can still describe
some commonly accepted ones and point to interesting further studies on that.

1.1.1 Privacy

One of the fundamental requirements for the voting system is that a voter’s choice
must be kept secret. Traditionally, this is broken down into the following:

(BP) Ballot privacy: a system must not reveal for whom a voter voted;

(RF) Receipt-freeness: a system must ensure that a voter cannot convince/prove to a
third party how she voted;

(CR) Coercion-resistance: a system must ensure that a voter cannot cooperate with a
coercer to prove how she voted.

Article 21(3) of the Universal Declaration of Human Rights [Uni48] demands the
right for secret vote, which is often used interchangeably with (BP) but might also
have a distinct interpretation in general.1

In [DLL12] Dreier et al. propose a modular family of privacy notions and identify
the underlying (multidimensional) hierarchy of those. Furthermore, they demonstrate
how it can be applied to some existing voting schemes, which also allows for a more
systematic comparison of the latter. In particular, they show how proposed notions
map to different properties of real-world protocols, and are possibly verified using an
automated tool (such as PROVERIF [BAF08; Bla+16], PROSWAPPER [KSR10]). Notably,
the authors explicitly warn about the limitations associated with the possibilistic
nature of an employed approach.

A comprehensive analysis of game-based computational notions for vote privacy,
in particular, suitable for remote voting protocols, was discussed by Bernhard et al.

1Somewhat surprisingly, though, it is not uncommon in the literature to redefine or propose another
interpretation of an already used term and typically without changing its name.

1.1. Background 3

in [Ber+15]. The Additionally, they introduce new game-based definitions of privacy,
called BPRIV and strong consistency that aim to address some limitations with existing
ones and among others features that can account for possible tallying operations.

Another noteworthy study of proposed definitions of (RF) and (CR) was made
in [TJR16], which focuses on the strategic aspects of that. More precisely, they
overview existing (intuitive) definitions and present their interpretation/transcription
of those using an alternating-time temporal logic ATL [Alu; Alu+98; AHK02]. This
work demonstrates how coercion-related properties could be captured using the
notion strategies (to coerce or defend), and also facilitates in better understanding of
subtle differences behind them.

1.1.2 Verifiability

Verifiability aims to provide assurance that the outcome is accurate. Typically, one
distinguishes two notions/kinds of it:

(IV) Individual Verifiability: a voter can verify that her vote was properly counted,
and

(UV) Universal Verifiability2: anyone can verify that the result corresponds to the
votes cast.

In the context of electronic voting, a commonly discussed verifiability technique is
the end-to-end verifiability (E2E-V) [Ben+15; RST15; JMP13]. Traditionally, it requires
the following three phases/tasks to be achieved/performed:

i. Cast-as-intended (CAI): a voter can check that her choice was accurately captured
(e.g., on a paper ballot, or by digital means);

ii. Recorded-as-cast (RAC): a voter can check that her vote was received the same
way it was cast;

iii. Tallied-as-recorded (TAC): a voter can check that her vote was correctly included
in the tally.

Another interesting aspect of verifiability includes:

(ElV) Eligibility verifiability: anyone can verify that all votes in the results/tally
originate/come from registered/eligible voters, and there is at most one vote
per voter [KRS10].

Ideally, verifiability should render any malicious tampering of results detectable,
while keeping the minimum amount of trust one needs to place (e.g., in a device,
network infrastructure, officials, etc.).

Verifiability and privacy (or secrecy) are commonly recognized as two funda-
mental security attributes that a voting system should guarantee. Due to the almost
conflicting nature of these requirements, designing a system that provides both can
be a big challenge.

1.1.3 Other Important Properties

In verifiable e-voting schemes, vote privacy often relies on certain computational
hardness assumptions3 associated with employed cryptographic primitives. An

2First defined by Sako and Kilian in [SK95]
3That is a (widely believed) hypothesis that particular problem cannot be solved certain problems

efficiently, i.e. in a reasonable amount of time (typically implied “polynomial time”) and using currently
available computational resources [Sti05].

4 Chapter 1. Introduction

interesting notion of privacy, called everlasting privacy [MN06], aims to ensure that
voting secrecy can be preserved unconditionally anytime in the future. Achieving
such without significant trade-offs can be notoriously difficult or even impossible,
therefore a weaker/relaxed variant, called practical everlasting privacy [Ara+13], which
restricts the power of adversary to perform certain operations on data, is often
of strived for instead. A well-rounded overview of academic literature related to
electronic voting protocols with everlasting privacy can be found in a recent SoK
paper [Hai+23] by Haines et al.

There is also a whole family of properties related to dispute resolution, which
investigates reports of system malfunctions. In particular, accountability ensures that
“misbehaviour” can be traced back to the responsible party, which also provides a
stronger incentive for participants to follow the protocol “honestly”. Different levels
of accountability, as well as their relation to verifiability, were studied by Küsters et al.
in [KTV10b]. Their work also advocates the goal-centered definition of accountability
that interprets “misbehaviour” in connection with the violation of a desired goal.

1.2 Examples

In this section, we provide a number of selected examples of proposed ways of
implementing certain security properties for voting systems. Expectedly, as with an
abundance of variants of requirements, we will cover only some mechanisms, mainly
focusing on conceptual ideas rather than underlying technical components.

Cryptographic primitives

Since early suggestions of using cryptography for voting in [BT94], researchers
invented a multitude of new methods and techniques for applying cryptography
to voting schemes. Those can provide formal guarantees for integrity and present
elegant solutions to problems (often previously considered impossible). Notable
examples involve, but are not limited to: blind signatures, anonymizing mixes,
public-key encryption, homomorphic encryption, zero-knowledge proofs and secure
multi-party computation. We refer the interested reader to [HR16] for more details
and in-depth discussion on applications.4

Benaloh challenge

Benaloh challenge [Ben06; Ben07] is a “cut-and-choose” technique that allows voters5

to audit the encryption of their vote (or other form of made selection) and to check
whether it was created/represented accurately. In particular, the vote creation device
must commit to the encryption upon selection made by a voter. Next, a voter can
decide whether to cast or to audit it. The latter provides a verifiable decryption,
“spoils” the vote and prompts the voter to start over (possibly changing the selection
made).6 An audit can be repeated until the voter is convinced that a device behaves
“honestly”. A device, even if malicious, can never know in advance whether a certain
vote will be audited, and thus cannot “cheat” without risk of being caught.

4Additional background information for readers unfamiliar with cryptography can be found in
textbooks, e.g. [Sti05; KL07].

5Note, that original work [Ben06] does not restrict the usage to voters per se; a discussion of other
scenarios goes beyond the scope of the present work.

6An audited encryption of the vote must never be submitted, as that would break the vote secrecy.

1.2. Examples 5

It is one of the most popular, if not the de facto, ways/mechanisms of imple-
menting (CAI) in e-voting systems. It is generic enough and compatible with many
application scenarios. Importantly, this mechanism, when implemented correctly,
does not compromise the secrecy and receipt-freeness. Last but not least, it puts much
strain on the voters, as, the auditing is first of all completely optional.7

Its mechanism was analysed under the game-theoretic model by Culnane and
Teague in [CT16], whence one of the results was concluding the lack of “natural”
rational strategy for the voter, which might call into question whether audits using
Benaloh challenges are indeed sensible. This was recently addressed by Jamroga in
a follow-up study [Jam23], where both technical and conceptual aspects of analysis
as in [CT16] were examined more scrupulously; in consequence: it corrected some
claims, pointed out certain important assumptions, which were previously implicit,
and discussed application of rationality concepts beyond that of Nash equilibrium
itself.

Fake material

For instance, in JCJ voting scheme [JCJ05] a voter is provided with fake credentials
that can be used to deceive a potential coercer on how the vote was cast. Registered
(encrypted) votes with credentials are publicly available on a bulletin board. Fake
votes are later removed during the cleansing phase before tallying; this is preceded
by the mixing of votes, which intends to eliminate the linkage to initially cast votes.
In that way, a mechanism for coercion resistance can be implemented.8

Another interesting approach, which guarantees (RF), was proposed in [RRI16]
and [ZRR20], where voters are secretly assigned with unique trackers. The pool of
trackers is public, and votes are published in plaintext along with the encryption of
the tracker on a World Bulleting Board. Some time after all votes were cast, the voter
can either request a special alpha-term, which can be used to derive her tracker and
verify it, or she may also request a fake term, which would point to the selected vote
(e.g., demanded by a coercer). The scheme proposes a good level of transparency and
an interesting mechanism for mitigating coercion attacks.

As can be seen from the above discussion, there is a multitude of interesting
properties, and ways to define, interpret and further implement them. Overall, the
context plays an important role here; such aspects are legal constraints, relevant
threats and considered attacks, operational environment and many others. It possibly
comes as no surprise that ways of performing a formal analysis of voting protocols
come in great variety as well. A formal taxonomy of such might be a subject in itself
and requires greater expertise in the field than presently available. Therefore, in
the upcoming section, we will restrict ourselves to a brief description of a selected
number of works, without attempting to establish a complete family of verification
methods.

7It should be noted, however, that Benaloh challenge in principle does rely on voters to report if the
device was caught in cheating during an audit.

8Although in [CGY22] it was later found that originally proposed variant [JCJ05] used a much
weaker notion of (CR) and overlooked some potential exploits, the reported flaws were not related to
the concept itself.

6 Chapter 1. Introduction

1.3 Model Checking

Model specification

The system components and their interactions can be modelled in various ways.
Among the standard and widely used model representations describing behaviour of
a system are:

• Transition System (TS) — a directed graph, where nodes represent the current
state of the system and edges describe the transitions, state evolution/changes.
Two of the most commonly used variants are: Kripke Structure (KS), where each
state is associated with a subset of atomic properties it satisfies, and Labelled
Transition System (LTS), where edges are associated with an action.9 Furthermore,
in case of 3-valued formalism, notions of Partial Kripke Structures (PKS), Modal
Transition Systems (MTS) and Kripke Modal Transition Systems (KMTS) are often
used instead.10

• Büchi Automaton (BA) — (non-deterministic) automaton accepting omega-regular
languages. A variant, called generalized Büchi automaton is used in algorithms
for verification of omega-regular properties.

• Program Graph (PG) — often used for modelling the data-dependent systems,
usually represented in the form of a directed graph over the set of typed variables,
where nodes represent control locations and edges as conditional transitions.
Program graph could be interpreted as a transition system by taking the pairs of
location and evaluation of variables for the states, effectively “unwrapping” the
program graph. Usually, this provides a more compact view of the system than TS
kinds or automata-based representations.

• Timed Automata (TA) — essentially a PG extended with a (finite) set of special
real-valued variables called clocks; these allow for capturing the behaviour of the
time-critical systems. 11

• Markov Chain and Markov decision process (MDP) — both enrich TS with proba-
bilistic choices; intuitively, the Markov chain replaces the nondeterministic choice
of the state’s successors with probability distribution, whereas MDP supports the
co-existence of both nondeterministic and probabilistic choices, which allows for
an adequate model of randomized distributed systems.

Dealing with SSE

One of the biggest challenges in applying model checkers for verification of real-
world systems remains a phenomenon known as a state-space explosion (SSE). This
occurs due to the number of states growing exponentially in the number of system
components (e.g., sub-processes) and their details (e.g., variables). In attempt to
mitigate this problem several techniques were proposed:

• Abstraction — a technique based on the idea of eliminating details of the system,
that are irrelevant for the verification of a property, so that a resulting smaller
model is used. In many cases analysis of an abstracted model will be sufficient to
decide the problem for the original one.

9In many contexts KS and LTS can be used interchangeably, as their distinction is mainly technical,
allowing results to be formulated using either formalism.

10We omit the details, as the topic goes beyond the scope of this work. An interested reader can refer
for more details to [God14].

11Here, we refer to the (more intuitive) definition from [Hen+94; BY03; BK08] instead of that originally
introduced in [Alu99].

1.3. Model Checking 7

• Under-/over-approximation (or simulation) — two commonly used approaches
that rely on a partitioning of the state space, effectively reducing the size of a
system. Such reduction is done in a way that guarantees preservation of certain
fragment of CTL* formulae (existential for under-approximation, universal for
over-approximation).

• Partial order reduction — an on-the-fly method of state space reduction that has
been defined for linear and branching temporal logics, and more recently also
applied for the verification of strategic ability using ATL. Rather than unfold the
global system graph based on all available transitions, the idea is to restrict to a
provably sufficient subset (commonly referred to as the ample set, stubborn set or
persistent set) in each global state. As the exact computation of this subset is costly,
heuristics have been defined. The obtained reduced model satisfies temporal and
temporal-strategic formulae iff they are satisfied in the full model (which, thanks
to POR, is never generated).

• Counter-example guided refinement (CEGAR) — automatic iterative-refinement
methodology defined for universal fragment of CTL* specification. It computes an
over-approximation of a concrete system and then checks specification against it.
If a specification is not satisfied in the abstract system and the counterexample run
is not present in the original system, the abstraction is refined in way, preventing
such erroneous behaviour from happening and the verification step is repeated.

• Symbolic verification using Binary Decision Diagrams — in this paradigm, rather
than using explicit, graph-based data structures for automata that comprise the
verified model, the transition relation and sets of states are represented with bi-
nary decision diagrams (BDDs). This representation is sufficient for implementing
model checking algorithms (e.g., fixpoint-based) for a range of temporal logics.
Because it is much more concise than explicit structures, it enables the practi-
cal verification of significantly larger models, including real-world systems and
protocols used in the industry.

• Bounded model checking using satisfiability solving — an alternative approach to
symbolic model checking that uses boolean satisfiability (SAT) procedures. The
idea is to construct a formula that is satisfiable iff there exists a counterexample
of a specific length (increased, up to a given bound, in subsequent iterations). It
uses less space than BDD-based approaches and quickly finds counterexamples of
minimum length due to the depth-first nature of SAT-solving algorithms.

Some tools

Applying model checking is typically split into three parts: establishing the model
of possible system behaviour, formalizing the specification of requirements, and
executing the verification. A concise overview of these processes with respect to
selected verification tools is given below:

• MCMAS — a state-of-the-art, OBDD-based symbolic model checker. The descrip-
tion of multi-agent systems (MAS) is given by means of ISPL (Interpreted Systems
Programming Language) format. This specification is agent-based and each agent
is described by providing a set of variables, available actions, agent protocol and
evolution functions. Among others, MCMAS supports CTL and ATL formulae for
specifying requirements for the system. It also supports basic fairness conditions
and allows to generate counterexamples. The tool can be used from the shell, but
Eclipse-based graphical interface is also provided.

• SPIN — a software verification tool and full LTL model checker. The system is
described in PROMELA (process metalanguage), which supports embedding C

8 Chapter 1. Introduction

code as part of the model specification. Apart from LTL formulae, the require-
ments can be also specified as system/process invariants, Büchi automata, and
general omega-regular properties. Both rendezvous and buffered communication
are supported, and SPIN is one of the few verification tools that allows for a
dynamically changing number of processes. Furthermore, it supports partial order
reduction, which coupled with on-the-fly verification allows for efficient handling
of large systems.

• TAMARIN prover — a tool aimed at security protocol verification. It is not a model
checker but can be used as a helper tool for symbolic modelling and analysis of
protocols heavily based on cryptography, such as most of the e-voting protocols.
Its specification language is based on multiset rewriting systems. The systems
are analysed with respect to (temporal) first-order properties. As other theorem
provers, TAMARIN inherits greater expressive power but requires high proficiency
to be used effectively.

• UPPAAL — provides an environment for modelling and verification of a real-time
system, represented by a network of extended timed automata. System compo-
nents (and their templates) are described using C/C++ style language and stored
either as XML or as XTA files (+ optional UGI file for the layout). Requirements
specification support is limited to a subset of CTL* formulae (excluding next and
until modal operators, and nesting of path quantifiers). The verification process
comes to on-the-fly exploration of the global model with an option to select which
traversal algorithm will be used (BFS, DFS, randomized DFS). Verification re-
sults with one of the following messages: “property is satisfied”, “property is not
satisfied” with violating run, and “out of memory”.

• PRISM — at the moment the most well-known probabilistic model checker, it
supports a wide range of probabilistic models, including discrete Markov chains,
continuous-time Markov chains, Markov decision processes, probabilistic au-
tomata and probabilistic timed automata, which combine concepts from TA and
MDP. Its property specification language incorporates PCTL, CSL, LTL and PCTL*
temporal logics as well as extensions for quantitative specifications and cost-
s/rewards. It provides multiple model checking engines (BDD-based symbolic,
explicit-state) and implements a variety of verification techniques, such as symme-
try reduction and quantitative abstraction refinement.

• STV (StraTegic Verifier) — an experimental tool for verification of strategic abilities
under imperfect information and strategy synthesis guaranteeing a given temporal
goal. The model is specified as an asynchronous multi-agent system (in other
words, a network of local automata). Properties are expressed using alternating-
time temporal logic ATL and encoded with the model in the input file. The
tool performs verification using explicit-state model checking with support for
automated partial order reduction and A-bisimulation (bisimulation checking if a
pair of models is bisimilar for a given coalition) for provided bisimilation relation.

1.4 Contributions

The contributions of this thesis fall under two main strands. The first concerns the
proposed variable abstraction method, which is of both technical and innovative
nature. It is designed to operate on the compact (often modular) representation of the
system, can process the input and output independently of the chosen model checking
environment, and guarantees the generation of the correct-by-design abstract models.
In contrast to many existing (and more general) state abstraction techniques, this

1.4. Contributions 9

solution does not require generation of complete concrete state space12 beforehand,
which, in many cases, is exactly the bottleneck that we want to avoid. Hence, the
novelty comes not from what is being done — the principles of the state abstraction
are more than 30 years old — but in how it is specified. For that purpose, it was
necessary to work out an appropriate formalization framework, including the right
terminology, which is flexible enough yet not too abstract, so that it is ready to
be applied in practice as is. The abstraction is specified at a high level, supports
various operations on variables (e.g., removing them, merging them into a new
variable, restricting their domain, etc.) and allows to restrict the effect to a particular
fragment of the model only (specified by a subset of locations). Overall this provides
an intuitive yet powerful syntax for specifying an abstraction. Given abstraction
parameters the generation process can be fully automated and does not require the
user to understand its theoretical underpinnings, as produced abstract models are
guaranteed to be sound. The proposed algorithm is supported by correctness proofs
and complexity analysis.

Furthermore, we provide an implementation of the abstraction method for UP-
PAAL model checker, which we utilized in the series of experiments with different
models. In particular, we demonstrate how it can be used on example of realistic case
studies and evaluate its effectiveness.

Consequently, this brings us to the second contribution cluster related to the
modelling and verification of multi-agent systems from the voting protocols. We
used model checking for verification of Prêt à Voter, Polish Postal Voting — first the
simplified one and then a more mature/sophisticated one — and Social Explainable
AI protocol. The proposed models have a modular structure, are parameterized by
configuration and are highly scalable in general. Having a flexible and transparent
model specification is useful in many ways, not only does it help with preliminary
validation in the early stages of modelling, and further maintenance in the later
stages,13 but it also allows for possible refinement of the model in the future (including
the addition of new agents), encourages the reuse of existing module specifications,
and improves the overall efficiency of the modelling process, especially when multiple
variants of the system are to be examined or compared. Furthermore, the use of logical
formalism to express the properties of the modelled system provides an unambiguous
and reasonably intuitive interpretation.

While the study did not result with an ultimate prescription (or complete/ma-
tured methodology) and neither verification discovered new kinds of attacks, it is
an important step towards that. Indeed, capturing a broad spectrum of possible
behaviours of the system and its components (e.g., system communication with the
environment or agent-to-agent interactions) within a model, let alone verifying such
a complex system, might be infeasible in its entirety with current or foreseeable in
the near future tools. However, even when done on a smaller scale, the analysis will
allow detecting multitude of bugs (or other forms of undesired states of the system)
and in their absence increase the confidence in the correctness of the system.14

12This requirement can also be stated implicitly; for example when underlying equivalence relation
(over the concrete states) is given in parametric form.

13Both of these features are intrinsically crucial for ensuring that what has been modelled genuinely
corresponds to what we think/believe has been modelled. Recall that “any verification using model-
based technique is only as good as the model of the system”[BK08]

14There might be an argument that possibly false-positive (or erroneous) confidence in the system is
of a great risk on itself, however it must be stressed that, as with almost any kind of analysis, the derived
results are inherently bound to the assumptions; here, the outcome, when no violations of security
requirements were found, relates to level of abstraction from real system to its model and considered
threats.

10 Chapter 1. Introduction

Moreover, we describe various modelling practices, including technical optimiza-
tions and tricks, which can greatly facilitate the analysis. In particular, we shed light
on certain phases of capturing systems and their requirements through models and
formal properties, which are often omitted in the academic literature due to lack of
scientific value or novelty, but which can be helpful to readers with less expertise. For
example: dealing with state space explosion, generating input models from a more
expressive specification (e.g., via template engine), and managing and benchmarking
families of models.

Lastly, this thesis provides a systematic overview of state-abstraction techniques,
approaches to modelling human behaviour (including their possible mistakes or
other forms of deviating from the expected, “honest” behaviour) and existing studies
of socio-technical aspects of voting schemes. No less importantly, our work explores a
different modelling paradigm that offers a more natural representation of the system
in terms of agent-based semantics and an approach that was strongly driven by
practical concerns.

1.4.1 Publications

In the course of doctoral studies I had three publications accepted in A∗-ranked15

and two in B-ranked16 conferences/journals. This thesis mainly builds on material
from the following papers:

• “Towards Model Checking of Voting Protocols in Uppaal”, on which Chapter 3 was
based. The co-authors of this paper were: Wojciech Jamroga, Damian Kurpiewski,
and Peter Y. A. Ryan. It was published in Proceedings of the 5th International
Joint Conference on Electronic Voting, E-Vote-ID 2020, Springer LNCS.

• “Verification of the Socio-Technical Aspects of Voting: The Case of the Polish Postal
Vote 2020”, on which Chapter 6 was based. The co-authors of this paper were:
Wojciech Jamroga and Peter Y. A. Ryan. It will appear in Proceedings of the
12th International Workshop on Socio-Technical Aspects in Security, STAST 2022,
Springer LNCS.

• “Practical Abstraction for Model Checking of Multi-Agent Systems”, on which Chapter 4
was based. The co-author of this paper was Wojciech Jamroga. It was published
in Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2023 (A∗ rank in CORE).

• “Practical Model Reductions for Verification of Multi-Agent Systems”, on which Chapter 5
was based. The co-author of this paper was Wojciech Jamroga. It was published in
Proceedings of the 32nd International Joint Conference on Artificial Intelligence,
IJCAI 2023 (A∗ rank in CORE).

• “Scalable Verification of Social Explainable AI by Variable Abstraction”, on which
Chapter 8 was based. The co-authors of this paper were: Wojciech Jamroga
and Damian Kurpiewski. It will appear in Proceedings of the 16th International
Conference on Agents and Artificial Intelligence, ICAART 2024 (B rank in CORE),
SCITEPRESS.

The publications — that were written in the course of the doctoral studies but
were not included in the scope of discussion for this thesis — are listed below:

15A∗ is the highest CORE ranking assigned to the “flagship conference/journal, a leading venue in
the discipline area” [Com24].

16B is the CORE ranking assigned to a “very good conference/journal, and well regarded in a
discipline area” [Com24].

1.4. Contributions 11

• “Computational Classification of Tubular Algebras”, which was co-authored with Piotr
Dowbor. It was published in Fundamenta Informaticae vol. 177 (B rank in CORE),
IOS Press.

• “STV+Reductions: Towards Practical Verification of Strategic Ability Using Model Reduc-
tions”, which was co-authored with: Wojciech Jamroga, Damian Kurpiewski and
Witold Pazderski. It was published in Proceedings of the 20th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2021 (A∗ rank
in CORE), IFAAMAS.

• “You Shall not Abstain! A Formal Study of Forced Participation”, which was co-
authored with: Wojciech Jamroga, Peter Y.A. Ryan and Peter Roenne. It will
appear in Proceedings of the 9th Workshop on Advances in Secure Electronic
Voting, Voting 2024.

1.4.2 Presentations and Talks

Below are the conference presentations and seminar talks, in which I had the honour
to speak about my research, listed in chronological order:

• “Pret-a-Voter in Uppaal” Internal Seminar of Secure, Usable and Robust Crypto-
graphic Voting Systems (SURCVS) Project, 04/09/2020, Online;

• “Towards Model Checking of Voting Protocols in Uppaal”, Applied Security and
Information Assurance (APSIA) Research Seminar, 24/09/2020, Luxembourg;

• “Towards Model Checking of Voting Protocols in Uppaal”, Main Programme of the 5th
International Joint Conference on Electronic Voting, E-Vote-ID 2020, 09/10/2020,
Online;

• “Towards Model Checking of Voting Protocols in Uppaal”, Theory of Distributed and
Computing Systems (TDCS) Group Seminar, 01/10/2020, Online;

• “Towards Model Checking of Voting Protocols in Uppaal”, PhD Colloquium of the 20th
International School on Foundations of Security Analysis and Design, FOSAD
2021, 02/09/2021, Bertinoro, Italy;

• “Formal Verification of Multi-Agent Systems”, Interdisciplinary Centre for Security,
Reliability and Trust (SnT) Partnership Day 2021, 18/11/2021, European Conven-
tion Center, Luxembourg,

• “Abstraction based on variable removal”, Applied Security and Information Assurance
(APSIA) Research Seminar, 13/12/2021, Luxembourg;

• “Verification of the Socio-Technical Aspects of Voting: The Case of the Polish Postal Vote
2020”, 12th International Workshop on Socio-Technical Aspects in Security, STAST
2022, 29/09/2022, Copenhagen, Denmark;

• “Abstraction for Multi-Agent Systems with Uppaal”, Theory of Distributed and
Computing Systems (TDCS) Group Seminar, 09/02/2023, Online;

• “Verification of the Socio-Technical Aspects of Voting: The Case of the Polish Postal Vote
2020”, Formal Languages and Concurrency (FOLCO) Group Seminar, 14/03/2023,
Toruń, Poland;

• “Practical Abstraction for Model Checking of Multi-Agent Systems”, Main Programme
of the 20th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2023, 9/09/2023, Rhodes, Greece;

• “Practical Abstraction for Model Checking of Multi-agent Systems”, Internal Workshop
of Probabilistic Verification Of Complex Heterogeneous Systems: From Ballots To
Ballistics (SpaceVote) Project, 22/09/2023, Gdańsk, Poland;

• “Verification and Modelling of Polish Postal Voting”, PhD Colloquium of the 8th
International Joint Conference on Electronic Voting, E-Vote-ID 2023, 03/10/2023,
Luxembourg;

12 Chapter 1. Introduction

1.5 Structure of the Thesis

This monograph is self-contained. It is structured in 9 chapters. The chapter depen-
dencies are illustrated in Fig. 1.1, where dashed lines denote that the abstraction tool
from Chapter 5 was used in some experimental cases of Chapters 6 and 8.

The main chapters (3–8) are organized as follows: at the beginning, we briefly
introduce the main topic of the chapter and then provide the content with necessary
details. Each chapter includes a separate discussion of related work, a conclusion and
directions for future work.

The outline of each individual chapter is given below:

Chapter 1 provides a gentle introduction to the subject of this work, it establishes
the motivation and gives a brief overview of related literature.

Chapter 2 introduces the reader to the model checking primitives and basic notions
necessary for further discussion.

Chapter 3 demonstrates how model checking tools like UPPAAL can be applied for
the modelling and verification of voting procedures on the example of the Prêt
à Voter scheme. It describes: modelling approach, encodings of some important
voting properties and examination of Pfitzmann’s attack on the randomized
mix-nets that might break the privacy, and discusses certain optimizations
aimed to enhance scalability and to keep the model manageable. Furthermore,
we show how one does a model checking of temporal-epistemic properties via
technical reconstruction of the input model and a purely temporal formula. This
was the first step towards analysis of voting schemes using temporal model
checkers, which showed that conceptually the results were promising, but also
that computation complexity is a huge obstacle in practice.

Chapter 4 discusses the topic of practical model reduction for mitigation of the state
space explosion. We overview a number of existing reduction techniques to-
gether with the limitations they impose. To cope with the latter, we proposed a
conceptually simple method of variable-based state-abstraction. It is generic
enough to be used/compatible with other techniques (e.g., partial-order reduc-
tions, sweepline) and constructed model reductions are correct-by-design. No
less importantly, the presented method is pretty user-friendly: first-of-all, it can
be used with minimal expertise17, the user is not even required to understand
how it works; secondly, it naturally operates on compact system representations,
which not only aid in more efficient computation but are also already familiar
to the user. Of course, to be used efficiently, in the sense of obtaining a signifi-
cantly reduced model and conclusive result, a “good” selection of abstraction
parameters must be made.18 Another important contribution of this work is
the establishment of a formal notation that preserves the flexibility of purely
mathematical objects, albeit without diverging too far from the constructs that
are actually used in practice.

Chapter 5 revisits the topic of practical abstraction and reports an experimental
implementation of the aforementioned method. It gives an overview of the

17Both technical, as understanding the internal operations of the tool, as well as mathematical
backbone standing behind the theoretical guarantee.

18This would usually rely on guidance from domain experts, but it might as well be done through an
educated guess (recall that abstractions are generated in an automated way and are correct-by-design).

1.5. Structure of the Thesis 13

tool’s architecture, application scenarios, and evaluation on examples of two
benchmarks that were performed on the models of postal voting and gossip
learning for social AI. The tool was designed with portability in mind so that
using it does not inject any backwards dependability. Abstract models are
available on the output and come in the same specification format as the input
model; those can be further loaded and normally used with UPPAAL.

Chapter 6 presents a model of Polish Postal Voting protocol, with a focus on captur-
ing socio-technical aspects and practical verification. The case study involves a
family of parameterized models, including those with corrupted officials and
fallible voters. It also describes an algorithmic approach for the translation of re-
quirements from intuitive description to logical formula, which will be queried
in the tool. In particular, it proposes interesting approximations allowing to
overcome certain limitations caused by a lack of computational resources or
narrowly supported specification language. Furthermore, the presented case
study demonstrates the benefits of our abstraction method for analysis of a
model of the real-world voting procedure.

Chapter 7 follows up the ideas presented in the previous chapter and further devel-
ops a model of Polish Postal Voting protocol and captures a greater variety of
socio-technical interactions. In particular, it proposes a hierarchical modelling
approach, which allows organising a rather compound system specification
in a clear and easy-to-maintain manner. Furthermore, it also enhances the
verification workflow and suggests, how a family of parameterized models
with multi-dimensional configurations can be studied and discusses certain
implications, which allow propagating the results from one onto many config-
urations, thus improving both efficiency and understanding of the system’s
internal dependencies.

Chapter 8 presents a case study of a family of SAI models. This attests that the
applicability of our proposed abstraction method goes beyond voting proce-
dures, and proves it to be beneficial also in the verification of other kinds of
multi-agent systems. The case study covers 27 variants of SAI models, each
having a number of its own configurations. Additionally, it proposed a clever
modelling trick that allows to use impose standard interpretations of AF and
EG formulae.

Chapter 9 provides a summary, concluding remarks and suggests possible directions
for future research.

14 Chapter 1. Introduction

Introduction1.

Preliminaries2.

Towards MC of Voting
Protocols in Uppaal

3.

Practical Abstraction
for MC of MAS

4.

Practical Model Reductions
for Verification of MAS

5.

Modelling and Verification
of PPV

6.

Hierarchical Specification
of PPV

7. Scalable Verification of SAI
by Variable Abstraction

8.

Conclusions9.

FIGURE 1.1: Chapter dependencies.

15

Chapter 2

Preliminaries

In this chapter, we recall from the literature the standard class of representations
used for concurrent systems and some other model checking primitives, that will be
necessary in further discussions.

Definition 2.1 (Model). A model is a tuple M = (St, I,−→,AP, L), where:

• St is a set of states,
• I ⊆ St is a non-empty set of initial states,
• −→⊆ St × St is a transition relation,
• AP is a set of atomic propositions,
• L : St → 2AP is a labelling function.

We assume −→ to be serial, i.e., there is at least one outgoing transition at every state, and St
and AP to be finite.

Definition 2.2 (Run). A run of model M is a sequence of states π = s0s1 . . ., such that
si ∈ St and si −→ si+1 for every i ≥ 0.

A length of a run is denoted by len(π), such that len(π) = n, if run is finite (i.e.
π = s0s1 . . . sn), and len(π) = ∞ otherwise. By π[k] and π[i, j] we denote the k-th state1 of
π and the fragment of π from index i to j respectively.

The set of all runs in M is denoted by Runs(M), and the set of runs of certain length
t ∈ N+ ∪ {∞} is denoted by Runst.

Definition 2.3. A path of model M is a maximal run, that is either infinite or ends in a
state with no outgoing transitions (also called terminal state). A path that starts in initial
state s0 ∈ I is called initial path.

The set of all paths in M and all paths starting from state s ∈ St are denoted by Paths(M)
and Paths(s) respectively.

Unless stated otherwise, we shall also assume that St of a model M only contains
states that are reachable from I, namely those s ∈ St for which there exists a run
π = s0 . . . sns, where s0 ∈ I and si ∈ St for i = 0 . . . n.

2.1 Temporal Logic

Temporal logic allows us to reason about the execution paths of the system (as
sequences of transitions between its states). In this work, we will focus on a powerful
branching-time logic called Computation Tree Logic CTL and its extension called
CTL⋆ [Eme90; CES86; EH86], which are widely used in the verification of reactive
systems.

1An indexing of such states starts from 0.

16 Chapter 2. Preliminaries

Definition 2.4 (Syntax of CTL). In CTL there are two types of formulas: state formulae
φ and path formulae ψ. Their syntax over a set of atomic propositions AP is given by the
following grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Aψ | Eψ

ψ ::= Xφ | φ U φ

where p ∈ AP is an atomic proposition, X and U stand respectively for “next” and “until”.
The clauses for Boolean connectives are standard, and additional temporal operators

“sometime” and “always” can be derived as follows:

(sometime) Fφ ≡ trueU φ

(always) Gφ ≡ ¬F¬φ

Definition 2.5 (Semantics of CTL). Let M = (St, I,→, AP, L) and p ∈ AP. Satisfaction
relation |= of a CTL state formula φ is given with respect to state s ∈ St, and of a CTL path
formula ψ w.r.t. path π ∈ Paths(M). It is inductively defined by:

M, s |= p iff p ∈ L(s)
M, s |= ¬φ iff M, s ⊭ φ

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= Aψ iff M, π |= ψ, for all π ∈ Paths(s)
M, s |= Eψ iff M, π |= ψ, for some π ∈ Paths(s)

M, π |= Xψ iff M, π[1, ∞] |= ψ

M, π |= ψ1 U ψ2 iff ∃j ≥ 0. (M, π[j, ∞] |= ψ2, and
∀0 ≤ i < j. M, π[i, ∞] |= ψ1)

The model M is said to satisfy CTL (state) formula φ (written M |= φ) iff M, s0 |= φ, for all
initial states s0 ∈ I.

The CTL⋆ extends the (vanilla) CTL by allowing path quantifiers to be arbitrary
nested with temporal ones2, which also provides greater expressive power.

Definition 2.6 (Syntax of CTL⋆). The syntax of CTL⋆ state formulae φ and path
formulae ψ over a set of atomic propositions AP is given by the following grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Aψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP is an atomic proposition, X and U stand respectively for “next” and “until”.
The clauses for Boolean connectives are standard, and additional temporal operators

“sometime” and “always” can be derived as follows:

(sometime) Fφ ≡ trueU φ

(always) Gφ ≡ ¬F¬φ

Furthermore, in CTL⋆ the existential path quantifier can be defined as:

Eψ ≡ ¬A¬ψ

2Notice that in CTL every occurrence of a temporal operator is always immediately preceded with a
path quantifier.

2.1. Temporal Logic 17

Definition 2.7 (Semantics of CTL⋆). Let M = (St, I,→, AP, L), s ∈ St and π ∈
Paths(M). Satisfaction relation |= for CTL⋆ state formula φ and path formula ψ is inductively
defined by:

M, s |= p iff p ∈ L(s)
M, s |= ¬φ iff M, s ⊭ φ

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= Aψ iff M, π |= ψ, for all π ∈ Paths(s)

M, π |= φ iff M, π[0] |= φ

M, π |= ¬ψ iff M, π ⊭ ψ

M, π |= ψ1 ∨ ψ2 iff M, π |= ψ1 or M, π |= ψ2

M, π |= Xψ iff M, π[1, ∞] |= ψ

M, π |= ψ1 U ψ2 iff ∃j ≥ 0. (M, π[j, ∞] |= ψ2, and
∀0 ≤ i < j. M, π[i, ∞] |= ψ1)

The model M is said to satisfy CTL⋆ (state) formula φ (written M |= φ) iff M, s0 |= φ, for
all initial states s0 ∈ I.

Often, techniques and methods dealing with state space explosion operate on
more restricted variants of logic. In particular, the universal fragment of the branching-
time logic CTL⋆ called ACTL⋆ (resp. universal fragment of CTL called ACTL) allows
only universal path quantification. We formally introduce its syntax and semantics
below.

Definition 2.8 (Syntax of ACTL). The syntax for ACTL over a set of atomic propositions
AP is given by the following grammar:

φ ::= true | false | p | ¬p | φ ∧ φ | φ ∨ φ |
AXφ | Aφ U φ | Aφ R φ

where p ∈ AP is an atomic proposition, and X, U, R stand respectively for “next”, “until”,
and “release”.

Formulas of ACTL are required to be in positive normal form, i.e. where negations can
be applied only to atomic propositions.3 For this reason, both: conjunction and disjunction
Boolean connectives, as well as until and release modal operators are given here explicitly.
Additional temporal operators “sometime” and “always” can be derived as follows:

(sometime) Fφ ≡ trueU φ

(always) Gφ ≡ φ R false

Definition 2.9 (Semantics of ACTL). The semantics of ACTL is given with respect to a
state s in a model M is inductively defined by:

3Notice that otherwise the existential path quantifier would be implicitly introduced.

18 Chapter 2. Preliminaries

M, s |= p iff p is on the list of labels L(s);
M, s |= ¬p iff p is not on the list of labels L(s);
M, s |= AXφ iff, for each path λ ∈ Paths(s), we have M, λ[1] |= φ;
M, s |= Aφ1 U φ2 iff, for each λ ∈ Paths(s), there is i ≥ 0 with M, λ[i] |= φ2,

and for each 0 ≤ j < i it holds that M, λ[j] |= φ1;
M, s |= Aφ1 R φ2 iff, for each λ ∈ Paths(s) and i ≥ 0, we have G, λ[i] |= φ2,

or there is j ≤ i such that G, λ[i] |= φ1.

The model M satisfies ACTL formula φ (written M |= φ) iff M, s0 |= φ, for all initial states
s0 ∈ I.

Definition 2.10 (Syntax of ACTL⋆). The syntax for ACTL⋆ over a set of atomic proposi-
tions AP is formally given by:

φ ::= true | false | p | ¬p | φ ∧ φ | φ ∨ φ | Aψ

ψ ::= φ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ | ψ R ψ

where p ∈ AP, and X, U, R stand for “next”, “until” and “release” respectively. Additional
temporal operators “sometime” and “always” can be derived in the same way as for ACTL.
Just as in CTL⋆, formulae φ are called state formulae, and ψ are called path formulae.

Definition 2.11 (Semantics of ACTL⋆). Let M = (St, I,→, AP, L), p ∈ AP. Satisfaction
relation |= of a state formula φ is given with respect to state s ∈ St, and of a path formula ψ
w.r.t. path π ∈ Paths(M). It is inductively defined by:

M, s |= p iff p ∈ L(s)
M, s |= ¬p iff p /∈ L(s)
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= Aψ iff M, π |= ψ, for all π ∈ Paths(s)

M, π |= φ iff M, π[0] |= φ

M, π |= Xψ iff M, π[1, ∞] |= ψ

M, π |= ψ1 U ψ2 iff ∃j ≥ 0. (M, π[j, ∞] |= ψ2 ∧ ∀0 ≤ i < j. M, π[i, ∞] |= ψ1)

M, π |= ψ1 R ψ2 iff ∀j ≥ 0. (M, π[j, ∞]) |= ψ2 or
∃j ≥ 0. (M, π[j, ∞] |= ψ1 ∧ ∀0 ≤ k ≤ j. M, π[k, ∞] |= ψ2)

M, π |= ψ1 ∧ ψ2 iff M, π |= ψ1 ∧ M, π |= ψ2

M, π |= ψ1 ∨ ψ2 iff M, π |= ψ1 ∨ M, π |= ψ2

The model M satisfies ACTL (state) formula φ (written M |= φ) iff M, s0 |= φ, for all initial
states s0 ∈ I.

2.2 Logic of Time and Strategies

In order to capture the notion of agents’ strategic abilities (and thus be able to express
many more subtle properties) we will use alternating-time temporal logics ATL and
ATL∗ [AHK97; AHK02; Sch04].

2.2. Logic of Time and Strategies 19

There are many semantic variants of ATL and ATL∗; one of their key differences
originates in the assumptions of what an agent can do (e.g., their memory, observation
and other capabilities). For practical reasons4, within this thesis we will focus on the
variant of incomplete information (i.e., agents see/access only the part of the system
state) and imperfect recall (i.e., agent’s memory is modelled explicitly), which was
originally proposed by Schobbens in [Sch04].5

Definition 2.12 (Syntax of ATL). Given a finite set of agents Agt and a set of atomic
propositions AP, the syntax of ATL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨⟨A⟩⟩Xψ | ⟨⟨A⟩⟩Gψ | ⟨⟨A⟩⟩ψ U ψ

where p ∈ AP is an atomic proposition, A ⊆ Agt is a subset of agents (called coalition),
temporal operators “X”, “Always” and “ U ” stand for “in the next state”, “always from
now on” and “(strong) until” respectively.

Additional Boolean connectives and temporal operators can be derived in a standard
manner as previously demonstrated.

Informally, a formula ⟨⟨A⟩⟩γ says that a group of agents A can enforce γ no matter
how other agents Agt\A proceed.

Below we introduce concepts of game structures and strategies that are necessary
for the semantics of alternating-time temporal logic.

Definition 2.13 (CGS). An imperfect information concurrent game structure (CGS) is a
tuple M = (Agt, St, AP, L, Act, d, o, {∼a| a ∈ Agt}), where:

• Agt = {1, . . . , k} is a non-empty finite set of agents,
• St is a finite non-empty set of states,
• AP is a set of atomic propositions,
• L : St 7→ 2AP is a labelling function,
• Act is a non-empty set of actions,
• d : Agt × St 7→ 2Act denotes actions that are available for each agent in each state,
• o : St × Act1 × . . . × Actk 7→ St is a transition function that assigns the outcome state

q′ = o(q, α1, . . . , αk) to each state q and tuple of actions ⟨α1, . . . , αk⟩, such that αi ∈ di(q)
for i = 1, . . . , k,

• ∼a⊆ St × St is an (epistemic) equivalence relation for each a ∈ Agt.

Informally, whenever q ∼a q′, the states q and q′ are said to be indistinguishable by an
agent a. Here, every CGS M is assumed to be uniform, that is

∀q,q′∈St
(
q ∼a q′ ⇒ da(q)=da(q′)

)
Remark 2.1. A model from Definition 2.1 can be seen as a special case of CGS with a single
agent only, over which satisfiability of both ATL and CTL formulae coincides [AHK02].
However, in the general case, CGS gives a more descriptive representation of the system
behaviour, but is also less compact.

Definition 2.14 (Strategy). A memoryless strategy of an agent a ∈ Agt is a function
σa : St 7→ Acta, which species what an agent should do in a given state. The set of all
strategies for a is denoted by Σir

a .

4In general, model checking of ATL (and thus ATL∗) with perfect recall and incomplete information
is known to be undecidable.

5This variant is often labelled by ATLir and ATL∗
ir, where the lower-case “i” stands for imperfect

information, and the lower-case “r” stands for imperfect recall.

20 Chapter 2. Preliminaries

A collective strategy of a group of agents A = 1, . . . , k ⊆ Agt is a tuple σA =
(σ1, . . . , sigmak) of their individual strategies. The set of all strategies for group A is denoted
by Σir

A.

Definition 2.15 (Outcome). Given a state q ∈ St and a group of agents A ⊆ Agt, the
outcome function outir(q, σA) returns a set of all paths that can occur in CGS M, when
starting from the state q agents in A execute the strategy σA.6

Definition 2.16 (Semantics of ATL). Given a CGS M, state q ∈ St and path λ ∈
Paths(M), the satisfaction relation ⊨ is inductively defined as follows:

M, q ⊨ p iff q ∈ L(p)
M, q ⊨ ¬ϕ iff M, q ⊭ ϕ

M, q ⊨ ϕ1 ∨ ϕ2 iff M, q ⊨ ϕ1 or M, q ⊨ ϕ2

M, q ⊨ ⟨⟨A⟩⟩Xϕ iff ∃σA ∈ Σir
A, such that for all λ ∈ outir(q, σA). M, λ[1, ∞] ⊨ ϕ

M, q ⊨ ⟨⟨A⟩⟩Gϕ iff ∃σA ∈ Σir
A, such that for all λ ∈ outir(q, σA). ∀i ≥ 0. M, λ[i] ⊨ ϕ

M, q ⊨ ⟨⟨A⟩⟩ϕ1 U ϕ2 iff ∃σA ∈ Σir
A, such that for all λ ∈ outir(q, σA). ∃i ≥ 0. M, λ[i] ⊨ ϕ2

and ∀0 ≤ j < i. M, λ[j] ⊨ ϕ1

where p ∈ AP and A ⊆ Agt.

The ATL∗ is an even more expressive logic that embeds “vanilla” ATL.

Definition 2.17 (Syntax of ATL∗). Given a finite set of agents Agt and a set of atomic
propositions AP, the syntax of ATL∗ state formulae ϕ and path formulae ψ is defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨⟨A⟩⟩ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP is an atomic proposition, A ⊆ Agt is a subset of agents (called coalition), tem-
poral operators “X” and “ U ” stand for “in the next state” and “(strong) until” respectively.

Additional Boolean connectives and temporal operators can be derived in a standard way
as shown previously.

Definition 2.18 (Semantics of ATL∗). Given a CGS M, state q ∈ St and path λ ∈
Paths(M), the satisfaction relation ⊨ is inductively defined as follows:

M, q ⊨ p iff q ∈ L(p)
M, q ⊨ ¬ϕ iff M, q ⊭ ϕ

M, q ⊨ ϕ1 ∨ ϕ2 iff M, q ⊨ ϕ1 or M, q ⊨ ϕ2

M, q ⊨ ⟨⟨A⟩⟩ψ iff ∃σA ∈ Σir
A. M, λ ⊨ ψ, for all λ ∈ outir(q, σA)

M, λ ⊨ ϕ iff M, λ[0] ⊨ ϕ

M, λ ⊨ ¬ψ iff M, λ ⊭ ψ

M, λ ⊨ ψ1 ∨ ψ2 iff M, λ ⊨ ψ1 or M, λ ⊨ ψ2

M, λ ⊨ Xψ iff M, λ[1, ∞] ⊨ ψ

M, λ ⊨ ψ1 U ψ2 iff ∃i ≥ 0. M, λ[i, ∞] ⊨ ψ2 and M, λ[j, ∞] ⊨ ψ1, for all 0 ≤ j < i

where p ∈ AP and A ⊆ Agt.
6The previously introduced notion of run and path applies to the case of CGS with no changes.

2.3. Adding Epistemic Operators 21

2.3 Adding Epistemic Operators

In this section we describe how the logics from Sections 2.1 and 2.2 can be ex-
tended with an epistemic dimension, allowing to reason about both time and knowl-
edge [Jam15].7

The temporal-epistemic logic CTLK (reps. CTLK⋆) can be seen as a syntactic
variant of CTL (resp. CTL⋆) with the addition of epistemic operator K.

Definition 2.19 (Syntax of CTLK). Given the set of agents Agt and a set of atomic
properties AP, the syntax of CTLK state formulae φ and path formulae ψ is given by the
following grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Aψ | Ka φ

ψ ::= Xφ | φ U φ

where p ∈ AP, a ∈ Agt and Ka is modal operator for knowledge. A formula Ka φ reads as
“agent a knows that φ”. The clauses for Boolean connectives are standard; additional temporal
operators “sometime” and “always” can be derived in the same way as for CTL.

Definition 2.20 (Syntax of CTLK⋆). Given the set of agents Agt and a set of atomic
properties AP, the syntax of CTLK⋆ state formulae φ and path formulae ψ is given by the
following grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Aψ | Ka φ

ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP, a ∈ Agt and Ka is modal operator for knowledge. The clauses for Boolean
connectives are standard; additional temporal operators “sometime” and “always” can be
derived in the same way as for CTL⋆.

Definition 2.21 (Extended Model). The extended model is a model M supplied with
additional indistinguishability relation ∼i⊆ St × St, one per agent i ∈ Agt.

Remark 2.2. Note that a model from Definition 2.1 can be seen as a special case of extended
model with one agent only and indistinguishability relations given by identity relation over
states.

Definition 2.22 (Semantics of CTLK and CTLK⋆). The semantics of CTLK and CTLK⋆

are based on extended model; the semantic clauses correspond to the union of the following
rule and those from CTL (see Definition 2.5) and CTL⋆ (see Definition 2.7) respectively:

M, s |= Ka φ iff M, s′ |= φ, for all s′ ∼a s

Analogously, the standard ATL and ATL∗ can be further extended to support
reasoning about agents’ knowledge.

Definition 2.23 (Syntax of ATLK). Given a finite set of agents Agt and a set of atomic
propositions AP, the syntax of ATLK is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨⟨A⟩⟩Xψ | ⟨⟨A⟩⟩Gψ | ⟨⟨A⟩⟩ψ U ψ | Kaψ

7Within this thesis we will focus on K, but in general, more kinds of epistemic operators (such as
common knowledge, distributed knowledge, and mutual knowledge) may be introduced.

22 Chapter 2. Preliminaries

where p ∈ AP is an atomic proposition, A ⊆ Agt is a subset of agents (called coalition),
temporal operators “X”, “Always” and “ U ” stand for “in the next state”, “always from
now on” and “(strong) until” respectively, and “Ka” is modal operator for knowledge.

Definition 2.24 (Syntax of ATLK⋆). Given a finite set of agents Agt and a set of atomic
propositions AP, the syntax of ATL∗ state formulae ϕ and path formulae ψ is defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨⟨A⟩⟩ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP is an atomic proposition, A ⊆ Agt is a subset of agents (called coalition), tem-
poral operators “X” and “ U ” stand for “in the next state” and “(strong) until” respectively,
and “Ka” is modal operator for knowledge.

Definition 2.25 (Semantics of ATLK and ATLK⋆). The semantics of ATLK and ATLK⋆

require adding the following rule to the existing clauses from ATL (see Definition 2.16) and
ATL∗ (see Definition 2.18) respectively:

M, q ⊨ Kaϕ iff ∀q′∈St(q ∼a q′ ⇒ M, q′ ⊨ ϕ)

Remark 2.3. We will sometimes explicitly write ⊨x, where x ∈ {CTL, CTL⋆, ACTL,
ACTL⋆, CTLK, CTLK⋆, ATL, ATL∗, ATLK, ATLK⋆ }, when the implied logic is not clear
from the context. Analogously, when the model (resp. CGS) M is clear from the context, we
will often use a shorter notation s |= φ and π |= ψ (resp. q |= ϕ and λ |= ψ) instead of
M, s |= φ and M, π |= ψ (resp. M, q |= ϕ and M, λ |= ψ).

2.4 UPPAAL Model Checker

We will now briefly describe the UPPAAL model checker, which was the main tool
used for modelling and verification of the forthcoming experimental cases. For more
details, please refer to the official documentation [Upp02; BDL04].

In UPPAAL, a system is represented by a parameterized network of finite automata
(or processes).8 Processes are instantiated from the templates by assigning template
parameter(s) with the value(s). Templates contain a finite number of locations and
labelled edges, which determine the local transition relations. Fig. 2.1 shows an
example of different location types and labelled edges.

Locations are depicted by circles and represent the local states of the module.
Initial locations are marked by a double circle. Committed locations are marked by
circled ‘C’. If any process is in a committed location, then the next transition must
involve an edge from one of the committed locations. Those are used to create atomic
sequences or encode synchronization between more than two components.

Edges define the local transitions in the module. They are annotated by selections
(in yellow), guards (green), synchronizations (teal), and updates (blue). The syntax
of expressions mostly coincides with that of C/C++. Note, that in UPPAAL syntax
operators “=” and “==” represent assignment and equality check respectively.

8The original definition refers to extended timed automata. However, associated functionalities
present little to no interest in the context of this work and are not used. Entailed differences are
insignificant, and further definitions are adapted in accordance with our usage scenario.

2.4. UPPAAL Model Checker 23

A select label nondeterministically binds an identifier to a value from the range. A
guard is side-effect free expression evaluating to boolean, a pre-condition for edge
to be possibly taken; when the guard condition evaluates to true, the edge is said to
be (locally) enabled. Synchronisation allows processes to synchronize over a common
channel (appended with ! or ? for sender and receiver resp.). In the presence of a
synchronisation label, an edge can only be “fired” together with a complementary
one in another process. An update is a comma-separated sequence of expressions
(mainly assignment statements), which are evaluated when the edge is taken. For
synchronous edges, the sender’s update expression takes precedence over that of the
receiver. Straightforward value passing over a channel is not allowed; instead, one
has to use shared global variables for the transmission.

(A) Locations and edge labels (B) Edge label components

FIGURE 2.1: UPPAAL locations and edges mock-up example.

Right up to the end of the thesis, we will treat agent graphs, agent types and MAS
graphs as processes, templates and automata networks respectively.

The system requirements in UPPAAL are specified using a branching-time logic
CTL⋆ [Eme90]. The syntax of supported CTL⋆ (state) formulas over a set of atomic
propositions AP is given by the following grammar:

φ ::= AFp | AGp | EFp | EGp | AG(p ⇒ AFq)

where A and E are universal and existential path quantifiers, G and F are temporal
operators for “always” and “sometime”, and p, q ∈ AP are atomic properties. Note
that a set of atomic properties AP consists of all agent locations and logical expressions
over MAS variables and literals from their domains.

In order to check if CTL⋆ formula φ is satisfied by a given system, UPPAAL

verifier incrementally unfolds underlying MAS graph into a labelled transition system
(LTS), where each state corresponds to a tuple of current locations, one per agent,
and evaluation of the variables. However, contrary to standard practice to interpret
satisfaction relation ⊨ only over maximal paths — sequences of states, connected
with transitions, that are either infinite or end in a deadlock state with no outgoing
transitions — UPPAAL admits all non-empty finite paths. This leads to formulas AF
and EG being less useful in practice, usually requiring extra gimmicks to filter out
unwanted “counter-example” paths.

Example 2.1. Consider a toy example portraying the variant of the Toads&Frogs Puz-
zle [BCG04], where N(=3) toads and M(=3) frogs are placed on N-leftmost and M-rightmost
tiles of N + M + 1(=7) by 1 size board. Each tile can only be occupied by one animal, toads
can only move rightwards, and frogs leftwards. There are two possible moves: slide to the

24 Chapter 2. Preliminaries

next (unoccupied) tile or jump over another animal to the two-tiles apart (unoccupied) spot.
The question is whether the animals can switch their positions, that is toads move to the
N-rightmost positions and frogs move to the M-leftmost positions.

The Fig. 2.2 shows the Editor tab with graph representation of agent templates for the
frog (right) and toad (left). Both templates are parameterized with an identifier, which
determines an initial position for each respective instance. The global variable occupied is
the (N + M + 1)-size list of Booleans that says if the respective tile is empty. Each instance
of animal has a local variable pos that is a bounded integer (with a range of values from 0 to
N + M) representing its position.

The Fig. 2.3 depicts the simulator tab, where a possible execution path can be manually
composed and inspected, and the verifier tab, where the queries representing the system
properties are checked. The winning condition is captured by the following CTL⋆ formula:

EF(
∧

i=1..N

Toadi > mid) ∧ (
∧

j=1..M

Frogj < mid)

where propositions Toadi and Frogj denote the positions of respective animals, and mid =
M + 1 is an index of the middle (empty) cell, which initially separated two types of animals.
By design of the model already embeds the requirement that no pair of animals might occupy
the same cell simultaneously. This formula naturally translates into the following UPPAAL

query:

E<>(forall(i:int[0,N-1])Toad(i).pos>M) &&

(forall(j:int[0,M-1])Frog(j).pos<M)

Note that in the model, due to starting the indexing from zero, the range of iterators and the
middle cell index were all shifted down by one.

(A) Frog template (B) Toad template

FIGURE 2.2: Toads&Frogs Puzzle in UPPAAL (Part 1/2).

2.5 Related Work

Voting schemes and their properties were analysed using many various — often
conceptually different — approaches. Intuitively, their key differences could be based
on: the representation of a system, specification of properties, considered threats
and chosen verification/reasoning form/paradigm (incl. assumptions it relies on,
kind of guarantees that are promised and other attributes). Each method has its
strengths and limitations, and, with exception to the pen-and-paper based, may

2.5. Related Work 25

(A) Simulator view (B) Verifier view

FIGURE 2.3: Toads&Frogs Puzzle in UPPAAL (Part 2/2).

have an implementation in the form of a software package or a toolbox. As was
pointed out in [Che+22], selecting the “right” tool for a given problem can be quite
challenging even for experienced users, as it often requires expert knowledge with a
good understanding of internal technicalities. This section will attempt to present a
high-level overview selected number of such methods on examples of several studies
of voting protocols, including a few recent ones.

In [KR05] authors utilize an applied pi calculus ([AF01]) formalism to model elec-
tion protocol FOO 92 ([FOO93]), they formalise its three expected properties: fairness,
eligibility and privacy, and jointly use an automated tool PROVERIF as well as manual
proofs to verify those. The system behaviour is represented as a combination of
concurrent processes (e.g., environment, agent roles: voter, administrator, etc.) and
their interactions. The properties are modelled as un-/reachability properties, which
say that some (goal) can/cannot be reached, and/or in terms of observational equiva-
lences, saying e.g. that intruder/potential should be unable to distinguish between
two certain processes. The verification of the latter is incomplete in PROVERIF, and
thus some manual proofs are provided. Interestingly, the authors note that during
the modelling an implicit (or insufficiently stressed) assumption on participants’
behaviour was revealed that happens to be critical for privacy to hold.

The series of work by Zollinger et al. [Zol20] utilize TAMARIN to for verification
of the tracker-based schemes like Selene. Privacy-related proofs are conducted using
observation equivalence. For example, ballot privacy (BP) could be expressed as the
indistinguishability of two (or more) system executions, where voters’ votes were
swapped (or permuted). Authors also study usability, which refers to the quality of
users’ experience and ability to carry out their tasks/goals efficiently. They introduce
the mental model for evaluating the level of voters’ understanding and trust, apply
that for case study of their Selene implementation and discuss some interesting
findings. In particular, they investigate the link between trust and understanding and
propose a new voting-oriented metric of trust.

In [Che+22] authors propose a new formalism SAPIC+ intended as “swiss-army
knife” combining/joining TAMARIN, PROVERIF and DEEPSEC together under the
unified input specification. The SAPIC+ proposes a specification language, which is
based on applied pi-calculus, and proven to be correct translations for each tool’s
original specification syntax. Not only does it combine the strengths of these tools
individually, but also facilitates a better understanding of the system and higher
assurance in the correctness of results.

26 Chapter 2. Preliminaries

Unfortunately, there exists no reliable analogue solution for other, broader scope
of tools (despite some notable attempts, e.g. by developers of LTSMIN toolbox,
where translations support quite limited fragment of original syntax and provided
documentation is often poor or obsolete, or cite-other-experimental-translators).

More extensive discussion of related work can be found in respective sections.

27

Chapter 3

Towards Model Checking of Voting
Protocols in Uppaal

3.1 Introduction . 28
3.2 Towards Model Checking of Voting Protocols 29

3.2.1 Modelling in UPPAAL . 29
3.2.2 Specification of Requirements . 29

3.3 Outline of Prêt à Voter . 30
3.4 Modelling Prêt à Voter in UPPAAL . 31

3.4.1 Environment . 32
3.4.2 Voter Template . 33
3.4.3 Coercer Singleton . 34
3.4.4 Mix Teller Template . 35
3.4.5 Decryption Teller Template . 36
3.4.6 Auditor Template . 37
3.4.7 Voting Infrastructure Module . 38

3.5 Verification and Experiments . 40
3.5.1 Model Checking Temporal Requirements 40
3.5.2 How to Make Model Checker Do More Than It Is Supposed To 41

3.6 Replicating Pfitzmann’s Attack . 44
3.7 Related Work . 46
3.8 Conclusions . 47

The design and implementation of a trustworthy e-voting system is a challenging
task. Formal analysis can be of great help here. In particular, it can lead to a better
understanding of how the voting system works, and what requirements on the system
are relevant. In this chapter, we propose that the state-of-the-art model checker
UPPAAL provides a good environment for modelling and preliminary verification
of voting protocols. To illustrate this, we demonstrate how to model a version of
Prêt à Voter in UPPAAL, together with some natural extensions. We also show how
to verify a variant of receipt-freeness, despite the severe limitations of the property
specification language in the model checker.

The aim of this work is to open a new path, rather than deliver the ultimate
outcome of formal analysis.

28 Chapter 3. Towards Model Checking of Voting Protocols

3.1 Introduction

The design and implementation of a good e-voting system is highly challenging. Real-
life systems are notoriously complex and difficult to analyze. Moreover, elections
are social processes: they are run by humans, with humans, and for humans, which
makes them unpredictable and hard to model. Last but not least, it is not always
clear what good means for a voting system. A multitude of properties have been
proposed by the community of social choice theory (such as Pareto optimality and
non-manipulability), as well as researchers who focus on the security of voting
(cf. ballot secrecy, coercion-resistance, voter-verifiability, and so on). The former
kind of properties are typically set for a very abstract view of the voting procedure
and consequently miss many real-life concerns. For the latter, it is often difficult to
translate the informal intuition to a formal definition that will be commonly accepted.

In a word, we deal with processes that are hard to understand and predict, and
seek to evaluate them against criteria for which we have no clear consensus. Formal
analysis can be of great help here: perhaps not in the sense of providing the ultimate
answers, but rather to strengthen our understanding of both how the voting system
works and how it should work. The main goal of this work is to propose that model
checkers from distributed and multi-agent systems can be invaluable tools for such
an analysis.
Model checkers and UPPAAL. Much research on model checking focuses on the
design of logical systems for a particular class of properties, establishing their the-
oretical characteristics, and development of verification algorithms. This obscures
the fact that a model checking framework is valuable as long as it is actually used to
analyze something. The analysis does not have to result in a “correctness certificate”
of the system under scrutiny. A readable model of the system and an understandable
formula capturing the requirement are already of substantial value.

In this context, two features of a model checker are essential. On the one hand,
it should provide a flexible model specification language that allows for modular and
succinct specification of processes. On the other hand, it must offer a good graphical
user interface. Paradoxically, tools satisfying both criteria are rather scarce. Here, we
suggest that the state-of-the-art model checker UPPAAL can provide a nice environ-
ment for modelling and preliminary verification of voting protocols and their social
context. To this end, we show how to use UPPAAL to model a voting protocol of
choice (in our case, a version of Prêt à Voter), and to verify some requirements written
in the temporal logic CTL.
Contribution. The main contribution of this work is methodological: we demonstrate
that specification frameworks and tools from distributed and multi-agent systems can
be useful in the analysis and validation of voting procedures. An additional, technical
contribution consists in a reduction from model checking of temporal-epistemic
specifications to purely temporal ones, in order to verify a variant of receipt-freeness
despite the limitations of UPPAAL.

We emphasize that this is a preliminary work, aimed at exploring a path rather
than delivering the ultimate outcome of formal analysis. A comprehensive model of
Prêt à Voter, more accurate specification of requirements, and exhaustive verification
are planned for the future. We also plan to cover social engineering-style attacks
involving interactions between coercers (or vote-buyers) and voters. This will require,
however, a substantial extension of the algorithms in UPPAAL or a similar model
checker.

3.2. Towards Model Checking of Voting Protocols 29

Structure of the chapter. We begin by introducing the main ideas behind modelling
and model checking of multi-agent systems, including a brief introduction to UPPAAL

(Section 3.2). In Section 3.3, we provide an overview of Prêt à Voter, the voting
protocol that we will use for our study. Section 3.4 presents a multi-agent model of
the protocol; some interesting extensions of the model are proposed in Section 3.6.
We show how to specify simple requirements on the voting system, and discuss
the output of model checking in Section 3.5. The section also presents our main
technical contribution, namely the model checking reduction that recasts knowledge-
related statements as temporal properties. We discuss related work in Section 3.7,
and conclude in Section 3.8.

3.2 Towards Model Checking of Voting Protocols

Model checking is the decision problem that takes a model of the system and a
formula specifying correctness, and determines whether the model satisfies the
formula. This allows for a natural separation of concerns: the model specifies how
the system is, while the formula specifies how it should be. Moreover, most model
checking approaches encourage systematic specification of requirements, especially
for the requirements written in modal and temporal logic. In that case, the behaviour
of the system is represented by a transition network, possibly with additional modal
relations to capture e.g. the uncertainty of agents. The structure of the network is
typically given by a higher-level representation, e.g., a set of agent templates together
with a synchronization mechanism.

We begin with a brief recall of UPPAAL, the model checker that we will use in
later sections. A more detailed introduction can be found in Section 2.4 or its official
documentation [BDL04].

3.2.1 Modelling in UPPAAL

An UPPAAL model consists of a set of concurrent processes. The processes are defined
by templates, each possibly having a set of parameters. The parameterized templates
are used for defining a large number of almost identical processes. Every template
consists of nodes, edges, and optional local declarations. An example template is
shown in Figure 3.2; we will use it to model the behaviour of a voter.

For convenience, we will place the selections and guards at the top or left of an
edge, and the synchronizations and updates at the bottom/right.

3.2.2 Specification of Requirements

To specify requirements, UPPAAL uses a fragment of the temporal logic CTL [Eme90].
CTL allows for reasoning about the possible execution paths of the system by means
of the path quantifiers E (“there is a path”) and A (“for every path”). A path is a
maximal1 sequence of states and transitions. To address the temporal pattern on a
path, one can use the temporal operators X (“in the next moment”), G (“always from
now on”), F (“now or sometime in the future”), and U (“until”). For example, the
formula AG

(
has_balloti ⇒ AF(votedi,1 ∨ · · · ∨ votedi,k)

)
expresses that, on all paths,

whenever voter i gets her ballot form, she will eventually cast her vote for one of the
candidates 1, . . . , k. Another formula, AG¬punishedi says that voter i will never be
punished by the coercer.

1I.e., infinite or ending in a state with no outgoing transitions.

30 Chapter 3. Towards Model Checking of Voting Protocols

(a)

Discard Retain
Obelix
Idefix
Asterix
Panoramix

7304944

(b)

Retain

X

7304944

FIGURE 3.1: (a) Prêt à Voter ballot form; (b) Receipt encoding a vote for “Idefix”.

More advanced properties usually require a combination of temporal modalities
with knowledge operators Ka, where Kaϕ expresses “agent a knows that ϕ holds.” For
example, formula EF(results∧ ¬votedi,j ∧ ¬Kc¬votedi,j) says that the coercer c might
not know that voter i hasn’t voted for candidate j, even if the results are already
published. Moreover, AG(results ⇒ ¬Kc¬votedi,j) expresses that, when the results
are out, the coercer won’t know that the voter refused to vote for j. Intuitively, both
formulas capture different strength of receipt-freeness for a voter who has been
instructed to vote for candidate j.

3.3 Outline of Prêt à Voter

In this work, we use UPPAAL for modelling and analysis of a voting protocol. The
protocol of choice is a version of Prêt à Voter. We stress that this is not an up-to-date
version of Prêt à Voter but it serves to illustrate how some attacks can be captured
with UPPAAL. A short overview of Prêt à Voter is presented here; the full details can
be found, for example, in [Rya10] or [HR16].

Most voter-verifiable voting systems work as follows: at the time of casting, an
encryption or encoding of the vote is created and posted to a secure public bulletin
board (BB). The voter can later check that her encrypted ballot appears correctly. The
set of posted ballots is then processed in some verifiable way to reveal the tally or
outcome. Much of this is effectively a secure distributed computation, and as such is
well-established and understood in cryptography. The really challenging bit is the
creation of the encrypted ballots because it involves interactions between the users
and the system. This has to be done in a way that assures the voter that her vote is
correctly embedded, while avoiding introducing any coercion or vote-buying threats.

The key innovation of the Prêt à Voter approach is to encode the vote using a
randomised candidate list. This contrasts with earlier verifiable schemes that involved
the voter inputting her selection to a device that then produces an encryption of the
selection. Here what is encrypted is the candidate order which can be generated and
committed in advance, and the voter simply marks her choice on the paper ballot in
the traditional manner.

Suppose that our voter is called Anne. At the polling station, Anne is authenti-
cated and registered and she chooses at random a ballot form sealed in an envelope
and saunters over to the booth. An example of such a form is shown in Figure 3.1a.
In the booth, she extracts her ballot form from the envelope and marks her selection
in the usual way by placing a cross in the right-hand column against the candidate of
her choice (for approval or ranked voting, she marks her selection or ranking against
the candidates). Once her selection has been made, she separates the left and right
hand strips along a thoughtfully provided perforation and discards the left-hand

3.4. Modelling Prêt à Voter in UPPAAL 31

strip. She keeps the right-hand strip which now constitutes her privacy protected
receipt, as shown in Figure 3.1b.

Anne now exits the booth clutching her receipt, returns to the registration desk,
and casts the receipt: it is placed over an optical reader or similar device that records
the string at the bottom of the strip and registers which cells are marked. Her original
paper receipt is digitally signed and franked and returned to her to keep and later
check that her vote is correctly recorded on the bulletin board. The randomisation of
the candidate list on each ballot form ensures that the receipt does not reveal the way
she voted, thus ensuring the secrecy of her vote. Incidentally, it also removes any bias
towards the candidate at the top of the list that can occur with a fixed ordering.

The value printed on the bottom of the receipt is what enables extraction of
the vote during the tabulation phase: buried cryptographically in this value is the
information needed to reconstruct the candidate order and so extract the vote encoded
on the receipt. This information is encrypted with secret keys shared across a number
of tellers. Thus, only a threshold set of tellers acting together are able to interpret the
vote encoded in the receipt. In practice, the value on the receipt will be a pointer (e.g.
a hash) to a ciphertext committed to the bulletin board during the setup phase.

After the voting phase, voters (or perhaps proxies acting on their behalf) can
visit the Bulletin Board and confirm that their receipts appear correctly. Once any
discrepancies are resolved, the tellers take over and perform anonymising mixes and
decryption of the receipts. At the end, the plaintext votes will be posted in secret
shuffled order, or in the case of homomorphic tabulation, the final result is posted.
All the processing of the votes can be made universally verifiable, i.e., any observer
can check that no votes were manipulated.

Prêt à Voter brings several advantages in terms of privacy and dispute resolution.
Firstly, it avoids side channel leakage of the vote from the encryption device. Secondly,
it improves on dispute resolution: ballot assurance is based on random audits of the
ballot forms, which can be performed by the voter or independent observers. A ballot
form is either well-formed, i.e. the plaintext order matches the encrypted order, or
not. This is independent of the voter or her choice, hence there can be no dispute as
to what choice the voter provided. Such disputes can arise in Benaloh challenges and
similar cut-and-choose style audits. Furthermore, auditing ballots does not impinge
on ballot privacy, as nothing about the voter or the vote can be revealed at this point.

3.4 Modelling Prêt à Voter in UPPAAL

In this section, we present how the components and participants of Prêt à Voter can
be modelled in UPPAAL. To this end, we give a detailed description of each module
template, its elements, and their interactions.2 The templates represent the behaviour
of the following types of agents: voters, coercers, mix tellers, decryption tellers, auditors,
and the voting infrastructure. For more than one module of a given type, an identifier
i = 0, 1, . . . will be associated with each instance.

The code of the model is available at http://tinyurl.com/pret-a-voter-model.
Details of cryptographic primitives can be found in textbooks, e.g. [Sti05].

In the model, we use the ElGamal encryption algorithm, which allows for re-
encryption. The public key is a tuple (p, α, β), where α is a generator of group Z∗

p,
β = αk and k is a secret (private key). A plain-text m encrypted with public key PK
with randomness y will be noted as EPK(m, y), if the value of y is not known, then

2In this chapter, we will use the terms “module” and “agent” interchangeably.

http://tinyurl.com/pret-a-voter-model

32 Chapter 3. Towards Model Checking of Voting Protocols

it will be noted as EPK(m, ∗) (or simply EPK(m)) instead. A ciphertext c decrypted
with private key K is noted by DK(c).

3.4.1 Environment

We begin with an overview of the shared environment of action, i.e., the data struc-
tures and variables shared by the modules. To capture a possibly repeated block of
atomic update expressions, some procedures are introduced. This will allow for more
complex expressions and a shorter, reader-friendly form of labels.

The environment includes some global read-only configuration variables:

• c_total[=3]: the number of candidates,
• v_total[=3]: the number of voters,
• mt_total[=3]: the number of mix tellers,
• dt_total[=3]: the number of decryption tellers,
• dt_min[=2]: the number of participants needed to reconstruct a secret key,
• z_order[=7]: an order of cyclic group Z∗

p,
• pk[=(3,6)]: the pair of generator α of group Z∗

p and β = αk (mod p), where k is a
secret key.

From the model configuration values, we derive some auxiliary variables, such as
lists of permutations of the batch terms P_b, list of permutations of the candidates
P_c, list of cyclic shifts of the candidates S_c, lookup table dlog, that maps onion to its
seed (± possible candidate choice), list of combinations to select a subset of the batch
intended for audit audit_ch, and list of ways of splitting that in two (odd and even)
audit_lr. We precompute their values for a given configuration and declare them
as constant type. To facilitate the readability and manageability of the model code,
we define some data structures and type name aliases based on the configuration
variables:

• Ciphertext: a pair (y1, y2). For the simplicity of modelling, we assume that
ElGamal encryption is used.

• Ballot: a pair (θ, cl) of onion θ = EPK(s, ∗) and candidate list cl = π(s), where s is
a seed associated with the ballot, and π : R → PermC is a function that associates
a seed with a permutation of the candidates. To allow absorption of the index of a
marked cell into the onion, we use cyclic shifts of the base candidate order. This
means that we just have simple ElGamal ciphertexts to mix.

• Receipt: a pair (θ, r) of onion θ and an index r of marked cell. It can be used to
verify if a term was recorded and if it was done correctly.

• c_t: an integer with range [0, c_total), a candidate;
• v_t: an integer with range [0, v_total), a voter;
• z_t: an integer with range [0, z_total), an element of Z∗

p.

The writable global variables include:

• board: a 2-dimensional list of ciphertexts, representing the web bulletin board.
The first column is reserved for the batch of onions with absorbed indices from the
receipt. The next (mt_total · 2)-columns store re-encryption mixes. The remaining
(dt_min − 1)-columns store the intermediate results of threshold decryption; the
last one holds the decrypted message.

• mixes: encodes which mix teller has a turn at the moment;
• dt_curr: encodes the number of currently participating decryption tellers;
• decryptions: the number of decryptions made.

3.4. Modelling Prêt à Voter in UPPAAL 33

FIGURE 3.2: Voter template for the model of Prêt à Voter.

There is also a set of globally shared variables used to simulate the passing of a value
through a channel; their use will be specified in transition descriptions.

3.4.2 Voter Template

The structure of the Voter template is shown in Figure 3.2. The idea is that while
the voter waits for the start of an election she might be subject to coercion. When
the ballots are ready, the voter selects a candidate and transmits the receipt to the
system. Then she decides if she wants to check how her vote has been recorded
and if she wants to show the receipt to the coercer. If coerced, she also waits for the
coercer’s decision to punish her or refrain from punishment. The module includes
the following private variables:

• receipt: an instance of Receipt, obtained after casting a vote;
• coerced[=false]: a Boolean value, indicating if coercer has established a contact;
• chosen: integer value of the chosen candidate.

Moreover, the following procedures are included:

• c_index(target): returns an index, at which target can be found on the candi-
date list of a ballot;

• verify(): returns true if the voter’s receipt can be found on the Web Bulletin
Board, else it returns f alse.

Local states:

• idle: waiting for the election, might get contacted by coercer;
• has_ballot: the voter has already obtained the ballot form;
• marked_choice: the voter has marked an index of the chosen candidate (and de-

stroyed left-hand side with candidate list);
• received_receipt: the receipt is obtained and might be shown to the coercer;
• verification: the voter has decided to verify the receipt;
• passed: the voter got a confirmation that the receipt appears correctly;
• failed: the voter obtains evidence that the receipt does not appear on BB or appears

incorrectly (in case of index absorption both cases are the same);
• end: the end of the voting ceremony;

34 Chapter 3. Towards Model Checking of Voting Protocols

FIGURE 3.3: Coercer template.

• punished: the voter has been punished by the coercer;
• not_punished: the coercer refrained from punishing the voter.

Transitions:

• idle→idle: if was not already coerced, enable transition; if taken, then set coercion
to true;

• idle→has_ballot: always enabled; if taken, the voter acquires a ballot form;
• has_ballot→marked_choice: mark the cell with the selected candidate;
• marked_choice→received_receipt: send receipt to the Sys process over channel

record using shared variable recorded;
• received_receipt→received_receipt: if was coerced, enable transition; if taken, then

pass the receipt to the coercer using shared variable shown;
• received_receipt→verification: always enabled; if taken, the voter decides to verify

whether the receipt appears on the BB;
• (received_receipt || passed || failed)→end: a voting ceremony ends for the voter;
• end→punished: if was coerced, enable transition; if taken, then the voter has been

punished by the coercer;
• end→not_punished: if was coerced, enable transition; if taken, the coercer has

refrained from punishing the voter.

3.4.3 Coercer

The coercer can be thought of as a party that tries to influence the outcome of the vote
by forcing voters to obey certain instructions. To enforce this, the coercer can punish
the voter, or refrain from the punishment. The structure of the Coercer module is
presented in Figure 3.3.
Private variables:

• coercion: a Boolean list used to keep track of the voters that have been coerced;
• seen: a Boolean list, that indicates if the voter has shown proof of her vote.

There is only one state called loop for Coercer. It has 4 looping transitions. Their
update expressions take the form of a Boolean value assignment. A more common
modelling approach could be to clone the local state for possible Boolean evaluations
and find a reachable subset there. However, this would lead to a loss of generality
and readability of the module (in particular, resulting in the coercer module having
22n local states for n voters).

3.4. Modelling Prêt à Voter in UPPAAL 35

FIGURE 3.4: Mteller template.

Local transitions synchronizing with voter v_id (listed clockwise starting from top-
left corner):

• loop→loop (top-left): establish contact with the voter, set coercion[v_id] to true;
• loop→loop (top-right): if have not seen proof of vote, enable transition; if taken, set

seen[v_id] to true;
• loop→loop (bottom-right): if the voter was coerced, enable transition; if taken, then

punish the voter, set coercion[v_id] to f alse, finalizing interaction;
• loop→loop (bottom-left): if the voter was coerced, enable transition; if taken, then

do not punish the voter, set coercion[v_id] to f alse, finalizing interaction.

3.4.4 Mix Teller (Mteller)

Once the mixing phase starts, each mix teller performs two re-encryption mixes. The
order of turns is ascending and determined by their identifiers. The randomization
factors and permutation of each mix are selected in a nondeterministic way and stored
for a possible audit of re-encryption mixes. When audited, the mix teller reveals the
requested links and the associated factors, thus allowing the Auditor to verify that
the input ciphertext maps to the output. The structure of the mix teller is shown in
Figure 3.4.
Private variables:

• vec_r: 2-dimensional integer list (size 2 × |v_total|) of randomization factors used
for re-encryption;

• perm_i: 2-dimensional integer list (size 2 × |v_total|) of permutation indices used
for re-encryption;

• rand_ptr: index for vec_r;
• mycol: a pair of board column indices reserved for a given mix teller.

Procedures:

• do_mixing(mi): using board column (mycol[mi]-1) as an input, re-encrypt each
term using randomization factors from vec_r[mi], shuffle them with perm_i[mi]
permutation and paste result to mycol[mi];

36 Chapter 3. Towards Model Checking of Voting Protocols

FIGURE 3.5: Dteller template.

• do_rev(): uses shared variables rev_r and rev_p to reveal (pass to the Auditor)
randomization factors and links for the audited terms.

Local states:

• idle: waiting for the start of the mixing phase;
• wait: waiting for a turn for mixing;
• odd: performing odd mix;
• even: performing even mixing;
• mixed: finished mixing, passed the turn to the next mix teller (if any), waiting for a

possible audit;
• revealed: revealed values needed for audit, waiting for an Auditor’s verdict;
• passed_audit: mix teller passed Auditor’s correctness check;
• failed_audit: mix teller failed Auditor’s correctness check.

Local transitions:

• idle→wait: enabled transition;
• wait→odd: if it is the current mix teller’s turn, enable transition; if taken, then

initialize rand_ptr to zero;
• odd→odd: if new randomization factors were not selected yet, enable transition;

if taken, insert random value rand into vec_r[0][rand_ptr] and then increment
rand_ptr;

• odd→even: if randomization factors are ready, enable transition; randomly select
permutation index, perform re-encryption mix using those and reset rand_ptr
counter to generate a new randomness;

• even→even: if new randomization factors were not selected yet, enable transition;
if taken, insert random value rand into vec_r[1][rand_ptr] and then rand_ptr;

• even→mixed: if randomization factors are ready, enable transition; randomly
select permutation index, perform re-encryption mix using those and pass turn
incrementing mixes;

• mixed→audit: enabled transition; if taken, then mix teller will be in a committed
state, from where will have to reveal the mix factors for audited terms;

• revealed→(passed_audit || failed_audit): enabled transition.

3.4.5 Decryption Teller (Dteller)

In this module, after the re-encryption mixes are done, a subset of cooperating
decryption tellers is chosen nondeterministically. Note that if a subset has less than
two elements (e.g. when two or more decryption tellers refused to cooperate), then

3.4. Modelling Prêt à Voter in UPPAAL 37

they should not be able to reconstruct a secret key, which would lead to a deadlock. In
order to avoid that, only subsets with cardinality of 2 are considered in our simplified
model.

We use Shamir (t,w)-Threshold Scheme for decryption, with t = 2 and w = 3.
Consider a polynomial a(x) = a0 + . . . + at−1xt−1, where ai are some (unknown)
elements of Z∗

p and a(0) = k is a (secret) key. Each decryption teller di ∈ {0, 1, 2}
is provided with a point (xdi , ydi) on that polynomial, where xdi is publicly known
and ydi = a(xdi) is a key share. A group of t-tellers will have to cooperate in order to
reconstruct the secret k using the Lagrange interpolation formula. For the model we
assume that a polynomial a(x) was set and secret shares were assigned in advance.

Private variables:

• k_share: the teller’s share of the secret;
• x: the value of the first variable in pair (x, y).

Procedures:

• my_decr(): depending on the set of participants, multiply k_share by a proper
Lagrange basis and use the result as a key for the decryption of an input column.
To determine the set of participants, a shared Boolean list dt_paricipants is used.

Local states:

• idle: waiting for the decryption phase;
• wait: wait for one’s turn to make a decision;
• refused: refused to cooperate;
• cooperating: will participate in decryption;
• halt: finished his decryption.

Local transitions:

• idle→wait: enabled transition;
• wait→refused: if number of participants is already enough for key reconstruction,

enable transition;
• wait→cooperating: if the number of participants is less than required for key

reconstruction, enable transition; if taken, then set dt_paricipants[dt_id] to
true and increment the current number of participants dt_curr;

• cooperating→halt: if the number of participants is sufficient, enable transition; if
taken, then proceed to decryption.

3.4.6 Auditor

In order to confirm that the mix tellers performed their actions correctly, the auditor
conducts an audit. In this work, we assume that the audit is based on the randomized
partial checking technique, RPC in short [JJR02]. To this end, each mix teller is
requested to reveal the factors for the selected half of an odd-mix batch and verify
whether the input corresponds to the output. The choice to audit in-phase or after
the mixing is nondeterministic. Possible selections for terms and sides of links are
encoded as elements of a list.

The control flow of the Auditor module is presented in Figure 3.6.
Private variables:

• mix_i: index of currently audited mix teller;

38 Chapter 3. Towards Model Checking of Voting Protocols

FIGURE 3.6: Auditor template.

• ch_i: index of audit_ch terms combination (a subset for audit);
• lr_i: index of audit_lr splitting, used for the left and right linkage reveal.

Procedures:

• check_mix(): return true if audited terms correspond to encryption of linked ones
from rev_p using randomization factors from rev_r, otherwise return false.

Local states:

• idle: wait for the start of mixing phase;
• auditing_mixes: in a process of auditing mix tellers;
• auditing_mix_i: in a process of auditing mix teller mix_i;
• cheking: received revealed link and randomization factors from mix teller, can now

proceed to correctness check;
• end: finished mix tellers audit.

Local transitions:

• idle→auditing_mixes: enabled transition; if taken, then set mix_i counter to 0;
• auditing_mixes→auditing_mix_i: if have not audited all mix tellers, enable tran-

sition; if taken, then randomly select indices ch_i for batch subset and lr_i for
left-right split;

• auditing_mix_i→checking: pass the ch_i and lr_i indices to Mix Teller mix_i over
channel reveal[mix_i] using shared variables ch_j and lr_j;

• checking→auditing_mixes: depending on result of check_mix() procedure, pass
the correctness check verdict to Mix teller using either audit_pass or audit_fail,
then increment mix_i counter by 1;

• auditing_mixes→end: if all Mix tellers were audited, enable the transition.

In the future, we plan to extend the model with auditing techniques that rely on
zero-knowledge proofs.

3.4.7 Voting Infrastructure Module (Sys)

This module represents the behaviour of the election authority that prepares the
ballot forms, monitors the current phase, signals the progress of the voting procedure
to the other components, and at the end posts the results of the election. In addition,
the module plays the role of a server that receives receipts and transfers them to the

3.4. Modelling Prêt à Voter in UPPAAL 39

FIGURE 3.7: Module Sys.

database throughout the election. We assume that all the ballots were properly gener-
ated and thus omit procedures (e.g. ballot audits) which can ensure that. Capturing
related attacks and possible defences remains a subject for future work.
Private variables:

• vote_sum: list of integers that maps candidates to the sum of votes they have;
• r_vec: list of randomization factors, used for encrypting the seed into an onion

during ballot generation;
• r_ptr: index of r_vec element;
• voted: counter of scanned receipts.

Procedures:

• generate_ballots(): encrypt the list of seeds using randomization factors from
r_vec;

• absorb_i(recorded): absorb the index i of the marked cell in the recorded receipt
into its onion and paste the result to the board;

• post_results() : map terms of the form gr+s from the last column to the candi-
date x using formula x = (r + s) (mod c_total) and a look-up table dlog.

Local states:

• idle: initial state;
• generating_ballots: there are either no ballots or they are being generated at the

moment;
• ballots_ready: all the ballots have been prepared;
• voting: election phase, when voters can obtain ballot forms and cast their votes;
• receipts_posted: the batch of initial receipts is now publicly seen and can be checked

by the voters;
• mixing: wait for the re-encryption mixes to finish;
• decryption: wait for the decryption to finish;
• results: the tally is posted.

Local transitions:

• idle→generating_ballots: enabled transition; if taken, then reset r_ptr counter to
generate a list of randomization factors;

• generating_ballots→generating_ballots: if randomization factors were not prepared,
enable transition; if taken, then insert a random value rand into r_vec[r_ptr]
and increment r_ptr iterator;

40 Chapter 3. Towards Model Checking of Voting Protocols

• generating_ballots→ballots_ready: if randomization factors are prepared, enable
transition; if taken, generate ballots using randomization factors from r_vec;

• ballots_ready→voting: broadcast the start of voting phase to Voters using v_phase
channel;

• voting→→voting: receive a receipt from the voter and from the committed state
append it to the board, then increment a counter of receipts scanned;

• voting→receipts_posted: if all voters submitted receipts, enable transition; if taken,
then broadcast that Voters that initial receipts were posted using the p_phase
channel;

• receipts_posted→mixing: broadcast the start of a mixing phase to mix tellers using
m_phase channel;

• mixing→decryption: if all mixes are done, enable transition; if taken, then broadcast
the start of a decryption phase to decryption tellers using d_phase channel;

• decryption→results: if all decryptions were done, enable transition; if taken, then
calculate and post results tally.

3.5 Verification and Experiments

We chose UPPAAL for this study mainly because of its modelling functionality. In-
terestingly, the model checking capabilities of UPPAAL turned out rather limited for
analysis of voting protocols, due to the limitations of its requirement specification
language. First, UPPAAL admits only a fragment of CTL: it excludes the “next” and
“until” modalities, and does not allow for nesting of operators (with one exception
that we describe below). Thus, the supported properties fall into the following cate-
gories: simple reachability (EFp), liveness (AFp), and safety (AGp and EGp). The only
allowed nested formulas come in the form of the p leads to q property, written p ; q,
and being a shorthand for AG(p ⇒ AFq).

Nonetheless, UPPAAL allows to model-check some simple properties of Prêt à
Voter, as we show in Section 3.5.1. Moreover, by tweaking models and formulas
in a clever way, one can also verify some more sophisticated requirements, see
Section 3.5.2.

3.5.1 Model Checking Temporal Requirements

It is difficult to encode meaningful requirements on voting procedures in the input
language of UPPAAL. We managed to come up with the following properties:

(P1) EF passed_auditj: the j-th mix teller might eventually pass an audit;
(P2) EF failed_auditj: the j-th mix teller might eventually fail an audit;
(P3) AG¬punishedi: voter i will never be punished by the coercer;
(P4) AG¬not_punishedi: voter i will never escape punishment by coercer;
(P5) has_balloti ; marked_choicei: on all paths, whenever voter i gets a ballot form,

she will eventually mark her choice.

We verified each formula on the parameterized model from Section 3.4; several
configurations were used, with the number of voters ranging from 1 to 5. The
verification was performed using a 32-bit version of UPPAAL 4.1.24 on a laptop with
Intel i7-8665U 2.11 GHz CPU, running Ubuntu 22.04. The results are aggregated in
the Table 3.1. The columns “res” and “t” denote the outcome and time in seconds
respectively. The ⊤ corresponds to UPPAAL verifier returning “Property is satisfied”,
⊥ to “Property is not satisfied” accompanied with the counter-example run pasted

3.5. Verification and Experiments 41

#Voters
|= P1 |= P2 |= P3 |= P4 |= P5

res t res t res t res t res t

1 ⊤ 0.1 memout 334.4 ⊥ 0.1 ⊥ 0.1 memout 324.6
2 ⊤ 0.1 memout 460.4 ⊥ 0.1 ⊥ 0.1 memout 467.8
3 ⊤ 0.1 memout 604.6 ⊥ 0.1 ⊥ 0.1 memout 600.1
4 ⊤ 0.1 memout 484.2 ⊥ 0.1 ⊥ 0.1 memout 490.8
5 ⊤ 0.1 memout 598.7 ⊥ 0.1 ⊥ 0.1 memout 741.3

TABLE 3.1: Verification results for Prêt à Voter model.

into the simulator (if the diagnostic trace was selected in the option panel), and
memout to “Out of memory”.3 The latter is caused by the state-space explosion, which
is a well-known problem in the verification of distributed systems; typically, the
blow-up concerns the system states to be explored in model checking and proof states
in case of theorem proving.

The verification successfully terminated for the properties (P1), (P3) and (P4).
This is because finding a witnessing run, which proves (P1), or a counter-example
run, which violates (P3) and (P4) respectively, was sufficient without generating and
exploring all possible states of the system. As opposed to the verification of (P2) and
(P5), where the verifier either ran out of memory before finding a violating run, or
(which is more likely) before being able to conclude that none existed after examining
all the system states.4 Therefore, it can be concluded that in the system model, there
are executions where mix tellers pass an audit (P1 holds), the voters get punished (P3
does not hold) and those, where they avoid punishment (P4 does not hold).
Optimizations. To keep the model manageable and in an attempt to reduce the
memory allocated per state, every numerical variable is defined as a bounded integer
in the form of int[min,max], restricting its range of values.5 The states violating the
bounds are discarded at run-time. For example, transition has_ballot→marked_choice
of the Voter (Figure 3.2) has a selection of value X in the assignment of variable chosen.
The type of variable X is c_t, which is an alias to int[0,c_total-1], i.e., the range of
meaningful candidate choices.

We also tried to keep the number of used variables minimal, as it plays an impor-
tant role in the model checking procedure.

3.5.2 How to Make Model Checker Do More Than It Is Supposed To

Many important properties of voting refer to the knowledge of its participants. For
example, receipt-freeness expresses that the coercer should never know how the voter
has voted. Or, better still, that the coercer will never know if the voter disobeyed his
instructions. Similarly, voter-verifiability says that the voter will eventually know
whether her vote has been registered and tallied correctly (assuming that she follows
the verification steps).

3Regardless of the number of voters, the verifier was running out of memory after a generation of
approximately 1.2e+7 states; it is plausible to assume that the total number of reachable states could be
much greater.

4We suspect that obtained results for (P2) and (P5) were caused by the latter, because repeating the
verification process several times using randomized DFS traversal order yielded the same result.

5Without the explicit bounds, the range of values would be [-32768,32768] by default.

42 Chapter 3. Towards Model Checking of Voting Protocols

(a)

initstart

voted1 voted2
Coercer

(b)

initstart

voted1 r_voted2

real reverse

epistemic

FIGURE 3.8: (a) Epistemic bisimulation triangle; (b) turning the triangle into a cycle by
reversing the transition relation.

FIGURE 3.9: Coercer module augmented with the converse transition relation.

A clear disadvantage of UPPAAL is that its language for the specification of
requirements is restricted to purely temporal properties. Here we show that, with
some care, one can use it to embed the verification of more sophisticated properties.
In particular, we show how to enable model checking of some knowledge-related
requirements by a technical reconstruction of models and formulas. The construction
has been inspired by the reduction of epistemic properties to temporal properties,
proposed in [GJ04; Jam08]. Consequently, UPPAAL and similar tools can be used to
model check some formulas of CTLK (i.e., CTL + Knowledge) that express variants
of receipt-freeness and voter-verifiability.

In order to simulate the knowledge operator Ka under the CTL semantics, the
model needs to be modified. The first step is to understand how the formula
¬Kc¬votedi,j (saying that the coercer doesn’t know that the particular voter i hasn’t
voted for candidate j) is interpreted. Namely, if there is a reachable state in which
votedi,j is true, there must also exist another reachable state, which is indistinguishable
from the current one, and in which ¬votedi,j holds. The idea is shown in Figure 3.8a.
We observe that to simulate the epistemic relation we need to create copies of the
states in the model (the “real” states). We will refer to those copies as the reverse states.
They are the same as the real states but with reversed transition relations. Then, we
add transitions from the real states to their corresponding reverse states, that simulate

3.5. Verification and Experiments 43

FIGURE 3.10: Voter1 with reversed transitions.

the epistemic relation between the states. This is shown in Figure 3.8b.
To illustrate how the reconstruction of the model works on a concrete example,

we depict the augmented templates in Figures 3.9–3.14.
In order to effectively modify the model and verify the selected properties ac-

cording to the previously defined procedure, the model was first simplified. In the
simplified version there are two voters and the coercer can interact only with one of
them. Furthermore, we removed the verification phase and the tallying phase from
the model.

The next step is the reconstruction of formulas. Let us take the formula for
the weak variant of receipt-freeness from Section 3.2.2, i.e., EF(results ∧ ¬votedi,j ∧
¬Kc¬votedi,j). In order to verify the formula in UPPAAL, we need to replace the
knowledge operator according to our model reconstruction method (see Figure 3.8
again). This means that the verifier should find a path that closes the cycle: from
the initial state, going through the real states of the voting procedure to the vote
publication phase, and then back to the initial state through the reversed states. In
order to “remember” the relevant facts along the path, we use persistent Boolean
variables votedi,j and negvotedi,j: once set to true they always remain true. We also
introduce a new persistent variable epist_votedi,j to refer to the value of the vote after
an epistemic transition. Once we have all that, we can propose the reconstructed
formula: EF(results ∧ negvotedi,j ∧ epist_votedi,j ∧ initial). UPPAAL reports that the
formula holds in the model.

A stronger variant of receipt-freeness is expressed by another formula — already
seen in Section 3.2.2 — AG(results ⇒ ¬Kc¬votedi,j). Again, the formula needs to
be rewritten to a pure CTL formula. As before, the model checker should find a
cycle from the initial state, “scoring” the relevant propositions on the way. More
precisely, it needs to check if, for every real state in which the election has ended,
there exists a path going back to the initial state through a reverse state in which the

44 Chapter 3. Towards Model Checking of Voting Protocols

FIGURE 3.11: Voter2 with reversed transitions.

FIGURE 3.12: Mix Teller with reversed transitions.

voter has voted for the selected candidate. This can be captured by the following
formula: AG

(
(results∧ real) ⇒ EF(votedi,j ∧ init)

)
. Unfortunately, this formula cannot

be verified in UPPAAL, as UPPAAL does not allow for nested path quantifiers. In
the future, we plan to run the verification of this formula using another model
checker LTSmin [Kan+15] that accepts UPPAAL models as input but allows for more
expressive requirement specifications.

3.6 Replicating Pfitzmann’s Attack

A version of Pfitzmann’s attack is known to compromise mix-nets with randomized
partial checking [KW13]. It can be used to break the privacy of a given vote with
probability 1/2 of being undetected during RPC. The leaked information may differ
depending on both the implementation of the attack and the voting protocol.

The idea is that the first mix teller, who is corrupted, targets a ciphertext ci from
the odd mix input, and replaces some output term cj with cδ

i . After the results of

3.6. Replicating Pfitzmann’s Attack 45

FIGURE 3.13: Decryption Teller with reversed transitions.

#Voters
|= P1 |= P2(j=0) |= P3 |= P4 |= P5

res t res t res t res t res t

2 ⊤ 0.1 ⊤ 0.1 ⊥ 0.1 ⊥ 0.1 memout 424.7
3 ⊤ 0.1 ⊤ 0.1 ⊥ 0.1 ⊥ 0.1 memout 628.2
4 ⊤ 0.1 ⊤ 0.1 ⊥ 0.1 ⊥ 0.1 memout 569.4
5 ⊤ 0.1 ⊤ 0.1 ⊥ 0.1 ⊥ 0.1 memout 628.4

TABLE 3.2: Verification results for Prêt à Voter model, where the first mix teller is corrupt.

decryption are posted, a pair of plaintext messages m and m′ satisfying the equation
m′ = mδ can be used to identify the corresponding input terms.

Clearly, the model presented in Section 3.4 is too basic to allow for the detection
of the attack. Instead, we can examine the attacker’s behaviour by a simple extension
of the model. For that, we change the Mteller template as shown in Figure 3.15. The
only difference lies in how the first re-encryption mix is done: the corrupted mix teller
targets c0, chooses a random non-zero δ, and uses cδ

0 instead of some other output
term. We assume that the corrupt mix teller will always try to cheat. In all other
respects, the teller behaves honestly.

Using UPPAAL, it can be verified that there are executions where the corrupt
mix teller’s cheating behaviour is not detected during the audit. That is, both (P2)
EF failed_audit0 and (P1) EF passed_audit0 produce “Property satisfied” as the output.
The verification results are reported in Table 3.2, omitting the configuration with
1 Voter, where the behaviour of a corrupt mix teller is identical to the honest one.
Similarly to the results from Section 3.5, verification successfully terminates finding a
run that proves (P1), and runs that violate (P3) and (P4), and fails in the case of (P5)
due to a lack of memory. However, in contrast to the results obtained with honest
Mix tellers, here property (P2) ends up being satisfied for j = 0 (i.e., for the corrupt
Mix teller). Therefore, in this modified scenario, where the first mix teller is corrupt,
the audit may sometimes detect the cheating (P2 holds) as well as fail to notice it (P1
holds); the conclusions for (P3) and (P4) remain the same.

We note that, in order to successfully verify those properties in our model of Prêt
à Voter, the search order option in UPPAAL had to be changed from the (default)
Breadth First to either Depth First or Random Depth First.

46 Chapter 3. Towards Model Checking of Voting Protocols

FIGURE 3.14: Sys module with reversed transitions.

3.7 Related Work

Coercion-resistant and voter-verifiable voting systems. Over the years, the prop-
erties of ballot secrecy, receipt-freeness, coercion resistance, and voter-verifiability were
recognized as important for an election to work properly. In particular, receipt-
freeness and coercion-resistance were studied and formalized in multiple ways [BT94;
Oka98; DKR06; KTV10a; DLL12], see also [Men09; TJR16] for an overview. More
recently, significant progress has been made in the development of voting systems
that would be coercion-resistant and at the same time allow the voter to verify “her”
part of the election outcome [RST15; Cor+16]. A number of secure and voter-verifiable
schemes have been proposed, notably Prêt à Voter for supervised elections [CRS05;
Rya10], Pretty Good Democracy for internet voting [RT13], and Selene, a coercion
mitigating form of tracking number-based, internet scheme [RRI16].

Such schemes are starting to move out of the laboratory and into use in real
elections. For example, (a variant of) Prêt à Voter has been successfully used in one
of the state elections in Australia [Bur+12] while the Scantegrity II system [Cha+09]
was used in municipal elections in the Takoma Park county, Maryland. Moreover, a
number of verifiable schemes were used in non-political elections. E.g., Helios [Adi08]
was used to elect officials of the International Association of Cryptologic Research
and the Dean of the University of Louvain la Neuve. This underlines the need for
extensive analysis and validation of such systems.
Formal verification of voting protocols. In voting systems, verifiable means that
the voters are able to verify the outcome of the election. This is different from
formal verification whose task is to provide algorithmic tools for checking if a system
satisfies a given requirement. General verification tools for security protocols include
ProVerif [CB13], Scyther [CM12], AVISPA [Arm+05], and Tamarin [Mei+13].

Formal analysis of selected voting protocols, based on theorem proving in first-
order logic or linear logic, includes attempts at verification of vote counting in [BGS13;

3.8. Conclusions 47

FIGURE 3.15: Corrupted Mix Teller module.

PS15]. The Coq theorem prover for higher-order logic [Ber+04] was used to imple-
ment the STV counting scheme in a provably correct way [Gha+18], and to pro-
duce a provably voter-verifiable variant of the Helios protocol [HGT19]. Moreover,
Tamarin [Mei+13] was used to verify receipt-freeness in Selene [BDS17] and Elec-
tryo [ZRR20]. Approaches based on model checking are fewer and include the
analysis of risk-limiting audits [Bec+16] with the CBMC model checker [CKL04].
Multi-agent models and model checkers in verification of security. Multi-agent
model checking is virtually unexplored in analysis of voting systems. The only
relevant work that we are aware of is [JKK18] where a simple multi-agent model
of Selene was proposed and verified using the MCMAS model checker [LQR17].
Related research includes the use of multi-agent methodologies to specify and verify
properties of authentication and key-establishment protocols [LP08; BKL16] with
MCMAS. In particular, [BKL16] used MCMAS to obtain and verify models, automat-
ically synthesized from high-level protocol description languages such as CAPSL,
thus creating a bridge between multi-agent and process-based methods.

In all the above cases, the focus is on the verification itself. Indeed, all the tools
mentioned above provide only a text-based interface for the specification of the
system. As a result, their model specifications closely resemble programming code,
and insufficiently protect from the usual pitfalls of programming: unreadability of
the code, lack of modularity, and opaque control structure. In this work, we draw
attention to tools that promote modular design of the model, emphasize its control
structure, and facilitate inspection and validation.

3.8 Conclusions

Formal methods are well established in proving (and disproving) the correctness of
cryptographic protocols. What makes voting protocols special is that they promi-
nently feature human and social aspects. In consequence, an accurate specification of
the behaviours admitted by the protocol is far from straightforward. An environment
that supports the creation of modular, compact, and – most of all – readable specifica-
tions can be an invaluable help in the design and validation of voting systems.

48 Chapter 3. Towards Model Checking of Voting Protocols

In this context, the UPPAAL model checker has a number of advantages. Its
modelling language encourages modular specification of the system behaviour. It
provides flexible data structures and allows for parameterized specification of states
and transitions. Last but not least, it has a user-friendly GUI. Clearly, a good graphical
model helps to understand how the voting procedure works and allows for prelimi-
nary validation of the system specification just by looking at the graphs. Anybody
who ever inspected a text-based system specification or the programming code itself
will know what we mean.

In this work, we try to demonstrate the advantages of UPPAAL through a case
study based on a version of Prêt à Voter. The models that we have obtained are neat,
easy to read, and easy to modify. On the other hand, UPPAAL has not performed
well with the verification itself. This was largely due to the fact that its requirement
specification language turned out to be very limited – much more than it seemed at
first glance. We managed to partly overcome the limitations by a smart reconstruction
of models and formulas. In the long run, however, a more promising path is to extend
the implementation of verification algorithms in UPPAAL so that they handle nested
path quantifiers and knowledge modalities, given explicitly in the formula.

The model proposed here is far from complete. We intend to refine and expand it
to capture a broader range of attacks, in particular coercion (or vote-buying attacks)
that involve subtle interactions between coercer and voters. Prime examples include
chain voting and randomization attacks, where the coercer requires the voter to place
an “X” in, say, the first position. Such an attack does not violate any privacy property
– the coercer does not learn the vote – but it does deny the voter the freedom to cast
her vote as intended. Still, more subtle styles of attack have been identified against
many verifiable schemes by Kelsey, [Kel+10]. Essentially any freedom the voter may
have in executing the voting ceremony can potentially be exploited by a coercer.

A comprehensive discussion of coercion-resistance and its possible formalizations
is also planned for future work. Another important line of research concerns data
independence and saturation results. It is known that to verify some properties,
it suffices to look for small counterexamples [ACK16]. It is also known that such
results are in general impossible [GS92] or incur prohibitive blowup [Cze+19]. We
will investigate what saturation can be achieved for the verification of Prêt à Voter.

49

Chapter 4

Practical Abstraction for Model
Checking of Multi-Agent Systems

4.1 Introduction . 50
4.2 Preliminaries . 51

4.2.1 MAS Graphs . 51
4.2.2 Models of MAS Graphs . 54
4.2.3 Branching-Time Logic ACTL⋆ . 56

4.3 Variable Abstraction for MAS Graphs . 56
4.3.1 Main Idea . 57
4.3.2 Approximating the Domains of Variables 57
4.3.3 Abstraction by Removal of Variables . 61
4.3.4 Merging Variables and Their Values . 62
4.3.5 Restricting the Scope of Abstraction . 62
4.3.6 General Variant of the Abstraction . 62

4.4 Correctness of Variable Abstraction . 62
4.4.1 Simulations between Models . 63
4.4.2 May-Abstractions of MAS Graphs . 64
4.4.3 Variable Abstraction Is Sound . 65
4.4.4 Must-Abstractions of MAS Graphs . 67
4.4.5 Abstraction on MAS Templates . 68

4.5 Complexity Analysis . 68
4.5.1 Approximation of Local Domain (Algorithm 2) 69
4.5.2 Variable Removal Abstraction (Algorithm 3) 70
4.5.3 General Abstraction (Algorithm 4) . 70
4.5.4 Complexity in Practice . 71

4.6 Case Study and Experimental Results . 72
4.6.1 Results for May-Abstraction . 73
4.6.2 Results for Must-Abstraction . 74

4.7 Related Work . 75
4.8 Conclusions . 76

The experiments in Chapter 3 have shown that formal verification of voting
procedures faces a substantial complexity barrier. This coincides with the fact that
model checking of multi-agent systems (MAS) is known to be hard, both theoretically
and in practice. The state-space explosion is a major challenge here, as faithful models
of real-world systems are immensely huge and infeasible even to generate – let alone

50 Chapter 4. Practical Abstraction for MAS

verify them. A smart abstraction of the state space may significantly reduce the
model, and facilitate the verification. However, while state abstraction is well studied
from the theoretical point of view, little work has been done on how to define actual
abstractions in practice. We propose and study an intuitive agent-based abstraction
scheme, based on the removal of variables in the representation of a MAS. This allows
to achieve the desired reduction of a state space without generating the global model
of the system. Moreover, the process is easy to understand and control even for
domain experts with little knowledge of computer science. We formally prove the
correctness of the approach and evaluate the gains experimentally on a family of
postal voting models and a scenario of gossip learning for social AI.

4.1 Introduction

Multi-agent systems (MAS) describe interactions of autonomous agents, often assumed
to be intelligent and/or rational. The theoretical foundations of MAS are mostly
based on modal logic and game theory [Woo02; SL09]. In particular, the temporal
logics CTL, LTL, and CTL⋆ provide formalizations of many relevant properties,
including reachability, liveness, safety, and fairness [Eme90]. Algorithms and tools
for verification of such properties have been in constant development for 40 years,
with temporal model checking being the most popular approach [BK08; Cla+18].
Complexity and state-space explosion. However, formal verification of MAS is
known to be hard, both theoretically and in practice. The state-space explosion is a
major obstacle here, as faithful models of real-world systems are huge and infeasible
even to generate, let alone verify. In consequence, model checking of MAS with
respect to their modular representations ranges from PSPACE-complete to undecid-
able [Sch03; BDJ10]. No less importantly, it is often unclear how to create the input
model, especially if the system to be modelled involves human behaviour [Jam+20b].
Similarly, formalizing the relevant properties in the right way is by no means triv-
ial [Jam+21]. Both parts of the specification are error-prone and difficult to debug
and validate, and most model-checkers for MAS do not even have a graphical user
interface.1 In realistic cases, one does not really know if what is verified and what we
think we verify are indeed the same thing.
Dealing with state-space explosion. Much work has been done to contain the state-
space explosion by smart representation and/or reduction of input models. Symbolic
model checking based on SAT- or BDD-based representations of the state/transition
space [McM93; McM02; PL03; KLP04; LP07; Hv14; LQR17] fall into the former group.
Model reduction methods include partial-order reduction [Pel93; Ger+99; Jam+20a],
equivalence-based reductions [de +84; Alu+98; Bel+21], and state abstraction [CC77],
see Section 4.7 for a detailed discussion of the related work.
Towards practical abstraction. A smart abstraction of the state space may reduce
the model to a manageable size by clustering “similar” concrete states into abstract
states, which should facilitate verification. Unfortunately, such clustering may remove
essential information from the model, thus making the verification of the abstract
model inconclusive for the original model. Lossless abstractions can be obtained by
means of abstraction-refinement [Cla+00b] but, typically, they are difficult to compute
or provide insufficient reduction of the model – quite often both.

In consequence, one has to live with abstractions that only approximate the con-
crete model. Moreover, crafting a good abstraction is an art that relies on the domain

1Notable exceptions include UPPAAL [BDL04] and STV [Kur+21].

4.2. Preliminaries 51

expertise of the modeller. Since domain experts are seldom computer scientists or spe-
cialists in formal methods, the theoretical formulation of abstraction as an arbitrary
mapping from the concrete to the abstract state space has little appeal. Moreover,
model checking tools typically do not support abstraction, so doing one would re-
quire to manipulate the input specification code, which is a difficult task in itself.
What we need is a simple and intuitive methodology for selecting information to be
removed from a MAS model, and for its automated removal that preserves certain
guarantees. Last but not least, practical abstraction should be applied on modular
representations of MAS, unlike the theoretical concept that is usually defined with
respect to explicit models of global states.
Contribution. In this work, we suggest that the conceptually simplest kind of
abstraction consists in removing a domain variable from the specification of the
input model. This can be generalized to the merging of several variables into a
single one, and possibly clustering their valuations. It is also natural to restrict the
scope of abstraction to a part of the input graph. As the main technical contribution,
we propose a correct-by-design method to generate such abstractions. We prove
that the abstractions preserve the valuations of temporal formulae in Universal
CTL⋆ (ACTL⋆). More precisely, our may-abstractions preserve the falsity of ACTL⋆

properties, so if φ ∈ ACTL⋆ holds in the abstract model, it must also hold in the
original one. Conversely, our must-abstractions preserve the truth of ACTL⋆ formulae,
so if φ ∈ ACTL⋆ is false in the abstract model, it must also be false in the original one.
We evaluate the efficiency of the method by verifying a scalable model of postal voting
in UPPAAL. The experiments show that the method is user-friendly, compatible with
a state-of-the-art verification tool, and capable of providing significant computational
gains.

4.2 Preliminaries

We start by introducing the models and formulae which serve as an input to model
checking.

4.2.1 MAS Graphs

To represent the behaviour of a multi-agent system, we use modular representa-
tions inspired by reactive modules [AH99], interleaved interpreted systems [LPQ10;
Jam+20a], and in particular by the way distributed systems are modelled in UP-
PAAL [BDL04].

Let Var be a finite set of typed variables over finite domains.2 By Eval(Var) we
denote a set of evaluations, i.e., functions mapping variables v ∈ Var to the values
from their domains dom(v). From variables in Var and constants in

⋃
v∈Var dom(v)

the expressions can be composed using arithmetic operators (i.e., “+”, “−”, “∗”,
“/” and “%”) in the usual way, e.g., 2x + 1. Similarly, the atomic logical conditions
are constructed from expressions using relation symbols (i.e., “≤”, “<”, “ ̸=”, “=”,
“>”, “≥”), e.g., 2x + 1 > 0. They can be further combined with logical connectives
(i.e., “¬”, “∧”, “∨”) to form compound logical conditions. The set of all possible
logical conditions (also called guards) over Var is denoted by Cond. Furthermore,
any g ∈ Cond can be associated with its set of satisfying evaluations Sat(g) = {η ∈
Eval(Var) | η |= g}.

2We consider only variables with finite domains, in line with most model checking algorithms and
tools for MAS.

52 Chapter 4. Practical Abstraction for MAS

Definition 4.1 (Agent graph). An agent graph , describing the behaviour of an agent, is a
tuple G = (Var, Loc, l0, g0, Act, Effect, Chan, ↪→), consisting of:

• Var: a finite set of typed variables over finite domains;
• Loc: a non-empty finite set of locations;
• l0 ∈ Loc: the initial location;
• g0 ∈ Cond: the initial condition, required to be satisfied at the initial location;

For simplicity, we assume that Sat(g0) = {η0}, i.e. there is an initial value v0 = η0(v)
for every v ∈ Var;

• Act: a set of actions, with τ ∈ Act standing for “do nothing”;
• Effect : Act × Eval(Var) 7→ Eval(Var): the effect of an action;

We assume Effect(τ, η) = η for any η ∈ Eval(Var);
• Chan: a finite set of asymmetric one-to-one synchronization channels;

Furthermore, we define the set of synchronizations as Sync = {c!, c? | c ∈ Chan} ∪ {−},
with c! and c? for sending and receiving on a channel c, respectively, and “−” for no
synchronization;

• ↪→⊆ Loc× Label× Loc: a set of labelled edges with labels from Label ⊆ Cond× Sync×
Act, which will be used to define the local transition relation.

Instead of (l, labl, l′) ∈ ↪→, we will often write l
g:ch α
↪−−→ l′, where g = cond(labl),

ch = sync(labl) and α = act(labl). The cond, sync, act are destructors mapping a label
to its counterpart. We will often omit writing g = ⊤, ch = − or α = τ explicitly
within a label.

An edge labelled by labl ∈ Label is said to be locally enabled for evaluation η ∈
Eval(Var) iff η |= cond(labl).

Furthermore, every action α ∈ Act \ {τ} can be associated with a non-empty finite
sequence of atomic assignments (also called updates) of the form α(1)α(2) . . . α(m).3 It
shall be assumed that such atomic sequences are initially normalized, in the sense that
a variable can appear on the left-hand side of an assignment statement at most once.4

Function V : Cond ∪ Act 7→ P(Var) returns the set of variables occurring in the
associated expression(s).

Without loss of generality, we assume that the variables in Var = {v1, . . . , vk} are
ordered in an arbitrary way. Thus, an evaluation of V ⊆ Var, where V = {vi1 , . . . , vil},
l ≤ k and ij ∈ {1, . . . , k}, can be seen as a vector η(V) = [η(vi1), . . . , η(vil)], where
ij < ij+1 for 1 ≤ j ≤ l − 1. Moreover, we say that a pair of evaluations η1 ∈ Eval(Var1)
and η2 ∈ Eval(Var2) agrees on the variables V ⊆ Var1 ∩ Var2 (denoted η1 =V η2) iff
η1(V) = η2(V), i.e., η1(v) = η2(v) for every v ∈ V.

Let V ⊆ Var, c ∈ dom(V), η ∈ Eval(Var), g ∈ Cond, α ∈ Act. By η[V = c] and
g[V = c] we denote the result of (straightforward) substitution of occurring variables
from V with corresponding element(s) of c. The α[V = c] corresponds to a more
nuanced substitution, or rather a chain of substitutions over the sequence of atomic
updates α(i). This is because sequential updates α(i) might be internally dependent
(i.e., when the variable from the left-hand side of some α(j) appears as parameter
later on the right-hand side of some α(i), where j < i). Therefore, the α[V = c] would
correspond to α(m)[V(m) = c(m)] ◦ . . . ◦ α(1)[V(1) = c(1)], where V(1) = V ∩ V(α(1)),
V(i) = V ∩ V(α(i)) \ {lhs(α(j)) | j < i} and c(i) = c|V(i) .

Note that for any pair of g ∈ Cond and η ∈ Eval(Var) it holds that: η |= g iff
g[Var = η(Var)] evaluates to ⊤.

3We will often write such sequences in a form of composition α(m) ◦ . . . ◦ α(2) ◦ α(1), where “◦” is a
right-associative operator.

4Note that this is a purely syntactic condition that is easy to check and does not constrain the
expressive power (e.g., one can always introduce auxiliary variables).

4.2. Preliminaries 53

Remark 4.1. For an action α, there can be more than one (normalized) sequence of atomic
updates representing it. For example, when some underlying α(i) and α(i+1) are commutative.
W.l.o.g., in the sequel we assume that any pair of updates (or their atomic sequences) that
yields the same result are equal, i.e., α1 = α2 iff ∀η∈Eval(Var)Effect(α1, η) = Effect(α2, η).

Furthermore, note that effect of α can only change the valuation for the variables appearing
on the left-hand side of its atomic updates L =

⋃m
i=1 lhs(α(i)), that is for any η, η′ ∈

Eval(Var) the following holds:

Effect(α, η) = η′ implies η =(Var\L) η′

Moreover, the outcome of Effect(α, η) depends only on the evaluation of the variables ap-
pearing on the right-hand side of its atomic updates that did not appear on the left-hand side of
preceding elements of the underlying atomic sequence R =

⋃m
i=1

(
rhs(α(i)) \ (⋃i

j=1 lhs(α(j)))
)

,
that is for any η, η′ ∈ Eval(Var) the following holds:

Effect(α, η) =L Effect(α[R = η(R)], η′)

Definition 4.2 (MAS graph). A MAS graph is a multiset5 of agent graphs with a distin-
guished set of shared (also called global) variables; in order to avoid ambiguity in the notation,
the set of shared variables will be separated from the agent graphs by semicolon. We assume,
w.l.o.g., that all local variables have unique names.6 Then, the set of shared variables can be
seen as those that occur in at least two different agent graphs.

idle

voted

obeyeddisobeyed

T_
vt:=1 T_

vt:=2

T_
vt:=3

T
g!
sh:=vt

T
ng!
τ

idle

halt

T
g?
Kvt:=sh

T
ng?
Kref:=1

FIGURE 4.1: MAS graph for ASV: GVoter (left) and GCoercer (right).

Example 4.1 (ASV). As the running example, we use a variation of the Asynchronous
Simple Voting scenario of [Jam+20a], where the number of candidates is fixed to 3. Its MAS
graph ASV = {|Varsh; GVoter, GCoercer|} is shown in Figure 4.1.

The GVoter has locations LocVoter = {idle, voted, disobeyed, obeyed}, where idle
is the initial location, and variables VarVoter = {vt, sh}, where vt represents the chosen
candidate and sh is used for the possible communication with the coercer over the set of
synchronization channels ChanVoter = ChanCoercer = {g, ng}. The GCoercer has locations
LocCoercer = {idle, halt}, where idle is the initial location, and variables VarCoercer =
{Kref, Kvt, sh}, where Kref and Kvt represent the awareness of voter’s refusal to obey
and shown voting receipt respectively. The variables vt, sh and Kvt are of the bounded
integer type with domain of values {0, 1, 2, 3}, and Kref is a Boolean variable with domain of

5We denote a multiset container with “{|” and “|}” brackets to avoid confusion with ordinary sets.
6This can be ensured, e.g., by prefixing the identifiers of local variables with the name of the agent

graph; in case there are multiple agent graphs of the same type, some enumeration over agent graphs of
the same type can be established, so that their index is included into the auxiliary prefix.

54 Chapter 4. Practical Abstraction for MAS

values {0, 1}. The initial locations are marked by double-circle, and the initial condition is
g0 ≡ ∧

v∈Var(v=0), where Var = VarVoter ∪ VarCoercer.
The voter — represented by the agent graph GVoter — starts by nondeterministically

selecting one of the three candidates, for whom the vote will be cast (idle→voted). Then, she
decides to either give the proof of how she voted to the coercer (voted→obeyed), or to refuse
it (voted→disobeyed). Both options require executing a synchronous transition (using
channels g and ng) with the coercer — represented by the agent graph GCoercer. In turn, the
coercer either gets the proof and learns for whom the vote was cast, or becomes aware of the
voter’s refusal.

idle,idle

voted,idle

obeyed,haltdisobeyed,halt

vt:=1

vt:=2

vt:=3

sh:=vt,
Kvt:=shKref:=1

(A)

idle

voted

obeyeddisobeyed

T_
τ

T
g!
sh:=2

T
g!
sh:=1

T
g!
sh:=3

T
ng!
τ

(B)

FIGURE 4.2: (a) Combined MAS graph of ASV. (b) May-abstraction Amay
{x} (G

Voter, ASV).

4.2.2 Models of MAS Graphs

We define the execution semantics of a MAS graph by its unwrapping.

Definition 4.3 (Combined MAS graph). Let MG = {|Varsh; G1, . . . , Gn|} be a MAS
graph having a set of shared variables Varsh. The combined MAS graph of MG is the
agent graph GMG = (Var, Loc, l0, g0, Act, Effect, Chan, ↪→), where Var =

⋃n
i=1 Vari, Loc =

Loc1 × . . . × Locn, l0 = (l1
0 , . . . , ln

0), g0 = g1
0 ∧ . . . ∧ gn

0 , Act =
⋃n

i=1 Acti, Chan = ∅.
Relation ↪→ is obtained inductively by the following rules (where li, l′i ∈ Loci, lj, l′j ∈ Locj,

c ∈ Chani ∩ Chanj for two agent graphs Gi and Gj of distinct indices 1 ≤ i, j ≤ n):

li ↪
gi :c!αi−−−→i l′i ∧ lj ↪

gj :c?αj−−−→j l′j

(li, lj) ↪
gi∧gj :(αj◦αi)−−−−−−→ (l′i , l′j)

li ↪
gi :αi−−→i l′i

(li, lj) ↪
gi :αi−−→ (l′i , lj)

li ↪
gi :c?αi−−−→i l′i ∧ lj ↪

gj :c!αj−−−→j l′j

(li, lj) ↪
gi∧gj :(αi◦αj)−−−−−−→ (l′i , l′j)

lj ↪
gj :αj−−→j l′j

(li, lj) ↪
gj :αj−−→ (li, l′j)

Lastly, the effect function is defined by:

Effect(α, η) =

{
Effecti(α, η) if α ∈ Acti

Effect(αi, Effect(αj, η)) if α = αi ◦ αj

4.2. Preliminaries 55

Remark 4.2. In the definition above, the function Effecti : Acti × Eval(Var) 7→ Eval(Var)
is a natural extension of the original one from agent graph Gi, s.t. Vari ⊆ Var and(

Effecti(α, η) = η′
)
⇒

(
∀v ∈ (Var \ Vari) . η =v η′

)
.7

Example 4.2. The combined MAS graph GASV for asynchronous simple voting of Exam-
ple 4.1 is depicted in Figure 4.2a.

Intuitively, the combined MAS graph is an asynchronous composition of the agent
graphs in MG. Note that by the construction of combined MAS graph, its edges are
always labelled by labl ∈ Label, s.t. sync(labl) = −. To turn it into a model, we still
need to instantiate the variables in combined MAS graph with their possible values.

The nodes and edges in an agent graph G correspond to sets of states and transi-
tions, defined by the unwrapping of G.

Definition 4.4 (Unwrapping). Let G= (Var, Loc, l0, g0, Act, Effect, Chan, ↪→) be an agent
graph. The unwrapping of G over AP ⊆ Loc ∪ Cond is a 5-tuple M(G) = (St, I,−→
, AP, L), where:

• St = Loc × Eval(Var),
• I = {⟨l0, η⟩ ∈ St | η ∈ Sat(g0)},
• −→=−→0 ∪{(s, s) ∈ St×St | ¬∃s′ ∈ St . s −→0 s′}, where −→0 = {(⟨l, η⟩, ⟨l′, η′⟩) ∈

St × St | ∃ l
g:α
↪−→ l′ . η ∈ Sat(g) ∧ η′ = Effect(α, η)},8

• AP ⊆ Loc ∪Cond,
• L : St → 2AP, such that

L(⟨l, η⟩) = {l} ∪ {g ∈ Cond | η ∈ Sat(g)}.

We call M(G) the model of an agent graph G. For a MAS graph MG the model M(MG) is
given by the unwrapping of its combined graph, i.e. M(MG) = M(GMG).

Note that a model M(G) (resp. M(MG)) over AP is finite iff AP is finite.

Intuitively, each state in the unwrapping specifies a location in the MAS graph
plus a tuple of values for all the variables. Moreover, the atomic statements in AP
allow us to indicate a location, or refer to a Boolean condition. By AP(V), we will
denote the subset of propositions that do not use any variables from outside V.

Example 4.3. The unwrapping of the MAS graph for asynchronous simple voting (over any
AP) is shown in Figure 4.3, with the initial state ⟨idle,idle,vt=0,sh=0,Kref=0,Kvt=0⟩.

Remark 4.3. MAS graph MG = {|Varsh; G1, . . . , Gn|} could also be “unwrapped” into
extended model (see Definition 2.21), where indistinguishability relation ∼i (for i = 1 . . . n)
is given by:

⟨(l1, . . . , ln), η⟩ ∼i ⟨(l̂1, . . . , l̂n), η̂⟩ iff li = l̂i ∧ η =Vari η̂

Lemma 4.1. For any agent graph, the number of states in its unwrapping is at most

|Loc| · ∏
v∈Var

|dom(v)|.

Proof. Follows from the definition St ⊆ Loc × Eval(Var) and the fact that both Loc
and Eval(Var) are finite (in particular, Var is finite and |dom(v)| < ∞ for every
v ∈ Var).

7In other words, the (extended) effect exhibits the original behaviour w.r.t. the (original) variables
Vari of the agent i, and leaves the evaluation for all other variables unaffected.

8We add loops wherever necessary to make the relation serial.

56 Chapter 4. Practical Abstraction for MAS

idle,
idle,
vt=0,
sh=0,
Kref=0,
Kvt=0

voted,
idle,
vt=1,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=1,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=1,
sh=1,
Kref=0,
Kvt=1

voted,
idle,
vt=2,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=2,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=2,
sh=2,
Kref=0,
Kvt=2

voted,
idle,
vt=3,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
vt=3,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
vt=3,
sh=3,
Kref=0,
Kvt=3

FIGURE 4.3: Unwrapping M(ASV) for Asynchronous Simple Voting.

It is easy to construct an example where the bound is tight. Thus, in the worst
case, the number of states in the unwrapping of agent graph grows exponentially in
the number of variables.

Definition 4.5 (Local Domain). A local domain is a function d : Loc 7→ P(Eval(Var))
that maps each location l ∈ Loc to the set of its reachable evaluations (i.e., for which there
exists a corresponding reachable state ⟨l, η⟩ in the model). By d(l)|V = {η|V | η ∈ d(l)} we
denote the restriction of evaluations in d(l) that considers only the variables V ⊆ Var.

4.2.3 Branching-Time Logic ACTL⋆

To specify requirements, we use the universal fragment of the branching-time logic
CTL⋆ [Eme90], denoted ACTL⋆9 with A (“for every path”) as the only path quantifier.
We refer to Definition 2.10 and Definition 2.11 for details on its syntax and semantics.

Example 4.4. Consider the unwrapping M(ASV) of ASV depicted in Figure 4.3 over AP =
{Kvt=vt, Kref=1, Kvt>0, obeyed, disobeyed}, for which the mappings of the function L
can be derived intuitively.

The model M = M(ASV) satisfies the ACTL⋆ formula AG(¬obeyed∨ Kvt=vt), say-
ing that if Voter obeys, Coercer gets to know how she voted, and the formula AG(¬disobeyed∨
Kref=1), expressing that she cannot disobey Coercer’s instructions without his knowledge. It
does not however satisfy AF(Kvt>0), saying that Coercer will eventually get to know how the
Voter voted.

4.3 Variable Abstraction for MAS Graphs

In this section, we propose how to automatically reduce MAS graphs by simplifying
their structure of local variables. As the starting point, we take the idea of may/must
abstractions [DGG97; GJ02]. Typically, they take concrete states and cluster them
according to a given equivalence relation. The may model includes transitions of type
∃∃, i.e., [s1] −→ [s2] in the abstract model iff ∃s′1∈[s1]∃s′2∈[s2]s

′
1 −→ s′2 in the concrete

model. The must model includes transitions of type ∀∃, i.e., [s1] −→ [s2] in the

9Not to be confused with “Action CTL” of [NV90].

4.3. Variable Abstraction for MAS Graphs 57

Algorithm 1: Abstraction of MAS graph MG wrt V

1 for MG = {|Varsh; G1, . . . , Gn|} compute the combined graph GMG
2 compute the approximate local domain d for V in GMG

3 foreach agent graph Gi ∈ MG do
4 compute abstract graph A(Gi) w.r.t. di

5 return A(MG) = {|Varsh;A(G1), . . . ,A(Gn)|}

abstract model iff ∀s′1∈[s1]∃s′2∈[s2]s
′
1 −→ s′2 in the concrete model. Correctness of the

abstraction is proved by showing that the concrete model: simulates the must model,
and is simulated by the may model.

4.3.1 Main Idea

In our case, concrete states are in the form of pairs ⟨l, η⟩. A natural choice is to define
the equivalence relation w.r.t. variable evaluations and common locations. Arguably
the simplest (non-trivial) example of such relation is achieved by clustering states that
only differ in the evaluation of certain variables, which corresponds to the removal
of a subset of variables V ⊆ Var for the abstract model. In that way, we will cluster
together the states ⟨l1, η1⟩ and ⟨l2, η2⟩ iff l1 = l2 and η1 =Var\V η2.

Additionally, we want the abstraction A to transform the MAS graph MG =
{|Varsh; G1, . . . , Gn|} so that:

(i) its computation is agent-based, i.e., A(MG) = {|Varsh;A(G1), . . . ,A(Gn)|};
(ii) the abstract agent graphs A(Gi) preserve the same locations as in concrete Gi;

(iii) the changes must result from modifying variables V (e.g., their removal, domain
restriction, etc.).

We will now systematically construct may-abstraction Amay(MG) (resp. must-
abstraction Amust(MG)) of MG, which will be given formally by Algorithms 1, 3
and 4.

The may-abstraction Amay(MG) should over-approximate MG, in the sense that
every transition in MG has its counterpart in Amay(MG). Consequently, every formula
of type Aφ that holds in the model M(Amay(MG)) must also hold in the model
M(MG). Likewise, the must-abstraction Amust(MG) should under-approximate MG,
in the sense that all transitions in Amust(MG) have their counterparts in MG. Thus,
whenever Aφ is false in M(Amust(MG)), it is also false in M(MG).

The general structure of the procedure is shown in Algorithm 1. First, we approxi-
mate the set of reachable evaluations restricted to the subset of variables V in every
location of the combined MAS graph GMG by means of Algorithm 2, discussed in
Section 4.3.2. Then, the output is used to transform the agent graphs Gi in MG, one
by one, by detecting and transforming the occurrences of the variables in V ∩ Vari.
This is implemented by function ComputeAbstraction (Algorithms 3 and 4), which
will be presented in detail in Sections 4.3.3–4.3.5.

4.3.2 Approximating the Domains of Variables

Given a MAS graph MG, the approximation of reachable values for a set of variables
V ⊆ Var is defined in two variants.

Definition 4.6 (Upper-approximation). The upper-approximation of local domain is
a function d+ : Loc 7→ P(Eval(Var)) that maps each location l ∈ Loc to the superset of its

58 Chapter 4. Practical Abstraction for MAS

Algorithm 2: Approximation of local domain for V ⊆ Var

ApproxLocalDomain(G = GMG, V)
1 foreach l ∈ Loc do
2 l.d := d0
3 l.p := ∅
4 l.color := white
5 l0.d := {η|V | η ∈ Sat(g0)}
6 Q := ∅
7 Enqueue(Q, l0)
8 while Q ̸= ∅
9 l := ExtractMax(Q)

10 VisitLoc(l, V)
11 if l.color ̸= black then
12 foreach l′ ∈ Succ=1(l) do
13 Q := Enqueue(Q, l′)
14 l′.p := l′.p ∪ {l}
15 l.color = black
16 return {⟨l : (V 7→ l.d)⟩ | l ∈ Loc}

VisitLoc(l, V)
17 κ := l.d
18 foreach l′ ∈ l.p, l′

g:α
↪−→l do

19 l.d := l.d ⊗ ProcEdge(l′, g, α, l, V)

20 l.p = ∅
21 if κ ̸= l.d then
22 l.color := grey
23 λ := l.d
24 foreach l

g:α
↪−→l do

25 l.d := l.d ⊗ ProcEdge(l, g, α, l, V)

26 if λ ̸= l.d then
27 l.color := grey
28 go to 23

ProcEdge(l, g, α, l′, V)
29 δ0 := {η ∈ Sat(g) | η|V ∈ l.d}
30 let α := α(1) . . . α(j)

31 for i = 1 to j do
32 δi := {η′ = Effect(α(i), η) | η ∈ δi−1}
33 return {η|V | η ∈ δmax{j,0}}

enqueue immediate-neighbours

process incoming edges

process self-loops

reachable evaluations, i.e. ∀l∈Loc d(l) ⊆ d+(l) as well as ∀l∈Loc d(l)|V ⊆ d+(l)|V for any
V ⊆ Var.

Definition 4.7 (Lower-approximation). The lower-approximation of local domain is
a function d− : Loc 7→ P(Eval(Var)) that maps each location l ∈ Loc to the subset of its
reachable evaluations, i.e. ∀l∈Loc d−(l) ⊆ d(l) as well as ∀l∈Loc d−(l)|V ⊆ d(l)|V for any
V ⊆ Var.

For an approximation of local domain d∗ : Loc 7→ P(Eval(Var)), where ∗ ∈ {+,−},
Loc = Loc1 × . . . × Locn, by d∗i we denote a reduced to the i-th location component
“narrowing” of d∗. Formally, for 1 ≤ i ≤ n and lj ∈ Loci the value of d∗i (lj) is

4.3. Variable Abstraction for MAS Graphs 59

defined as
⋃

l∈Loc1×...×Loci−1×{lj}×Loci+1×...×Locn d+(l) for the upper-approximation and⋂
l∈Loc1×...×Loci−1×{lj}×Loci+1×...×Locn d−(l) for the lower-approximation.

Furthermore, when the set of variables V ⊂ Var is clear from the context, we will
sometimes use a shorter notation d∗(l) (instead of d∗(l)|V). Additionally, for W ⊆ V
(resp. W ∈ V) by d∗(l, W) we denote the set of actual value tuples (resp. set of values),
that is {η(W) | η ∈ d∗(l)}.
Detailed description of Algorithm 2. The function ApproxLocalDomain is parameter-
ized by symbols d0 and ⊗, such that d0 = ∅ and ⊗ = ∪ for the upper-approximation,
and d0 = dom(V) and ⊗ = ∩ for the lower-approximation.10 On the input it takes the
combined MAS graph GMG and the set of variables V ⊆ Var, and then traverses its
location using a modified version of the priority-BFS algorithm [Cor+09] in order to
compute the chosen local domain approximation variant. The upper-approximation
for every location l ∈ Loc \ l0 is computed from ∅ by adding new, possibly reach-
able evaluations of V whenever they are produced on an edge coming to l. The
lower-approximation for every location l ∈ Loc \ l0 is computed from dom(V) by
iteratively removing evaluations of V that might be unreachable (i.e., only those that
are commonly produced by all incoming to l edges are kept). For the initial location
l0 the computation starts from η0|V in both cases and then proceeds normally.

In other words, starting from l0 we systematically explore adjacent locations of the
graph, and try to refine their current approximation with every (re-)visit until a stable
approximation is obtained. Each location l must be visited at least once, and it shall
be re-visited again whenever some of its predecessors l′ gets their approximations
d∗(l′)|V updated. The computation halts when all locations were visited and have
their approximation values stabilized.

The max-priority queue Q stores the locations that must be visited (possibly
anew). Within the queue, the higher traversal priority is given to locations with
greater reachability index r(l), defined as the number of locations l′ ̸= l reachable
from l.11 This shall reduce the number of potential re-visits in comparison with the
generic FIFO variant of the queue.

Within the algorithm, with each location l we associate auxiliary attributes:
l.color ∈ {white, grey, black}, the set of relevant predecessors l.p ⊆ Loc \ {l}, and
the current approximation of the local domain l.d. The color indicates whether loca-
tion has not been visited yet (white), had its approximation l.d refined and awaits for
neighbouring locations to be enqueued (grey), was visited and closed (black). The set
l.p indicates which predecessors of l had their approximations updated, which may
lead to a refined l.d.

In lines 1–5, the auxiliary attributes of every location are initialized with the white
color, the empty set of predecessors, and the initial approximation d0. Lines 6–7
initialize the queue with location l0. The while-loop of lines 7–15 describes the visit
of location l. In VisitLoc, after the edges from l.p were taken into account for l.d, the
l.p is reset (line 20). Self-loops are processed separately with possible repetitions until
l.d stabilizes (lines 23–28). The function ProcEdge explores the possible transitions,
and gradually computes the image (restricted by V) associated with updates from α
on evaluations satisfying the guard g and having their V counterpart in l.d. Lastly, if l
changes its color to grey from either black or white, then all the immediate neighbours
are enqueued to be inspected, adding l to the list of their relevant predecessors, and
changing its color to black (lines 10–15).

10Note that in both cases, d0 is simply a neutral element of the operation ⊗.
11The values of r(l) can be derived from the reachability matrix produced by Warshall’s algorithm,

taking a row-wise sum of non-zero elements apart from those in the main diagonal.

60 Chapter 4. Practical Abstraction for MAS

l ∈ Loc r(l) d−(l, vt) d(l, vt) d+(l, vt)

⟨idle,idle⟩ 3 {0} {0} {0}
⟨voted,idle⟩ 2 ∅ {1, 2, 3} {1, 2, 3}
⟨obeyed,halt⟩ 0 ∅ {1, 2, 3} {1, 2, 3}
⟨disobeyed,halt⟩ 0 ∅ {1, 2, 3} {1, 2, 3}

TABLE 4.1: Reachability index r of locations and reachable values of vt from: lower-
approximation d−, exact local domain d and upper-approximation d+.

The algorithm halts and returns a stable approximation d (line 16) when the queue
is empty and all the locations are black. Note that the subsequent approximations
l.d are weakly monotonic (i.e., l.d ⊆ l.d′ for d+, and l.d ⊇ l.d′ for d−). Since the sets
of locations and edges are finite, and so are the variable domains, termination is
guaranteed.

Example 4.5. The local domain and its approximations obtained by ApproxLocalDomain
for variable vt in the combined ASV graph of Example 4.2 can be found in Table 4.1.

Theorem 4.1. Given an extended MAS graph G = GMG and a set of variables V ⊆ Var, the
approximations obtained by ApproxLocalDomain with d0 = ∅, ⊗ = ∪ corresponds to an
upper-approximation, and with d0 = dom(V), ⊗ = ∩ correspond to a lower-approximation
of the local domain d with respect to V.

Proof. Let d′ and d′′ be approximations obtained by ApproxLocalDomain(GMG, V)
with d0 = ∅, ⊗ = ∪ and d0 = dom(V), ⊗ = ∩ respectively, and ⟨l, η⟩ be some
reachable state of the model induced by GMG. We will use an induction over the
length t ∈ N+ of model’s M = M(GMG) runs that end in a state induced by location
l and show that:

(i) if ∃π = ⟨l0, η0⟩ . . . ⟨l, η⟩ ∈ Runst(M) then η|V ∈ d′(l);
(ii) if η′|V ∈ d′′(l) then ∀π = ⟨l0, η0⟩ . . . ⟨l, η⟩ ∈ Runst(M). η′ =V η.

Recall that by Definition 4.5, (exact) local domain d maps location l ∈ Loc to the
set of its reachable evaluations, or in other words to such evaluations η ∈ Eval(Var)
for which there exists an initial run in the induced model ending with ⟨l, η⟩.
Base case: t = 1 and π = ⟨l0, η0⟩. From line 5 of ApproxLocalDomain it must be that
η0|V ∈ d′(l0) as by construction of the algorithm any further changes of d′(l0) (in
lines 19, 25) may only add new elements to it (but not remove the existing ones), and
thus (i) holds. Analogously, (ii) holds because d′′(l0) gets initialized to {η0|V} (line 5)
and further changes of d′′(l0) (in lines 19, 25) may only remove its elements, i.e. final
d′′(l0) returned by ApproxLocalDomain is either equal to {η0|V} or an empty set.
Inductive hypothesis: suppose that (i) and (ii) hold for all t = 1 . . . k, for some k ≥ 1.

Inductive step: t = k + 1 and π = ⟨l0, η0⟩⟨l1, η1⟩ . . . ⟨lt, ηt⟩ s.t. lt = l and ηt =

η. By Definition 4.4, run π must be induced by some l0
g1:α1
↪−−→ l1

g2 :α2
↪−−→ . . .

gt :αt
↪−−→

lt, s.t. ηi+1 = Effect(αi+1, ηi) and ηi ⊨ gi+1 for i = 0, . . . , t − 1. By IH (i) and
(ii) must hold for l0, l1, . . . , lt−1 and therefore ηt|V must appear on the output of
ProcEdge(lt−1, gt, αt, lt, V) (possible in either case of upper- or lower-approximation),
or ProcEdge(lt−1, gt, αt, lt, V) = ∅ (possible in case of lower-approximation only).
Hence, we can conclude that (i) and (ii) hold for t = k + 1 as well.

4.3. Variable Abstraction for MAS Graphs 61

Algorithm 3: Abstraction by variable removal

ComputeAbstraction(G = Gi, V, d = di)
1 ↪→a:= ∅
2 foreach l

g:ch α
↪−−→l′ do

3 foreach c ∈ d(l, V) do
4 g′ := g[V = c]
5 α′ = α[V = c]

6 ↪→a:=↪→a ∪{l
g′ :ch α′

↪−−−→ l′}
7 ↪→:=↪→a
8 g0 := g0[V = η0(V)]

9 Var i := Var i \ V
10 return G

4.3.3 Abstraction by Removal of Variables

The simplest form of abstraction consists in the complete removal of a given subset of
variables V ⊆ Var from the MAS graph. To this end, we use the approximation
of reachable values of V, produced by ApproxLocalDomain. More precisely, we
transform every edge between l and l′ that includes variables V ′ ⊆ V in its guard
and/or its update into a set of edges (between the same locations), each obtained
by substituting V ′ with a different value c′ ∈ d(l, V ′), see Algorithm 3. The abstract
agent graph obtained by removing variables V from G in the context of MG is denoted
by A{V} (G, MG). Whenever relevant, we will use Amay (resp. Amust) to indicate the
variant of the abstraction.

idle,
idle,
sh=0,
Kref=0,
Kvt=0

voted,
idle,
sh=0,
Kref=0,
Kvt=0

disobeyed,
halt,
sh=0,
Kref=1,
Kvt=0

obeyed,
halt,
sh=1,
Kref=0,
Kvt=1

obeyed,
halt,
sh=2,
Kref=0,
Kvt=2

obeyed,
halt,
sh=3,
Kref=0,
Kvt=3

FIGURE 4.4: Unwrapping for Amay
{x} (ASV) = {|Varsh; Amay

{x} (G
Voter, ASV), GCoercer|}.

Example 4.6. The result of removing variable vt from the voter graph, according to the
upper-approximation of the domain presented in Table 4.1, is shown in Figure 4.2b. Note that
its unwrapping (shown in Figure 4.4) is distinctly smaller than the original one (Figure 4.3).
Still, as we will formally prove in Section 4.4, all the paths of the model in Figure 4.3 are
appropriately represented by the model in Figure 4.4.

62 Chapter 4. Practical Abstraction for MAS

4.3.4 Merging Variables and Their Values

A more general variant of variable abstraction assumes a collection of mappings
F = { f1, . . . , fm}. Each mapping fi : Eval(Xi) 7→ Eval(zi) merges the local variables
Xi ⊆ Varj of some agent graph Gj to a fresh variable zi. The abstraction based on fi
removes variables Xi from graph Gj, and replaces them with zi that “clusters” the
values of Xi into appropriate abstraction classes. We will use ArgsR(fi) = Xi and
ArgsR(F) =

⋃m
i=1 ArgsR(fi) to refer to the variables removed by fi and F. ArgsN(fi) =

{zi} and ArgsN(F) =
⋃m

i=1 ArgsN(fi) refer to the new variables.
Note that the procedure in Section 4.3.3 can be seen as a special case, with a sole

mapping f merging V to a fresh variable z with the singleton domain dom(z) =
{η0(z)}.

4.3.5 Restricting the Scope of Abstraction

The abstraction scheme can be further generalised by considering a set of mappings
F = {(f1, Sc1), . . . , (fm, Scm)}, with each fi : Eval(Xi) 7→ Eval(zi) applied in some
agent graph Gj, and Sci ⊆ Locj defining the scope of fi. That is, mapping fi is applied
only in the locations l ∈ Sci by assigning fi(Xi) to zi, and resetting the value of each
v ∈ Xi to v0. Outside of Sci, the variables in Xi stay intact, and the new variable zi is
assigned an arbitrary default value.

The abstract agent graph obtained by function ComputeAbstraction from G in
the context of MG via F is denoted by AF(G, MG). Consequently, the abstraction of
MG = {|Varsh; G1, . . . , Gn|} becomes

AF(MG) = {|Varsh;AF(G1, MG) . . . ,AF(Gn, MG)|}.

4.3.6 General Variant of the Abstraction

The general variant of A∗
F, where ∗ ∈ {may, must}, F = {(f1, Sc1), . . . , (fm, Scm)} is

described in Algorithm 4. In the main loop (lines 7–23) the edges of G = Gj are
transformed wrt the relevant pairs of (fi, Sci) in the following way:

• edges entering or inner the Sci have their actions appended with (1) update of the
target variable zi and (2) update which sets the values of the source variables Xi to
their defaults (resetting those),

• edges leaving or within the Sci have actions prepended with (1) update of source
variables Xi (a temporarily one to be assumed for the original action) and (2)
update which resets the values of the target variable zi.

In order to make these transformations simultaneously, for each edge two auxiliary
lists of mappings are derived: Ftrg, which is relevant for edges entering or inner the
scope, and Fsrc, which is relevant for edges leaving or within the scope.

Note that due to introduction of a scope, the variables from ArgsR(F) cannot be
genuinely removed for a proper subset of locations — instead, their evaluation will
be fixed to some constant value within the states, where location label is in the scope.

4.4 Correctness of Variable Abstraction

We will now prove that the abstraction scheme, proposed in Section 4.3, preserves the
truth values of ACTL⋆ formulae if the computation of variable domain d produces

4.4. Correctness of Variable Abstraction 63

Algorithm 4: General abstraction

ComputeAbstraction(G, d, F)
1 X := ArgsR(F)
2 Z := ArgsN(F)
3 Fs := { fi | (fi, Sci) ∈ F}
4 Sc :=

⋃
(fi ,Sci)∈F Sci

5 g0 := g0 ∧ (Z=Fs(η0(X)))
6 ↪→a:= ∅

7 foreach l
g:ch α
↪−−→ l′ do

8 if {l, l′} ∩ Sc = ∅ then

9 ↪→a:=↪→a ∪{l
g:ch α
↪−−→ l′}

10 else
11 Fsrc := { fi | (fi, Sci) ∈ F ∧ l ∈ Sci}
12 Ftrg := { fi | (fi, Sci) ∈ F ∧ l′ ∈ Sci}
13 foreach η ∈ d(l) do
14 W1 :=

⋃
f∈Fsrc

ArgsR(f) // shall have the values assumed
15 W2 :=

⋃
f∈Fsrc

ArgsN(f) // shall have the values reset
16 Y1 :=

⋃
f∈Ftrg

ArgsR(f) // shall have the values reset
17 Y2 :=

⋃
f∈Ftrg

ArgsN(f) // shall have the values computed
18 g′ := g[W1 = η(W1)]
19 α′ := (W1 := η(W1)).α
20 α′ := (W2 := (η0(W2))).α′

21 α′ := α′.(Y2 := (Ftrg(Y1))(Y2))
22 α′ := α′.(Y1 := η0(Y1))

23 ↪→a:=↪→a ∪{l
g′ :ch α′

↪−−−→ l′}
24 ↪→:=↪→a
25 Var := Var ∪ Z
26 return G

out-of-scope edge

the right approximation of their reachable values. In essence, we show that the
abstraction always produces an approximation of the runs in the concrete MAS graph,
which induces an appropriate simulation relation, and thus guarantees (one-way)
preservation of ACTL⋆.

4.4.1 Simulations between Models

We first recall a notion of simulation [Mil71] between models, that preserves the truth
values of ACTL⋆ formulae [BK08; Cla+18; Coh+09].

Definition 4.8. Let Mi = (Sti, Ii,−→i, APi, Li), i = 1, 2 be a pair of models, and let
AP ⊆ AP1 ∩ AP2 be a subset of atomic propositions. Model M2 simulates model M1 over
AP (written M1 ⪯AP M2) if there exists a simulation relation R ⊆ St1 × St2 over AP,
such that:
(i) for every s1 ∈ I1, there exists s2 ∈ I2 with s1Rs2;

(ii) for each (s1, s2) ∈ R:
(a) L1(s1) ∩ AP = L2(s2) ∩ AP, and
(b) if s1 → s′1 then there is s2 → s′2 such that s′1Rs′2.

64 Chapter 4. Practical Abstraction for MAS

Additionally, for a pair of reachable states s1, s2 in M1, M2 such that (s1, s2) ∈ R, we say
that the pointed model (M2, s2) simulates (M1, s1) over AP, and denote it by (M1, s1) ⪯AP
(M2, s2).

Theorem 4.2. If (M1, s1) ⪯AP (M2, s2), then for any ACTL∗ state formula ψ, using only
propositions in AP, it holds that:12

M2, s2 |= ψ implies M1, s1 |= ψ (∗)

Proof. Suppose that (M1, s1) ⪯AP (M2, s2), and ψ is a state formula of ACTL∗ using
only propositions in AP. We will show that (∗) holds by induction over the structure
of ψ.

Induction basis: Let ψ = a, where a ∈ AP. If M2, s2 |= ψ holds, then a ∈ L(s2).
Since L1(s1) ∩ AP = L2(s2) ∩ AP by definition, it follows that a ∈ L(s1) and thus
M1, s1 |= a.

Induction step: Suppose that (∗) holds for state formulae ψ1, ψ2. Then:
(a) If M2, s2 |= ψ1 ∧ ψ2, then M2, s2 |= ψ1 and M2, s2 |= ψ2. Thus M1, s1 |= ψ1 and

M1, s1 |= ψ2, therefore M1, s1 |= ψ1 ∧ ψ2.
(b) If M2, s2 |= ψ1 ∨ ψ2, then M2, s2 |= ψ1 or M2, s2 |= ψ2. Thus M1, s1 |= ψ1 or

M1, s1 |= ψ2, therefore M1, s1 |= ψ1 ∨ ψ2.
(c) If M2, s2 |= Aφ, where φ is some path formula, then ∀π ∈ Paths(s2). M2, π2 |= φ.

Assume that ∃π1 ∈ Paths(s1) . M1, π1 ̸|= φ and therefore s1 ̸|= Aφ. Notice that
using (i) and (ii-b) of Definition 4.8 we can inductively construct π2 ∈ Paths(s2)
corresponding to π1, such that π1[i]Rπ2[i] for all i = 1, . . . , len(π1). From (ii-b),
all those pairs of states must satisfy the same set of atomic properties, it must be
that M2, π2 ̸|= φ and thus M2, s2 ̸|= Aφ, which is a contradiction.

Remark 4.4. In our abstraction scheme, the set of joint atomic propositions AP, underlying
the simulation relation, consists of Boolean conditions and a subset of variables that are not
removed from the MAS graph.

4.4.2 May-Abstractions of MAS Graphs

Let M1 = M(MG1), M2 = M(MG2) be models resulting from unwrapping of MAS
graphs MG1, MG2. We start with a notion of correspondence between states and
runs. Then, we use it to define the concept of may-approximation. The following is
straightforward.

Lemma 4.2. Let α ∈ Act, V ⊆ Var and V = Var \ V. Then for any η1, η2 ∈ Eval(Var)
such that η1 =V η2 the following holds:

Effect(α, η1) =V Effect(α[V=η1(V)], η2)

Proof. Follows directly from Remark 4.1.

Corollary 4.1. Let α ∈ Act, V ⊆ Var, V = V ′ ∪ V ′′, V ′ = V ∩ lhs(α), V ′′ = V \ lhs(α).
Then for any pair of η1, η2 ∈ Eval(Var) the following holds:

Effect(α[V = η1(V)], η2) =
(
Effect(α, η2[V ′ = η1(V)])

)
[V ′′ = η2(V ′′)]

12This is a known result from the literature, cf. [GL94; CGL94]. Nonetheless, to keep the dissertation
self-contained, we present all relevant steps and include the proof, slightly adapted to our formalism.

4.4. Correctness of Variable Abstraction 65

Lemma 4.3. Consider a pair of updates α and β, then for any η ∈ Eval(Var) it holds that:

Effect(α ◦ β, η) =Var\lhs(α) Effect(β, η)

Furthermore, if rhs(α) ∩ lhs(β) = ∅, then the following holds as well:

Effect(α ◦ β, η) =Var\lhs(β) Effect(α, η)

Additionally, if Effect(α, η) =V Effect(β, η) for some V ⊆ Var, then for any γ it holds that:

Effect(α ◦ γ, η) =V Effect(β ◦ γ, η)

Effect(γ ◦ α, η) =V\lhs(γ) Effect(γ ◦ β, η)

Proof. Follows directly from Remark 4.1 and Definition 4.3.

Lemma 4.4. Let g ∈ Cond, V ⊆ Var and V ′ = Var \ V. Then for any η1, η2 ∈ Eval(Var)
such that η1 =V η2 the following holds:

η1 ⊨ g ⇔ η2 ⊨ g[V ′=η1(V ′)]

Proof. Follows from the fact that η1 ⊨ g iff g[Var = η1(Var)] evaluates to ⊤.

Corollary 4.2. If g ∈ Cond, Sat(g) = {η1, . . . , ηk}, then g ≡ ∨
1≤i≤k

∧
v∈Var(v = ηi(v)).

Definition 4.9. Let V ⊆ Var1 ∩ Var2, si ∈ Sti and si = ⟨li, ηi⟩ for i = 1, 2. State s2 agrees
with a state s1 over variables V (denoted s1 ≃V s2) iff l1 = l2 and η1 =V η2.

Moreover, run π2 ∈ Runs(M2) agrees with run π1 ∈ Runs(M1) over variables V
(denoted π1 ≃V π2) iff:
(i) len(π1) = len(π2), and

(ii) for every 1 ≤ i ≤ len(π1), it holds that π1[i] ≃V π2[i].

4.4.3 Variable Abstraction Is Sound

We prove now that the abstraction method from Algorithm 4, based on an upper-
approximation of local domain d+, indeed results with a simulation.

Let MG = {|Varsh; G1, . . . , Gn|}, Gi = (Vari, Loci, li
0, gi

0, Acti, Effecti, Chani, ↪→i) and
GMG = (Var1, Loc, l0, g0, Act, Effect, Chan, ↪→), and (its abstraction) M̂G = Amay

F (MG),
such that GM̂G = (Var2, Loc, l0, ĝ0, Act, Effect, Chan, ↪̂→). The set Var1 =

⋃
i Vari comes

from the combined MAS graph GMG, the set Var2 is equal to Var1 \ ArgsR(F) in case
of simple variable removal (which actually removes the variables from the model),
and to Var1 ∪ ArgsN(F) in general case.13 The set of atomic propositions AP1 by
definition can contain expressions over Loc and Var1; for the subset V1 ⊆ Var1 the
AP1(V1) ⊆ AP1 is the subset of propositions without any occurrences of variables
from Var1 \ V1; analogously, AP2 contains propositions over Loc and Var2, and for any
V2 ⊆ Var2 the AP2(V2) ⊆ AP2 is the subset of propositions without any occurrences
of variables from Var2 \ V2.

Theorem 4.3. Let M1 = M(MG) and M2 = M(Amay
F (MG)) be the models, such that

Mi = (Sti, Ii,−→i, APi, Li) for i = 1, 2, V = ArgsR(F), Z = ArgsN(F). Then, for
any Ṽ ⊆ (Var1 ∩ Var2 \ V) the relation R ⊆ St1 × St2 defined by ⟨l1, η1⟩R⟨l2, η2⟩ iff
l1 = l2 ∧ η1 =Ṽ η2 is a simulation relation over AP = AP1(Ṽ) ∩ AP2(Ṽ) between M1 and
M2.

13Recall that in general case “removed” variables have their domain restricted to a singleton instead
of being removed literally.

66 Chapter 4. Practical Abstraction for MAS

Proof (“simple” case). Here, we will first present a proof for a simpler case — variable
removal; the proof for a general case is only technically more involved and shall be
provided immediately thereafter.

Recall that g0 is equivalent to
∧

v∈Var1
(v=η0(v)) and by Definition 4.1 Sat(g0) =

{η0} and I1 = {⟨l0, η0⟩}. In case of the variable removal, we have Var2 = Var1 \V and
Ṽ ⊆ Var2. By construction of the algorithm, the abstract ĝ0 is set to g0[V = η(V)].14

Then, we can rewrite g0 as (
∧

v∈Var2
v=η0(v)) ∧ (

∧
w∈V w=η0(w)) which is equivalent

to ĝ0 ∧ (
∧

w∈V w=η0(w)), meaning that ∀η1∈Eval(Var1)

(
η1 ⊨ g0 ⇒ η1|Var2

⊨ ĝ0

)
.

From this and the fact that the locations (both ordinary and initial) of MG and
Amay

F (MG) are the same, we can conclude that I2 = {⟨l0, η0|Var2
⟩} and condition (i) of

Definition 4.8 holds.
Now we show that condition (ii) of Definition 4.8 holds as well. By Theo-

rem 4.1 we know that d(l) ⊆ d+(l), and therefore d+(l, V) ̸= ∅ (as otherwise,
d(l) would have to be an empty set as well). By construction of the algorithm,
each (concrete) labelled edge (l, labl, l′) ∈↪→ from MG must have a matching (ab-
stract) labelled edge (l, l̂abl, l′) ∈ ↪̂→, where l̂abl = labl[V=c], for every c ∈ d+(l, V).
Therefore, for any ⟨l, η1⟩R⟨l, η2⟩ and ⟨l, η1⟩ −→1 ⟨l′, η′

1⟩ that was induced by an
edge (l, labl1, l′) ∈↪→, where η1 |= cond(labl1) and Effect(act(labl1), η1) = η′

1, there
must be ⟨l, η2⟩ −→2 ⟨l′, η′

2⟩ induced by the edge (l, labl2, l′) ∈ ↪̂→, where labl2 =
labl1[V=c] such that c = η1(V). By Lemma 4.4 η2 |= cond(labl2) as cond(labl2) =
cond(labl1)[V=η1(V)]. By Lemma 4.2 Effect(act(labl2), η2) =Ṽ Effect(act(labl1), η1) as
act(labl2) = act(labl1)[V=η1(V)], which means that η′

2 =Ṽ η′
1. Hence, we can con-

clude that ⟨l′, η′
1⟩R⟨l′, η′

2⟩ and condition (ii) from Definition 4.8 is fulfiled.

Proof (general case). In general case, mappings from F can remove variables or merge
them into new ones for the locations that are in scope. By construction of Algorithm 4,
we have Var2 = Var1 ∪ Z, where Var1 ∩ Z = ∅, Ṽ ⊆ Var1 \V and ĝ0 = g0 ∧ gZ, where
gZ is equivalent to

∧
z∈Z (z=η0(z)).

For any pair of η1 ∈ Eval(Var1) and η2 ∈ Eval(Var2) such that η1 |= g0 and η2 |=
gZ, by Lemma 4.4 it follows that η2[Var1=η1(Var1)] |= ĝ0 and therefore ⟨l0, η1⟩ ∈ I1,
⟨l0, η2[Var1=η1(Var1)]⟩ ∈ I2, meaning Definition 4.8(i) holds.

Now we will show that condition (ii) of Definition 4.8 holds as well. By con-
struction of the algorithm, each (concrete) labelled edge (l, (g, ch, α), l′) ∈↪→ from
MG must have a matching abstract edge (l, (ĝη , ch, α̂η), l′) ∈ ↪̂→ for every η ∈ d+(l),
such that ĝη ≡ g[X′=η(X′)] and for any η̂ ∈ Eval(Var2) we have Effect(α̂η , η̂) =
(Effect(α, (η̂[Z′=η0(Z′)])[X′=η(X′)])[Z′′=(FK(X′′))(Z′′)])[X′′=η0(X′′)], where:

• J = {i | l ∈ Sci} denotes indices of relevant function mappings at the source-
location, i.e., for which the source-location l is in the scope,

• K = {i | l′ ∈ Sci} denotes indices of relevant function mappings at the target-
location, i.e., for which the target-location l′ is in the scope,

• X′ =
⋃

i∈J ArgsR(fi) denotes the “removed” variables at source-location,
• X′′ =

⋃
i∈K ArgsR(fi) denotes the “removed” variables at target-location,

• Z′ =
⋃

i∈J ArgsN(fi) denotes the “new” variables at source-location,
• Z′′ =

⋃
i∈K ArgsN(fi) denotes the “new” variables at target-location.

• (...[Z′=η0(Z′)])[X′=η(X′)] substitution serves to reset values of the “new” vari-
ables at the source-location and “assume” the value of “removed” variables at the
source-location,

14For the sake of brevity, we shall denote substitution of the form [v=η0(v) | v ∈ V] by [V=η(V)].

4.4. Correctness of Variable Abstraction 67

• (...[Z′′=(FK(X′′))(Z′′)])[X′′=η0(X′′)] substitution serves to update the value of
“new” variables and then reset the values of “removed” variables at the target-
location.

Note that Z′, Z′′ ⊆ Z and X′, X′′ ⊆ V, therefore for any η̂ ∈ Eval(Var2) it holds
that (η̂[Z′′=(FK(X′′))(Z′′)])[X′′=η0(X′′)] =Ṽ η̂, and in particular Effect(α̂η , η̂) =Ṽ
Effect(α, (η̂[Z′=η0(Z′)])[X′=η(X′)]). We know that (η̂[Z′=η0(Z′)])[X′=η(X′)] =Ṽ η̂
and from Var1 ∩ Z = ∅ it follows that V(α) ∩ Z = ∅. Then by Lemma 4.2 it must
hold that Effect(α, (η̂[Z′=η0(Z′)])[X′=η(X′)]) =Ṽ Effect(α[X′=η(X′)], η̂).
Therefore, for any ⟨l, η1⟩R⟨l, η2⟩ and ⟨l, η1⟩ −→1 ⟨l′, η′

1⟩ that was induced by an
edge (l, (g, ch, α), l′) ∈↪→, where η1 |= g and Effect(α, η1) = η′

1, there must exist
⟨l, η2⟩ −→2 ⟨l′, η′

2⟩ that was induced by the edge (l, (ĝη , ch, α̂η), l′) ∈ ↪̂→, where
η =V η1. From ⟨l, η1⟩R⟨l, η2⟩ we know that η1 =Ṽ η2, and from Lemma 4.4 it follows
that η2 |= ĝη . By taking η̂ = η2 we derive Effect(α̂η , η2) =Ṽ Effect(α[X′=η1(X′)], η2),
and by Lemma 4.2 it follows that Effect(α[X′=η1(X′)], η2) =Ṽ Effect(α, η1). Therefore,
Effect(α̂η , η2) =Ṽ Effect(α, η1) and η′

2 =Ṽ η′
1, which concludes that ⟨l′, η′

1⟩R⟨l′, η′
2⟩.

We can now state our main theoretical result.

Theorem 4.4. Let MG be a MAS graph, and F a set of mappings as defined in Section 4.3.5.
Then, for every formula ψ of ACTL⋆ that includes no variables being removed or added by F:

M(Amay
F (MG)) |= ψ implies M(MG) |= ψ.

Proof. Follows directly from Theorems 4.2 and 4.3.

4.4.4 Must-Abstractions of MAS Graphs

An analogous result can be obtained for must-abstraction Amust
F (MG).

Lemma 4.5. Let MG be a MAS graph and d− be the lower-approximation of a local domain
defined for V ⊊ Var. By the very nature of d−, for any reachable location l ∈ Loc it can
have at most one element |d−(l)|V | ≤ 1. Moreover, when d−(l)|V = {c} there must exist
reachable in M(MG) state ⟨l, η⟩, where η(V) = c.

Theorem 4.5. Let M1 = M(MG) and M2 = M(Amust
F (MG)), s.t. Mi = (Sti, Ii,−→i

, APi, Li) for i = 1, 2, V = ArgsR(F), Z = ArgsN(F), Ṽ ⊆ Var1 ∩ Var2. Then, a relation
R ⊆ St2 × St1, where ⟨l2, η2⟩R⟨l1, η1⟩ iff l2 = l1 ∧ η2 =Ṽ η1, is a simulation relation over
AP = AP1(Ṽ) ∩ AP2(Ṽ) between M2 and M1.

The proof is analogous to that of Theorem 4.3; for the sake of completeness we
report it below.

Proof. The construction of Amust
F (MG) implies that Var2 = Var1 ∪ Z and ĝ0 is equiv-

alent to (g0[V=η0(V)]) ∧ gZ, where gZ is equivalent to
∧

z∈Z z=η0(z). Therefore,
for ⟨l, η2⟩ ∈ I2 it holds that for any η1 ∈ Eval(Var1) η1[Ṽ = η2(Ṽ)] |= g0 and
⟨l, η1[Ṽ = η1(Ṽ)]⟩ ∈ I1, which means that Definition 4.8(i) holds.

As the abstraction is constructed in the same way, the reasoning about requirement
Definition 4.8(ii) can be applied as stated in the proof of Theorem 4.3, except that
by Lemma 4.5 each abstract edge (l, (ĝη , ch, α̂η), l′) ∈ ↪̂→, where η ∈ d−(l), is now
matched by exactly one (l, (g, ch, α), l′) ∈↪→ from MG.

Theorem 4.6. Let MG be a MAS graph, and F a set of mappings as defined in Section 4.3.5.
Then, for each formula ψ ∈ ACTL⋆ including no variables removed or added by F:

M(Amust
F (MG)) ̸|= ψ implies M(MG) ̸|= ψ.

68 Chapter 4. Practical Abstraction for MAS

Proof. Follows from Lemma 4.5 and Theorem 4.5.

4.4.5 Abstraction on MAS Templates

When some agent graphs in the MAS graph are instantiations of a single template (i.e.,
they are identical up to variable renaming and evaluation of constant parameters),
one can apply abstraction directly on the template. This typically results in a coarser
abstraction of the original MAS graph, but such abstractions are exponentially faster
to compute, as the size of the model underlying the MAS graph is exponential in the
size of the agent template.

Definition 4.10 (MAS template). A MAS template is a compact representation of a MAS
graph MG as a tuple MT = (Varsh, Constsh; (GT1, #1), . . . , (GTk, #k)) which lists pairs of
agent templates GTi and the number of their instances #i in MG, as well as the sets of shared
variables Varsh and shared constants Constsh.

An agent template GTi is just an agent graph, instantiated in MG by #i copies through
adding their id’s j = 1, . . . , #i as prefixes to the locations and local variables in GTi.

In order to avoid unfolding the MAS template into a MAS graph, we approximate
the potential synchronization between instances of agent templates when doing
abstraction. More precisely, the upper-approximation of a local domain di in agent
template GTi is computed on upsync(GTi) that discards all the synchronisation labels
from the edges in GTi. Analogously, the lower-approximation of a local domain di
in agent template GTi is computed on lowsync(GTi) that discards all the edges with
synchronisation labels from GTi.

Theorem 4.7. Let MT be a MAS template, corresponding to the MAS graph MG. Then
Amay(upsync(MT)) induces a may-abstraction of MG, and Amust(lowync(MT)) induces
a must-abstraction of MG.

Proof. Follows directly from the fact that discarding synchronisation labels results in
a coarser upper-approximation of the local domain, and discarding the edges with
synchronisation labels results in a coarser lower-approximation of di.

4.5 Complexity Analysis

Before further discussion and analysis of complexity results, we establish the auxiliary
notation and list out general assumptions.

We assume random-access machine model of computation [Cor+09], where simple
arithmetic operations (“+”, “−”, “∗”, “/”, “%”), data movement (load, store, copy)
and control instructions all run in constant time. Furthermore, following a standard
convention and assume that applying set-operations (intersection, union, difference)
takes linear time in O(N + M), where N and M are cardinalities of the operand sets.

Let n := |Loc|, m := | ↪→ |, k := |Var|, r := |V|, where V ⊆ Var is a subset
of removed variables and k ≥ r, gvar := max{V(cond(labl)) | ∃l,l′∈Loc(l, labl, l′) ∈↪→}
and glen := max{len(cond(labl)) | ∃l,l′∈Loc(l, labl, l′) ∈↪→} for the maximal number of
variables occurring in condition and maximal length of condition from given sys-
tem labels, analogously αlen := max{len(upd(labl)) | ∃l,l′∈Loc(l, labl, l′)} for maximal
length of update associated with an action, and dmax := max{|dom(v)| | v ∈ Var} for
the greatest variable domain cardinality.

A naive computation of set Sat(g) for some g ∈ Cond can be performed in
O(glen · dgvar

max) time. Without loss of generality, it can be assumed that the set of

4.5. Complexity Analysis 69

initial valuations in Sat(g0) is precomputed and available in the form of look-up
table, which guarantees that constant time lookup. Furthermore, note that would
suffice to compute Sat(g) for each g ∈ Cond occurring within edge labels of the input
graph G once. We shall assume that such it was pre-calculated and stored in advance,
which can be done in O(m · glen · dgvar

max) time and O(m · dgvar
max) space. Additionally, for

any atomic update α(i) and η ∈ Eval(Var) we shall assume that Effect(α(i), η) runs in
O(αlen).

4.5.1 Approximation of Local Domain (Algorithm 2)

The initialization loop on lines 1–4 runs in linear time O(n), as involved three as-
signment statements take constant time. Thus, in line 5 it suffices to copy r-pointers,
so it runs in O(r) time. Using the generic heaps for priority queue with n ele-
ments, operations EXTRACTMAX and ENQUEUE are in Θ(log n) and Θ(1) time re-
spectively. Therefore, lines 1–7 take O(n + r) to perform. Next, the loop in lines
8–15 requires each of n locations to be visited at least once. The condition for re-visit
of location l ∈ Loc from VisitLoc, which leads to location color l.color changed to
“grey”, is the change of its temporal approximation value l.d. Note that VisitLoc
algorithm maintains the invariant for every subsequent approximations for l.d to
be weakly monotonic w.r.t. subset inclusion for upper-approximation (resp. su-
perset inclusion for lower-approximation). Hence, the approximation value of l.d
can change at most ∏v∈V |dom(v)| times, which is in O(dr

max). The line 9 runs in
O(log n), lines 11-15 in O(n2) in the worst-case of densely connected graphs. Let
VisitLoc run in T1 time, then the whole block 8–15 can repeat n · dr

max times result-
ing with O(n · dr

max · (T1 + n2)) time, which yields that ApproxLocalDomain runs in
O(n + r + n · dr

max · (log n + T1 + n2)).
The assignment statements in lines 17, 20, 22, 23, 27 are in O(1). Note that in

lines 21 and 26 it suffices to compare the cardinality of the sets, which can be done
in O(1).15 The ⊗ is either a union or an intersection, which are both set operations
running in O(dr

max). Upon visiting all n nodes, all m edges will get processed by
VisitLoc in lines 18–19 and 24–25. The lines 26–28 run in O(1) and will either reduce
the number of potential re-visits of the location l (e.g., when the “goto” instruction
gets executed multiple times) or increase the number of ProcEdge invocations (for
self-loops) by a constant factor. Hence, visiting all locations dr

max-times and having
n · dr

max calls to VisitLoc will invoke ProcEdge procedure m · dr
max times. Let ProcEdge

run in T2 time, then by substitution of term n · dr
max · T1 with m · dr

max · (T2 + dr
max) we

obtain that the ApproxLocalDomain runs in O(n + r + m · dr
max · (T2 + dr

max) + n · dr
max ·

(log n + 1 + n2)).
The lines 29–33 come down to computing potential outcome evaluations of V after

taking α, namely the set {η′(V) | η′ = Effect(α, η) ∧ η ∈ Sat(g) ∧ η(V) ∈ l.d}, which
takes O(k · αlen · dr

max) time. This allows to conclude the running time of ProcEdge,
O(k · αlen · dr

max).
Finally, after the substitution of T2 with O(k · αlen · dr

max) we can conclude running
time of ApproxLocalDomain.

Theorem 4.8. The time complexity of the algorithm ApproxLocalDomain is O(k · m · αlen ·
d2r

max + n3 · dr
max), or in O(m · glen · dgvar

max + k · m · αlen · d2r
max + n3 · dr

max) in case if pre-
computation of look-up tables for Sat(g) is taken into account, where n and m denote the
total number of locations and edges within an input MAS graph, k the total number of its

15The majority of the standard container implementations/objects provide a dedicated property that
keeps track of the number of stored elements.

70 Chapter 4. Practical Abstraction for MAS

variables, r the total number of removed variables, gvar and αlen the maximal number of
variables occurring in a condition label and the maximal length of update associated with an
action respectively, and dmax the greatest variable domain cardinality.

In the ApproxLocalDomain we need O(n) space for priority queue, O(m · dr
max) for

the look-up tables and O(n · (dr
max + n + 1)) for extending locations with additional

attributes. The following theorem presents the resulting conclusion.

Theorem 4.9. The space complexity of the algorithm ApproxLocalDomain is O((n2 +
m) · dr

max), where n and m denote the total number of locations and edges within an input
MAS graph, r the total number of removed variables, and dmax the greatest variable domain
cardinality.

4.5.2 Variable Removal Abstraction (Algorithm 3)

In the worst case the V ⊆ Vari, when all intended for removal variables occur in Gi.
The lines 1 and 7 run in constant time. The outer loop on lines 2–6 repeats m times,
and the inner loop on lines 3–6 repeats at most dr

max times. The substitutions on lines
4 and 5 run in O(glen) and O(k · αlen) time respectively. The set union on line 6 runs
in O(m). The line 8 runs in O(glen · r) and line 9 in O(k). Therefore, we can conclude
the following theorem.

Theorem 4.10. The time complexity of the algorithm ComputeAbstraction is O(m · dr
max ·

(glen + k · αlen) + r · glen + k · αlen + k), which is equivalent to O(m · dr
max · (glen + k · αlen)),

where m denotes the total number of edges within an input MAS graph, k the total number
of its variables, glen and αlen the maximal length of a guard condition label and the maximal
length of update associated with an action respectively, r the total number of removed variables,
and dmax the greatest variable domain cardinality.

Theorem 4.11. The space complexity of the algorithm ComputeAbstraction itself is in
O(m · dr

max), where m denotes the total number of edges within an input MAS graph, r the
total number of removed variables, and dmax the greatest variable domain cardinality.

4.5.3 General Abstraction (Algorithm 4)

In case of general abstraction, we will first update the notation accordingly. Let
m̂ := |F| denote the number of function mappings, flen maximal length of fi, s.t.
(fi, Sci) ∈ F, and r := |⋃m̂

i=1 ri| total number of removed/target variables, where
ri = ArgsR(fi), and analogously u := ∑m̂

i=1 ui, where ui = ArgsN(fi) for new variables.
Note that in general case u ̸= m̂, as new variable is not necessarily introduced.

The lines 1–3 run in O(m̂), line 4 in O(n2), line 5 in O(m̂ · flen), line 6 in O(1)
time. The outer loop on lines 7–23 runs exactly m times, the “if-else” block condition
involves set intersection and runs in O(n). For the worst-case complexity analysis,
we shall assume that the algorithm proceeds with “else” block (both line 9 and line 23
involve set union, but the latter will be repeated with each iteration of the for-loop on
lines 13–23). The lines 11–12 take O(m̂), and the inner loop on lines 13–23 repeats at
most dr

max times. An initialization of auxiliary sets on lines 14–17 runs in O(m̂ · (r+ u))
time. Line 18 takes O(glen) time, lines 19 and 22 O(r), lines 20–21 O(flen · u) and line
23 O(m2) time. Line 24 is in O(1) (e.g., by changing the pointer) and line 25 is in
O(k + u).

Therefore, we can infer the time complexity of the whole ComputeAbstraction as
stated in the theorem below.

4.5. Complexity Analysis 71

Theorem 4.12. Algorithm ComputeAbstraction runs in O(m̂ + n2 + m̂ · flen + m(m̂ +
n+ dr

max(m̂ · (r+u)+ glen + r+ flen ·u+m2))+ k+u), which is equivalent to O(mdr
max(m̂ ·

(r + u + flen) + glen + m2)) since n ∈ O(m), u ∈ O(m̂), where m denotes the total number
of edges within an input MAS graph, k the total number of its variables, m̂ the total number
of function mappings, r and u the total number of removed and added variables respectively,
and dmax the greatest variable domain cardinality.

The F requires O(m̂ · (flen + n)) space. The sets W1, Y1 and W2, Y2 are in O(r) and
O(u) space respectively. The new set of edges takes O(m · dr

max) space. Our conclusion
about the space complexity of ComputeAbstraction is expressed by the following
theorem.

Theorem 4.13. The space complexity of the algorithm ComputeAbstraction is O(m ·
dr

max + m̂ · (flen + n)), where m denotes the total number of edges within an input MAS
graph, k the total number of its variables, flen the maximal length of function mapping, r and
u the total number of removed and added variables respectively, and dmax the greatest variable
domain cardinality.

4.5.4 Complexity in Practice

In many cases we can make the following assumptions:

• The number of removed variables is typically small, because removing many
variables increases the chance of abstraction being too coarse for verification to be
conclusive, and might even be infeasible due to computational complexity.

• Similarly, the number of possibly introduced variables and underlying expressions
(from their mapping function) should be relatively small as well.

• The maximal number of variables occurring in guards as well as length should
be relatively small, in general case having complex guards is considered a bad
practice and degrades model readability; if it is absolutely necessary to include
such compound guard conditions one should consider substitution by dedicated
variable or a different specification formalism.

• The maximal length of updates should be relatively small. Analogous reasoning
applies as in for the guards.

Formally, this amounts to assuming that the aforementioned parameters are bound
by a constant a, namely:

max{r, u, flen, gvar, glen, αlen} ≤ a (∗)

Hence, we can conclude the complexity of algorithms ApproxLocalDomain and
ComputeAbstraction in practice in terms of the following theorems.

Theorem 4.14. Algorithm ApproxLocalDomain runs in O(a · |Var| · |↪→| · d2a
max + |Loc|3 ·

da
max) time and requires O((|Loc|2 + |↪→|) · da

max) space under assumption (∗), where a is
some positive integer constant, |Var| is the total number of variables of an input MAS graph,
|Loc is the total number of locations, |↪→| is the total number of edges, and dmax is the greatest
variable domain cardinality.

Theorem 4.15. Algorithm ComputeAbstraction runs in O(da
max · |↪→| · (|F|+ |↪→|2))

time and requires O(|↪→| · da
max + |Loc| · |F|) space under assumption (∗), where a is some

positive integer constant, |Var| is the total number of variables of an input MAS graph, |Loc
is the total number of locations, dmax is the greatest variable domain cardinality, and |F| is
the total number of an input function mappings.

72 Chapter 4. Practical Abstraction for MAS

FIGURE 4.5: MAS graph for simplified postal voting: (a) Election Authority graph (left),
(b) Voter graph (right).

Thus, under reasonable assumptions, the abstraction procedure runs in polyno-
mial time and requires polynomial computing space.

Furthermore, from Lemma 4.1 we can conclude that by applying the variable
removal abstraction the upper bound on the number of states of the yielded unfolding
(of the abstract MAS graph) is reduced by an order of magnitude.

4.6 Case Study and Experimental Results

We evaluate our abstraction scheme on a simplified model of real-world scenario.
As input, we use a scalable family of MAS graphs that specify a simplified postal
voting system. The system consists of a single agent graph for the Election Authority
(depicted in Fig. 4.5a) and NV instances of eligible Voters (Fig. 4.5b).

Each voter can vote for one of the NC candidates. The voter starts at the location
idle and declares if she wants to receive the election package with the voting decla-
ration and the ballot by post or to pick it up in person. Then, the voter waits until the
package can be collected, which leads to location has. At that point, she sends the
forms back to the authority, either filled in or blank (e.g., by mistake). The authority
collects the voters’ intentions (at location coll_dec), distributes the packages (at
send_ep), collects the votes, and computes the tally (at coll_vts). A vote is added to
the tally only if the declaration is signed and the ballot is filled.

We will first present the results for may-abstraction — arguably, the more impor-
tant case, since it can be used to prove an ACTL⋆ formula true in a model — followed
by the result for must-abstraction. The verification has been performed with the 32-bit
version of UPPAAL 4.1.24 on a laptop with Intel i7-8665U 2.11 GHz CPU, running
Ubuntu 22.04. We have used the following abstractions:
• Abstraction 1: globally removes variables mem_sg and mem_vt, i.e., the voters’

memory of the cast vote and whether the voting declaration has been signed;
• Abstraction 2: removes the voter’s memory of her decision (variable mem_dec) at

locations {has, voted}, and dec_recv at {coll_vts};
• Abstraction 3: combines Abstractions 1 and 2.

The abstract models were generated using a script in node.js.16 The results were
calculated by means of verifyta command line utility (v4.1.24), which is newer yet
backwards compatible version that gives a more detailed summary. Time measure-
ments were taken using the external tool (node.js), therefore for small time estimates
there could be deviations due to the ‘noises’ caused by other factors.

16Implementation prototype and utilized models can be found at https://tinyurl.com/363pvpu5 and
https://tinyurl.com/3eukkrkb.

https://tinyurl.com/363pvpu5
https://tinyurl.com/3eukkrkb

4.6. Case Study and Experimental Results 73

conf Concrete Abstract 1 Abstract 2 Abstract 3
NV,NC #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec)

1,1 2.30e+1 0 0.03 1.90e+1 0 0.07 1.80e+1 0 0.16 1.60e+1 0
1,2 2.70e+1 0 0.03 2.10e+1 0 0.08 2.00e+1 0 0.06 1.70e+1 0
1,3 3.10e+1 0 0.03 2.30e+1 0 0.06 2.20e+1 0 0.05 1.80e+1 0
2,1 2.41e+2 0 0.02 1.41e+2 0 0.06 1.26e+2 0 0.06 9.30e+1 0
2,2 3.69e+2 0 0.02 1.77e+2 0 0.04 1.66e+2 0 0.03 1.06e+2 0
2,3 5.29e+2 0 0.02 2.17e+2 0 0.06 2.14e+2 0 0.04 1.20e+2 0
3,1 2.99e+3 0.01 0.02 1.14e+3 0 0.07 9.72e+2 0.01 0.05 5.67e+2 0
3,2 6.08e+3 0.01 0.02 1.62e+3 0.01 0.05 1.57e+3 0 0.04 6.93e+2 0
3,3 1.09e+4 0.04 0.02 2.20e+3 0.02 0.03 2.44e+3 0 0.05 8.38e+2 0.01
4,1 3.98e+4 0.12 0.02 9.57e+3 0.05 0.08 7.94e+3 0.03 0.08 3.54e+3 0.02
4,2 1.06e+5 0.55 0.01 1.52e+4 0.08 0.08 1.60e+4 0.05 0.06 4.62e+3 0.04
4,3 2.36e+5 0.95 0.01 2.26e+4 0.12 0.08 2.99e+4 0.07 0.08 5.94e+3 0.06
5,1 5.46e+5 1.48 0.02 8.17e+4 0.36 0.19 6.71e+4 0.18 0.25 2.23e+4 0.13
5,2 1.90e+6 6.42 0.02 1.43e+5 0.76 0.18 1.69e+5 0.50 0.23 3.09e+4 0.23
5,3 5.16e+6 24.95 0.02 2.30e+5 1.43 0.22 3.79e+5 1.16 0.22 4.21e+4 0.39
6,1 7.58e+6 31.34 0.01 7.03e+5 4.39 0.55 5.79e+5 1.92 0.44 1.41e+5 0.92
6,2 3.41e+7 170.25 0.01 1.34e+6 10.87 0.50 1.82e+6 7.64 0.40 2.07e+5 1.83
6,3 memout 0.01 2.31e+6 20.31 0.84 4.87e+6 22.67 0.40 2.97e+5 4.70
7,1 memout 0.01 6.05e+6 46.75 2.34 5.07e+6 22.16 1.91 8.89e+5 8.34
7,2 memout 0.02 1.25e+7 149.84 1.33 1.98e+7 107.95 2.01 1.38e+6 16.11
7,3 memout 0.02 2.28e+7 304.86 2.49 memout 2.35 2.08e+6 30.75
8,1 memout 0.02 5.20e+7 482.66 10.30 memout 8.04 5.61e+6 66.44
8,2 memout 0.19 memout 12.17 memout 7.58 9.15e+6 150.86
8,3 memout 0.07 memout 9.52 memout 7.99 1.44e+7 348.99
9,1 memout 0.12 memout 70.49 memout 64.96 3.53e+7 474.43
9,2 memout 0.06 memout 68.46 memout 71.69 memout

TABLE 4.2: Experimental results for model checking of φbstuff in may-abstractions of
postal voting.

4.6.1 Results for May-Abstraction

In the experiments for under-approximating abstraction, we verify the formula

φbstuff ≡ AG(
NC

∑
i=1

tally[i] ≤
NV

∑
j=1

pack_sent[j] ≤ NV)

expressing a variant of resistance to ballot stuffing. More precisely, the formula says
that the amount of sent packages can never be higher than the number of voters, and
there will be no more tallied votes than packages.

The ACTL⋆ formula φbstuff is satisfied in all considered instances of our voting
model.

The results are presented in Table 4.2. Each row lists the scalability factors (i.e., the
number of voters and candidates), the size and verification time for the original model
(so-called “concrete model”), and the results for Abstractions 1, 2, and 3. “Memout”
indicates that the verification process ran out of memory. The columns ‘ta’ and ‘tv’
stand for the abstract model generation and verification time, respectively. In all the
completed cases, the verification of the abstract model was conclusive (i.e., the output
was “true” for all the instances in Table 4.2).

The results show significant gains. In particular, for the variant with NC = 3
candidates, our may-abstractions allowed to reduce the state space by orders of
magnitude, and increase the main scalability factor by 3, i.e., to verify up to 9 instead
of 6 voters.

74 Chapter 4. Practical Abstraction for MAS

conf Concrete Abstract 1 Abstract 2 Abstract 3
NV,NC #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec) ta (sec) #St tv (sec)

1,1 23 0 0.03 15 0 0.07 14 0 0.08 14 0
1,2 27 0 0.03 15 0 0.05 14 0 0.06 14 0.01
1,3 31 0 0.03 15 0 0.05 14 0 0.04 14 0
2,1 241 0 0.01 81 0 0.04 70 0 0.04 70 0
2,2 369 0 0.01 81 0 0.02 70 0 0.03 70 0
2,3 529 0 0.03 81 0 0.02 70 0 0.04 70 0
3,1 2987 0 0.01 459 0 0.03 368 0 0.03 368 0
3,2 6075 0 0.02 459 0 0.03 368 0 0.03 368 0
3,3 1.09e+4 0 0.02 459 0 0.03 368 0 0.03 368 0
4,1 3.98e+4 0 0.01 2673 0 0.03 2002 0.01 0.04 2002 0
4,2 1.06e+5 0 0.01 2673 0 0.05 2002 0 0.03 2002 0
4,3 2.36e+5 0 0.01 2673 0 0.04 2002 0 0.03 2002 0
5,1 5.46e+5 0 0.01 1.58e+4 0 0.04 1.11e+4 0 0.06 1.11e+4 0
5,2 1.90e+6 0 0.01 1.58e+4 0 0.06 1.11e+4 0 0.05 1.11e+4 0
5,3 5.16e+6 0 0.02 1.58e+4 0 0.07 1.11e+4 0 0.05 1.11e+4 0.01
6,1 7.58e+6 0 0.01 9.40e+4 0 0.15 6.30e+4 0 0.09 6.30e+4 0
6,2 3.41e+7 0.01 0.01 9.40e+4 0 0.14 6.30e+4 0 0.10 6.30e+4 0
6,3 1.13e+8 0 0.01 9.40e+4 0 0.09 6.30e+4 0 0.09 6.30e+4 0
7,1 1.06e+8 0 0.01 5.62e+5 0.01 0.28 3.60e+5 0 0.24 3.60e+5 0
7,2 ≫1e+8 0 0.01 5.62e+5 0 0.34 3.60e+5 0 0.21 3.60e+5 0
7,3 ≫1e+8 0.01 0.01 5.62e+5 0 0.35 3.60e+5 0 0.23 3.60e+5 0
8,1 ≫1e+8 0 0.01 3.37e+6 0 0.90 2.08e+6 0 0.69 2.08e+6 0
8,2 ≫1e+8 0 0.02 3.37e+6 0 1.03 2.08e+6 0 0.63 2.08e+6 0
8,3 ≫1e+8 0 0.01 3.37e+6 0 0.86 2.08e+6 0 0.55 2.08e+6 0
9,1 ≫1e+8 0 0.01 2.02e+7 0 4.41 1.21e+7 0 2.43 1.21e+7 0
9,2 ≫1e+8 0 0.01 2.02e+7 0 2.80 1.21e+7 0 2.03 1.21e+7 0
9,3 ≫1e+8 0 0.01 2.02e+7 0 2.69 1.21e+7 0 1.99 1.21e+7 0
10,1 ≫1e+8 0 0.01 1.21e+8 0 9.61 7.03e+7 0 7.49 7.03e+7 0.01
10,2 ≫1e+8 0 0.01 1.21e+8 0 7.83 7.03e+7 0 8.02 7.03e+7 0
10,3 ≫1e+8 0 0.01 1.21e+8 0 8.99 7.03e+7 0 7.71 7.03e+7 0

TABLE 4.3: Experimental results for model checking of φdispatch in must-abstractions of
postal voting.

4.6.2 Results for Must-Abstraction

In the experiments for under-approximation, we used

φdispatch ≡ AG coll_vts imply (∑NV
j=1 pack_sent[j] = NV)

expressing that the election packages must be eventually dispatched to all the voters.17

The results of the experiments are shown in Table 4.3. In all the completed cases,
the verification of ACTL⋆ formula φdispatch on the abstract model was conclusive (i.e.,
the output was “false” for all the instances presented in Table 4.3).

In case when a AG formula is not satisfied by the model, its verification is in fact
equivalent to finding a witness for a EF formula, which is often easy in practice. And
it becomes even more so if model checker utilizes on-the-fly techniques (as is the case
of UPPAAL) and examines the model simultaneously with the generation of states.
This is confirmed by experimental results for model checking of φdispatch. However,
it is worth noting that despite the lack of notable gains in terms of verification time
from must-abstraction, the reduction in state space could be of immense importance
when the model is generated prior to its exploration.

17The aforementioned formula is equivalent to AF(∑NV
j=1 pack_sent[j] = NV) in our model; the former

variant is used due to UPPAAL non-standard interpretation of the AF.

4.7. Related Work 75

4.7 Related Work

State abstraction was introduced in the 1970s [CC77], and studied intensively in the
context of temporal properties, see e.g. [CGL94; GJ02]. We discuss the most relevant
works below.

[Cla+00a] presents an automatic iterative abstraction-refinement methodology
CEGAR that is complete for the important fragment of ACTL⋆. The method is
described for the programs represented as BDDs, however according to the authors it
is not tied to such and should be compatible with other representations. Intuitively,
the procedure first partitions the program variables into the related variable clusters,
which provides an initial equivalence relation for a coarse, memory-efficient starting
abstraction. It then proceeds with model checking that abstract structure: either
returning affirming that specification holds or obtaining an abstract counter-example
run. In the latter scenario, it attempts to find a corresponding concrete counter-
example run, and otherwise refines the abstraction and repeats the model checking
step again. The procedure is guaranteed to halt. They also report an implementation
in NuSMV and experimental results for model checking the industrial design of a
multimedia processor from Fujitsu. Notably, the construction of the methods suggests
that its implementation would have to be embedded into the model checking tool.
Furthermore, by design the method takes the program on the input and using the
current abstraction function (in terms of equivalence relations) generates the Kripke
Structure. It is not discussed whether a final abstract structure can be expressed as
the program or if its underlying abstraction function can be expressed in a human-
readable format (probably not). In particular, the numerous iterations of refinement
might be repeatedly computed each time when verifying multiple properties on the
same program specification.

Other kinds of automatically generated lossless abstractions through abstraction-
refinement include [DG18; SG04; Cla+03]. Unfortunately, lossless abstraction often
results in abstract models that are still too large for practical verification.

[God14] proposes an abstraction method for 3-values temporal logics. It is similar
to our work in that the abstraction is lossy and based on the may/must abstraction.
The authors show that model checking 3-valued temporal logics has the same time
and space complexities as in the case of corresponding conventional 2-valued logic.
They present a procedure for an automatic abstraction using the generalized model
checking, which does not restrict the supported temporal properties to the universal
only, and, in theory, providing more precise verification results. Their work presents
an improved approach to the existing methods of program verification, from which
it inherits some fundamental assumptions. In particular, all the discussed represen-
tations — Kripke Structures (KS), Partial Kripke Structures (PKS), Modal Transition
Systems (MTS) and Kripke Modal Transition Systems (KMTS), which generalizes
the former three — are already of the low-level. In contrast, for our case we do not
assume such representations to be immediately available: we consider a higher level
input specification that is both more compact and human-readable. As consequence,
our work takes into account and aims to address the potential issues associated
with the top-down translation step of the model specification (e.g., by unfolding or
unwrapping).

The [Coh+09] comes closest to our work. The authors present an abstraction tech-
nique for multi-agent systems, defined in terms of the interpreted systems framework,
preserving temporal-epistemic properties (more precisely, the universal fragment

76 Chapter 4. Practical Abstraction for MAS

of CTLK). Given the equivalence relation, the local states and actions of the inter-
preted system are clustered, yielding the abstract system that simulates the original
system. However, interpreted systems only consider the synchronous semantics and
the local evolution function of an agent takes into account all the actions of other
agents (i.e., the cardinality of the local evolution function is at least equal to the
cardinality of the global evolution function). The authors do admit that choosing
the collapsing equivalence relation (on local states and actions) is a challenge in
itself. Note that validity of the abstract system relies on the equivalence relation
properly chosen. Furthermore, the selected representation of the models by means
of “vanilla” Interpreted Systems (IS) is debatable. Firstly, the set of local states of
an agent can already be immense in itself.18 This undermines the usability of the
method, especially taking into account that the discussed abstraction procedure is not
automated — automation and implementation were listed as the directions for future
work. Secondly, in order to apply the proposed abstraction method efficiently, the
sets of reachable local states have to be available. It is rarely the case that those sets
are known in advance, whereas computation of reachable local states would often
come down to the computation of the reachable global states. Basically, with IS-based
representations the size of transition space is the same as in the global model (in terms
of the asymptotic complexity), and the local state space is essentially a partition of the
global one wrt the information available to a given agent.19 Lastly, their abstraction
technique focuses solely on simulations of the concrete model.

Other specific variants for multi-agent systems were also proposed in [ED08;
LQR10]. Moreover, abstractions for strategic properties have been investigated
in [AGJ04; BK06], and specifically for MAS in [KL17; BL17; BLM19]. However, in all
those cases, the abstraction method is defined directly on the concrete model, i.e., it
requires to first generate the concrete global states and transitions, which is exactly
the bottleneck that we want to avoid.20 Therefore, the main challenge we aim to
address is completely omitted in those lines of work.

In this work, we focus on lossy may/must abstractions, based on user-defined
equivalence relations that “cluster” concrete states into abstract ones. In contrast
to abstraction studied in [DGG97; GHJ01; GJ02; God14], our method operates on
modular (and compact) model specifications, both for the concrete and the abstract
model. Data abstraction methods for infinite-state MAS [BLP11; BKL17] come some-
what close in that respect, but they still generate explicit abstract models. Moreover,
they can be only used to falsify universal CTL⋆ formulae, which is arguably the less
interesting kind of approximation.

Last but not least, most of the existing works have been defined only theoretically
(with the exceptions mentioned above), and their usability has never been considered
from the perspective of a user with no intimate knowledge of verification techniques.

4.8 Conclusions

In this chapter, we present a correct-by-design method for model reductions that
facilitate formal verification of MAS. Theoretically speaking, our reductions are

18For example, the “card game” example [Coh+09] allows for 9 237 800 choices of initial state for each
of the two players.

19In case of ISPL [LQR17], which extends the IS syntax with variable support, local states contain
valuation of an agent’s variables.

20[Coh+09; BLM19] use modular representations of the concrete state space, but they do need a global
representation of the concrete transition space, and they generate the global abstract model explicitly.

4.8. Conclusions 77

agent-based may/must abstractions of the state space. Crucially, they transform the
specification of the system at the level of agent graphs, without generating the global
model. No less importantly, they are easy to use, come with a natural methodology,
and require almost no technical knowledge from the user. All that the user needs to
do is to select a subset of variables to be removed from the MAS graph representing
the system. It is also possible to define mappings that merge information stored in
local variables of an agent module.

We prove that the abstractions always generate a correct abstract MAS graph, i.e.,
one that provides a lower (resp. upper) bound for the truth values of formulae to be
verified. Moreover, we demonstrate the effectiveness of the method on a case study
involving the verification of a postal voting procedure using UPPAAL. As shown in
the experiments, simple abstractions allow to verify state spaces larger by several
orders of magnitude. Clearly, the efficiency of the method depends on the right
selection of variables and the abstraction scope; ideally, that should be provided by a
domain expert.

In the future, we want to combine variable abstraction with abstractions that
transform locations in a MAS graph. Even more importantly, we plan to extend
the methodology from branching-time properties to formal verification of strategic
ability [AHK02; Sch04; Mog+14]. We also note that the procedure is generic enough to
be used in combination with other techniques, such as partial-order reduction [Pel93;
Ger+99; Jam+20a]. Finally, an implementation as an extension of the STV model
checker [Kur+21] is considered.

79

Chapter 5

EASYABSTRACT: a Tool for Practical
Model Reductions for Verification
of Multi-Agent Systems

5.1 Introduction . 79
5.2 Formal Background . 80
5.3 Abstraction by Removal of Variables . 81

5.3.1 Variable removal . 81
5.3.2 Variable merge and scoping . 82
5.3.3 Abstraction on MAS templates . 82

5.4 Architecture of EASYABSTRACT . 83
5.5 Experimental Results . 83

5.5.1 Postal Voting . 84
5.5.2 Social AI . 84

5.6 Related Work . 85
5.7 Conclusions . 86

The experiments in Chapter 3 have shown that formal verification of voting
procedures faces a substantial complexity barrier. This coincides with the fact that
model checking of multi-agent systems (MAS) is known to be hard, both theoretically
and in practice. The state-space explosion is a major challenge here, as faithful models
of real-world systems are immensely huge and infeasible even to generate – let alone
verify them. A smart abstraction of the state space may significantly reduce the
model, and facilitate the verification. However, while state abstraction is well studied
from the theoretical point of view, little work has been done on how to define actual
abstractions in practice. We propose and study an intuitive agent-based abstraction
scheme, based on the removal of variables in the representation of a MAS. This allows
to achieve the desired reduction of a state space without generating the global model
of the system. Moreover, the process is easy to understand and control even for
domain experts with little knowledge of computer science. We formally prove the
correctness of the approach and evaluate the gains experimentally on a family of
postal voting models and a scenario of gossip learning for social AI.

5.1 Introduction

Multi-agent systems (MAS) [Woo02; SL09] describe interactions of autonomous agents,
often assumed to be intelligent and/or rational. With the development of the Internet

80 Chapter 5. EASYABSTRACT

and social networks, the impact of MAS on everyday life is becoming more and more
significant. At the same time, their complexity is rapidly increasing. In consequence,
formal methods for analysis and verification of MAS are badly needed.
Verification and model reduction. Algorithms and tools for verification have been
in constant development for 40 years, with temporal model checking being most
popular [BK08; Cla+18]. The main obstacle for practical use of those techniques
is state-space explosion. Model checking of MAS with respect to their modular
representations ranges from PSPACE-complete to undecidable [Sch03; Jam15]. A
possible way to mitigate the complexity is by model reductions, such as abstraction
refinement [Cla+00b] and partial-order reduction [Pel93]. Unfortunately, lossless
reductions (i.e., ones that produce fully equivalent models) are usually too weak, in
the sense that the resulting model is still too large for feasible verification.
Towards practical abstraction. In this work, we revisit the idea of lossy state abstrac-
tion [CC77; CGL94], and in particular may/must abstraction [GHJ01] that potentially
removes relevant information about the system, but produces arbitrarily small re-
duced models. Such verification works best with users who are knowledgeable about
the application domain, as its conclusiveness crucially depends on what aspects of
the model are being removed. Ideally, the user should be a domain expert, which
often implies no in-depth knowledge of verification algorithms. This calls for a tech-
nique that is easy to use and understand, preferably supported by a Graphical User
Interface (GUI). Moreover, the abstraction should be agent-based in the sense that it
operates on modular representations of the MAS, and does not require generating
the full explicit-state model before the reduction. The theoretical backbone of our
abstraction scheme was presented in Chapter 4 (and also discussed in [JK23a]). Here,
we report on the implementation and show its usefulness through case studies.
Contribution. We propose a tool, EASYABSTRACT, for the reduction of MAS models
by removing an arbitrary subset of variables from the model specification. After
the user selects the variables to be removed, the tool can produce two new model
specifications: one guaranteed to over-approximate, and one to under-approximate
the original model. Then, the user can verify the properties of an original model by
model checking the new specifications with a suitable model checker. Our model
specifications are in the form of MAS Graphs (Definition 4.2), a variant of automata
networks with asynchronous execution semantics and synchronization on joint action
labels [Pri83; Jam+20a]. As the model checker of choice, we use UPPAAL [BDL04],
one of the few temporal model checkers with GUI.

Our tool provides a simple command-line interface, where the user selects the in-
put file with a model specification prepared in UPPAAL, the variables to be abstracted
away, and the abstraction parameters. It outputs a file with the over- (resp. under-
)approximating model specification, which can then be opened in UPPAAL for
scrutiny and verification. The source code and examples are publicly available
at https://tinyurl.com/ez-abstract. Importantly, the abstraction uses modular
representations for input and output; in fact, it does not involve the generation of the
global state space at all. To the best of our knowledge, this is the first tool for practical
user-defined model reductions in model checking of MAS.

5.2 Formal Background

To specify the system to be verified, we use MAS graphs formalism [JK23a], based on
standard models of concurrency [Pri83], and compatible with UPPAAL model specifi-
cations [BDL04]. The formal definitions of MAS graphs, their templates, unfolding

https://tinyurl.com/ez-abstract

5.3. Abstraction by Removal of Variables 81

FIGURE 5.1: Voter template. The agent first declares if she prefers to receive the election
package by post (dec=2) or in person (dec=1). Then, she waits until it can be collected,
and casts the ballot together with her voting card. The select label for edge idle−→waits
(resp. has−→end) specifies a nondeterministic choice of the value of variable dec ∈ {1, 2}

(resp. vt ∈ {1, . . . , NC} and sg ∈ {0, 1}).

and agent graphs can be found in Chapter 4. An example agent graph template,
parameterized with a variable id, is shown in Fig. 5.1.

Recall that every MAS graph can be transformed to its combined MAS graph, and
then unfolded into the global model, where states are defined by combined locations
and valuations of all the variables. It is important to note that such models are usually
huge and create an important bottleneck in model checking MAS.
Formal verification and model reduction. Our tool addresses model checking of
temporal properties expressed in the well-known branching-time logic CTL⋆ [Eme90],
cf. Section 2.1 or [BK08] for a textbook on temporal model checking. To mitigate the
impact of state space explosion, we use state abstraction, i.e., a method that reduces
the state space by clustering similar concrete states into a single abstract state. In order
for the scheme to be practical, it must be easy to use and avoid the generation of a
concrete global model. We summarize the details of our abstraction scheme in the
next section.

5.3 Abstraction by Removal of Variables

The simplest way to reduce a MAS graph is to remove some model variables or merge
them into a new variable containing less information than the original ones. Our tool
employs the abstraction scheme described in Chapter 4, and produces specifications
of two abstract models: a may-abstraction (that over-approximates the concrete states
and transitions) and a must-abstraction (that under-approximates them). Consequently,
if a universal CTL⋆ formula is true in the may-abstraction, then it must be true in the
concrete model, and if it is false in the must-abstraction, then it must be false in the
concrete model [JK23a].

For the sake of completeness, in the remainder of the section, we will now recall
some notable forms of our variable abstraction from Chapter 4 in relation to the
template shown in Fig. 5.1.

5.3.1 Variable removal

In the simplest variant, the abstraction concerns a complete removal of some variables
V ⊆ Var from the model specification. For example, one might remove variables

82 Chapter 5. EASYABSTRACT

mem_vt, mem_sg from the agent graph in Fig. 5.1, i.e., the voter’s memory of the cast
vote and the voting declaration status. Selection of the right variables to remove
requires a good understanding of the application domain; we assume that it is pro-
vided by the user. Roughly speaking, the abstraction procedure takes the combined
MAS graph comb(G), computes an approximation of the reachable values for every
v ∈ V, and processes the edges of comb(G) by substituting the occurrences of v at
location ℓ with the values u ∈ appr(v, ℓ). If appr(v, ℓ) overapproximates (resp. un-
derapproximates) the actual reachable values of v at ℓ, then the resulting model is a
may (resp. must)-abstraction of G.

5.3.2 Variable merge and scoping

More generally, a subset of variables can be merged into a fresh variable by means of
a user-defined mapping function. For example, mem_sg and mem_vt can be merged
into a boolean variable valid given by (mem_sg*mem_vt>0), indicating the validity of
the vote.

Additionally, the user can specify the scope of abstraction, i.e., a subset of locations
where the abstraction is applied, so that it only takes effect (and discards some
details from the state) on a fragment of the system (when those details are no longer
relevant/needed).

This should facilitate refining abstraction and help to obtain a conclusive result
from the verification of an abstract model. For example, we could remove variable
mem_dec, which encodes delivery medium, at locations has and end, after the election
package was collected.

Depending on the model, property and user’s creativity, one can come up with
plenty of other interesting variants of abstraction with this tool. For example, when
there is a set of indistinguishable agents of the same type (say Voters) and the property
has to do with the capabilities of one or few agents only, then we could also use a
coarser abstraction for all except one or few selected.

5.3.3 Abstraction on MAS templates

In some cases, approximation of variable domains on the combined MAS graph is
computationally infeasible due to the size of the graph. An alternative is to compute
it directly on the MAS template by the right approximation of the synchronization
edges. On the downside, this sometimes results in largely suboptimal abstract models,
i.e., ones more likely to produce inconclusive verification results.

The procedure may be run on either a combined MAS graph or just an agent
template.1 The former is expected to result in a more accurate approximation, but
its computation also demands more resources (such as time and memory); the latter
is less accurate but is also less resource-demanding. Unfortunately, the problem of
state space explosion may occur even at the level of combined MAS graph represen-
tation. This becomes more evident on models with a large number of agents. The
intuition/heuristic is to choose a template-based approximation, when the agent
template does not have many synchronous edges or those synchronisations are not
expected to have much impact on target variables evaluation. For example, the local
domain for mem_vt and mem_sg, for which values are assigned locally (i.e., with no
transitive reference to any global variable), could as well be approximated on the
template instead; this

1A case of a partially combined MAS graph can also be defined, but that goes beyond the interest of
the present discussion.

5.4. Architecture of EASYABSTRACT 83

5.4 Architecture of EASYABSTRACT

The main components of the tool are: (1) local domain approximation and (2) genera-
tion of abstract model specifications. Furthermore, EASYABSTRACT allows perform-
ing simple pre-processing and code analysis. For convenience, execution options and
flags can be saved in a configuration file. Each component can be called from the
command line, possibly followed by a list of arguments:

• configure: sets the parameters in the configuration file;
• unfold: produces the combined MAS graph;
• approx: computes an approximation of the local domain;
• abstract: generates an abstract model specification based on the provided ap-

proximation of a local domain;
• info: lists the variables, locations, and edges in the model.

Unfold. Substitutes the constants with their values and converts the MAS graph from
the input into the combined MAS graph.
Local domain approximation. Takes a subset of variables V, a target template (‘ext’
for the combined MAS graph) and an abstraction type t ∈ {upper, lower}, and
computes a t-approximation of the local domain over V. The result is saved to a JSON
file, where location identifiers are mapped to an array of evaluation vectors. Note
that the order of vector elements will correspond to an order of previously given
variable identifiers.
Abstract model generation. Takes the mapping function with an upper-approximation
(resp. lower-approximation) of the local domain, and computes the corresponding
may-abstraction (resp. must-abstraction). The mapping function specifies the target
agent name or template name, the scope of abstraction (a subset of location that
should be affected), variables to be removed, and possibly a merge variable (name,
initial value and evaluation expression). We assume that the input provided by the
user is correct; some debugging might be added in the future.
Implementation details. The tool is written in node.js, which parses XML model
specifications compatible with UPPAAL. The command line interface has been created
with the help of the yargs library. After the model is parsed, its structure is processed
using antlr4. Notably, using antlr4 we can generate the dictionary of variable identi-
fiers, their scope, domains, initial values, and associate expressions (e.g., occurring in
edge labels) with their abstract syntax trees. The formal syntax is given by the EBNF
grammar provided in file yag.g4. Additionally, a video demonstration is available at
https://youtu.be/1tlyH1G9278.

5.5 Experimental Results

We have evaluated the tool by means of experiments on two benchmarks: a simple
postal voting scenario and a gossip learning for social AI. The model specifications
are available for download with the tool. The experiments were performed in com-
bination with UPPAAL v4.1.24 (32-bit) on a machine with Intel i7-8665U 2.11 GHz
CPU, running Ubuntu 22.04. We report the results for may-abstractions, typically more
useful for universal branching-time properties.

https://youtu.be/1tlyH1G9278

84 Chapter 5. EASYABSTRACT

#V
Concrete Abstract (A1) Abstract (A2) Abstract (A3)
#St t #St t #St t #St t

1 31 0 23 0 22 0 18 0
2 529 0.1 217 0.1 214 0.1 120 0.1
3 10 891 0.1 2203 0.1 2440 0.1 838 0.1
4 2.3e+5 0.9 22 625 1 29 938 0.1 5937 0.1
5 5.1e+6 25 2.3e+5 1 3.7e+5 1 42 100 0.6
6 memout 2.3e+6 20 4.9e+6 23 2.9e+5 5
7 memout 2.2e+7 304 memout 2.0e+6 33
8 memout memout memout 1.4e+7 357

TABLE 5.1: Verification of φbstuff on models with 3 candidates. #V is the number of Voter
instances. We report the model checking performance for the concrete model, followed

by may-models obtained by abstractions A1, A2, and A3.

5.5.1 Postal Voting

We use a scalable family of MAS graphs, which was originally proposed in [JRK22],
to model a simplified postal voting system. The system consists of NV Voters, voting
for NC candidates, and a single Election Authority, and proceeds in four subsequent
phases: collection of voting declarations, preparation and distribution of election
packages, ballot casting, and tallying. The verification concerns a variant of resistance
to ballot stuffing, expressed by formula:

φbstuff ≡ A[](b_recv<=ep_sent && ep_sent<=NV)

where b_recv and ep_sent are variables storing the number of received ballots
and sent election packages, respectively. For the experiments, we try the following
abstractions:

A1: removes variables mem_vt and mem_sg from the Voter template, i.e., the voter’s
memory of the cast vote and the voting declaration status;

A2: removes variables mem_dec at Voter’s locations {has, voted} and variable dec_recv
at Authority’s location {coll_vts}, i.e., the information about how the election
package has been delivered;

A3: the combination of A1 and A2.

The results in Table 5.1 present the numbers of states in the global model generated
during the verification, as well as the verification running times (in seconds), includ-
ing the generation of abstract model specifications where applicable. Formula φbstuff
is satisfied in all the reported instances; all three abstractions have been conclusive
on it.

A more extensive study of the postal voting scenario will be presented in Chapter 6.

5.5.2 Social AI

The second series of experiments uses the specifications of gossip learning for social
AI [Hea13; HDJ21], proposed in [KJS23]. The system consists of a ring network of
AI agents, acting in three phases: data gathering, learning (based on the previously
collected data), and sharing of knowledge. The goal of the agents is to collectively
reach knowledge of quality mqual ≥ 2. The system includes also an attacker who can

5.6. Related Work 85

#Ag
Concrete Abstract
#St t #St Reduct t

2 165 0 38 76.97 0
3 8917 0.1 555 93.78 0
4 4.6e+5 1.5 10 247 97.77 0.1
5 2.1e+7 123 1.5e+5 99.29 1.2
6 memout 2.8e+6 – 42
7 memout 4.1e+7 – 682
8 memout memout

TABLE 5.2: Verification of φcompr on models of social AI. The column “#Ag” denotes the
number of agents, and “Reduct” shows the level of reduction of the state space (in %).

impersonate any agent and fake its quality level. The model specifications are given
as asynchronous MAS [Jam+20a; JPS20], and coded in the input language of the STV
model checker [Kur+21], that shares many similarities with the input language of
UPPAAL. After a straightforward manual translation to UPPAAL, we hardcoded the
attacker’s strategy to always share the lowest quality model, and verified formula:

φcompr ≡ A[](exists(i:int[1,NA])(impersonated!=i &&

(!AI(i).wait || AI(i).mqual<2)))

The formula says that, on all execution paths, at least one AI agent is compromised.
The model checking performance is shown in Table 5.2. We have been able to conduct
verification for concrete models with up to 5 agents (4 honest AI and 1 attacker),
and up to 7 agents after applying a may-abstraction that discards all variables except
for mqual in the AI template. It took less than 1s to perform a template-based over-
approximation of a local domain followed by a generation of an abstract model.2

Chapter 8 will present a more extensive study of Social AI.

5.6 Related Work

The existing implementations of state abstraction for temporal model checking con-
cern mostly automated abstraction. In particular, Counterexample-Guided Abstrac-
tion Refinement (CEGAR) [Cla+00b; Cla+03] has been implemented for NuSMV [Cim+02],
and 3-valued abstraction [GHJ01; God14] was implemented in Yasm [GWC06] and
YOGI [God+10]. In each case, abstraction involves the generation of the global state
space, which is the main bottleneck when verifying MAS. Other, user-defined ab-
straction schemes have been defined only theoretically [SG04; BK06; DG18], and
either require to generate all global states and/or transitions or assume an already
alike low-level representation to be available. The approaches in [Coh+09; BLM19]
come closest to our work, as they use modular representations of the state space.
However, they both rely on a global representation of the transition space, and no
implementation has been reported.

Conceptually, it was crucial for us that the abstraction method has the following
features: user-friendly, supporting modular representation of the input and produc-
ing a compact and user-readable representation on the output, and not requiring
generation of the global state space. Lack of existing methods that would satisfy these

2Used commands can be found in the demo video and on the github.

86 Chapter 5. EASYABSTRACT

requirements motivated us to come up with our own solution. In the benchmarks, we
report no comparison with other reduction techniques as, technically, for a sensible
comparison it would have to be made with the methods that operate on the same
(or least similar) pairs of input and output. As was already stated, to the best of our
knowledge, there is no such, which leaves us with no candidates for the meaningful
comparison.

5.7 Conclusions

We propose a tool for practical model reductions of multi-agent systems. The tool
addresses state-space explosion by removal (either partial or complete) of selected
variables from the model while preserving the truth of ACTL formulas. The experi-
ments show significant gains in terms of verification time as well as memory, with
minimal time used by the abstraction procedure. The procedure directly modifies
the modular specification of the system, without generating the global model at all.
Moreover, its output is open for further scrutiny and modifications by the user. While
the must-abstraction was of little practical use, the may-abstraction demonstrated
significant reduction of the state space and was sufficient for the verification of certain
interesting properties.

In the future, we plan to extend our tool to abstractions preserving temporal-
epistemic and strategic properties in combination with the MCMAS and STV model
checkers [LQR17; Kur+21].

87

Chapter 6

Modelling and Verification of
Polish Postal Voting of 2020

6.1 Introduction . 88
6.2 Postal Voting Procedure . 89
6.3 Formal Model of the Procedure . 93
6.4 Verification . 98

6.4.1 Specification of Properties . 98
6.4.2 From Agent Logics to UPPAAL Specifications 99
6.4.3 Mitigating State Space Explosion by Abstraction of Variables 101
6.4.4 Verification Experiments . 102

6.5 Related Work . 103
6.6 Conclusions . 107

In the previous chapter, we mentioned brief experimental results, where variable
abstraction was using to facilitate the verification of a postal voting scenario. Here,
we focus entirely on this angle. To this end, we propose a formal model of a postal
voting procedure, present formulas that capture important requirements, and show
comprehensive experimental results from the verification.

Voting procedures are designed and implemented by people, for people, and with
significant human involvement. Thus, one should take into account human factors
in order to comprehensively analyse the properties of an election and detect threats.
In particular, it is essential to assess how the actions and strategies of the involved
agents (voters, municipal office employees, mail clerks) can influence the outcome of
other agents’ actions as well as the overall outcome of the election. In this chapter,
we present our first attempt to capture those aspects in a formal multi-agent model of
the Polish presidential election 2020. The election marked the first time when postal
vote was universally available in Poland. Unfortunately, the voting scheme was
prepared under time pressure and political pressure, and without the involvement of
experts. This might have opened up possibilities for various kinds of ballot fraud,
in-house coercion, etc. We propose a preliminary scalable model of the procedure
in the form of a Multi-Agent Graph and formalize selected integrity and security
properties by formulas of agent logics. Then, we transform the models and formulas
so that they can be input to the state-of-art model checker UPPAAL. The first series of
experiments demonstrates that verification scales rather badly due to the state-space
explosion. However, we show that a recently developed technique of user-friendly
model reduction by variable abstraction allows us to verify more complex scenarios.

88 Chapter 6. Modelling and Verification of PPV2020

6.1 Introduction

In the last 30 years, the world has become densely connected. Most IT systems
address a complicated network of users, roles, functionalities, and infrastructure
elements, often vastly distributed over geographical locations and cultural contexts.
This results in a considerable space of potential threats, risks, and conflicting interests,
that call for systematic (and preferably machine-assisted) analysis. What is more,
IT services are implemented by people, with people, and for people. The intensive
human involvement makes them hard to analyse beyond the usual computational
complexity obstacles.
Voting procedures. Voting and elections are prime examples of services that are
difficult to specify, hard to verify, and extremely important to society [HR16]. If
democracy is to be effective, it is essential to assess and mitigate the threats of fraud,
manipulation, and coercion [Men09; TJR16]. However, formal analysis of voting
procedures must consider both the technological side of elections (i.e., protocols,
architectures, and implementations) and the human and social context in which it
is embedded [BRS16; Bas+17]. The impact of the social factor has become especially
evident during the US presidential elections of 2016 and 2020. In 2016, individual
voters were targeted before the election by a combination of technology and social
engineering to induce emotional reactions that would change their decisions, and
possibly swing the outcome of the vote (the Cambridge Analytica scandal). In 2020,
a large group of voters was targeted after the election by unfounded claims that
severely undermined the public trust in the outcome. In both cases, it is impossible to
understand the nature of what happened, and devise mitigation strategies, without
the focus on human incentives and capabilities.
Specification and verification of multi-agent systems. Multi-agent systems (MAS)
provide models and methodologies for the analysis of systems that feature the inter-
action of multiple autonomous components, be it humans, robots, and/or software
agents. The theoretical foundations of MAS are based on mathematical logic and
game theory [SL09; Wei99; Woo02]. In particular, logic-based methods can be use-
ful to formally specify and verify the outcomes of multi-agent interaction [DHM10;
Eme90; Fag+95; Jam15].

Formal analysis with multi-agent logic is typically based on model checking [BK08;
Cla+18]. The system is formalized through a network of graphs (or automata) that
define its components, their available actions, and the information flow between them.
The properties are usually given as temporal properties, expressing that a given tempo-
ral pattern must (or may) occur, or strategic properties capturing the strategic abilities of
agents and their groups. Especially the latter kind of properties are relevant for MAS;
e.g., one may try to capture voter-verifiability as the ability of the voter to verify her
vote, and coercion-resistance as the inability of the coercer to influence the behaviour
of the voter [TJR16]. There are many available model checking tools, though none
of them is perfect. Some admit only temporal properties [BDL04; Dem+03; Kan+15],
some focus on the less practical case of perfect information strategies [Alu+00; Che+13;
LQR17], and the others have limited verification capabilities [Aki+20; KJK19; Kur+21].
Moreover, it is often unclear how to formalize an actual real-life scenario, includ-
ing the “right” model of the system [Jam+20b] and the formal “transcription” of its
desirable properties [Jam+21].
Socio-technical aspects of voting. In this work, we use agent-based methodology to
propose and analyze a simple multi-agent model of an actual election, that combines
the technological backbone of the voting infrastructure with a model of possible

6.2. Postal Voting Procedure 89

human behaviors. The work is preliminary, in the sense that we do not explore the
real breadth of participants’ activities that might occur during the vote. Moreover, we
mostly look at requirements that can be expressed as trace properties. This is because
the computational complexity of the formal analysis turned out prohibitive even for
such simple models and properties. We managed to mitigate the complexity through
an innovative abstraction technique, but seeing if it scales well enough for realistic
models of human interaction remains a subject for future work.
Case study: Polish postal vote of 2020. To focus on a concrete scenario, we con-
sider the Polish presidential election of 2020. That was the first time when postal
voting was universally available in Poland. Unfortunately, the voting scheme was
prepared under pressure, and without the involvement of experts. This might have
opened up possibilities for various kinds of ballot fraud, in-house coercion, etc. We
propose a preliminary scalable model of the procedure in the form of a Multi-Agent
Graph [BDL04; JK23a], and formalize selected integrity and security properties by
formulas of agent logics. Then, we transform the models and formulas so that they
can be input to the state-of-art model checker UPPAAL [BDL04], chosen because of its
flexible model specification language and user-friendly GUI. As expected, the verifi-
cation of unoptimized models scales rather badly due to the state-space explosion. To
improve the performance, we employ a recently developed technique of user-friendly
abstraction [JK23a], with more promising results.
Structure of the chapter. We begin by providing an outline of the Polish postal
voting (PPV) procedure in Section 6.2. Then, the MAS Graph representation of the
procedure, together with the formal translation of some important requirements of
voting systems are presented in Section 6.3. This is followed by our experimental
results and their discussion in Section 6.4. We discuss related work and related
verification tools in Section 6.5, and give conclusions in Section 6.6.

6.2 Postal Voting Procedure

Postal voting is one of the oldest forms of voting. In its simplest version, it is easy
to setup for the authorities and easy to follow for the voters. On the other hand, it
can be susceptible to ballot fraud, lacks verifiability, and opens up potential for vote
buying and coercion. What is more, only basic mechanisms of recovery are possible
(e.g., cancelling the whole elections in case of irregularities). This sometimes leads to
controversial ad hoc decisions when dealing with the irregularities [Hol21].

The postal voting procedure employed for the Polish Presidential Election in
2020 is no exception. There was an overall impression that the procedure had been
prepared in haste [And20; Sku20] and with no proper research on the existing postal
voting schemes that were proposed and used during the last two decades, such
as [BRT13; KS19]. For example, voter authentication is based on the assumption that
a voter’s national identification number (PESEL) is secret, which is hardly the case
in real life. Moreover, there are various ways of how authorities could delete votes,
e.g., by sending invalid ballots to districts with anti-government majority [Sku20;
Spo20; Fak20]. In this work, we make the first step towards systematic modelling and
analysis of these kinds of threats.

The rules for organising the election of the President of Poland, with the possibility
of postal vote, were published on June 2 [Pań20c] and June 3, 2020 [Mar20]; the date
of the election was set to June 28, 2020. A complete list of legal acts defining the
election procedure can be found in [Sej22; Pańd], see also [Pań20a; Pań20b; Min20b;
Min20a] for additional details. For the postal vote, the regulations (mostly concerning

90 Chapter 6. Modelling and Verification of PPV2020

V MO EC

intentionFormprep

eligible?

prepareEP
electionPackage

distr

fillEP

returnEnvelopeopt1

returnEnvelopeopt2

valid?

ballotEnvelope

cast

countVotes
tallyReport

announceRes

tally

FIGURE 6.1: A simplified diagram of the voting process.

the time limits) vary based on the voter’s location and her current quarantine status.
We focus on the non-expat and non-quarantined voters,1 but the protocol for the
other types of voters is nearly the same.

The protocol consists of several, partly overlapping phases: the setup which
involves expression of intention to vote by post, preparation and distribution of
election packages (EPs), casting of the vote, validation of votes on the election day,
and tallying, see Figure 6.1.
Setup. A voter expresses her intention to vote by post to its local municipal office
(MO) at the latest 12 days before the day of an election (EDay). This can be done in
either oral, written, or electronic form. The intent expression must contain the voter’s
personal information, such as full name, DOB, ID number (PESEL), phone number,

1Changing this to another type of voter (or even adding extra ones) would only require changing the
values of a few configuration variables. However, this would also add unnecessary (in the context of
the satisfiability of requirements being discussed) complexity to the model.

6.2. Postal Voting Procedure 91

Ballot
envelope

Return
envelope

FIGURE 6.2: EP content: return envelope, instruction card, voting card, ballot envelope,
stamped ballot.

email, and residential and postal addresses. If the voter prefers to collect the EP in
person, this must be specified instead of a postal address. Additionally, the voter can
request to change the municipality assigned to her in the voters’ register once before
the start of the election.2 It is also possible to obtain a voter certificate, which when
provided allows one to vote in any election commission of any municipality, however
obtaining such will lead to a voter being crossed out from the voters’ lists, allowing
for in-person voting only.
EP preparation. Upon receipt of the intention, a municipal office employee checks the
voters’ register and prepares and distributes the EP, provided that the applicant is an
eligible voter and no required information is missing. A complete EP (Figure 6.2) must
contain an instruction, a ballot stamped by both the National Electoral Commission
(PKW) and the local electoral commission, a voting card, and two envelopes: one for
the ballot and one to be returned. The EPs must be delivered or made available for
collection to voters no later than five days before the EDay.
Casting. When a complete EP is collected, the voter should put a single ‘X’ mark
against the preferred candidate, put the ballot into a ballot envelope, sign a voting
card and place it together with a ballot envelope into a return envelope. Both ballot
and return envelope must be sealed. If there is a deviation in any of the above steps
(e.g., the ballot envelope is not sealed), this would invalidate the casting of the vote.
Then, the voter must either send the filled REnv to MO, where it will be stored until
it is passed to the electoral commission (EC) on the EDay, or turn it in to the assigned
electoral commission.
Validation. The EC has to print the voters’ list (partitioned according to their munici-
pality) one day before the election at the latest. This will be used to check the validity
of the vote and make sure that no person can vote multiple times. In particular,
people who requested and obtained a voter’s certificate – a document which allows a
voter to go to any election commission for in-person voting (and not necessarily the
one assigned to him) – are not allowed to vote by post. If the voter is eligible and the
REnv is complete, the BEnv is put into the ballot box.
Tallying. At the end of the EDay, when all REnvs are collected, the commission
opens the BEnvs and prepares a voting protocol with information on the number of
received REnvs, invalid votes, and the local tally. The protocol is sent to MO which
checks it using proprietary software. If the errors are within the margins allowed by
legislation, the MO accepts the protocol. Otherwise, the protocol is rejected, and the
electoral commission must prepare a new one. When all protocols are accepted and
merged, the final tally and the winner are publicly announced.

2Voters’ register contains a list of eligible voters, their full name, date of birth, ID number and
residence address. The register is maintained by the municipal office, which can also make changes on
request. To facilitate access by electoral commissions during the election, it is partitioned into voter lists
based on the residence address. Its main purpose is to enable verification of voters’ eligibility and to
ensure that each voter can vote at most once.

92 Chapter 6. Modelling and Verification of PPV2020

(a)

(b)

FIGURE 6.3: UPPAAL GUI: (a) editor tab, (b) simulation tab.

6.3. Formal Model of the Procedure 93

6.3 Formal Model of the Procedure

We can now present our preliminary model of the postal voting protocol. The code of
the model is available at https://github.com/polishpostalvote2020/model.

We chose the UPPAAL model checker as the modelling environment because of
its user-friendly GUI (see Figure 6.3) and flexible system specification language. As
previously discussed in Chapter 3, the GUI is especially important because it allows a
preliminary validation of a system specification even at the early stages of modelling.3

A system in UPPAAL is represented as a (parameterized) network of (parameterized)
finite automata [BDL04]. The parametrization can be used to define a set of almost
identical processes easily. In order to represent an occurrence of events, as well
as define the available strategies of participants, we use the extension of automata
networks to MAS graphs, proposed in Chapter 4.

The MAS graph for the PPV procedure consists of the following agent templates:

• Voter (V), depicted in Figure 6.4;
• Electoral Commission (EC), depicted in Figure 6.6;
• Municipal Office (MO), depicted in Figure 6.5;
• Time counter, depicted in Figure 6.5.

The numbers of agent instances are denoted by NV, NMO, and NEC. Their values,
together with the number of candidates NC are specified as part of the model con-
figuration. The sole Time agent is used to impose discrete time constraints on the
actions of other agents.

We extend the base model (having infallible agents only) by specifying the fol-
lowing mistakes for Voter - may initiate communication and send the forms to a
wrong MO or EC, may leave ballot or return envelopes unsealed, misplace the cross
mark on the ballot, forget to fill or sign the voting card, attempt to vote by post after
obtaining voter’s certificate, for Municipal Office (only in some explicitly specified
experiments) - may prepare and then distribute ballots without a proper stamp, in-
validating those. This yields a hierarchy of the (partially ordered) models, allowing
us to study the satisfiability of properties on a finer-grained level, and furthermore
get a better understanding of the potential impact of human errors on the system.

The agent templates include a variety of behaviours that can result from human
errors as well as purposeful misbehaviour. For example, a Voter may not fill the forms
properly, or attempt to communicate with the wrong municipal office or electoral
commission. Furthermore, a Municipal Office can send out an invalid ballot by using
a photocopied rather than a genuine stamp (which actually happened during the
election). In this version, we do not explicitly model the postal services, and thus
omit the possible malicious or erroneous actions of postal clerks, or an adversary.4

Instead, we focus on an analysis of human interactions and the possible effects of
their mistakes (as deviation from the expected behaviour). Similarly, we omit rare
events, e.g., those that involve the power of attorney for in-person hand-in of the
REnv.

3In UPPAAL, system components are defined together with their graph-like (local) representation,
which could greatly facilitate in reducing the number of bugs/errors, improve understanding and
presentation of the model, and provide more confidence that we know what we are modelling and if it is
actually what wanted to model.

4It is worth noting that having a modular representation allows extending the model with other
types of agents, including adversary, if needed.

https://github.com/polishpostalvote2020/model

94 Chapter 6. Modelling and Verification of PPV2020

FIGURE 6.4: Voter template.

6.3. Formal Model of the Procedure 95

(a) (b)

FIGURE 6.5: (a) Municipal Office template, (b) Time singleton.

96 Chapter 6. Modelling and Verification of PPV2020

FIGURE 6.6: Electoral Commission template.

6.3. Formal Model of the Procedure 97

The following data structures are used within the templates:

typedef int[1,NC] c_t; // candidate id
typedef int[1,NV] v_t; // voter id
typedef int[-NMO,-1] mo_t; // municipal office id
typedef int[-NMO-NEC,-NMO-1] ec_t; // election commission id
typedef int[-NMO-NEC,NV] addr_t; // domain of all agents ids

typedef struct{
addr_t src; // sender id
addr_t dst; // receiver id
addr_t addr; // address for EP delivery
bool inperson; // in-person collection preference
v_tx pesel_of; // PESEL number

}IntentionForm;

typedef struct{
bool sealed; // envelope sealed
bool pkw_stamp; // National Electoral Commission stamp
bool dec_stamp; // district electoral commission stamp
int[0,2] cell[c_t]; // number of Xs near candidate cell

// (2 for any number greater than 1)
}Benv; // ballot envelope

typedef struct{
addr_t src; // sender id
addr_t dst; // recipient id
Benv benv;
mo_tx stamp; // envelope stamp
bool sealed; // envelope was sealed
bool dec_signature; // voter’s card signed
v_tx dec_pesel; // voter’s card PESEL

}Renv; // return envelope

typedef struct{
addr_t src; // sender id
addr_t dst; // recipient id
Renv renv;

}ElectionPackage; // election package

typedef struct{
addr_t mo_addr; // assigned municipality
addr_t ec_addr; // assigned commission
cmt_t comment; // nominal field for
bool changed; // recently changed

}v_record // an entry in the voters registry

Notice that the space of active agent names (or rather their unique identifiers)
is partitioned with respect to the agent type. This allows to model intended parties
for a given communication instance in an easy way.5 All the variables in UPPAAL

are assigned with either explicit initial or implicit default values. Thus, sometimes
aliases which extend the existing data types will be used (e.g., c_tx for int[0,NC]).

5One of the implicit assumptions for the model is that every agent can perform only a single role.

98 Chapter 6. Modelling and Verification of PPV2020

Additionally, to improve readability and keep the graphical view ‘clean’ we use
the following convention for the edge labels:

• all updates are of the form evt(EVT_CODE) or evtx(EVT_CODE,EVT_PARAMS);
• all guards are of the form g(EVT_CODE) or gx(EVT_CODE,EVT_PARAMS).

Where EVT_CODE is a string of characters (i.e., named value from the pre-defined enum
of events), representing action name by means of a natural language. The sets of
available/specified actions are disjoint among agents of a distinct type. On the level
of the model code, functions evt/evtx and g/gx are declared using switch statement
matching passed argument of EVT_CODE to its case clause, which should facilitate the
modularity of a model and higher integrity of its graphical presentation.

6.4 Verification

To specify requirements UPPAAL admits a fragment of CTL⋆, excluding the “next”
and “until” modalities. Consequently, all supported formulas are of the following
types: “reachability” (EFp), “liveness” (AFp), “safety” (EGp and AGp) and an UPPAAL

specific “leads-to” (AG(p ⇒ AFp)). Its semantics allows for non-maximal paths, in
this work we will usually use EFp and AGp for specifying the desired properties.

As it was already discussed in [Jam+20b] limitations in UPPAAL requirement
specification lead to its verification capabilities being rather limited. Interestingly,
in the next section we will see that some of the critical requirements can still be
represented by means of supported formulas, despite those limitations.

As the next step, we specify some relevant properties of the voting system by
formulas of multi-agent logics, in particular the branching-time temporal logic CTL
and the strategic logic ATL. Then, we transform them to a form that can be interpreted
by UPPAAL, and run the model checking.

To mitigate the impact of a state-space explosion, we use abstraction on variables,
originally proposed in [JK23a].

6.4.1 Specification of Properties

Following [TJR16; JKK18; Jam+20b; JKM20], we use the formulas of multi-agent logics
to specify some interesting requirements on the election system. In particular, we use
the branching-time temporal logic CTL [Eme90] and strategic logic ATL [AHK02].
We focus on the following requirements6:
(P1) The number of correctly received ballots cannot exceed the number of sent

ballots (a weak variant of resistance against ballot stuffing);
(P2) For every voter, cast vote must be properly recorded and reflected by the tally

(tally integrity);
(P3) The authorities should have no strategy to invalidate certain votes, even when

the voters’ preferences are known (no strategic ballot removal).
We formalize (P1) and (P2) by the following CTL formulas:

φP1 ≡ AG(∑NB
i=1 b_receivedi ≤ ∑NV

j=1(ep_sentj))

φP2 ≡ AG(elec_end ∧ votedi,j ⇒ talliedi,j)

6Authors would want to stress that the given properties are just an example, merely for illustration
purposes, and they should not be viewed as a complete list of requirements.

6.4. Verification 99

where NB and NV stand for the maximum number of ballots and voters accordingly,
i ∈ NV is an arbitrarily fixed voter, and j ∈ NC is a candidate. The (P1) says that, for
all possible execution paths (A) and all future time points (G), the sum of received
ballots must not exceed the number of sent election packets. Similarly, (P2) says that
if an election is closed and a voter has cast her vote for candidate j, then it must be
tallied for j.

Furthermore, we formalize (P3) by the following formula of ATL (in fact, we
formalize the negation of (P3) and focus on ballot removal by a Municipal Office,
thus expressing that the MO can strategically remove ballots):

φ¬P3 ≡ ⟨⟨MOk⟩⟩G
∧

i∈NV

(vregi,k ∧ prefi,j ∧ elec_end ⇒ ¬talliedi,j)

where i ∈ NV, j ∈ NC and k ∈ MO is a municipal office. The reading of φ¬P3
is: “Municipal office k has a strategy (⟨⟨MOk⟩⟩) such that, no matter what the other
agents do, at all future time points (G) for any voter i if registered in this municipality
(vregi,k), prefers candidate j (prefi,j) and an election is already closed (elec_end), then
her vote will not be tallied correctly (¬talliedi,j)”.

6.4.2 From Agent Logics to UPPAAL Specifications

Our formalization of resistance to ballot stuffing and tally integrity has a straightfor-
ward transcription in UPPAAL specification language:

(φP1) A[] (b_recv<=ep_sent) ,

(φP2) A[] (Time.end and (Voter(i).sent_renv or Voter(i).passed_renv)
imply recorded_link[i]==Voter(i).pref_cand) ,

where b_recv, ep_sent and recorded_link are auxiliary variables added only for
the verification of related property and representing the number of received ballots,
the number of sent election packages, and the mapping from voters to the way their
votes have been tallied. Moreover, pref_cand is the voter’s local variable storing
her preferred candidate, sent_renv and passed_renv are labels of the corresponding
locations in the voter’s agent graph (see Figure 6.4).

Unfortunately, UPPAAL does not offer the verification of strategic abilities and
thus does not admit ATL operators. To deal with that, we propose to approximate
formula φ¬P3 by its under-approximation φ−

¬P3 and over-approximation φ+
¬P3, both of

which are CTL formulas that satisfy the following conditions:

M |=CTL φ−
¬P3 ⇒ M |=ATL φ¬P3

M |=ATL φ¬P3 ⇒ M |=CTL φ+
¬P3

That is, whenever φ−
¬P3 is true in a model, φ¬P3 must also be true there. Moreover, if

φ+
¬P3 is false in a model, φ¬P3 must also be false. We use the following approximations:

φ−
¬P3 ≡ AG

∧
i∈NV

(vregi,k ∧ prefi,j ∧ elec_end ⇒ ¬talliedi,j)

φ+
¬P3 ≡ EG

∧
i∈NV

(vregi,k ∧ prefi,j ∧ elec_end ⇒ ¬talliedi,j)

100 Chapter 6. Modelling and Verification of PPV2020

Start

Natural Language

Formalize

CTL* formula

ATL* formula

Approximate

A3 ?

E2 ?

Under-
Approximate

Over-Approximate

Uppaal query

Stop

over-appr.

under-appr.

yes

yes

no

no

FIGURE 6.7: Flowchart illustrating the specification translation process.

This follows the intuition that, if ψ is guaranteed to always hold on all execution
paths (AGψ), then it must also hold when MO plays strategically (⟨⟨MO⟩⟩Gψ). More-
over, if MO has a strategy to maintain ψ (⟨⟨MO⟩⟩Gψ), then ψ must always hold on at
least one path (EGψ).

Now, formula φ−
¬P3 can be fed directly to UPPAAL. Unfortunately, this is not the

case for the upper approximation φ+
¬P3, as UPPAAL does not interpret the EG combi-

nation of CTL operators correctly.7 On the other hand, UPPAAL’s E[] combination is
an over-approximation of the CTL⋆ EG combination. Thus, we can use it to provide
“over-over-approximation” of the original specification, which finally obtains the
following list of UPPAAL inputs:

(φ−
¬P3) A[] forall(i:v_t)(Time.end and vlist[i].mo_addr==k and vpref[i]==j imply

recorded_link[i]!=j) ,

(φ++
¬P3) E[] forall(i:v_t)(Time.end and vlist[i].mo_addr==k and vpref[i]==j imply

recorded_link[i]!=j) ,

7The satisfaction of CTL operators in a transition system is interpreted over maximal runs, i.e., ones
that are either infinite or end in a state with no outgoing transitions. In contrast, UPPAAL looks at all
finite runs. While this does not change the semantics of AG and EF, the interpretation of both AF and EG
becomes nonstandard.

6.4. Verification 101

where vlist refers to the voters’ registry.
Concrete model

typedef struct{
bool sealed;
bool pkw_stamp;
bool dec_stamp;
int[0,2] cell[c_t];

}Benv;

typedef struct{
addr_t src;
addr_t dst;
Benv benv;
mo_tx stamp;
bool sealed;
bool dec_signature;
v_tx dec_pesel;

}Renv;

typedef struct{
addr_t src;
addr_t dst;
Renv renv;

}ElectionPackage;

Abstact model

typedef struct{
bool invalid;
c_tx cell;

}Benv;

typedef struct{
addr_t dst;
bool invalid;
Benv benv;

}Renv;

typedef struct{
bool sent;
Renv renv;

}ElectionPackage;

FIGURE 6.8: Fragment of code resulting from the abstraction, where all evaluations
invalidating a vote are merged into a single variable (for REnv and BEnv).

6.4.3 Mitigating State Space Explosion by Abstraction of Variables

As previously discussed in Chapters 4 and 5, the phenomenon of the state-space
explosion often obstructs model checking of the real-world systems. We recall that
model checking typically involves the inspection of all possible states of the modelled
system, whereas the number of such states is exponential in the number of processes
and their components – in our case, the number of agent instances and their local
variables [Cla+18]. This is easy to see in our experimental results for formula φP1 —
see Table 6.1, the part under “φP1 (concrete)” — with the clear exponential growth of
the verification time t and memory use m. As a consequence, the verification of φP1
on the model presented in Section 6.3 scales up to only 2 voters, 1 municipal office,
and 3 electoral commissions for an election with 3 candidates.

Mitigating state-space explosion has been an important topic of research for over
30 years. The most important techniques include partial-order reduction [Pel93;
God96; Ger+99; Jam+20a], symbolic verification [McM93], bounded and unbounded
model checking [McM02; PL03; LP07] and state/action abstraction [CC77; CGL94;
GJ02]. In particular, abstraction is an intuitive model reduction method, based on the
idea of clustering “similar” states of the system (so-called concrete states) into abstract
states, hopefully reducing the model to a manageable size. The actual clustering
must be carefully crafted. On the one hand, it must only remove information that is
irrelevant for the verification of a given property, otherwise, the verification results
for the abstract model will be inconclusive with respect to the original model (so-
called “concrete model”). On the other hand, it has to remove sufficiently much of
the concrete model, so that the model checking becomes efficient.

102 Chapter 6. Modelling and Verification of PPV2020

In this work, we use an intuitive and easy-to-use abstraction scheme, based on the
removal of variables from agent graphs [JK23a]. The method allows to select subset
of local variables to be removed (possibly with a subset of locations to serve as the
scope of the abstraction). For example, the name of the voter’s preferred candidate is
irrelevant for the verification of resistance to ballot stuffing, hence the corresponding
variables can be omitted in the voters’ agent graphs. The abstraction generates two
abstract models. The first one under-approximates the concrete model, in the sense that
if formula ψ returns true on the abstract model, it must also be true in the concrete
model. The second over-approximates the concrete model, i.e., if ψ returns false on
the abstract model, it must also be false in the concrete model.

Alternatively, the user can define a mapping from the variables to a fresh variable
that merges some of the information that used to be stored in the removed variables.
For example, we might map the complex representation of all potential ballot faults
(unsealed ballot envelope, missing stamps, more than one ‘X’ on the ballot, for one or
more candidates) to a single boolean variable invalid, see Figure 6.8.

In general, these abstraction parameters should be picked firstly to reduce the
number of induced states of a global model, and secondly to match the property, so
that verification is conclusive. Naturally, there are plenty of ways to choose fitting
parameters for a given property; it is also possible that two distinct properties are
matched by the same ones, and therefore same abstract models.

6.4.4 Verification Experiments

Based on the input prepared in the previous sections, we have conducted a number
of model checking experiments. All the results presented here were obtained with
UPPAAL 4.1.24 (32 bit) on a laptop with Intel i7-8665U 2.11 GHz CPU, running Ubuntu
20.04 on WSL2 using 4/16 GB RAM. The outcome of the experiments is shown in
Tables 6.1, 6.2 and 6.3. The notation is as follows:

• conf denotes the configuration of the experiment, i.e., the number of voters, Mu-
nicipal Offices, Electoral Commissions, and election candidates;

• Sat reports the verification output, i.e., whether the model checker returned true
or false;

• t and m show the time and memory used in the verification, with memout indicating
that the model checking process ran out of memory. Note that the included time
measurements could have been affected by other processes running on OS.

Table 6.1 presents the experimental results for our formalization of weak resis-
tance to ballot stuffing. The formula has turned out to be true in all the completed
verification runs. However, as already observed, the verification scales rather badly
due to state-space explosion. To mitigate that, we reduced the models by abstracting
away the identity of candidates and simplified the data structures representing the
intention form and the election package. Moreover, we mapped variables b_recv
and ep_sent to a single fresh variable ballot_diff = ep_sent-b_recv, so that the re-
quirement specification became AG(ballot_diff>=0). The results for model checking
the under-approximating abstract model are also presented in Table 6.1.

Since the output of under-approximation was true, we conclude that φP1 is
also true in the original (concrete) model. Note that, for some configurations, the
abstraction allowed to run the verification faster by orders of magnitude. Moreover,
it allowed for the model checking of scenarios with 3 voters, 1 MO, 1 EC, and 3
candidates, i.e., one more voter than in the concrete case. This might seem slight, but

6.5. Related Work 103

in some cases 3 voters are necessary to demonstrate non-trivial attacks on a voting
system [ACK16].

For tally integrity (φP2), we used formula φP2 proposed in Section 6.4.2. In this
case, we additionally generated the under-approximating abstract models obtained
by (a) mapping all the candidate names except j to a fresh value j′, (b) for all voters
other than i, removing their memory of the choices associated with their intention
forms and election packages after they send those. The results in Table 6.2 show that
the verification output was not conclusive, i.e., they do not imply whether φP2 is true
or false in the original model. However, the verification becomes conclusive under
the assumption that voter i makes no errors and strictly follows the protocol, see the
rightmost part of the table. In that case, we get true as the output, thus concluding
the original property holds as well.

Lastly, the experimental results for strategic ballot removal (φ¬P3) are presented
in Table 6.3. The table first shows the (inconclusive) output of model checking for
under-approximation w.r.t. the formula, under-approximation w.r.t. the formula and
the model, and over-approximation w.r.t. the formula. Thus, the original property
might (but does not have to) be satisfied. Then, we fix a strategy for MO in the model,
so that the municipal office sends a ballot with invalid stamps whenever the voter
intends to vote for the “unwelcome” candidate.8 The results in the rightmost part
of Table 6.3 show now conclusive output: the under-approximation is true, so the
original property must be true as well. Thus, the proposed strategy indeed achieves
the goal specified by φ¬P3. Note that it is essential to couple matching formula- and
model-related approximations, otherwise the procedure is not sound. In our case,
this meant using the under-approximating formula φ−

¬P3 with the under-approximating
abstract model of the procedure.

Despite the technical limitations on the number of voters, it was possible to
discover and verify attacks violating φP2 and φP3 respectively. For the next step
(which remains a subject of future work), we would want to scale up the model to
a larger or even unbounded number of voters (the latter is currently beyond the
technical feasibility of the tool) or come up with rigorous arguments that a certain
number of voters is sufficient for certain cases.

6.5 Related Work

Formal verification of voting protocols has been the subject of research for over a
decade. Prominent approaches include theorem proving in first-order, linear or higher
order logic [PS15; BDS17; CGT18; CFL19; HGT19; HGS21], and model checking of
temporal, strategic and temporal-epistemic logics [JKK18; Jam+20b; JKM20]. Most if
not all results show that the task is very hard due to the prohibitive computational
complexity of the underlying problems. For example, [CFL19; CGT18] conducted a
formal analysis of voting protocols using PROVERIF, and reported that they had to
come up with workarounds for the model in order to the limitations of the tool.

Modelling and analysis of socio-technical systems are even more difficult be-
cause of the vast space of possible human behaviors, and problematic nature of the
assumptions usually made about how users choose their actions. The theory of
socio-technical systems dates back to the work of Trist and Bamforth in 1940s. In
security, perhaps the best studied methodology is based on ceremonies [Car+12], in
particular the Concertina ceremony [Bel+14; BCL15; Mar+15]. Some research has

8A situation underlying this scenario actually took place for some of the voters abroad [Sku20], there
were also reports of this problem by voters from Lublin [Spo20] and Zakopane [Fak20].

104 Chapter 6. Modelling and Verification of PPV2020

conf
φP1 (concrete) φP1 (abstract)

Sat t (s) m(MB) Sat t (s) m(MB)
1,1,1,1 true 0.07 31 true 0.07 30
1,1,1,2 true 0.10 31 true 0.07 30
1,1,1,3 true 0.12 31 true 0.07 30
1,1,2,1 true 0.12 31 true 0.08 31
1,1,2,2 true 0.20 31 true 0.08 31
1,1,2,3 true 0.27 31 true 0.08 31
1,1,3,1 true 0.29 31 true 0.14 31
1,1,3,2 true 0.54 32 true 0.14 31
1,1,3,3 true 0.80 33 true 0.14 31
1,1,4,1 true 0.92 33 true 0.39 31
1,1,4,2 true 1.8 35 true 0.39 31
1,1,4,3 true 2.7 36 true 0.39 31
1,2,2,1 true 0.27 31 true 0.14 31
1,2,2,2 true 0.48 32 true 0.14 31
1,2,2,3 true 0.71 33 true 0.14 31
1,2,3,1 true 0.75 32 true 0.32 31
1,2,3,2 true 1.4 34 true 0.32 31
1,2,3,3 true 2.2 35 true 0.32 31
1,2,4,1 true 2.5 35 true 0.97 32
1,2,4,2 true 4.9 39 true 0.97 32
1,2,4,3 true 7.5 58 true 0.97 32
2,1,1,1 true 5.0 91 true 1.0 32
2,1,1,2 true 21 271 true 1.0 32
2,1,1,3 true 48 618 true 1.0 32
2,1,2,1 true 15 172 true 2.9 34
2,1,2,2 true 64 581 true 2.9 34
2,1,2,3 true 148 1332 true 2.9 34
2,1,3,1 true 52 330 true 9.5 57
2,1,3,2 true 213 1180 true 9.5 57
2,1,3,3 true 496 2796 true 9.5 57
2,1,4,1 true 190 638 true 35 83
2,1,4,2 true 789 2429 true 35 83
2,1,4,3 memout true 35 83
2,2,2,1 true 135 990 true 18 76
2,2,2,2 true 558 3901 true 18 76
2,2,2,3 memout true 18 76
2,2,3,1 true 445 2168 true 59 152
2,2,3,2 memout true 59 152
2,2,3,3 memout true 59 152
2,2,4,1 memout true 203 350
2,2,4,2 memout true 203 350
2,2,4,3 memout true 203 350
3,1,1,1 memout true 80 365
3,1,1,2 memout true 80 365
3,1,1,3 memout true 80 365
3,1,2,1 memout true 241 818
3,1,2,2 memout true 241 818
3,1,2,3 memout true 241 818
3,1,3,1 memout true 793 1882
3,1,3,2 memout true 793 1882
3,1,3,3 memout true 793 1882
3,1,4,1 memout memout

TABLE 6.1: Experimental results for model checking of φP1.

been also based on choreographies [Bru+21]. Moreover, game-theoretic models and
analysis have been used in [BM07; JT17; Bas+17]. Here, follow up on the strand based
on modelling and verification in multi-agent logics [JKK18; Jam+20b; JKM20], while
trying to put more emphasis on the social part of the system outside of the voting
infrastructure.

When analyzing systems that involve human agents, it is important to take into
account that they behave differently from the machines and can make errors, or more
generally, deviate from the prescribed protocol. This can happen due to a variety
of reasons: misunderstanding, inattentiveness, malicious intention, or strategic self-
interested action. Possible deviations from protocol in user behaviour have been

6.5. Related Work 105

conf
φP2 (concrete) φP2 (abstract) φP2 (honest abstract)

Sat t (s) m(MB) Sat t (s) m(MB) Sat t (s) m(MB)
1,1,1,1 false 0.07 31 false 0.06 30 true 0.05 30
1,1,1,2 false 0.09 31 false 0.06 31 true 0.06 30
1,1,1,3 false 0.11 31 false 0.07 31 true 0.06 30
1,1,2,1 false 0.12 31 false 0.08 31 true 0.05 31
1,1,2,2 false 0.23 31 false 0.10 31 true 0.07 31
1,1,2,3 false 0.25 31 false 0.13 31 true 0.08 31
1,1,3,1 false 0.31 31 false 0.15 31 true 0.12 31
1,1,3,2 false 0.52 32 false 0.25 31 true 0.13 31
1,1,3,3 false 0.75 33 false 0.35 31 true 0.17 31
1,1,4,1 false 0.90 33 false 0.40 32 true 0.19 31
1,1,4,2 false 1.7 35 false 0.76 32 true 0.33 31
1,1,4,3 false 2.6 36 false 1.1 33 true 0.69 31
1,2,2,1 false 0.26 32 false 0.14 31 true 0.09 31
1,2,2,2 false 0.45 32 false 0.22 31 true 0.13 31
1,2,2,3 false 0.66 33 false 0.31 31 true 0.16 31
1,2,3,1 false 0.70 32 false 0.33 31 true 0.16 31
1,2,3,2 false 1.4 34 false 0.61 32 true 0.26 31
1,2,3,3 false 2.0 35 false 1.3 32 true 0.36 31
1,2,4,1 false 2.3 35 false 1.0 32 true 0.40 31
1,2,4,2 false 4.7 39 false 2.0 33 true 0.97 32
1,2,4,3 false 7.1 42 false 3.0 34 true 1.1 32
2,1,1,1 false 1.8 36 false 0.95 31 true 0.28 31
2,1,1,2 false 6.9 99 false 3.0 34 true 0.72 31
2,1,1,3 false 16 220 false 6.2 54 true 1.3 32
2,1,2,1 false 7.2 79 false 2.8 34 true 0.71 31
2,1,2,2 false 30 235 false 9.2 57 true 2.3 32
2,1,2,3 false 68 535 false 20 100 true 3.4 34
2,1,3,1 false 26 137 false 9.5 41 true 2.0 33
2,1,3,2 false 104 516 false 32 114 true 5.3 36
2,1,3,3 false 239 1180 false 68 200 true 10 57
2,1,4,1 false 95 305 false 35 84 true 6.4 38
2,1,4,2 false 384 1199 false 119 233 true 18 65
2,1,4,3 false 885 2768 false 254 477 true 33 97
2,2,2,1 false 60 377 false 19 77 true 4.0 33
2,2,2,2 false 241 1439 false 61 189 true 10 53
2,2,2,3 false 549 3338 false 126 382 true 19 74
2,2,3,1 false 205 829 false 61 153 true 10 38
2,2,3,2 false 832 3318 false 199 428 true 29 81
2,2,3,3 memout false 413 881 true 55 130
2,2,4,1 false 729 2026 false 211 338 true 33 70
2,2,4,2 memout false 696 1075 true 92 174
2,2,4,3 memout false 1444 2264 true 177 307
3,1,1,1 false 60 683 false 73 340 true 10 54
3,1,1,2 memout false 384 1855 true 37 153
3,1,1,3 memout memout true 88 332
3,1,2,1 false 346 2387 false 224 769 true 28 99
3,1,2,2 memout memout true 99 293
3,1,2,3 memout memout true 230 667
3,1,3,1 memout false 775 1827 true 81 201
3,1,3,2 memout memout true 283 639
3,1,3,3 memout memout true 661 1503
3,1,4,1 memout memout true 261 451
3,1,4,2 memout memout true 920 1518
3,1,4,3 memout memout true 2157 3626
3,2,2,1 memout memout true 317 667
3,2,2,2 memout memout true 1143 2303
3,2,2,3 memout memout memout
3,2,3,1 memout memout true 895 1427
3,2,3,2 memout memout memout
3,2,3,3 memout memout memout
3,2,4,1 memout memout true 1065 2433
3,2,4,2 memout memout memout
3,2,4,3 memout memout memout
4,1,1,1 memout memout memout

TABLE 6.2: Experimental results for model checking of φP2.

106 Chapter 6. Modelling and Verification of PPV2020

conf
φ−
¬P3 (concrete) φ−

¬P3 (abstract) φ++
¬P3 (concrete) φ−

¬P3 (str. abstract)
Sat t (s) m(MB) Sat t (s) m(MB) Sat t (s) m(MB) Sat t (s) m(MB)

1,1,1,1 false 0.13 31 false 0.058 30 true 0.054 31 true 0.052 30
1,1,1,2 false 0.22 31 false 0.096 31 true 0.049 31 true 0.10 30
1,1,1,3 false 0.40 32 false 0.15 31 true 0.049 31 true 0.17 31
1,1,2,1 false 0.19 31 false 0.13 31 true 0.051 31 true 0.088 31
1,1,2,2 false 0.57 32 false 0.20 31 true 0.064 31 true 0.16 31
1,1,2,3 false 1.1 34 false 0.38 31 true 0.067 31 true 0.35 31
1,1,3,1 false 0.56 32 false 0.20 31 true 0.055 32 true 0.16 31
1,1,3,2 false 1.7 35 false 0.82 31 true 0.060 32 true 0.46 31
1,1,3,3 false 3.8 39 false 1.1 32 true 0.063 32 true 0.98 32
1,1,4,1 false 1.7 34 false 0.85 32 true 0.062 32 true 0.30 31
1,1,4,2 false 6.2 42 false 1.9 34 true 0.066 32 true 1.4 33
1,1,4,3 false 14 71 false 4.0 36 true 0.067 32 true 3.3 35
1,2,2,1 false 0.48 32 false 0.22 31 true 0.061 32 true 0.15 31
1,2,2,2 false 1.6 34 false 0.54 31 true 0.077 32 true 0.40 31
1,2,2,3 false 3.3 54 false 1.0 32 true 0.064 32 true 1.2 31
1,2,3,1 false 1.4 34 false 0.46 31 true 0.087 32 true 0.26 31
1,2,3,2 false 5.1 39 false 1.5 32 true 0.076 32 true 1.1 32
1,2,3,3 false 11 81 false 3.0 34 true 0.082 32 true 2.5 33
1,2,4,1 false 4.9 37 false 1.5 33 true 0.075 32 true 0.74 32
1,2,4,2 false 18 85 false 4.9 36 true 0.075 32 true 3.5 34
1,2,4,3 false 39 142 false 10 41 true 0.075 32 true 8.4 39
2,1,1,1 false 8.3 115 false 2.0 33 true 0.065 31 true 0.62 31
2,1,1,2 false 78 833 false 23 120 true 0.076 31 true 13 77
2,1,1,3 false 323 3496 false 105 495 true 0.062 32 true 75 337
2,1,2,1 false 36 230 false 6.1 53 true 0.070 32 true 1.6 32
2,1,2,2 false 336 2145 false 71 265 true 0.088 32 true 39 152
2,1,2,3 memout false 321 1140 true 0.079 32 true 224 748
2,1,3,1 false 105 486 false 20 84 true 0.074 32 true 4.8 36
2,1,3,2 memout false 244 613 true 0.082 32 true 129 326
2,1,3,3 memout false 1114 2752 true 0.10 32 true 741 1745
2,1,4,1 false 400 1160 false 75 152 true 0.083 32 true 17 48
2,1,4,2 memout false 896 1502 true 0.094 32 true 457 761
2,1,4,3 memout memout true 0.11 32 memout
2,2,2,1 false 273 1424 false 40 121 true 0.091 32 true 10 53
2,2,2,2 memout false 443 1156 true 0.11 32 true 241 604
2,2,2,3 memout memout true 0.10 32 true 1332 3282
2,2,3,1 false 904 3352 memout true 0.097 32 true 32 83
2,2,3,2 memout memout true 0.096 32 true 756 1388
2,2,3,3 memout memout true 0.094 33 memout
2,2,4,1 memout memout true 0.097 33 true 107 163
2,2,4,2 memout memout true 0.099 33 true 2575 3482
2,2,4,3 memout memout true 0.14 33 memout
3,1,1,1 memout memout true 0.073 32 true 92 289
3,1,1,2 memout memout true 0.070 32 memout
3,1,1,3 memout memout true 0.083 32 memout
3,1,2,1 memout memout true 0.11 32 true 167 622
3,1,2,2 memout memout true 0.081 32 memout
3,1,2,3 memout memout true 0.089 32 memout
3,1,3,1 memout memout true 0.093 32 true 296 1446
3,1,3,2 memout memout true 0.10 33 memout
3,1,3,3 memout memout true 0.093 33 memout
3,1,4,1 memout memout true 0.11 33 true 811 3828
3,1,4,2 memout memout true 0.14 33 memout
3,1,4,3 memout memout true 0.11 33 memout
3,2,2,1 memout memout true 0.14 33 true 1056 6175
3,2,2,2 memout memout true 0.12 33 memout
3,2,2,3 memout memout true 0.11 33 memout
3,2,3,1 memout memout true 0.12 33 memout
3,2,3,2 memout memout true 0.15 33 memout

TABLE 6.3: Experimental results for model checking of (under-approximating) φ−
¬P3 and

φ++
¬P3 in a model, where MO may prepare EP without a valid stamp.

6.6. Conclusions 107

studied in [BB06; BRS16], and we follow up on those ideas. To this end, we use the
skilled-human approach to capture a variety of users’ behaviours in our model of postal
voting. That is, we extend the protocol specification of an “honest” behaviour through
a hierarchy of deviation sets, i.e., sets of actions that deviate from the protocol and
expand the repertoire of the participants. As pointed out in [BRS16], there is a trade-
off between the breadth of the deviation model and the computational feasibility of
the formal analysis. In fact, our experiments in Section 6.4 show that even for the
skilled human approach only, the explicit state model checking becomes hard enough,
and dedicated techniques must be used to mitigate the complexity.
Related verification tools. We use the UPPAAL model checker [BDL04] in our case
study, mainly because of its GUI and flexible system specification language. Other
verification tools that we considered when preparing the study are:

• MCMAS [LQR17]: a state-of-art OBDD-based symbolic model checker for agent-
based systems. The system is described using ISPL (Interpreted Systems Program-
ming Language), and the requirements are specified as formulae of strategic or
temporal-epistemic properties;

• Tamarin-prover [Mei+13]: a tool for security protocol verification and not a model
checker per se. The system specification language is based on multiset rewriting
theories and the requirements are specified as first-order temporal properties;

• STV [KJK19; Kur+21]: an experimental toolbox for explicit-state model checking of
strategic properties; at the moment, custom input models are not fully supported
and may lack documentation;

• ProVerif [Bla+16]: an automated cryptographic protocol verifier, in the symbolic
(Dolev-Yao) model. The protocol representation is based on Horn clauses; it can
be used for proving secrecy, authentication and equivalence properties.

Among the above tools, only STV, UPPAAL, and (to a lesser extent) TAMARIN provide
a graphical view of the system structure. Of those, only UPPAAL allows for interactive
graphical system specification, which we claim to be crucial in modelling and analysis of
voting protocols. Real-life voting procedures include the interaction of numerous par-
ticipants, each of them with a possibly different agenda and capabilities. Furthermore,
the behaviour of most participants is characterized with a mixture of controllable
and uncontrollable non-determinism. In consequence, interactive GUI is crucial if we
want to ensure that the model we verify and the one we want to verify are the same
thing, cf. [Jam+20b] for discussion.

Moreover, UPPAAL (and, to a smaller extent, STV) allow for parameterized speci-
fication of the system, without forcing the designer to program a dedicated model-
generator (e.g., as in the verification of SELENE protocol with MCMAS in [JKK18]).

6.6 Conclusions

In this chapter, we demonstrates how multi-agent methodology can be used to
specify and analyse the impact of human aspects on the security and integrity of
voting protocols. We also argue that postal voting protocols provide good material
for case studies, that will hopefully increase our understanding of the subject, and
help to design better protocols.

Speaking in more concrete terms, we propose a preliminary analysis of the Polish
postal vote used in the presidential election of 2020. We use Multi-Agent Graphs to
represent the participants and their interaction, and formulas of multi-agent logics
CTL and ATL to encode interesting properties. Then, we transform those to match the

108 Chapter 6. Modelling and Verification of PPV2020

input of the state-of-the-art model checker UPPAAL. This way, the obtained models
are given an intuitive visual representation and a modular structure that allows for
easier modifications and detection of errors. We also use a recently proposed method
of state abstraction by variable removal to reduce the models and mitigate state-space
explosion.

Despite the limitations of UPPAAL in the expressive power of its property speci-
fication language, we have managed to conclusively verify the selected properties
for non-trivial configurations of voters, electoral commissions, and candidates. To
this end, we used approximation over formulas (by providing weaker or stronger
versions of the original requirements) and approximation w.r.t. models (by gener-
ating appropriate abstract models). Choosing the right approximations was by no
means obvious and required some skill. We believe, however, that this is inevitable:
successful formal analysis of real-life scenarios requires both science and art. With
more than a little bit of understanding and domain knowledge.

For future work we plan to employ an alternative verification tool to conduct
analysis of a broader scope of interesting properties and adapt our abstraction meth-
ods for that. One of the interesting directions is to adopt a methodology defining
families of possible human mistakes as in [SV20], where the human agent deviates
from the protocol through a combination of skipping, modifying, or adding action(s),
or in [BGS22], which also advocates using the epistemic modal logic distinguishing
between knowledge and possession.

109

Chapter 7

One Model to Bring Them All:
Hierarchical and Parameterized
Specification of Polish Postal Voting

7.1 Introduction . 110
7.2 Voting Scenario . 110
7.3 Model . 111

7.3.1 Parametrisation through Configuration 111
7.3.2 Active Agents and Passive Objects . 112

7.4 Verification . 114
7.5 Experimental Results . 116
7.6 Related Work . 117
7.7 Conclusions . 118

As was already observed in Chapter 3 and Chapter 6, the complexity of multi-
agent system verification in practice often quickly gets obstructed by the state space
explosion, and sometimes even in basic configurations with a few agents only. Con-
sequently, this necessitates the use of model reduction techniques, such as the ab-
straction method. On the other hand, both of the aforementioned parameterized
models provided an arguably high-level (coarse) view, which omits a lot of details,
and mainly focused on capturing the honest behaviour of the agents involved, with
exception to some experimental cases, when the model was extended to accommodate
verification of particular properties.

In this chapter, we present a more sophisticated approach of modelling, which
aims to refine the models of Polish Postal Voting 2020 from Chapter 6 while main-
taining clarity and simplicity, both visual and procedural. We propose a preliminary
hierarchical model of the procedure in the form of a Multi-Agent Graph and formalize
selected integrity and security properties by formulas of agent logic. Within a single
parameterized specification of a model we capture a whole family of model variants,
which can be easily selected for verification, both in whole and in parts. The proposed
modelling approach is intuitive, scalable and highly flexible, and provides a clear
distinction between knowing some abstract facts and possessing some physical object,
which can be queried for facts about its attributes and possibly interacted with to
alter them. Then, we transform the models and formulas so that they can be input
to the state-of-art model checker UPPAAL. Furthermore, we discuss how certain
internal relations between model variants can be derived and used to propagate the
verification result of one further onto the other.

110 Chapter 7. Hierarchical Specification of Polish Postal Voting

7.1 Introduction

Postal Voting (PV) was the only way for voting in Polish Presidential Elections (PPE)
2020 for voters abroad, under quarantine, on ships and in a few other designated
areas, and an optional way locally. The whole procedure was organized under
conditions of both political and time pressure, with no proper analysis or prior study
of recently proposed schemes (e.g., [BRT13; KS19]). This only served to increase
the number of vulnerabilities and issues, that could have arguably been avoided
otherwise [And20]. For example, many voters reported receiving invalid ballots,
which were not genuinely stamped: these were merely photocopied by their local
authority unit, either deliberately or due to a lack of clear guidelines to follow [Sku20;
Fak20; Spo20].

In this chapter we will solely focus on the postal part of elections. According
to [Pańd], during the second round of PPE 2020 4.81% of votes were cast using
postal channel, of which 64.98% were sent abroad. Although those votes make up a
relatively small fraction of the total, an exploit of PV could be sufficient to change
the actual result. Note that the last three presidential elections in Poland all ended in
the second round and with a fairly narrow margin-of-victory: 6.02% in 2010, 3.1% in
2015, and 2.06% in 2020 [Pańb; Pańc; Pańd].

7.2 Voting Scenario

This section provides a brief overview of the Postal Voting (PV) protocol used in the
Polish Presidential Elections 2020 (PPE). The description largely overlaps with that in
Section 6.2 and is included here for the sake of completeness. The complete list of
associated legislations (including notices, resolutions and ordinances), public data
sheets of results and more, was aggregated by the National Electoral Commission and
made available online [Pańd]. Additionally, the comprehensive list of terminology
(used in legal acts) together with Polish-to-English translations can be found in [Głó].

In general terms, the scheme runs as follows:

• A Voter who intends to vote by post must fill an Intention Form (IF) with personal
information and address for delivery of Election Package (EP), and declare that
with the Municipal Office (or Consulate), to which she is assigned in the voters
register. It is also possible to collect EP in-person by specifying that in-place of
delivery address.

• Municipal Office (or Consulate) collects the intentions, checks the voters register,
and prepares and distributes EPs to eligible applicants. A complete EP contains
an instruction card, a stamped ballot, a voting card, and two envelopes: one for
the ballot and one to be returned.

• Upon receipt of EP, a voter should put a single ‘X’ against a candidate of her choice
on the ballot and write down her national identifier number (PESEL) on a voting
card and sign that. A ballot must be put into a ballot envelope (BE), which is put
together with a voting card inside a return envelope (RE). Both BE and RE must
be sealed. Deviation in any of the above steps (e.g., misplacement of a voting card)
would result with invalidated vote.

• A completed RE can either be turned in directly to the Election Commission or
sent by post to the Municipal Office (or Consulate), where it will be stored until
the day of elections.

7.3. Model 111

• During the day of elections, an Election Commission processes received REs,
checking information on the voting card with an electoral registry (i.e., that signa-
ture is present and PESEL belongs to an eligible voter). If all checks are passed,
then BE is put into the ballot box.

• Finally, when all REs were collected and processed, the BEs from the ballot box
are opened and the results are tallied.

According to Electoral Code [Pańa], the candidate who receives more than half of
all validly cast votes becomes a President. If none of the candidates received the
necessary number of votes, in 14 days a second round of elections is held between
the two candidates with the highest number of votes.

7.3 Model

This section will outline the concepts of the hierarchical modelling approach and
demonstrate its application to the case of Polish Postal Voting using UPPAAL.

7.3.1 Parametrisation through Configuration

We define two kinds of configuration: static for the MAS (denoted as C∗) and dynamic
for the agents (denoted as Ci for agent i). The former mainly concerns the predefined
constants, variable domains and their initial values. For example: a number of
candidates, the size of a tally, number of choices on the ballot. Whereas, the latter
considers what kind of agent activity (a collection of compound actions) will be taken
into account and whether those could repeat. For example: if the Voter forgets to sign
a voting card, trades her election package to another agent, or attempts to vote more
than once.

An agent activity can either be invoked by a parent agent process or independent
from others (i.e., continuously running in the background). The former provides
a simple control flow structure, while the latter gives a realistic representation of
procedures that can take place at virtually any time. An agent template with its
activities will be called a module.

Intuitively dynamic configuration space can be viewed as a lattice (obtained
from the powerset of captured actions with subset inclusion). A simplified example
– only capturing abstract activities – is depicted in Figure 7.2. The top-/bottom-
most dynamic configurations within a module will be referred to as apex-/baseline-
configuration respectively.

Note that, due to dynamic being multi-dimensional (one per agent type), identi-
fication of an anti-chain, which for a given safety properties “splits” the space into
configurations that satisfy it and those that do not, becomes non-trivial.

From a given configuration, an input XML model for UPPAAL is generated using
a template engine. It allows extending the built-in syntax of UPPAAL by injecting
code fragments into the model specification, which shall be pre-computed against
the configuration data. For instance, the constant number of candidates NC=2 pa-
rameterized the variable domains for the tally (tally[NC]) and crossed cell on the
ballot (ep_x) as Array<int>(2) and Range<-1,2> respectively. In this way, by writing
a single specification file, we effectively obtain a whole family of model variants.

The source file for generating the model together with its configurations used in
experiments can be found in https://github.com/submission29/model.

https://github.com/submission29/model

112 Chapter 7. Hierarchical Specification of Polish Postal Voting

{
"NV":1, // Number of Voters
"NC":2, // Number of Candidates
"NA":1, // Number of Authority Districts
"NPO":1, // Number of Postal Offices
"NEP":2, // Number of Election Packages
"NIF":2 // Number of Intention Forms

}

FIGURE 7.1: An example static-configuration (a JSON-file).

FIGURE 7.2: Hasse diagram of the fragment of Voter’s dynamic configuration space,
related to acquiring an election package, and with actions from the same activities
collapsed. Nodes stand for possible activity and directed edges for the proper superset

relation.

7.3.2 Active Agents and Passive Objects

The voter module (Fig. 7.3) serves as an entry point and provides an intuitive guide-
line of possible interweaving of the agent’s activities (Figures 7.4, 7.6 and 7.7a), such
as:

• Voter__intention: declaration of an intention to vote by post,
• Voter__acquire: collection of an election package,
• Voter__fill: filling up the owned election package,
• Voter__handout: hand out the election package to another agent,
• Voter__cast: casting the vote by sending the return envelope from the election

package.

An authority module represents the combined entity of Municipal Office and
Election Commission employees. To accurately capture the nature of its distributed
activities, those were modelled as independent subprocesses, such as:

• Authority__intention: collection and storage of the intentions from the Voters,
• Authority__prepare: its processing and preparing of the election packages,
• Authority__distribute: distribution of election packages to the Voters,
• Authority__aggregate: collection and storage of return envelopes,
• Authority__record: validation of cast votes and tallying the results.

7.3. Model 113

FIGURE 7.3: A Voter agent graph template, which serves as an entry-point for a module
instance.

Lastly, the Postal Office module includes three independently executed activities:

• PostOffice__accept: pick up of the package from the sender (or postoffice letter-
box),

• PostOffice__deliver: forward the package to its receiver (either directly or
through a letterbox),

• PostOffice__alter: disclosure of package content and/or its modification.

Additionally, physical objects are also modelled as processes, so that the difference
between the knowledge (captured by variables) and possession of an actual object,
attributes of which can be queried or changed only by its owner, is more distinctive.
Formally speaking, those can also be classified as agents, however reasoning about
them in such a way makes little sense and could lead to a variety of semantic para-
doxes (e.g., an object being a part of coalition or a having a strategy). Therefore, one
can assume that objects – despite being represented as a set of processes – are an
auxiliary part of the environment.

For this model we utilize two kinds of objects: Intention Form (IF) and Election
Package (EP). When modelling objects via processes, the upper bound on the number
of their instances must be set. Here, as the fairness assumption, we also fix the lower
bound equal to the number of Voters, such that there is at least one IF and EP per
Voter. IF is composed of the voter’s signature, the address for EP delivery and the
target MO. EP is represented as a tuple of ballot stamp, voter’s card signature, and
selected candidate on the ballot (with −1 for the case, when there is more than a
single cross). A filled EP with sealed envelopes corresponds to a Return Envelope
(RE).

In all aforementioned cases, processes instantiated from the same module will
share the same identifiers and variables. Each instance of the agent module (resp.
object) is assigned an identifier that is unique within other modules (resp. objects).
Moreover, the space of values is partitioned in a way that allows to derive from an ID
its agent type. Additionally, every agent ID is mapped to a secondary ID representing
its mailbox or storage. This allows capturing the handover of objects in a rather
elegant way (e.g., in contrast with merely transmitting the object’s data through
traditional buffers) – passing “ownership” to a receiver’s secondary ID.

For every invoked activity a pair of synchronous transitions specifying its start
and finish must be defined in (invoked) activity and (invoking) parent templates. By
convention, channel names for such transition are built from prefixing an activity

114 Chapter 7. Hierarchical Specification of Polish Postal Voting

(A) When intention is expressed synchronously it
must be complete (i.e., no field may be left blank).
This is not enforced for the asynchronous alter-
native. It is assumed that Voter “knows” her na-
tional ID number and signature, and addresses of

all other agents.

(B) An EP can be collected from Au-
thority, sent to Voter’s mailbox, forged,
traded or stolen from other Voter’s mail-
box. By assumption, forged EPs do not

have a valid stamp.

FIGURE 7.4: Template for invoked activities Voter__intention (A) and Voter__acquire (B).

name with enter for the start and exit for the finish, possibly followed by an array
index operator [] to confine the synchronisation to processes of the same module in-
stance only (i.e., of the same ID). For example, Voter’s activity Intention (Fig. 7.4a) is
invoked from a parental process of the Voter (Figure 7.3) by taking a pair of matching1

transitions labelled with enterIntention[id]? and enterIntention[id]!.

7.4 Verification

We will now specify some voting system properties and demonstrate, how those can
be verified or at least approximated: It should be emphasised that these requirements
do not make up an exhaustive list and mainly include properties, which authors
found interesting for illustration.

Experimental results will be mainly around a static-configuration with single
Voter as in Figure 7.1. Already when increasing the number of voters up to 2, the
verification aborts due to lack of memory. The reason for this was a so-called State-
Space Explosion (SSE) problem – an exponential blow-up in the number of states
with relation to the number of processes and variables. SSE is known as one of the

1Note, that for all occurring templates, the variable id is a template parameter (i.e., it is context-
sensitive). Upon process instantiation every occurrence of id shall be substituted with a constant
literal.

7.4. Verification 115

FIGURE 7.5: Election package template. A voting card can only be filled in nseal and
bseal location, and a ballot only in nseal. By assumption, these forms cannot be easily
duplicated, therefore only type of possible “overwriting” existing attribute is to put extra

cross on the ballot.

major obstacles for practical model checking of real-world systems, and a variety of
techniques to mitigate that were proposed in the last 30 years. Notable examples, that
are compatible with MAS semantics, are: partial-order reduction [Pel93; Jam+20a],
on-the-fly verification [CKM01] and state abstraction [CC77; JK23a].

For reachability properties: when satisfied, the witnessing path will usually
propagate to more complex configurations. Whereas in case of the satisfied safety
properties, despite lack of formal guarantees the same would hold for other static
configurations, especially those with a greater number of voters, obtained results
could greatly increase the confidence in the system. Moreover, it has been known
that for some properties, it often suffices to look for small counter-examples [ACK16].

Note that, if a system — where some static-configuration is fixed and all modules
are in their apex-configuration — satisfies some safety property, then it is naturally
guaranteed to hold for every other dynamic-configuration as well, as those will
always have less or equal number of possible transitions and reachable states.

We start with a weak resistance to ballot stuffing, saying that the number of tallied
votes altogether must never exceed the number of eligible voters. It is expressed by:

AG(NV >= sum(i:int[1,NC])tally[i]) (φ1)

where NV and NC are the total number of voters and candidates from the static-
configuration. The verification of a model over selected configurations all resulted
with “property satisfied” output, when the amount of required memory did not
exceed the available one.

Next, consider the disenfranchisement attack, which deprives an eligible voter an
opportunity to to cast a valid vote. For simplicity, we use a formula that captures an

116 Chapter 7. Hierarchical Specification of Polish Postal Voting

(A) An EP can be manipulated in
two ways: sealing the ballot or re-
turn envelope, and filling the forms,
which are not inside a sealed enve-

lope yet.

(B) A completed RE can either be personally placed into Mu-
nicipal Office postbox, turned in to Election Commission, or

handed in for delivery by the Post Office.

FIGURE 7.6: Template for invoked activities Voter__fill (A) and Voter__cast (B).

static configuration #St t (sec) φ1 φ2

1,1,1,1,1,1 7.9e+5 5.3 ⊕ ⊙,⊖
1,1,1,1,1,2 7.8e+6 102 ⊕ ⊙,⊖
1,1,1,1,2,1 9.1e+6 91 ⊕ ⊙,⊖
1,1,1,1,2,2 2.8e+7 466 ⊕ ⊙,⊖
1,2,1,1,2,2 3.9e+7 508 ⊕ ⊙,⊖
1,2,1,2,2,2 memout ⊙ ⊙,⊖
2,1,1,1,2,2 memout ⊙ ⊙,⊖
2,2,2,2,2,2 memout ⊙ ⊙,⊖

TABLE 7.1: Experimental results for selected static-configurations.

attack against all voters:

AG(0==sum(i:int[1,NC])tally[i]) (φ2)

That can be deployed by: (1) Authority with fixed a dynamic-configuration (partial
strategy), such that target Voter(s) never receives an EP or gets sent one with no
stamp, or (2) Postal Office, which “loses” or “alters” certain EP and RE. Notably, there
is no way the Voter could defend against the former, while in the latter case, a Voter
could protect themselves by only communicating with the Authority directly.

7.5 Experimental Results

We report a series of experimental results with different configurations in Table 7.1.
Those were performed using Uppaal v4.1.24 on a machine with Intel i7-8665U 2.11
GHz CPU with 16 GB RAM, running Ubuntu 22.04.

In Table 7.1 columns show the static-configuration (in order: number of voters,
candidates, authority entities, postal offices, election packages and intention forms),
number of states in the unfolded LTS for the apex dynamic-configuration with no

7.6. Related Work 117

(A) For the handout EP can ei-
ther be put into the receiver’s post-
box (async) or turned in person-

ally (sync).

(B) By assumption, anyone can print a blank IF (and therefore
claim an unowned instance of that). Moreover, an “overwrite” of
its fields can be accomplished by using an ordinary photocopy

with a small piece of paper overlaying old values.

FIGURE 7.7: Template for invoked activity Voter__handout (A) and Intention Form (B).

reoccurring activities2, time spent for its generation and verification. The last two
columns display the verification output for φ1 and φ2, where ⊕, ⊙, ⊖ say that the
safety property: holds for the apex-configuration (i.e., all its descendant as well), holds
for some dynamic-configuration, and does not hold for some dynamic-configurations
respectively. Note that for ⊙, ⊖ the number of states and verification time might
differ (it can only be less or equal than that from the “ancestor”).

7.6 Related Work

The work also draws inspiration from analysis of Swiss Postal Voting Process [KS19],
where authors follow Risk Assessment methodology, but report a rather abstract
model, and perform the whole analysis manually.

For the hierarchical representation of multi-agent system behaviour we utilize
MAS graphs proposed in [JRK22]. The parent-child relation is established by means
of designated synchronous transitions. Moreover, inspired by fundamental ideas
from [Hoa13], the system scalability and modularity are further extended by the
isolation of constants, static and dynamic behaviour parameters.

Similarly to [BGS22], we design a model that captures the distinction between
the knowledge and the possession of an actual object. However, our approach to
capturing human behaviour is more general: deviations from “honest behaviour” are
not restricted solely to those arising from the exchange of information or interaction
with the objects. Moreover, we propose a much broader family of behavioural
categories, which is defined by the number of agent actions and activities (and not
fixed to a powerset over 4 predefined traits of ceremony participants). It extends
the top-down modelling paradigm of “skilled human” from [BRS16] by adding
parameterized configurations and having modular components. Our approach for
behavioural categories is also more general: firstly, it is multidimensional (i.e., defined

2Due to the SSE, we restrict the scope of experiments to the sub-lattice of the product of all dynamic-
configurations, where each activity of an agent occurs at most once.

118 Chapter 7. Hierarchical Specification of Polish Postal Voting

for each agent), and, secondly, it is not classified wrt fixed semantics (i.e., not limited
to merely partitioning behaviours into honest and dishonest).

7.7 Conclusions

In this chapter, we proposed a hierarchical modelling approach and demonstrated
that with a model of postal voting protocol. We show how various socio-technical
interactions could be captured while maintaining the system specification clear and
“readable”. Despite Uppaal’s limited expressive power, it can be used for verification
of safety properties or witness checks for the success of a partial strategy (captured by
certain dynamic-configuration for the agent modules in coalition). We do believe the
modelling method itself is generic enough to be applied beyond the PPV scenario.

While we were able to manually follow the hierarchical paradigm throughout
designing the model, it would be useful to have an assistance tool to guarantee
coherence with the proposed approach.

For future work, we plan to combine the verification workflow with reduction
techniques and conduct the analysis with even more complex configurations and
scrupulous interactions. This could also involve utilisation of other verification tools,
which support more expressive logics [KJK19; Mei+13].

119

Chapter 8

Scalable Verification of Social
Explainable AI by Variable
Abstraction

8.1 Introduction . 119
8.2 Social Explainable AI . 121
8.3 Formal Framework . 121
8.4 Formal Models of SAI . 122

8.4.1 AI Agents . 123
8.4.2 Scenarios . 124

8.5 Experiments . 125
8.5.1 Requirement Specification . 126
8.5.2 Dealing with State-Space Explosion . 127
8.5.3 Results and Discussion . 127

8.6 Conclusions . 128

Social Explainable AI is a new direction in artificial intelligence that emphasises
decentralisation, transparency, social context, and focus on human users. SAI research
is still at an early stage and concentrates mainly on delivering the intended function-
alities. At the same time, formal analysis and verification of the proposed solutions is
rare. The experimental results presented in Chapter 5 examine one specific variant of
gossip learning for the Social AI (SAI) protocol.

In this chapter, we will provide a more comprehensive study of the parameterized
family of SAI models, which involves different types of network topologies, attackers
and information exchange. In particular, we demonstrate how branching-time logic
formulas can be used to express certain interesting properties of the protocol, and then
verified using the state-of-the-art temporal model checker UPPAAL. In cases like this,
the state-space explosion and the resulting complexity of verification is a significant
problem. We mitigate this through state abstraction and demonstrate the advantages
in practice by using a novel tool for user-friendly abstractions EASYABSTRACT from
Chapter 5.

8.1 Introduction

Artificial intelligence solutions have become ubiquitous in daily life, including social
media, car navigation, recommendation algorithms, etc. Moreover, AI provides back-
end solutions to many business processes, resulting in a huge societal and economic

120 Chapter 8. Scalable Verification of SAI

impact. Social Explainable AI (SAI) is a new, powerful idea in artificial intelligence
research [Soc24; CKO22]. SAI emphasises decentralisation, human-centricity, and
explainability, which is in line with the trend to move away from classical, centralised
machine learning. This is essential – not only for technical reasons like scalability,
but also to meet the more and more stringent ethical requirements with respect to
transparency and trustworthiness of data storage and computation [Dra+20; Ott+22].
Even more importantly, SAI tries to put the human user in the spotlight, and move
the focus away from the technological infrastructure [CP18; Top+21; FPC22].

Social Explainable AI is a new concept and a subject of ongoing research. It
remains to be seen if it will deliver effective, transparent, and mindful AI solutions.
SAI should be extensively studied, including formal verification of relevant require-
ments. Importantly, this should encompass the possible side effects of interaction that
involves AI components and human users in complex environments. In particular,
one should carefully analyse the possibilities of adversarial misuse and abuse of the
interaction, e.g., by means of impersonation or man-in-the-middle attacks [DY83;
Gol11]. In those scenarios, one or more nodes of the interaction network are taken
over by a malicious party that tries to disrupt communication, corrupt data, and/or
spread false information. The design of SAI must be resistant to such abuse; other-
wise it contains a vulnerability which will be sooner or later exploited. While the
topic of adversarial attacks on machine learning algorithms is an established topic
of research [GMP18; KW19; Kum+20], the research on SAI has mainly focused on
its expected functionalities and ideal environments of execution.1 This is probably
because SAI environments are very complex: both conceptually, computationally,
and socially. Thus, a realistic study of their possible unintended behaviors is very
challenging.

[KJS23] proposed that SAI can benefit from the use of formal methods to analyze
the behaviours that can possibly emerge. In particular, a SAI protocol can be seen as an
example of a multi-agent system [Wei99; SL09] that includes human as well as artificial
agents interacting in a mixed social/computational environment. Consequently, one
can use model checking [Cla+18], which is arguably the most successful framework of
formal verification, to specify, visualise, and analyse SAI designs with respect to the
relevant properties. The study in [KJS23] concentrated on the verification of properties
related to strategic ability of agents and their groups to achieve their goals [BGJ15],
using appropriate model checking tools, such as STV [Kur+21].

The results were promising but also showed that the high computational complex-
ity of verification for strategic properties only allows for the analysis of very simple
models. In this work, we propose to focus on temporal instead of strategic model
checking. This way, we lose some of the expressivity with respect to which require-
ments can be analysed, but we gain on the feasibility of the verification process. We
use multi-agent graphs [JK23a] to specify the agents and their interaction, and formulas
of branching-time temporal logic CTL [Eme90] to formalize the interesting properties.
Further, we apply the state-of-the-art model checker UPPAAL [BDL04] to automati-
cally verify those properties. Despite lower verification complexity, the formal models
of SAI still suffer from the so-called state space explosion [Cla+18]. To mitigate it, we use
the recent experimental model reduction tool EASYABSTRACT [JK23b] that clusters
similar states of the formal model in a provably correct and user-friendly way.

1With the notable exception of [KJS23].

8.2. Social Explainable AI 121

8.2 Social Explainable AI

Social Explainable AI [Soc24; CKO22; FPC22], SAI in short, is a powerful idea whose
goal is to address important drawbacks of the currently dominant AI approaches.
First and foremost, the current machine learning-based systems are predominantly
centralised. The huge size of data collections used in the learning process, as well as
the complexity of the resulting AI models (typically, deep neural networks), make the
resulting AI systems effectively black boxes, i.e., systems that do their job remarkably
well, but resist deeper interpretation by users and even by machine learning experts.
This naturally raises issues of safety and trustworthiness. Moreover, that often
requires to store a large collection of sensitive data in a single, central location,
which in turn raises the questions of feasibility, privacy, data protection, as well as
compliance with legal regulations regarding data ownership.

In contrast, SAI envisions novel machine learning-based AI systems with the
following foci:

Individuation. The main architecture is based on “Personal AI Valets” (PAIVs) as-
sociated with human users, and each acting as the user’s proxy in a complex
ecosystem of interacting agents;

Personalisation. Each PAIV processes the data through an explainable AI model
tailored to the specific characteristics of its user;

Purposeful interaction. The machine learning and decision making in PAIVs are
obtained through interaction, starting from the local AI models and making
them interact with each other;

Human-centricity. AI algorithms and PAIV interactions are driven by quantifiable
models of the individual and social behaviour of their human users;

Explainability by design. Machine Learning techniques produce explainable AI
models through quantifiable human behavioural models and network science
analysis.

The current attempts at building SAI [Pal+23a; Pal+23b] use gossip learning as
the ML regime for PAIVs [Soc22; HDJ19; HDJ21]. An experimental simulation
tool to assess the effectiveness of the process and functionality of the resulting AI
components is available in [LBP22]. In this work, we focus on modeling the multi-agent
interaction in the learning process, and formal verification of the interaction by model
checking. We model the network of PAIVs as an asynchronous multi-agent graph [JK23a],
MAS graph in short, and formalize its properties as formulas of branching-time temporal
logic CTL [Eme90]. Then, we use the state-of-art model checker UPPAAL [BDL04] to
verify interesting properties of SAI, and the recent experimental model reduction tool
EASYABSTRACT [JK23b] to mitigate the complexity of the verification process.

The formal framework is introduced in Section 8.3. In Section 8.4, we present
our MAS graphs for SAI, including models of possible adversarial behaviors, in-
spired by [KJS23]. In Section 8.5, we formalize several properties and conduct model
checking experiments.

8.3 Formal Framework

We will now briefly recall the formal machinery from Chapters 2 and 4 used in the
rest of the chapter. For more details and in-depth discussions, we refer the interested
reader to [Eme90; JK23a; JK23b].

122 Chapter 8. Scalable Verification of SAI

To specify the possible behaviours of the system, we use MAS graphs [JK23a],
based on standard models of concurrency [Pri83], and compatible with UPPAAL

model specifications [BDL04]. They are composed of the agent graphs. A MAS template
treats each agent graph as a template and specifies the number of its instances that
occur in the verified system (each differing only by the value of the special variable
id).

An example of MAS template, which is parameterized by a variable id, is shown
in Fig. 8.1.

Every MAS graph can be transformed to its combined MAS graph representing the
behaviour of the system as a whole. A global model is obtained from a combined MAS
graph by unfolding it to the labelled transition system where states are defined by a
tuple of location and valuations of all the variables. Such models are usually huge
due to the well-known state-space explosion. Very often, this is the main bottleneck
of the verification procedure.
Branching-time logic ACTL. To express requirements, we use the universal fragment
of the branching-time logic CTL [Eme90], denoted ACTL, with A (“for every path”) as
the only path quantifier. Refer to Definition 2.8 and Definition 2.9 for details on its
syntax and semantics.

Recall that UPPAAL uses a non-standard interpretation of formulas using the AF
combination of quantifiers, as it admits non-maximal runs in the interpretation of “for
every path” (cf, Section 2.4). Fortunately, we have come up with a fix that restores
the standard semantics. We present it in Section 8.5.
User-friendly state abstraction. To mitigate the impact of state space explosion,
we use state abstraction, i.e., a method that reduces the state space by clustering
similar concrete states in the MAS model into a single abstract state. In order for
the scheme to be practical, it must be easy to use. Moreover, it has to avoid the
generation of the full concrete model, i.e., circumvent the complexity bottleneck.
We will employ EASYABSTRACT — an open-source abstraction tool from Chapter 5
— that implements method proposed earlier in Chapter 4 to produce two abstract
models a may-abstraction (that over-approximates the concrete states and transitions)
and a must-abstraction (that under-approximates them). We remind that if an ACTL⋆

formula is true in the may-abstraction, then it must be true in the concrete model, and
if it is false in the must-abstraction, then it must be false in the concrete model.

8.4 Formal Models of SAI

In this section we describe our new formal models of SAI. The models are aimed at
representing both the intended and adversarial behavior of PAIVs. The former is
modeled through so-called “honest” AI agents. For the latter, we use two kinds of
malicious AI agents: an “impersonator” and a “man-in-the-middle” attacker. Our
new models have been strongly inspired by [KJS23], where SAI were specified us-
ing Asynchronous Multi-Agent Systems (AMAS) and verified using the STV model
checker. In this work, we use MAS Graphs for the modelling part, and the UPPAAL

model checker for verification. MAS Graphs allow for more flexibility than AMAS in
the specification of the formal model. Moreover, UPPAAL better avoids the state-space
explosion than STV. In consequence, we have been able to create and verify richer
and more sophisticated models of SAI than [KJS23], e.g., by considering different
topologies of sharing the machine learning models between agents. Moreover, tempo-
ral verification of MAS Graphs admits practical model reductions of [JK23a; JK23b],
which we employ in this work to mitigate the complexity of the verification process.

8.4. Formal Models of SAI 123

A preliminary take on MAS Graph-based models and abstraction for SAI was
reported Section 5.5.2, but that was mainly done to demonstrate the functionality of
the abstraction tool, and considered only one particular variant of SAI models.

We begin with a high-level overview of the system and AI agent behaviour. Then,
we provide several variants for the lower-level specification, which will further
establish the scope for experiments in Section 8.5.

FIGURE 8.1: A template of AI agent in meta-configuration: reversed-cascade-network,
sharing via average, no attacker.

8.4.1 AI Agents

The system is composed of a number of AI agents, each having a unique identifier.
An example agent graph template for an AI agent is shown in Fig. 8.1.

The local model of an AI agent involves three subsequent phases: data gather-
ing, learning and sharing. During the data gathering phase agent collects the data
required for the learning. The amount of data is represented by a local variable data,
which is incremented by taking the corresponding transition multiple times. When
the gathering phase is finished, the data gets processed and categorized as either
incomplete, complete or excessive. Next, in the learning phase, the agent proceeds

124 Chapter 8. Scalable Verification of SAI

with training its machine learning component (ML-component in short), based on
the previously acquired data. Depending on data completeness and the number
of learning iterations, the quality of the ML-component is adjusted. Notably, the
learning process does not affect the quality when no data has been acquired, and
overtraining generally decreases the quality of the component.

It is also possible for an agent to completely skip data gathering and/or learning
phases.

Afterwards, in the sharing phase, the agent shares its ML-component with other AI
agents. Here we assume the case of asymmetric exchange, where the sender sends its
ML-component and the receiver merges it with its own component. Which pairs of
agents can communicate (and in which order) is specified by the network topology
(see the examples in Section 8.4.2). Finally, the agent can return to the learning phase,
or refrain from doing so.

1

2

3

4

...

n
1

2 3

...

1

2

3

...

n

FIGURE 8.2: Informal illustration for possible message flow in (from left to right): ring,
tree and reversed-cascade networks.

8.4.2 Scenarios

We consider several scenarios with different meta-parameters: the network topology
(ring, tree, reversed-cascade), attacker type (none, man-in-the-middle, imperson-
ator), and the operator for computing the outcome of sharing (minimum, average,
maximum).
Topology. The network topology outlines the structure of communication between AI
agents during the sharing phase. Selected variants are described below (see Fig. 8.2
for intuition):

• In the ring-network, each agent communicates with the pair of adjacent agents.
Without loss of generality, we assume that agents with odd identifiers first transmit
their model quality and then proceed to receive incoming models (and conversely
for ones with odd identifiers).

• In the tree-network, messages are sent top-down, starting from a distinguished
node, called the root. Each node has a single parent and can have up to n-children,
where n denotes the arity. Here, we assume the case of complete binary trees,
where all levels, except possibly the last, are filled.

• In the reversed-cascade-network, each node with identifier i receives messages from
those with id < i and then can start sending to those with id > i.

8.5. Experiments 125

Attacker

Topology

Sharing

Attacker

Topology

Sharing

Attacker

Topology

Sharing

FIGURE 8.3: Verification results for model checking (from left to right): φ1, φ2 and φ3.
Nodes in the “cube” stand for possible meta-configurations of SAI models, (x, y, z) where
coordinates map to specific element of (none, man-in-the-middle, impersonator) ×
(ring, tree, r-cascade) × (min, avg, max). Each node is denoted by: black-filled circle
if given formula was satisfied on all attempted t-configurations, half-filled circle if it is

satisfied for some, and empty circle if satisfied on none of them.

Sharing method. When an agent receives a machine learning component, it merges
the component with that of its own. We specify the merging outcome by means of
its effect on the resulting ML-component quality, taking either the maximum, the
average, or the minimum of the original and the received model quality.
Attacker. In addition to a scenario with no attacker, where all agents are honest
and follow the protocol as expected, we analyse those with an attacker. Here, we
utilize two well-known types of adversary: man-in-the-middle and impersonator. Of
course, this does not constitute a complete threat analysis, but already shows the way
towards the verification of resistance against other, more sophisticated attacks.

• Man-in-the-middle attacker can intercept the communication and re-direct it but
without any changes to the message content. As such an attacker may also abstain
from interception, all executions that were present in the meta-configuration
without an attacker will also be present here.

• Impersonator attacker acts in place of a selected AI agent. It only participates in the
sharing phase(s) and exchanges messages as prescribed by its role. However, in
contrast to an honest AI agent, an impersonator can forge an ML-component of
any chosen quality prior to each transfer.

Altogether this gives 27 variants of MAS templates (see Fig. 8.3 for a graphical
illustration), each being parameterized by the number of AI agents. A collection
of instances from the same MAS template makes up a family of models. We use
terms meta-configuration and t-configuration when referring to actual values of meta-
parameters and template parameters respectively.

8.5 Experiments

We have performed a series of experiments with the aforementioned 27 families of SAI
models. The experiments were conducted using UPPAAL v4.1.24 and EASYABSTRACT

on a machine with Intel i7-8665U 2.11 GHz CPU, 16 GB RAM, running Ubuntu 22.04.
The source code of the models (both concrete and abstract), as well as detailed results,
can be found at https://tinyurl.com/sai-abstraction.

https://tinyurl.com/sai-abstraction

126 Chapter 8. Scalable Verification of SAI

8.5.1 Requirement Specification

Deadlock-freeness. Deadlock occurs when neither system component can proceed.
In other words, it is a global state with no outgoing transitions. Deadlock-freeness
is achieved when the system is guaranteed to never reach a deadlock state. While
some model checkers provide a special atomic proposition deadlock dedicated for
deadlock states, the property can be also simulated within “vanilla” ACTL⋆. For
example, we can select some agent’s location(s) and verify that it gets visited infinitely
many times via the following formula:

φ1 ≡ AG(false ⇒ AF
∨

i∈AI

waiti)

Note that location “wait” of the AI template in Fig. 8.1 has a self-loop, and thus it is
guaranteed that there will be at least one outgoing transition. The above is a stronger
requirement than AG¬deadlock; thus, when the former holds the latter must hold as
well.
Eventually-win. Suppose that we want to verify if the SAI network is guaranteed to
eventually reach a “winning” state where the average ML-component quality of the
involved AI agents is greater than 0. This can be formalized by

φ2 ≡ AF(avg(mquali)i∈AI > 0)

In other words, we check if the system guarantees progress to a state better than the
initial one. Clearly, other interpretations of a “win” can be interesting too. Similar
queries can also facilitate the analysis of system modifications and design improve-
ments. In order to force standard interpretation of AF formulas we introduce a benign
modification to the models (just before verification) and appended each location with
an invariant over the clock variable. Note, that doing this had no side effect on the
state-space, and merely filtered non-maximal paths.
Flawless-wins. In a multi-agent system the goals of different agents (or their coali-
tions) are often conflicting. Therefore, a guaranteed achievement of all the goals
(within every execution, no matter the chosen action) seldom happens. One of the
common approaches is to reason about strategic abilities: whether there exists a
strategy for the coalition that secures a win. Despite the limitation of UPPAAL that
admits only verification of temporal properties, some results can still be obtained.
For example, [JK23a] showed that, if the winning condition is free of modal opera-
tors, one can manually fix the candidate strategy, and then using UPPAAL check if it
enforces a win. Here, instead of trying to guess the full strategy, we verify whether
the achievement of certain sub-goals will ultimately guarantee winning. That is, we
refine a previously introduced property and narrow down the scope of executions,
where the winning state is expected to eventually occur. The formula

AG(
∧

i∈AI

flawless-learneri ⇒ φ2)

says that if all AI agents performed the learning phase perfectly then φ2 is eventually
guaranteed. For technical reasons, we also need to ignore runs, where agents self-
loop in “wait” location and express “flawless-learning” by persistent evaluation of

8.5. Experiments 127

#Ag
Concrete Abstract A1 Abstract A2
#St t #St Reduct t #St Reduct t

2 5832 0.1 81 72 0 53 110.03 0
3 363 013 2.3 625 580.8 0 327 1110.1 0
4 25 216 704 213 4851 5198.2 0 1995 12639.9 0
5 memout 37 790 – 0.2 12 014 – 0.1
6 memout 299 226 – 1.9 73 154 – 0.7
7 memout 2 374 295 – 23.7 443 593 – 5.9
8 memout 19 059 651 – 251.4 2 724 787 – 46.1
9 memout memout 16 672 836 – 329.1
10 memout memout memout

TABLE 8.1: Results of model checking φ3 on meta-configuration with ring-network,
sharing via average, no attacker. The column “#Ag” denotes the t-configuration (number
of AI agents), “#St” number of states in a global model, “t” avg. verification time in

seconds, and “Reduct” shows the level of reduction in the state space.

mstatusi=2. These enhancements result in a formula

φ3 ≡ AG((
∧

i∈AI′
mstatusi=2) ⇒

AF((
∧

i∈AI′
mstatusi=2) ⇒

(avg(mquali)i∈AI’ > 0)))

where AI′ = AI\{impersonated} in the meta-configurations with impersonator, and
AI′ = AI otherwise.

8.5.2 Dealing with State-Space Explosion

We have utilised the open-source experimental abstraction tool EASYABSTRACT2,
which automatically generates reduced formal models after applying the specified
variable-based abstractions. A notable advantage of the tool is that it creates models
that are portable. The output models are specified in the very same modular format as
the input ones, and can be therefore opened, inspected and further used in UPPAAL;
there is no side effect backwards dependence on a third-party tool afterwards.

We have employed the following abstractions:

A1. Removes variables completion and mstatus from AI agent templates;

A2. Removes variables data, completion, mstatus, info from AI agent templates;

We use the former for the verification of φ1 and the latter for φ3.3 In both cases,
over-approximating may-abstractions were conclusive.4

8.5.3 Results and Discussion

An aggregated view of the experimental results is shown in Fig. 8.3. We have been
able to perform the verification of φ1 (resp. φ3) on concrete models with up to 4

2https://tinyurl.com/EasyAbstract4Uppaal
3Note that in order to verify φ3, the abstractions A1 and A2 had to be slightly modified to consider

the case of mstatus==2 instead of actually removing the variable.
4It should also be noted that attempting to verify φ1 on models from A2 produces inconclusive

results.

https://tinyurl.com/EasyAbstract4Uppaal

128 Chapter 8. Scalable Verification of SAI

AI agents, and up to 8 (resp. 9) AI agents after applying abstraction A1 (resp. A2).
Notably, cases, when φ1 and φ2 were not satisfied, arise only for the t-configuration
with one AI agent and only for meta-configurations that involved the Impersonator
attacker or (in case of φ1) the tree topology of the SAI network.

The verification of φ2 resulted with “property not satisfied” in all the studied
cases, and the model checker was able to quickly find and report a witnessing counter-
example. Therefore, abstraction was not needed for this instance of verification.

Reasoning whether the same result would hold for a whole family of models (i.e.,
on every possible t-configuration) is generally much more challenging if feasible at
all. To the best of our knowledge, there exists no universally applicable approach to
achieve that. Nonetheless, a common conjecture5 suggests that often it suffices to look
for fairly small (violating) counter-examples. And whilst an absence of such counter-
examples does not provide complete assurance, it does strengthen the confidence in
the system being compliant with the requirements.

8.6 Conclusions

In this work, we have applied the formalism of MAS graphs, together with the
branching-time specification of requirements, to formally model and verify Social
Explainable AI (SAI). We constructed and studied 27 variants of scalable model
families, further parameterized by the type and number of involved AI agents. This
way, we showed how certain important properties could be specified using temporal
logic and then verified in UPPAAL. Furthermore, we used a recently proposed user-
friendly tool for practical abstraction EASYABSTRACT to demonstrate how to mitigate
the state-space explosion. The reported results are very promising: in most cases we
were able to double the number of agents that can be handled by the model checker
before running out of memory.

In the future, we plan to conduct a more comprehensive analysis of the threats
(e.g., consider other types of attack models) as well as capture more nuanced formulas.
For example, one can use temporal-epistemic logic to express and verify starvation-
freeness, which is a much stronger requirement than the basic notion of deadlock-
freeness.

5For example, as in [ACK16].

129

Chapter 9

Conclusions

In the final chapter we provide a supplementary discussion, a summary of the thesis
and propose possible directions for future work.

9.1 Discussion

The formalism proposed in Section 4.2 takes foundation from the concepts of mod-
elling concurrent systems in [BK08] and [Cla+00a], and follows similar notational
conventions. The syntax of structures for agent graphs, MAS graphs and combined
MAS graphs, models and semantics of unwrapping share a lot of similarities with
program graphs, interleaving of program graphs, transition systems and unfolding.
We introduce these notions under a different name (instead of possibly referring to
each as “a variant of . . .”) for the sake of clarity and to further emphasize the distinct
context of consideration (i.e., not solely that of software verification). In doing so,
there was no intention to obscure or diminish the credit of the original work and its
authors. Similarly, notions such as path, run, similarity relation, syntax and semantics
for logics are already well-established in the literature and appear with marginal or
no changes in their definition.

In general, the lower-approximation of local domain described in Algorithm 2
turned out to be of little use. From the correctness discussion in Section 4.3.2, it
follows that obtained lower approximation for any given location is always either a
singleton or an empty set. In practice, we propose to use may-abstraction instead and
to inspect the abstract counter-example run (if any). An algorithm for finding concrete
runs matching the abstract one is straightforward (see e.g., [Cla+00a]). Furthermore,
we note that the construction of the must-abstraction remains correct and could be
used with any valid lower-approximation of local domain.

The abstraction procedure from Chapter 4 was not applied for verification and
experiments of Chapter 3 due to the system being fairly data-dependent, which
significantly reduces the expected efficiency and rationale for the abstraction.

We also report no use of abstraction in Chapter 7. Firstly, the main focus of
that work was to propose a more powerful modelling approach through the hier-
archical and parameterized specification of the system. However, due to purely
technical limitations of the current version of EASYABSTRACT tool from Chapter 5,
it was incompatible with existing model specifications.1 While it would certainly
be interesting to present more sophisticated experimental results and evaluate the
efficiency of the abstraction method from Chapter 4, we believe it does not undermine
the soundness and appeal of the proposed approach. We are inclined to speculate
that proposed hierarchical models should in fact be compatible with many other

1We plan to release an updated version that will provide the required functionalities in the future.

130 Chapter 9. Conclusions

interesting reduction methods. A formal study of that could be a subject of future
work.

9.2 Summary

First, we overview the voting processes, relevant properties and mechanisms, and
cover some recent studies in Chapter 1. We excerpt the commonly used model
representations, software tools and their supported logical formalism.

Next, the Chapter 2 aggregates the basic terminology and model checking primi-
tives required for understanding the rest of the thesis.

Throughout the dissertation, various concepts and approaches to modelling were
proposed and illustrated through motivational examples that were also intuitively
explained. Those were largely based on existing frameworks and theoretical ideas
proposed in the literature, adapted and lightened to serve the practical needs without
overcomplicating the workflow.

Chapter 3 describes in detail the modelling and verification of the voting pro-
cedure on example of Prêt à Voter protocol. This work adopts the state-of-the-art
model checker UPPAAL and highlights the advantages of having the GUI and flexible
model specification language for the analysis of complex systems, such as voting. It
also demonstrates the possible model extensions to accommodate examination of the
Pfitzmann’s attack, known to pose privacy risks with randomized mix-nets, as well
as the simulation of knowledge operator under the CTL semantics.

In Chapter 4 we present a novel model reduction procedure that allows to compute
a correct-by-design state-abstractions. The abstraction is parameterized by means of
operations over the variables, each possibly narrowed to a certain fraction of states
(specified by their underlying locations). No less importantly, when given arguments
it can be performed in an automatized manner, and it provides certain guarantees
that preserve the satisfiability of universal fragment of computation tree logic ACTL⋆.

Chapter 5 implements the aforementioned abstraction method in a form of an
open-source tool EASYABSTRACT. Notably, the produced abstract model specification
remains compatible with UPPAAL and can be opened and edited in the usual way.
The chapter outlines the architecture, provides intuitive scenarios for application, and
practically evaluates its efficiency on example of postal voting and social AI models.

The Chapter 6 proposes a more extensive study of the Polish postal voting scenario.
It shows how certain important socio-technical aspects of voting can be formally
captured and verified. In particular, it demonstrates the steps necessary to mitigate
the state space explosion by applying abstraction. Moreover, it improves on the visual
clarity and manageability of model specification by employing the edge labelling
convention. It suggests replacing the condition and update expressions, which are
often technically complex, with the function calls on the corresponding event code,
which could be represented as a string (i.e., an identifier name of a constant type
variable). In consequence, not only was the overall readability of the model gets
improved, but also the modularity of the specification. Nonetheless, it is also worth
noting that with a larger number of events within the specification of a single agent
(or its template), a description of its behaviour on the back-end (i.e., the body of
aforementioned functions) would still descend into lengthy blocks of code.

The hierarchical approach discussed in Chapter 7 can be used to resolve that
issue. It offers an even greater degree of modularity, encourages top-down design
and natural partitioning of the specification on the structural level. This allows for
switching between different behaviours of the agents involved without having to

9.3. Future Work 131

create a duplicate model file and manually apply the relevant changes. Furthermore,
it helps to distinguish between the knowledge of a fact and the possession of a
physical object on the level of model specification. Object instances are associated
with an owner agent, who can query or modify the object’s attributes through defined
interactions.

Lastly, Chapter 8 applies the MAS graph formalism and studies 27 variants of
Social AI model families. It also demonstrates the applicability and efficiency of the
proposed abstraction technique from Chapter 4 to protocols beyond voting schemes.

9.3 Future Work

In Chapters 3 to 8 we have already discussed some directions for future work. Those
could be summarized as follows:

• Considering other verification tools that support a richer specification language
for expressing system requirements. This includes tools that can verify strategic
abilities and temporal epistemic properties. Although still in the early stages of
development, STV appears to be a promising candidate for that.

• Developing a methodology for joint/complementary verification using different
verification tools together would be of interest. One of the primary benefits of
UPPAAL is its graphical user interface, which simplifies the process of writing
system specifications and makes it more accessible. An automatic translation
utility for the model specification from UPPAAL to different tools could also be
useful.2

• Extending the abstraction methodology both theoretically, by adding the support
for other kinds of operations, such as transformations over locations, and for other
kinds of logics, in particular those capable of expressing epistemic and strategic
properties, and practically, by adapting the implementation to other verification
tools.

• It is evident that the complexity of verification increases rapidly with the greater
number of agents involved. A possible track for future research can be to study the
classes of voting scheme properties, for which saturation results can be obtained.

2The LTSMIN toolset utilises the Partitioned Next-State Interface (PINS) to achieve language inde-
pendence and reports an implementation for UPPAAL specification language, which should enable the
effective import of models of the latter. However, the conversion script relies on oppaal [Dal11], which
is a separate tool that is no longer being developed. The latest version, released in 2013, contains several
deprecated dependencies, offers limited support of UPPAAL syntax, and is poorly documented.

133

Bibliography

[ACK16] M. Arapinis, V. Cortier, and S. Kremer. “When Are Three Voters Enough
for Privacy Properties?” In: Proceedings of ESORICS. Vol. 9879. Lecture
Notes in Computer Science. Springer, 2016, pp. 241–260. DOI: 10.1007/
978-3-319-45741-3_13.

[Adi08] Ben Adida. “Helios: web-based open-audit voting”. In: Proceedings of
the 17th conference on Security symposium. SS’08. San Jose, CA: USENIX
Association, 2008, pp. 335–348.

[AF01] Martín Abadi and Cédric Fournet. “Mobile values, new names, and
secure communication”. In: ACM Sigplan Notices 36.3 (2001), pp. 104–
115.

[AGJ04] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. “Three-Valued
Abstractions of Games: Uncertainty, but with Precision”. In: Proceedings
of Logic in Computer Science (LICS). IEEE Computer Society, 2004, pp. 170–
179.

[AH99] R. Alur and T. A. Henzinger. “Reactive Modules”. In: Formal Methods in
System Design 15.1 (1999), pp. 7–48.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. “Alternating-Time Tempo-
ral Logic”. In: Journal of the ACM 49 (2002), pp. 672–713. DOI: 10.1145/
585265.585270.

[AHK97] R. Alur, T. A. Henzinger, and O. Kupferman. “Alternating-Time Tempo-
ral Logic”. In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society Press, 1997, pp. 100–
109.

[Aki+20] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio
Lomuscio. “Verifying Strategic Abilities of Neural-symbolic Multi-agent
Systems”. In: Proceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning KR. 2020, pp. 22–32. DOI: 10.
24963/kr.2020/3.

[Alu] R Alur. “T.. A Henzinger, and O. Kupferman. Alternating-Time Temporal
Logic”. In: 38th Annual Symposium on Foundations of Computer Science
(FOCS’97), Miami Beach, Florida, USA, October, pp. 19–22.

[Alu+00] R. Alur, L. de Alfaro, T. A. Henzinger, S.C. Krishnan, F.Y.C. Mang, S.
Qadeer, S.K. Rajamani, and S. Tasiran. MOCHA: Modularity in Model
Checking. Tech. rep. University of Berkeley, 2000.

[Alu+98] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. “Alternating
refinement relations”. In: Proceedings of CONCUR. Vol. 1466. Lecture
Notes in Computer Science. 1998, pp. 163–178.

[Alu99] Rajeev Alur. “Timed automata”. In: Computer Aided Verification: 11th
International Conference, CAV’99 Trento, Italy, July 6–10, 1999 Proceedings
11. Springer. 1999, pp. 8–22.

https://doi.org/10.1007/978-3-319-45741-3_13
https://doi.org/10.1007/978-3-319-45741-3_13
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.24963/kr.2020/3
https://doi.org/10.24963/kr.2020/3

134 Bibliography

[AM07] Michael R Clarkson Stephen Chong Andrew and C Myers. “Civitas: A
secure remote voting system”. In: (2007).

[And20] Marcin Skubiszewski Andrzej Rzepliński. Oświadczenia w sprawie niepraw-
idłowości dotyczących wyborów [translated: Statement on election irregulari-
ties]. 2020-08-05. URL: https://ow.org.pl/2020/08/05/oswiadczenia-w-
sprawie-nieprawidlowosci-dotyczacych-wyborow/ (visited on 2022-04-
27).

[Ara+13] Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan. “Prac-
tical everlasting privacy”. In: International Conference on Principles of Secu-
rity and Trust. Springer. 2013, pp. 21–40.

[Arm+05] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier,
Luca Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille Héam,
Olga Kouchnarenko, Jacopo Mantovani, et al. “The AVISPA tool for the
automated validation of internet security protocols and applications”.
In: Computer Aided Verification: 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings 17. Springer. 2005,
pp. 281–285. DOI: 10.1007/11513988_27.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Automated verifi-
cation of selected equivalences for security protocols”. In: The Journal of
Logic and Algebraic Programming 75.1 (2008), pp. 3–51.

[Bas+17] David A. Basin, Hans Gersbach, Akaki Mamageishvili, Lara Schmid, and
Oriol Tejada. “Election Security and Economics: It’s All About Eve”. In:
Proceedings of E-Vote-ID. 2017, pp. 1–20. DOI: 10.1007/978-3-319-68687-
5_1.

[BB06] Bernhard Beckert and Gerd Beuster. “A method for formalizing, analyz-
ing, and verifying secure user interfaces”. In: International Conference on
Formal Engineering Methods. Springer. 2006, pp. 55–73.

[BCG04] Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning ways
for your mathematical plays, volume 4. AK Peters/CRC Press, 2004.

[BCL15] Giampaolo Bella, Paul Curzon, and Gabriele Lenzini. “Service security
and privacy as a socio-technical problem”. In: J. Comput. Secur. 23.5 (2015),
pp. 563–585. DOI: 10.3233/JCS-150536.

[BDJ10] N. Bulling, J. Dix, and W. Jamroga. “Model Checking Logics of Strate-
gic Ability: Complexity”. In: Specification and Verification of Multi-Agent
Systems. Ed. by M. Dastani, K. Hindriks, and J.-J. Meyer. Springer, 2010,
pp. 125–159.

[BDL04] G. Behrmann, A. David, and K.G. Larsen. “A Tutorial on UPPAAL”. In:
Formal Methods for the Design of Real-Time Systems: SFM-RT. LNCS 3185.
Springer, 2004, pp. 200–236.

[BDS17] A. Bruni, E. Drewsen, and C. Schürmann. “Towards a Mechanized Proof
of Selene Receipt-Freeness and Vote-Privacy”. In: Proceedings of E-Vote-ID.
Vol. 10615. Lecture Notes in Computer Science. Springer, 2017, pp. 110–
126. DOI: 10.1007/978-3-319-68687-5_7.

[Bec+16] B. Beckert, M. Kirsten, V. Klebanov, and C. Schürmann. “Automatic
Margin Computation for Risk-Limiting Audits”. In: Proceedings of E-
Vote-ID. Vol. 10141. Lecture Notes in Computer Science. Springer, 2016,
pp. 18–35. DOI: 10.1007/978-3-319-52240-1_2.

https://ow.org.pl/2020/08/05/oswiadczenia-w-sprawie-nieprawidlowosci-dotyczacych-wyborow/
https://ow.org.pl/2020/08/05/oswiadczenia-w-sprawie-nieprawidlowosci-dotyczacych-wyborow/
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/978-3-319-68687-5_1
https://doi.org/10.1007/978-3-319-68687-5_1
https://doi.org/10.3233/JCS-150536
https://doi.org/10.1007/978-3-319-68687-5_7
https://doi.org/10.1007/978-3-319-52240-1_2

Bibliography 135

[Bel+13] Susan Bell, Josh Benaloh, Michael D Byrne, Dana DeBeauvoir, Bryce
Eakin, Philip Kortum, Neal McBurnett, Olivier Pereira, Philip B Stark,
Dan S Wallach, et al. “{STAR-Vote}: A secure, transparent, auditable,
and reliable voting system”. In: 2013 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE 13). 2013.

[Bel+14] Giampaolo Bella, Paul Curzon, Rosario Giustolisi, and Gabriele Lenzini.
“A Socio-technical Methodology for the Security and Privacy Analysis
of Services”. In: COMPSAC Workshops. IEEE Computer Society, 2014,
pp. 401–406. DOI: 10.1109/COMPSACW.2014.69.

[Bel+21] Francesco Belardinelli, Rodica Condurache, Catalin Dima, Wojciech Jam-
roga, and Michal Knapik. “Bisimulations for verifying strategic abilities
with an application to the ThreeBallot voting protocol”. In: Information
and Computation 276 (2021), p. 104552. DOI: 10.1016/j.ic.2020.104552.

[Ben+15] Josh Benaloh, Ronald Rivest, Peter YA Ryan, Philip Stark, Vanessa Teague,
and Poorvi Vora. “End-to-end verifiability”. In: arXiv preprint arXiv:1504.03778
(2015).

[Ben06] Josh Benaloh. “Simple Verifiable Elections”. In: USENIX Electronic Voting
Technology Workshop. 2006.

[Ben07] Josh Benaloh. “Ballot Casting Assurance via Voter-Initiated Poll Station
Auditing”. In: USENIX/ACCURATE Electronic Voting Technology Work-
shop. 2007.

[Ber+04] Y. Bertot, P. Casteran, G. Huet, and C. Paulin-Mohring. Interactive Theo-
rem Proving and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004. DOI: 10.1007/978-3-662-07964-5.

[Ber+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. “SoK: A comprehensive analysis of game-based ballot
privacy definitions”. In: 2015 IEEE Symposium on Security and Privacy.
IEEE. 2015, pp. 499–516.

[BGJ15] N. Bulling, V. Goranko, and W. Jamroga. “Logics for Reasoning About
Strategic Abilities in Multi-Player Games”. In: Models of Strategic Reason-
ing. Logics, Games, and Communities. Vol. 8972. Lecture Notes in Computer
Science. Springer, 2015, pp. 93–136. DOI: 10.1007/978-3-662-48540-8.

[BGS13] B. Beckert, R. Goré, and C. Schürmann. “Analysing Vote Counting Algo-
rithms via Logic - And Its Application to the CADE Election Scheme”.
In: Proceedings of CADE. Vol. 7898. Lecture Notes in Computer Science.
Springer, 2013, pp. 135–144. DOI: 10.1007/978-3-642-38574-2_9.

[BGS22] Giampaolo Bella, Rosario Giustolisi, and Carsten Schürmann. “Mod-
elling human threats in security ceremonies”. In: Journal of Computer
Security Preprint (2022), pp. 1–23.

[BK06] T. Ball and O. Kupferman. “An Abstraction-Refinement Framework for
Multi-Agent Systems”. In: Proceedings of Logic in Computer Science (LICS).
IEEE, 2006, pp. 379–388. DOI: 10.1109/LICS.2006.10.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

https://doi.org/10.1109/COMPSACW.2014.69
https://doi.org/10.1016/j.ic.2020.104552
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-48540-8
https://doi.org/10.1007/978-3-642-38574-2_9
https://doi.org/10.1109/LICS.2006.10

136 Bibliography

[BKL16] I. Boureanu, P. Kouvaros, and A. Lomuscio. “Verifying Security Proper-
ties in Unbounded Multiagent Systems”. In: Proceedings of International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2016, pp. 1209–1217.

[BKL17] Francesco Belardinelli, Panagiotis Kouvaros, and Alessio Lomuscio. “Pa-
rameterised Verification of Data-aware Multi-Agent Systems”. In: Pro-
ceedings of IJCAI. ijcai.org, 2017, pp. 98–104. DOI: 10.24963/ijcai.2017/15.

[BL17] Francesco Belardinelli and Alessio Lomuscio. “Agent-based Abstractions
for Verifying Alternating-time Temporal Logic with Imperfect Informa-
tion”. In: Proceedings of AAMAS. ACM, 2017, pp. 1259–1267.

[Bla+16] Bruno Blanchet et al. “Modeling and verifying security protocols with
the applied pi calculus and ProVerif”. In: Foundations and Trends® in
Privacy and Security 1.1-2 (2016), pp. 1–135.

[BLM19] Francesco Belardinelli, Alessio Lomuscio, and Vadim Malvone. “An
Abstraction-Based Method for Verifying Strategic Properties in Multi-
Agent Systems with Imperfect Information”. In: Proceedings of AAAI.
2019, pp. 6030–6037.

[BLP11] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. “Verification
of Deployed Artifact Systems via Data Abstraction”. In: Proceedings of
ICSOC. Vol. 7084. Lecture Notes in Computer Science. Springer, 2011,
pp. 142–156. DOI: 10.1007/978-3-642-25535-9_10.

[BM07] Ahto Buldas and Triinu Mägi. “Practical Security Analysis of E-Voting
Systems”. In: Proceedings of IWSEC. Vol. 4752. Lecture Notes in Computer
Science. Springer, 2007, pp. 320–335.

[BRS16] David A. Basin, Sasa Radomirovic, and Lara Schmid. “Modeling Human
Errors in Security Protocols”. In: Computer Security Foundations Sympo-
sium, CSF. IEEE Computer Society, 2016, pp. 325–340. DOI: 10.1109/CSF.
2016.30.

[BRT13] Josh Benaloh, Peter Y.A. Ryan, and Vanessa Teague. “Verifiable postal vot-
ing”. In: Cambridge International Workshop on Security Protocols. Springer.
2013, pp. 54–65.

[Bru+21] Alessandro Bruni, Marco Carbone, Rosario Giustolisi, Sebastian Möder-
sheim, and Carsten Schürmann. “Security Protocols as Choreographies”.
In: Protocols, Strands, and Logic - Essays Dedicated to Joshua Guttman on the
Occasion of his 66.66th Birthday. Vol. 13066. Lecture Notes in Computer
Science. Springer, 2021, pp. 98–111. DOI: 10.1007/978-3-030-91631-2_5.

[BT94] Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections”.
In: Proceedings of the twenty-sixth annual ACM symposium on Theory of
Computing. ACM. 1994, pp. 544–553.

[Bur+12] C. Burton, C. Culnane, J. Heather, T. Peacock, P.Y.A. Ryan, S. Schneider, V.
Teague, R. Wen, Z. Xia, and S. Srinivasan. “Using Prêt à Voter in Victoria
State Elections”. In: Proceedings of EVT/WOTE. USENIX, 2012.

[BY03] Johan Bengtsson and Wang Yi. “Timed automata: Semantics, algorithms
and tools”. In: Advanced Course on Petri Nets. Springer. 2003, pp. 87–124.

[Car+12] Marcelo Carlomagno Carlos, Jean Everson Martina, Geraint Price, and Ri-
cardo Felipe Custódio. “A Proposed Framework for Analysing Security
Ceremonies”. In: SECRYPT. SciTePress, 2012, pp. 440–445.

https://doi.org/10.24963/ijcai.2017/15
https://doi.org/10.1007/978-3-642-25535-9_10
https://doi.org/10.1109/CSF.2016.30
https://doi.org/10.1109/CSF.2016.30
https://doi.org/10.1007/978-3-030-91631-2_5

Bibliography 137

[CB13] V. Cheval and B. Blanchet. “Proving More Observational Equivalences
with ProVerif”. In: Proceedings of POST. Vol. 7796. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 226–246. DOI: 10.1007/978- 3- 642-
36830-1_12.

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints”. In: Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages. 1977, pp. 238–252. DOI: 10.1145/
512950.512973.

[CES86] Edmund M Clarke, E Allen Emerson, and A Prasad Sistla. “Automatic
verification of finite-state concurrent systems using temporal logic speci-
fications”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 8.2 (1986), pp. 244–263.

[CFL19] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. “BeleniosVS:
Secrecy and verifiability against a corrupted voting device”. In: 2019
IEEE 32nd Computer Security Foundations Symposium (CSF). IEEE. 2019,
pp. 367–36714.

[CGG19] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. “Belenios: a
simple private and verifiable electronic voting system”. In: Foundations of
Security, Protocols, and Equational Reasoning: Essays Dedicated to Catherine
A. Meadows (2019), pp. 214–238.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. “Model Checking and Ab-
straction”. In: ACM Transactions on Programming Languages and Systems
16.5 (1994), pp. 1512–1542.

[CGT18] Véronique Cortier, David Galindo, and Mathieu Turuani. “A formal
analysis of the Neuchâtel e-voting protocol”. In: 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE. 2018, pp. 430–442.

[CGY22] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. “Is the JCJ voting
system really coercion-resistant?” In: Cryptology ePrint Archive (2022).

[Cha+09] D. Chaum, R.T. Carback, J. Clark, A. Essex, S. Popoveniuc, R.L. Rivest,
P.Y.A. Ryan, E. Shen, A.T. Sherman, and P.L. Vora. “Scantegrity II: end-to-
end verifiability by voters of optical scan elections through confirmation
codes”. In: Trans. Info. For. Sec. 4.4 (2009), pp. 611–627. ISSN: 1556-6013.
DOI: 10.1109/TIFS.2009.2034919.

[Che+13] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. “PRISM-
games: A Model Checker for Stochastic Multi-Player Games”. In: Pro-
ceedings of Tools and Algorithms for Construction and Analysis of Systems
(TACAS). Vol. 7795. Lecture Notes in Computer Science. Springer, 2013,
pp. 185–191.

[Che+22] Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert Künne-
mann. “{SAPIC+}: protocol verifiers of the world, unite!” In: 31st USENIX
Security Symposium (USENIX Security 22). 2022, pp. 3935–3952.

[Cim+02] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, M. Sebastiani, and A Tacchella. “NuSMV2: An Open-Source
Tool for Symbolic Model Checking”. In: Proceedings of Computer Aided
Verification (CAV). Vol. 2404. Lecture Notes in Computer Science. 2002,
pp. 359–364.

https://doi.org/10.1007/978-3-642-36830-1_12
https://doi.org/10.1007/978-3-642-36830-1_12
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/TIFS.2009.2034919

138 Bibliography

[CKL04] E.M. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-C
Programs”. In: Proceedings of TACAS. Vol. 2988. Lecture Notes in Com-
puter Science. Springer, 2004, pp. 168–176. DOI: 10.1007/978- 3- 540-
24730-2_15.

[CKM01] Søren Christensen, Lars Michael Kristensen, and Thomas Mailund. “A
sweep-line method for state space exploration”. In: Tools and Algorithms
for the Construction and Analysis of Systems: 7th International Conference,
TACAS 2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2–6, 2001 Proceedings
7. Springer. 2001, pp. 450–464.

[CKO22] Pierluigi Contucci, Janos Kertesz, and Godwin Osabutey. “Human-AI
ecosystem with abrupt changes as a function of the composition”. In:
PLOS ONE 17.5 (2022-05), pp. 1–12. DOI: 10.1371/journal.pone.0267310.

[Cla+00a] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. “Counterexample-guided abstraction refinement”. In: International
Conference on Computer Aided Verification. Springer. 2000, pp. 154–169.

[Cla+00b] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. “Counterexample-Guided Abstraction Refinement”. In: Proceed-
ings of CAV. Vol. 1855. Lecture Notes in Computer Science. Springer,
2000, pp. 154–169. DOI: 10.1007/10722167_15.

[Cla+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. “Counterexample-guided abstraction refinement for symbolic
model checking”. In: J. ACM 50.5 (2003), pp. 752–794. DOI: 10 .1145/
876638.876643.

[Cla+18] E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem, eds. Handbook of
Model Checking. Springer, 2018. ISBN: 978-3-319-10574-1. DOI: 10.1007/
978-3-319-10575-8.

[CM12] C. Cremers and S. Mauw. Operational Semantics and Verification of Security
Protocols. Information Security and Cryptography. Springer, 2012. ISBN:
978-3-540-78636-8. DOI: 10.1007/978-3-540-78636-8.

[Coh+09] Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. “Ab-
straction in model checking multi-agent systems”. In: Proceedings of
AAMAS. IFAAMAS, 2009, pp. 945–952.

[Com24] Computing Research and Education Association of Australasia, CORE
Incorporated. CORE Rankings Portal. https : / / www . core . edu . au /
conference-portal. 2020–2024.

[Cor+09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[Cor+16] V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. “SoK:
Verifiability Notions for E-Voting Protocols”. In: IEEE Symposium on
Security and Privacy. 2016, pp. 779–798. DOI: 10.1109/SP.2016.52.

[CP18] Marco Conti and Andrea Passarella. “The Internet of People: A human
and data-centric paradigm for the Next Generation Internet”. In: Comput.
Commun. 131 (2018), pp. 51–65. DOI: 10.1016/j.comcom.2018.07.034.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. “A Practi-
cal Voter-Verifiable Election Scheme”. In: Proceedings of ESORICS. 2005,
pp. 118–139. DOI: 10.1007/11555827_8.

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1371/journal.pone.0267310
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-78636-8
https://www.core.edu.au/conference-portal
https://www.core.edu.au/conference-portal
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1016/j.comcom.2018.07.034
https://doi.org/10.1007/11555827_8

Bibliography 139

[CT16] Chris Culnane and Vanessa Teague. “Strategies for Voter-Initiated Elec-
tion Audits”. In: Decision and Game Theory for Security: Proceedings of
GameSec. Vol. 9996. Lecture Notes in Computer Science. Springer, 2016,
pp. 235–247. DOI: 10.1007/978-3-319-47413-7_14.

[Cul+15] C. Culnane, P.Y.A. Ryan, S.A. Schneider, and V. Teague. “vVote: A Verifi-
able Voting System”. In: ACM Trans. Inf. Syst. Secur. 18.1 (2015), 3:1–3:30.
DOI: 10.1145/2746338.

[Cze+19] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki. “The
Reachability Problem for Petri Nets is Not Elementary”. In: Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing STOC.
Association for Computing Machinery, 2019, pp. 24–33. DOI: 10.1145/
3313276.3316369.

[Dal11] Andreas Engelbredt Dalsgaard. “opaal: A lattice model checker”. In:
NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18-20, 2011. Proceedings 3. Springer. 2011, pp. 487–493.

[de +84] J.W. de Bakker, J.A. Bergstra, Jan Willem Klop, and J.-J. Ch. Meyer. “Lin-
ear Time and Branching Time Semantics for Recursion with Merge”. In:
Theor. Comput. Sci. 34 (1984), pp. 135–156. DOI: 10.1016/0304-3975(84)
90114-2.

[Dem+03] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Półrola, M.
Szreter, B. Woźna, and A. Zbrzezny. “Verics: A Tool for Verifying Timed
Automata and Estelle Specifications”. In: Proceedings of the of the 9th
Int. Conf. on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’03). Vol. 2619. Lecture Notes in Computer Science. Springer,
2003, pp. 278–283.

[DG18] Dennis Dams and Orna Grumberg. “Abstraction and Abstraction Refine-
ment”. In: Handbook of Model Checking. Springer, 2018, pp. 385–419. DOI:
10.1007/978-3-319-10575-8_13.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. “Abstract Interpretation
of Reactive Systems”. In: ACM Trans. Program. Lang. Syst. 19.2 (1997),
pp. 253–291. DOI: 10.1145/244795.244800. URL: https://doi.org/10.1145/
244795.244800.

[DHM10] M. Dastani, K. Hindriks, and J.-J. Meyer, eds. Specification and Verification
of Multi-Agent Systems. Springer, 2010.

[DK20] Piotr Dowbor and Yan Kim. “Computational Classification of Tubular
Algebras”. In: Fundamenta Informaticae 177.1 (2020), pp. 39–67.

[DKR06] S. Delaune, S. Kremer, and M. Ryan. “Coercion-resistance and receipt-
freeness in electronic voting”. In: Computer Security Foundations Workshop,
2006. 19th IEEE. IEEE. 2006, 12–pp.

[DLL12] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. “A formal
taxonomy of privacy in voting protocols”. In: 2012 IEEE International
Conference on Communications (ICC). IEEE. 2012, pp. 6710–6715.

[Dra+20] Georgios Drainakis, Konstantinos V. Katsaros, Panagiotis Pantazopoulos,
Vasilis Sourlas, and Angelos Amditis. “Federated vs. Centralized Ma-
chine Learning under Privacy-elastic Users: A Comparative Analysis”.
In: Proceedings of NCA. IEEE, 2020, pp. 1–8. DOI: 10.1109/NCA51143.
2020.9306745.

https://doi.org/10.1007/978-3-319-47413-7_14
https://doi.org/10.1145/2746338
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1016/0304-3975(84)90114-2
https://doi.org/10.1016/0304-3975(84)90114-2
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1145/244795.244800
https://doi.org/10.1145/244795.244800
https://doi.org/10.1145/244795.244800
https://doi.org/10.1109/NCA51143.2020.9306745
https://doi.org/10.1109/NCA51143.2020.9306745

140 Bibliography

[DY83] Danny Dolev and Andrew Chi-Chih Yao. “On the security of public
key protocols”. In: IEEE Trans. Inf. Theory 29.2 (1983), pp. 198–207. DOI:
10.1109/TIT.1983.1056650.

[ED08] C. Enea and C. Dima. “Abstractions of multi-agent systems”. In: Interna-
tional Transactions on Systems Science and Applications 3.4 (2008), pp. 329–
337.

[EH86] E Allen Emerson and Joseph Y Halpern. ““Sometimes” and “not never”
revisited: on branching versus linear time temporal logic”. In: Journal of
the ACM (JACM) 33.1 (1986), pp. 151–178.

[Eme90] E.A. Emerson. “Temporal and Modal Logic”. In: Handbook of Theoretical
Computer Science. Ed. by J. van Leeuwen. Vol. B. Elsevier, 1990, pp. 995–
1072.

[Fag+95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. MIT Press, 1995.

[Fak20] Fakt.pl editors. Dostali karty do głosowania bez pieczęci. Czy głosy będą
nieważne? 2020-06-28. URL: https://www.fakt.pl/wydarzenia/polityka/
dostali-karty-do-glosowania-bez-pieczeci-czy-glosy-beda-niewazne/
6cwhzg4 (visited on 2022-05-14).

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A practical se-
cret voting scheme for large scale elections”. In: Advances in Cryptol-
ogy—AUSCRYPT’92: Workshop on the Theory and Application of Crypto-
graphic Techniques Gold Coast, Queensland, Australia, December 13–16, 1992
Proceedings 3. Springer. 1993, pp. 244–251.

[FPC22] Andrew Fuchs, Andrea Passarella, and Marco Conti. “Modeling Human
Behavior Part I - Learning and Belief Approaches”. In: CoRR abs/2205.06485
(2022). DOI: 10.48550/arXiv.2205.06485. arXiv: 2205.06485.

[Ger+99] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. “A Partial Order Ap-
proach to Branching Time Logic Model Checking”. In: Proceedings of
ISTCS. IEEE, 1999, pp. 130–139.

[Gha+18] M.K. Ghale, R. Goré, D. Pattinson, and M. Tiwari. “Modular Formali-
sation and Verification of STV Algorithms”. In: Proceedings of E-Vote-ID.
Vol. 11143. Lecture Notes in Computer Science. Springer, 2018, pp. 51–66.
DOI: 10.1007/978-3-030-00419-4_4.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-Based Model
Checking Using Modal Transition Systems”. In: Proceedings of CONCUR.
Vol. 2154. Lecture Notes in Computer Science. 2001, pp. 426–440.

[GJ02] P. Godefroid and R. Jagadeesan. “Automatic Abstraction Using Gener-
alized Model Checking”. In: Proceedings of Computer Aided Verification
(CAV). Vol. 2404. Lecture Notes in Computer Science. Springer, 2002,
pp. 137–150. DOI: 10.1007/3-540-45657-0_11.

[GJ04] V. Goranko and W. Jamroga. “Comparing Semantics of Logics for Multi-
agent Systems”. In: Synthese 139.2 (2004), pp. 241–280.

[GL94] Orna Grumberg and David E Long. “Model checking and modular
verification”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 16.3 (1994), pp. 843–871.

https://doi.org/10.1109/TIT.1983.1056650
https://www.fakt.pl/wydarzenia/polityka/dostali-karty-do-glosowania-bez-pieczeci-czy-glosy-beda-niewazne/6cwhzg4
https://www.fakt.pl/wydarzenia/polityka/dostali-karty-do-glosowania-bez-pieczeci-czy-glosy-beda-niewazne/6cwhzg4
https://www.fakt.pl/wydarzenia/polityka/dostali-karty-do-glosowania-bez-pieczeci-czy-glosy-beda-niewazne/6cwhzg4
https://doi.org/10.48550/arXiv.2205.06485
https://arxiv.org/abs/2205.06485
https://doi.org/10.1007/978-3-030-00419-4_4
https://doi.org/10.1007/3-540-45657-0_11

Bibliography 141

[Głó] Główny Urząd Statystyczny [translated: Statistics Poland]. Słownik pojęć
[translated: Glossary]. URL: https://stat.gov.pl/metainformacje/slownik-
pojec/ (visited on 2023-03-31).

[GMP18] Ian J. Goodfellow, Patrick D. McDaniel, and Nicolas Papernot. “Making
machine learning robust against adversarial inputs”. In: Commun. ACM
61.7 (2018), pp. 56–66. DOI: 10.1145/3134599.

[God+10] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep
Tetali. “Compositional may-must program analysis: unleashing the power
of alternation”. In: Proceedings of POPL. ACM, 2010, pp. 43–56. DOI:
10.1145/1706299.1706307.

[God14] Patrice Godefroid. “May/Must Abstraction-Based Software Model Check-
ing for Sound Verification and Falsification”. In: Software Systems Safety.
Ed. by Orna Grumberg, Helmut Seidl, and Maximilian Irlbeck. Vol. 36.
NATO Science for Peace and Security Series, D: Information and Com-
munication Security. IOS Press, 2014, pp. 1–16. DOI: 10.3233/978-1-61499-
385-8-1. URL: https://doi.org/10.3233/978-1-61499-385-8-1.

[God96] Patrice Godefroid. Partial-order methods for the verification of concurrent
systems: an approach to the state-explosion problem. Springer, 1996.

[Gol11] Dieter Gollmann. Computer Security (3. ed.) Wiley, 2011. ISBN: 978-0-470-
74115-3.

[GS92] S.M. German and A.P. Sistla. “Reasoning about Systems with Many
Processes”. In: Journal of the ACM 39.3 (1992), pp. 675–735. DOI: 10.1145/
146637.146681.

[GWC06] Arie Gurfinkel, Ou Wei, and Marsha Chechik. “Yasm: A Software Model-
Checker for Verification and Refutation”. In: Proceedings of CAV. Vol. 4144.
Lecture Notes in Computer Science. Springer, 2006, pp. 170–174. DOI:
10.1007/11817963_18.

[Hai+23] Thomas Haines, Johannes Mueller, Rafieh Mosaheb, and Ivan Pryvalov.
“SoK: Secure e-voting with everlasting privacy”. In: Proceedings on Privacy
Enhancing Technologies (PoPETs) (2023).

[HDJ19] István Hegedüs, Gábor Danner, and Márk Jelasity. “Gossip Learning
as a Decentralized Alternative to Federated Learning”. In: Proceedings
of IFIP DAIS. Vol. 11534. Lecture Notes in Computer Science. Springer,
2019, pp. 74–90. DOI: 10.1007/978-3-030-22496-7_5.

[HDJ21] István Hegedüs, Gábor Danner, and Márk Jelasity. “Decentralized learn-
ing works: An empirical comparison of gossip learning and federated
learning”. In: J. Parallel Distributed Comput. 148 (2021), pp. 109–124. DOI:
10.1016/j.jpdc.2020.10.006.

[Hea13] Douglas Heaven. “Social AI likes to gossip”. In: New Scientist 218.2923
(2013), p. 20. ISSN: 0262-4079. DOI: https://doi.org/10.1016/S0262-
4079(13)61601-2.

[Hen+94] Thomas A Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
“Symbolic model checking for real-time systems”. In: Information and
computation 111.2 (1994), pp. 193–244.

https://stat.gov.pl/metainformacje/slownik-pojec/
https://stat.gov.pl/metainformacje/slownik-pojec/
https://doi.org/10.1145/3134599
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/11817963_18
https://doi.org/10.1007/978-3-030-22496-7_5
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/https://doi.org/10.1016/S0262-4079(13)61601-2
https://doi.org/https://doi.org/10.1016/S0262-4079(13)61601-2

142 Bibliography

[HGS21] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. “Did you mix me?
Formally Verifying Verifiable Mix Nets in Electronic Voting”. In: 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. IEEE, 2021, pp. 1748–1765. DOI: 10.1109/SP40001.2021.
00033.

[HGT19] T. Haines, R. Goré, and M. Tiwari. “Verified Verifiers for Verifying Elec-
tions”. In: Proceedings of CCS. ACM, 2019, pp. 685–702. DOI: 10.1145/
3319535.3354247.

[Hoa13] Thai Son Hoang. “An introduction to the Event-B modelling method”. In:
Industrial Deployment of System Engineering Methods (2013), pp. 211–236.

[Hol21] Matthew Holroyd. “Dutch election: Rule change to accept wrongly
sealed mail-in ballots”. In: Euronews (2021-03-17). URL: https://www.
euronews.com/2021/03/17/dutch-election-rule-change-to-accept-
wrongly-sealed-mail-in-ballots (visited on 2022-04-17).

[HR16] F. Hao and P.Y.A. Ryan. Real-World Electronic Voting: Design, Analysis and
Deployment. Auerbach Publications, 2016. ISBN: 1498714692.

[Hv14] X. Huang and R. van der Meyden. “Symbolic Model Checking Epistemic
Strategy Logic”. In: Proceedings of AAAI Conference on Artificial Intelligence.
2014, pp. 1426–1432.

[Jam+20a] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembiński, and A. Mazurkiewicz.
“Towards Partial Order Reductions for Strategic Ability”. In: Journal of
Artificial Intelligence Research 68 (2020), pp. 817–850. DOI: 10.1613/jair.1.
11936.

[Jam+20b] Wojciech Jamroga, Yan Kim, Damian Kurpiewski, and Peter Y. A. Ryan.
“Towards Model Checking of Voting Protocols in Uppaal”. In: Proceedings
of E-Vote-ID. Vol. 12455. Lecture Notes in Computer Science. Springer,
2020, pp. 129–146. DOI: 10.1007/978-3-030-60347-2_9.

[Jam+21] Wojciech Jamroga, David Mestel, Peter B. Roenne, Peter Y. A. Ryan, and
Marjan Skrobot. “A Survey of Requirements for COVID-19 Mitigation
Strategies”. In: Bulletin of The Polish Academy of Sciences: Technical Science
69.4 (2021), e137724. DOI: 10.24425/bpasts.2021.137724.

[Jam+24] Wojciech Jamroga, Peter B. Roenne, Peter Y. A. Ryan, and Yan Kim. “You
Shall not Abstain! A Formal Study of Forced Participation”. In: Proceeding
of the 9th Workshop on Advances in Secure Electronic Voting, Voting 2024. To
appear. 2024.

[Jam08] W. Jamroga. “Knowledge and Strategic Ability for Model Checking: A
Refined Approach”. In: Proceedings of MATES’08. Vol. 5244. Lecture Notes
in Computer Science. 2008, pp. 99–110.

[Jam15] W. Jamroga. Logical Methods for Specification and Verification of Multi-Agent
Systems. ICS PAS Publishing House, 2015. ISBN: 978-83-63159-25-2.

[Jam23] Wojciech Jamroga. “Pretty Good Strategies for Benaloh Challenge”. In:
International Joint Conference on Electronic Voting. Springer. 2023, pp. 106–
122.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson. “Coercion-resistant electronic
elections”. In: Proceedings of the 2005 ACM workshop on Privacy in the
electronic society. ACM. 2005, pp. 61–70.

https://doi.org/10.1109/SP40001.2021.00033
https://doi.org/10.1109/SP40001.2021.00033
https://doi.org/10.1145/3319535.3354247
https://doi.org/10.1145/3319535.3354247
https://www.euronews.com/2021/03/17/dutch-election-rule-change-to-accept-wrongly-sealed-mail-in-ballots
https://www.euronews.com/2021/03/17/dutch-election-rule-change-to-accept-wrongly-sealed-mail-in-ballots
https://www.euronews.com/2021/03/17/dutch-election-rule-change-to-accept-wrongly-sealed-mail-in-ballots
https://doi.org/10.1613/jair.1.11936
https://doi.org/10.1613/jair.1.11936
https://doi.org/10.1007/978-3-030-60347-2_9
https://doi.org/10.24425/bpasts.2021.137724

Bibliography 143

[JJR02] M. Jakobsson, A. Juels, and R.L. Rivest. “Making mix nets robust for
electronic voting by randomized partial checking”. In: USENIX Security
Symposium. 2002, pp. 339–353.

[JK23a] Wojciech Jamroga and Yan Kim. “Practical Abstraction for Model Check-
ing of Multi-Agent Systems”. In: Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR
2023, Rhodes, Greece, September 2-8, 2023. Ed. by Pierre Marquis, Tran Cao
Son, and Gabriele Kern-Isberner. 2023, pp. 384–394. DOI: 10.24963/KR.
2023/38. URL: https://doi.org/10.24963/kr.2023/38.

[JK23b] Wojciech Jamroga and Yan Kim. “Practical Model Reductions for Ver-
ification of Multi-Agent Systems”. In: Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th
August 2023, Macao, SAR, China. ijcai.org, 2023, pp. 7135–7139. DOI: 10.
24963/IJCAI.2023/834. URL: https://doi.org/10.24963/ijcai.2023/834.

[JKK18] W. Jamroga, M. Knapik, and D. Kurpiewski. “Model Checking the SE-
LENE E-Voting Protocol in Multi-Agent Logics”. In: Proceedings of the 3rd
International Joint Conference on Electronic Voting (E-VOTE-ID). Vol. 11143.
Lecture Notes in Computer Science. Springer, 2018, pp. 100–116.

[JKK24] Wojciech Jamroga, Yan Kim, and Damian Kurpiewski. “Scalable Verifi-
cation of Social Explainable AI by Variable Abstraction”. In: Proceedings
of the 16th International Conference on Agents and Artificial Intelligence,
ICAART 2024. To appear. SCITEPRESS, 2024.

[JKM20] Wojciech Jamroga, Damian Kurpiewski, and Vadim Malvone. “Natural
Strategic Abilities in Voting Protocols”. In: Socio-Technical Aspects in Se-
curity and Trust - 10th International Workshop, STAST 2020, Virtual Event,
September 14, 2020, Revised Selected Papers. Vol. 12812. Lecture Notes in
Computer Science. Springer, 2020, pp. 45–62. DOI: 10.1007/978-3-030-
79318-0_3. URL: https://doi.org/10.1007/978-3-030-79318-0_3.

[JMP13] Hugo Jonker, Sjouke Mauw, and Jun Pang. “Privacy and verifiability
in voting systems: Methods, developments and trends”. In: Computer
Science Review 10 (2013), pp. 1–30.

[JPS20] W. Jamroga, W. Penczek, and T. Sidoruk. “Strategic Abilities of Asyn-
chronous Agents: Semantic Paradoxes and How to Tame Them”. In:
CoRR abs/2003.03867 (2020). arXiv: 2003 . 03867 [cs.LO]. URL: https :
//arxiv.org/abs/2003.03867.

[JRK22] Wojciech Jamroga, Peter Y. A. Ryan, and Yan Kim. “Verification of the
Socio-Technical Aspects of Voting: The Case of the Polish Postal Vote
2020”. In: (2022). DOI: 10.48550/arXiv.2210.10694. URL: https://doi.org/
10.48550/arXiv.2210.10694.

[JT17] W. Jamroga and M. Tabatabaei. “Preventing Coercion in E-Voting: Be
Open and Commit”. In: Electronic Voting: Proceedings of E-Vote-ID 2016.
Vol. 10141. Lecture Notes in Computer Science. Springer, 2017, pp. 1–17.
DOI: 10.1007/978-3-319-52240-1_1.

[Kan+15] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk.
“LTSmin: High-Performance Language-Independent Model Checking”.
In: Tools and Algorithms for the Construction and Analysis of Systems. Proceed-
ings of TACAS. Vol. 9035. Lecture Notes in Computer Science. Springer,
2015, pp. 692–707. DOI: 10.1007/978-3-662-46681-0_61.

https://doi.org/10.24963/KR.2023/38
https://doi.org/10.24963/KR.2023/38
https://doi.org/10.24963/kr.2023/38
https://doi.org/10.24963/IJCAI.2023/834
https://doi.org/10.24963/IJCAI.2023/834
https://doi.org/10.24963/ijcai.2023/834
https://doi.org/10.1007/978-3-030-79318-0_3
https://doi.org/10.1007/978-3-030-79318-0_3
https://doi.org/10.1007/978-3-030-79318-0_3
https://arxiv.org/abs/2003.03867
https://arxiv.org/abs/2003.03867
https://arxiv.org/abs/2003.03867
https://doi.org/10.48550/arXiv.2210.10694
https://doi.org/10.48550/arXiv.2210.10694
https://doi.org/10.48550/arXiv.2210.10694
https://doi.org/10.1007/978-3-319-52240-1_1
https://doi.org/10.1007/978-3-662-46681-0_61

144 Bibliography

[Kel+10] John Kelsey, Andrew Regenscheid, Tal Moran, and David Chaum. “At-
tacking paper-based E2E voting systems”. In: Towards Trustworthy Elec-
tions: New Directions in Electronic Voting. Springer, 2010, pp. 370–387.

[KJK19] Damian Kurpiewski, Wojciech Jamroga, and Michał Knapik. “STV: Model
Checking for Strategies under Imperfect Information”. In: Proceedings
of the 18th International Conference on Autonomous Agents and Multiagent
Systems AAMAS 2019. IFAAMAS, 2019, pp. 2372–2374.

[KJS23] Damian Kurpiewski, Wojciech Jamroga, and Teofil Sidoruk. “Towards
Modelling and Verification of Social Explainable AI”. In: Proceedings
of the 15th International Conference on Agents and Artificial Intelligence,
ICAART 2023, Volume 1, Lisbon, Portugal, February 22-24, 2023. Ed. by
Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik. SCITEPRESS,
2023, pp. 396–403. DOI: 10.5220/0011799900003393. URL: https://doi.
org/10.5220/0011799900003393.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography:
principles and protocols. Chapman and hall/CRC, 2007.

[KL17] P. Kouvaros and A. Lomuscio. “Parameterised Verification of Infinite
State Multi-Agent Systems via Predicate Abstraction”. In: Proceedings of
AAAI. 2017, pp. 3013–3020.

[KLP04] M. Kacprzak, A. Lomuscio, and W. Penczek. “Verification of Multiagent
Systems via Unbounded Model Checking”. In: Proceedings of AAMAS.
IEEE Computer Society, 2004, pp. 638–645. DOI: 10.1109/AAMAS.2004.
10086.

[KR05] Steve Kremer and Mark Ryan. “Analysis of an electronic voting protocol
in the applied pi calculus”. In: European Symposium on Programming.
Springer. 2005, pp. 186–200.

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth. “Election verifiability in
electronic voting protocols”. In: Computer Security–ESORICS 2010: 15th
European Symposium on Research in Computer Security, Athens, Greece,
September 20-22, 2010. Proceedings 15. Springer. 2010, pp. 389–404.

[KS19] Christian Killer and Burkhard Stiller. “The Swiss postal voting process
and its system and security analysis”. In: International Joint Conference on
Electronic Voting. Springer. 2019, pp. 134–149.

[KSR10] Petr Klus, Ben Smyth, and Mark D Ryan. Proswapper: Improved equivalence
verifier for proverif. 2010.

[KTV10a] R. Küsters, T. Truderung, and A. Vogt. “A game-based definition of
coercion-resistance and its applications”. In: Proceedings of the 2010 23rd
IEEE Computer Security Foundations Symposium. IEEE Computer Society.
2010, pp. 122–136.

[KTV10b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Accountability:
definition and relationship to verifiability”. In: Proceedings of the 17th
ACM conference on Computer and communications security. 2010, pp. 526–
535.

[Kum+20] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew
Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon
Xia. “Adversarial Machine Learning-Industry Perspectives”. In: IEEE
Security and Privacy Workshops. IEEE, 2020, pp. 69–75. DOI: 10 .1109/
SPW50608.2020.00028.

https://doi.org/10.5220/0011799900003393
https://doi.org/10.5220/0011799900003393
https://doi.org/10.5220/0011799900003393
https://doi.org/10.1109/AAMAS.2004.10086
https://doi.org/10.1109/AAMAS.2004.10086
https://doi.org/10.1109/SPW50608.2020.00028
https://doi.org/10.1109/SPW50608.2020.00028

Bibliography 145

[Kur+21] Damian Kurpiewski, Witold Pazderski, Wojciech Jamroga, and Yan Kim.
“STV+Reductions: Towards Practical Verification of Strategic Ability Us-
ing Model Reductions”. In: Proceedings of AAMAS. ACM, 2021, pp. 1770–
1772.

[KW13] S. Khazaei and D. Wikstroem. “Randomized partial checking revisited”.
In: Topics in Cryptology – CT-RSA 2013. Vol. 7779. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 115–128.

[KW19] Mazaher Kianpour and Shao-Fang Wen. “Timing Attacks on Machine
Learning: State of the Art”. In: IntelliSys Volume 1. Vol. 1037. Advances
in Intelligent Systems and Computing. Springer, 2019, pp. 111–125. DOI:
10.1007/978-3-030-29516-5_10.

[LBP22] Valerio Lorenzo, Chiara Boldrini, and Andrea Passarella. SAI Simulator
for Social AI Gossiping. https://zenodo.org/record/5780042. 2022.

[LP07] A. Lomuscio and W. Penczek. “Symbolic Model Checking for Temporal-
Epistemic Logics”. In: SIGACT News 38.3 (2007), pp. 77–99. DOI: 10.1145/
1324215.1324231.

[LP08] A. Lomuscio and W. Penczek. “LDYIS: a Framework for Model Checking
Security Protocols”. In: Fundamenta Informaticae 85.1-4 (2008), pp. 359–
375.

[LPQ10] A. Lomuscio, W. Penczek, and H. Qu. “Partial Order Reductions for
Model Checking Temporal-epistemic Logics over Interleaved Multi-
agent Systems”. In: Fundamenta Informaticae 101.1-2 (2010), pp. 71–90.
DOI: 10.3233/FI-2010-276.

[LQR10] Alessio Lomuscio, Hongyang Qu, and Francesco Russo. “Automatic
Data-Abstraction in Model Checking Multi-Agent Systems”. In: Model
Checking and Artificial Intelligence. Vol. 6572. Lecture Notes in Computer
Science. Springer, 2010, pp. 52–68. DOI: 10.1007/978-3-642-20674-0_4.

[LQR17] A. Lomuscio, H. Qu, and F. Raimondi. “MCMAS: An Open-Source Model
Checker for the Verification of Multi-Agent Systems”. In: International
Journal on Software Tools for Technology Transfer 19.1 (2017), pp. 9–30. DOI:
10.1007/s10009-015-0378-x.

[Mar+15] T. Martimiano, E. Dos Santos, M. Olembo, and J.E. Martina. “Ceremony
Analysis Meets Verifiable Voting: Individual Verifiability in Helios”. In:
SECURWARE. 2015.

[Mar20] Marshal of the Sejm (PL). Postanowienie Marszałka Sejmu Rzeczypospolitej
Polskiej z dnia 3 czerwca 2020 r. w sprawie zarządzenia wyborów Prezydenta
Rzeczypospolitej Polskiej. http://isap.sejm.gov.pl/isap.nsf/download.
xsp/WDU20200000988/O/D20200988.pdf. 2020.

[McM02] K.L. McMillan. “Applying SAT Methods in Unbounded Symbolic Model
Checking”. In: Proceedings of Computer Aided Verification (CAV). Vol. 2404.
Lecture Notes in Computer Science. 2002, pp. 250–264.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

[Mei+13] S. Meier, B. Schmidt, C. Cremers, and D.A. Basin. “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols”. In: Computer Aided
Verification, Proceedings of CAV. Vol. 8044. Lecture Notes in Computer
Science. Springer, 2013, pp. 696–701. DOI: 10.1007/978-3-642-39799-8_48.

https://doi.org/10.1007/978-3-030-29516-5_10
https://zenodo.org/record/5780042
https://doi.org/10.1145/1324215.1324231
https://doi.org/10.1145/1324215.1324231
https://doi.org/10.3233/FI-2010-276
https://doi.org/10.1007/978-3-642-20674-0_4
https://doi.org/10.1007/s10009-015-0378-x
http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200000988/O/D20200988.pdf
http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200000988/O/D20200988.pdf
https://doi.org/10.1007/978-3-642-39799-8_48

146 Bibliography

[Men09] B. Meng. “A critical review of receipt-freeness and coercion-resistance”.
In: Information Technology Journal 8.7 (2009), pp. 934–964.

[Mil71] Robin Milner. An algebraic definition of simulation between programs. Cite-
seer, 1971.

[Min20a] Minister of Infrastructure (PL). Obwieszczenie Marszałka Sejmu Rzeczy-
pospolitej Polskiej z dnia 18 czerwca 2020 r. w sprawie ogłoszenia jednolitego
tekstu ustawy - Kodeks wyborczy. http://isap.sejm.gov.pl/isap.nsf/
download.xsp/WDU20200001319/O/D20201319.pdf. 2020.

[Min20b] Minister of Infrastructure (PL). Rozporządzenie Ministra Infrastruktury z
dnia 12 czerwca 2020 r. w sprawie przesyłek w głosowaniu korespondencyjnym.
https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001037/
O/D20201037.pdf. 2020.

[MN06] Tal Moran and Moni Naor. “Receipt-free universally-verifiable voting
with everlasting privacy”. In: Advances in Cryptology-CRYPTO 2006.
Springer, 2006, pp. 373–392.

[Mog+14] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. “Reasoning About
Strategies: On the Model-Checking Problem”. In: ACM Transactions on
Computational Logic 15.4 (2014), pp. 1–42.

[NV90] Rocco De Nicola and Frits W. Vaandrager. “Action versus State based
Logics for Transition Systems”. In: Semantics of Systems of Concurrent
Processes, Proceedings of LITP Spring School on Theoretical Computer Science.
Vol. 469. Lecture Notes in Computer Science. Springer, 1990, pp. 407–419.
DOI: 10.1007/3-540-53479-2_17.

[Oka98] T. Okamoto. “Receipt-free electronic voting schemes for large scale elec-
tions”. In: Security Protocols. Springer. 1998, pp. 25–35.

[Ott+22] Abdul-Rasheed Ottun, Pramod C. Mane, Zhigang Yin, Souvik Paul,
Mohan Liyanage, Jason Pridmore, Aaron Yi Ding, Rajesh Sharma, Petteri
Nurmi, and Huber Flores. “Social-aware Federated Learning: Challenges
and Opportunities in Collaborative Data Training”. In: IEEE Internet
Computing (2022), pp. 1–7. DOI: 10.1109/MIC.2022.3219263.

[Pal+23a] Luigi Palmieri, Chiara Boldrini, Lorenzo Valerio, Andrea Passarella, and
Marco Conti. “Exploring the Impact of Disrupted Peer-to-Peer Commu-
nications on Fully Decentralized Learning in Disaster Scenarios”. In:
International Conference on Information and Communication Technologies for
Disaster Management, ICT-DM. IEEE, 2023, pp. 1–6. DOI: 10.1109/ICT-
DM58371.2023.10286953.

[Pal+23b] Luigi Palmieri, Lorenzo Valerio, Chiara Boldrini, and Andrea Passarella.
“The effect of network topologies on fully decentralized learning: a
preliminary investigation”. In: CoRR abs/2307.15947 (2023). DOI: 10 .
48550/ARXIV.2307.15947. arXiv: 2307.15947.

[Pańa] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Kodeks Wyborczy [translated: Electoral Code]. URL: https://pkw.gov.
pl/prawo-wyborcze/kodeks-wyborczy (visited on 2023-03-31).

[Pańb] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Wybory Prezydenta Rzeczypospolitej Polskiej 2010 r. URL: https://
prezydent2010.pkw.gov.pl/ (visited on 2023-03-31).

http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001319/O/D20201319.pdf
http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001319/O/D20201319.pdf
https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001037/O/D20201037.pdf
https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001037/O/D20201037.pdf
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1109/MIC.2022.3219263
https://doi.org/10.1109/ICT-DM58371.2023.10286953
https://doi.org/10.1109/ICT-DM58371.2023.10286953
https://doi.org/10.48550/ARXIV.2307.15947
https://doi.org/10.48550/ARXIV.2307.15947
https://arxiv.org/abs/2307.15947
https://pkw.gov.pl/prawo-wyborcze/kodeks-wyborczy
https://pkw.gov.pl/prawo-wyborcze/kodeks-wyborczy
https://prezydent2010.pkw.gov.pl/
https://prezydent2010.pkw.gov.pl/

Bibliography 147

[Pańc] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Wybory Prezydenta Rzeczypospolitej Polskiej 2015 r. URL: https://
prezydent2015.pkw.gov.pl/ (visited on 2023-03-31).

[Pańd] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Wybory Prezydenta Rzeczypospolitej Polskiej 2020 r. URL: https://
prezydent20200628.pkw.gov.pl/ (visited on 2023-03-31).

[Pań20a] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Uchwała nr 167/2020 PKW z dnia 8 czerwca 2020 r. w sprawie sposobu
postępowania z kopertami zwrotnymi i pakietami wyborczymi w głosowaniu
korespondencyjnym w kraju. https : / / pkw . gov . pl / uploaded _ files /
1591677157_uchwala-w-sprawie-sposobu-postepowania-z-kopertami-
zwrotnymi.pdf. 2020.

[Pań20b] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Uchwała nr 182/2020 PKW z dnia 10 czerwca 2020 r. w sprawie określe-
nia wzoru i rozmiaru koperty na pakiet wyborczy, koperty zwrotnej, koperty
na kartę do głosowania, oświadczenia o osobistym i tajnym oddaniu głosu na
karcie do głosowania oraz instrukcji głosowania korespondencyjnego w wybo-
rach Prezydenta Rzeczypospolitej Polskiej zarządzonych na dzień 28 czerwca
2020 r. https://pkw.gov.pl/uploaded_files/1591872974_uchwala-nr-
182-2020-pkw.pdf. 2020.

[Pań20c] Państwowa Komisja Wyborcza [translated: National Electoral Commis-
sion]. Ustawa z dnia 2 czerwca 2020 r. o szczególnych zasadach organizacji
wyborów powszechnych na Prezydenta Rzeczypospolitej Polskiej zarządzonych
w 2020 r. z możliwością głosowania korespondencyjnego [translated: The Act
of 2 June 2020 on special rules for the organisation of general elections of the
President of the Republic of Poland ordered in 2020 with the possibility of postal
voting]. https://prezydent20200628.pkw.gov.pl/prezydent20200628/
statics/prezydent_20200628_kodeks/uploaded_files/1591242112_
ustawa-organizacja-wyborow-w-2020.pdf. 2020.

[Pel93] Doron A. Peled. “All from One, One for All: on Model Checking Using
Representatives”. In: Proceedings of CAV. Ed. by Costas Courcoubetis.
Vol. 697. Lecture Notes in Computer Science. Springer, 1993, pp. 409–423.
DOI: 10.1007/3-540-56922-7_34.

[PL03] W. Penczek and A. Lomuscio. “Verifying Epistemic Properties of Multi-
Agent Systems via Bounded Model Checking”. In: Proceedings of AAMAS.
Melbourne, Australia: ACM Press, 2003, pp. 209–216. ISBN: 1-58113-683-
8.

[Pri83] L. Priese. “Automata and Concurrency”. In: Theoretical Computer Science
25 (1983), pp. 221–265. DOI: 10.1016/0304-3975(83)90113-5.

[PS15] D. Pattinson and C. Schürmann. “Vote Counting as Mathematical Proof”.
In: Advances in Artificial Intelligence, Proceedings of AI. Vol. 9457. Lecture
Notes in Computer Science. Springer, 2015, pp. 464–475. DOI: 10.1007/
978-3-319-26350-2_41.

[Riv06] R. Rivest. “The ThreeBallot Voting System”. Available online at http://
theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf.
2006.

https://prezydent2015.pkw.gov.pl/
https://prezydent2015.pkw.gov.pl/
https://prezydent20200628.pkw.gov.pl/
https://prezydent20200628.pkw.gov.pl/
https://pkw.gov.pl/uploaded_files/1591677157_uchwala-w-sprawie-sposobu-postepowania-z-kopertami-zwrotnymi.pdf
https://pkw.gov.pl/uploaded_files/1591677157_uchwala-w-sprawie-sposobu-postepowania-z-kopertami-zwrotnymi.pdf
https://pkw.gov.pl/uploaded_files/1591677157_uchwala-w-sprawie-sposobu-postepowania-z-kopertami-zwrotnymi.pdf
https://pkw.gov.pl/uploaded_files/1591872974_uchwala-nr-182-2020-pkw.pdf
https://pkw.gov.pl/uploaded_files/1591872974_uchwala-nr-182-2020-pkw.pdf
https://prezydent20200628.pkw.gov.pl/prezydent20200628/statics/prezydent_20200628_kodeks/uploaded_files/1591242112_ustawa-organizacja-wyborow-w-2020.pdf
https://prezydent20200628.pkw.gov.pl/prezydent20200628/statics/prezydent_20200628_kodeks/uploaded_files/1591242112_ustawa-organizacja-wyborow-w-2020.pdf
https://prezydent20200628.pkw.gov.pl/prezydent20200628/statics/prezydent_20200628_kodeks/uploaded_files/1591242112_ustawa-organizacja-wyborow-w-2020.pdf
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1016/0304-3975(83)90113-5
https://doi.org/10.1007/978-3-319-26350-2_41
https://doi.org/10.1007/978-3-319-26350-2_41
http://theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf
http://theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf

148 Bibliography

[RRI16] P.Y.A. Ryan, P.B. Rønne, and V. Iovino. “Selene: Voting with Transparent
Verifiability and Coercion-Mitigation”. In: Financial Cryptography and
Data Security: Proceedings of FC 2016. Revised Selected Papers. Vol. 9604.
Lecture Notes in Computer Science. Springer, 2016, pp. 176–192. DOI:
10.1007/978-3-662-53357-4_12.

[RST15] Peter Y. A. Ryan, Steve A. Schneider, and Vanessa Teague. “End-to-End
Verifiability in Voting Systems, from Theory to Practice”. In: IEEE Security
& Privacy 13.3 (2015), pp. 59–62. DOI: 10.1109/MSP.2015.54.

[RT13] P.Y.A. Ryan and V. Teague. “Pretty Good Democracy”. In: Security Proto-
cols XVII. Vol. 7028. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 111–130.

[Rya+09] P.Y.A Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. “Prêt à voter:
a voter-verifiable voting system”. In: Information Forensics and Security,
IEEE Transactions on 4.4 (2009), pp. 662–673.

[Rya10] P.Y.A. Ryan. “The Computer Ate My Vote”. In: Formal Methods: State of
the Art and New Directions. Springer, 2010, pp. 147–184.

[Sch03] Ph. Schnoebelen. “The Complexity of Temporal Model Checking”. In:
Advances in Modal Logics, Proceedings of AiML 2002. World Scientific, 2003.

[Sch04] Pierre-Yves Schobbens. “Alternating-time logic with imperfect recall”.
In: Electronic Notes in Theoretical Computer Science 85.2 (2004), pp. 82–93.

[Sej22] Sejm Rzeczypospolitej Polskiej. Internetowy System Aktów Prawnych [trans-
lated: Internet Legal Acts System]. https://isap.sejm.gov.pl/isap.nsf/
search.xsp?status=O&kw=wybory. 2022.

[SG04] Sharon Shoham and Orna Grumberg. “Monotonic Abstraction-Refinement
for CTL”. In: Proceedings of TACAS. Vol. 2988. Lecture Notes in Computer
Science. Springer, 2004, pp. 546–560. DOI: 10.1007/978-3-540-24730-2_40.

[SK95] Kazue Sako and Joe Kilian. “Receipt-free mix-type voting scheme: A
practical solution to the implementation of a voting booth”. In: Advances
in Cryptology—EUROCRYPT’95: International Conference on the Theory and
Application of Cryptographic Techniques Saint-Malo, France, May 21–25, 1995
Proceedings 14. Springer. 1995, pp. 393–403.

[Sku20] Marcin Skubiszewski. Obserwatorium Wyborcze do Przewodniczącego PKW:
Nieprawidłowo wydrukowane karty do głosowania za granicą - konieczność
rozwiązania problemu. 2020-06-22. URL: https://monitorkonstytucyjny.
eu/archiwa/14355 (visited on 2022-04-27).

[SL09] Y. Shoham and K. Leyton-Brown. Multiagent Systems - Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009. ISBN:
978-0-521-89943-7.

[Soc22] Social AI gossiping. Micro-project in Humane-AI-Net. Project website.
https://www.ai4europe.eu/research/research-bundles/social-ai-
gossiping. 2022.

[Soc24] Social Explainable AI, CHIST-ERA. Project website. http://www.sai-
project.eu/. 2021–2024.

[Spo20] Spotted Lublin editors. Wybory 2020. Karty do głosowania bez czerwonej
pieczęci obwodowej komisji wyborczej. 2020-06-29. URL: https://spottedl
ublin.pl/wybory-2020-karty-do-glosowania-bez-czerwonej-pieczeci-
obwodowej-komisji-wyborczej/ (visited on 2022-05-14).

https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1109/MSP.2015.54
https://isap.sejm.gov.pl/isap.nsf/search.xsp?status=O&kw=wybory
https://isap.sejm.gov.pl/isap.nsf/search.xsp?status=O&kw=wybory
https://doi.org/10.1007/978-3-540-24730-2_40
https://monitorkonstytucyjny.eu/archiwa/14355
https://monitorkonstytucyjny.eu/archiwa/14355
https://www.ai4europe.eu/research/research-bundles/social-ai-gossiping
https://www.ai4europe.eu/research/research-bundles/social-ai-gossiping
http://www.sai-project.eu/
http://www.sai-project.eu/
https://spottedlublin.pl/wybory-2020-karty-do-glosowania-bez-czerwonej-pieczeci-obwodowej-komisji-wyborczej/
https://spottedlublin.pl/wybory-2020-karty-do-glosowania-bez-czerwonej-pieczeci-obwodowej-komisji-wyborczej/
https://spottedlublin.pl/wybory-2020-karty-do-glosowania-bez-czerwonej-pieczeci-obwodowej-komisji-wyborczej/

Bibliography 149

[Sti05] Douglas R Stinson. Cryptography: theory and practice. Chapman and Hal-
l/CRC, 2005.

[SV20] Diego Sempreboni and Luca Vigano. “X-Men: A mutation-based ap-
proach for the formal analysis of security ceremonies”. In: 2020 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE. 2020, pp. 87–
104.

[TJR16] M. Tabatabaei, W. Jamroga, and Peter Y. A. Ryan. “Expressing Receipt-
Freeness and Coercion-Resistance in Logics of Strategic Ability: Prelim-
inary Attempt”. In: Proceedings of the 1st International Workshop on AI
for Privacy and Security, PrAISe@ECAI 2016. ACM, 2016, 1:1–1:8. DOI:
10.1145/2970030.2970039.

[Top+21] Mustafa Toprak, Chiara Boldrini, Andrea Passarella, and Marco Conti.
“Harnessing the Power of Ego Network Layers for Link Prediction in
Online Social Networks”. In: CoRR abs/2109.09190 (2021). arXiv: 2109.
09190.

[Uni48] United Nations. Universal Declaration of Human Rights. 1948-12. URL:
https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf.

[Upp02] Uppsala University and Aalborg University. UPPAAL documentation.
Version 4.1.x. 2002. URL: https://docs.uppaal.org/.

[Wei99] G. Weiss, ed. Multiagent Systems. A Modern Approach to Distributed Artifi-
cial Intelligence. MIT Press: Cambridge, Mass, 1999.

[Woo02] M. Wooldridge. An Introduction to Multi Agent Systems. John Wiley &
Sons, 2002.

[Zol20] Marie-Laure Zollinger. From secure to usable and verifiable voting schemes.
2020.

[ZRR20] M-L. Zollinger, P. Roenne, and P.Y.A. Ryan. “Mechanized Proofs of Veri-
fiability and Privacy in a paper-based e-voting Scheme”. In: Proceedings
of 5th Workshop on Advances in Secure Electronic Voting. 2020.

https://doi.org/10.1145/2970030.2970039
https://arxiv.org/abs/2109.09190
https://arxiv.org/abs/2109.09190
https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf
https://docs.uppaal.org/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Examples
	Model Checking
	Contributions
	Structure of the Thesis

	Preliminaries
	Temporal Logic
	Logic of Time and Strategies
	Adding Epistemic Operators
	Uppaal Model Checker
	Related Work

	Towards Model Checking of Voting Protocols in Uppaal
	Introduction
	Towards Model Checking of Voting Protocols
	Outline of Prêt à Voter
	Modelling Prêt à Voter in Uppaal
	Verification and Experiments
	Replicating Pfitzmann's Attack
	Related Work
	Conclusions

	Practical Abstraction for Model Checking of Multi-Agent Systems
	Introduction
	Preliminaries
	Variable Abstraction for MAS Graphs
	Correctness of Variable Abstraction
	Complexity Analysis
	Case Study and Experimental Results
	Related Work
	Conclusions

	EasyAbstract: a Tool for Practical Model Reductions for Verification of Multi-Agent Systems
	Introduction
	Formal Background
	Abstraction by Removal of Variables
	Architecture of EasyAbstract
	Experimental Results
	Related Work
	Conclusions

	Modelling and Verification of Polish Postal Voting of 2020
	Introduction
	Postal Voting Procedure
	Formal Model of the Procedure
	Verification
	Related Work
	Conclusions

	Hierarchical and Parameterized Specification of Polish Postal Voting
	Introduction
	Voting Scenario
	Model
	Verification
	Experimental Results
	Related Work
	Conclusions

	Scalable Verification of Social Explainable AI by Variable Abstraction
	Introduction
	Social Explainable AI
	Formal Framework
	Formal Models of SAI
	Experiments
	Conclusions

	Conclusions
	Discussion
	Summary
	Future Work

	Bibliography

