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How Do In-Car Navigation Aids Impair Expert
Navigators’ Spatial Learning Ability?

Qi Ying,a,b Weihua Dong,a and Sara Irina Fabrikantb,c

aFaculty of Geographical Science, Beijing Normal University, China; bDepartment of Geography, University of Zurich,
Switzerland; cDigital Society Initiative, University of Zurich, Switzerland

Reliance on digital navigation aids has already shown negative impacts on navigators’ innate spatial abilities.
How this happens is still an open research question. We report on an empirical study with twenty-four
experienced (male) taxi drivers to evaluate the long-term impacts of in-car navigation system use on the
spatial learning ability of these navigation experts. Specifically, we measured cognitive load by means of
electroencephalography (EEG) coupled with eye tracking to assess their visuospatial attention allocation
during a video-based route-following task while driving through an unknown urban environment. We found
that long-term reliance on in-car navigation aids did not affect participants’ visual attention allocation
during spatial learning but rather limited their ability to encode viewed geographic information into
memory, which, in turn, led to greater cognitive load, especially along route segments between intersections.
Participants with greater dependence on in-car navigation aids performed worse on the spatial knowledge
tests. Our combined behavioral and neuropsychological findings provide evidence for the impairment of
expert navigators’ spatial learning ability when exposed to long-term use of digital in-car navigation aids.
Key Words: EEG, eye tracking, navigation systems, spatial learning.

D
igital in-car navigation aids and handheld
mobile map applications have become ubiqui-
tous in various mobility contexts. Especially

in unfamiliar environments, digital navigation aids
have become the preferred mode of navigation sup-
port for our mobility needs. With their various way-
finding and route-planning functions, in-car
navigation aids assist drivers in reaching destinations
efficiently and safely. Especially when leveraging
auditory assistance, navigation aids also offer the
potential to offload drivers’ already taxed visual-
cognitive demands while driving (Girardin and Blat
2010). Before digital navigation aids were available,
abilities to acquire spatial information from the
traversed environment and to encode this new infor-
mation into spatial memory were indispensable for
self-localization, staying oriented during movement,
and making appropriate navigation decisions
(Aporta and Higgs 2005). Passively following turn-
by-turn instructions provided by a digital navigation
system enables navigators to travel successfully with
very little knowledge of their surroundings (Ben-Elia

2021). Spatial learning, as a fundamental human
ability, is therefore increasingly circumvented due to
the use of digital navigation devices with detrimen-
tal consequences (Ruginski et al. 2019). The nega-
tive impact of geographical information technology
on individuals’ spatial skills has become an interdis-
ciplinary research concern (McKinlay 2016;
Ruginski et al. 2022).

To investigate how long-term dependence on in-
car navigation aids impairs expert navigators’ spatial
learning ability, we conducted an empirical study
with male taxi drivers in Beijing. We recruited
mostly male taxi drivers simply because they are
largely overrepresented in this profession. According
to a recent report on taxis and private hire vehicles
(PHVs) in the United Kingdom, most drivers were
male (97 percent) in 2022.1 This proportion has
been higher than 90 percent for all of the last ten
years. Expert urban navigators, specifically (male)
taxi drivers, have already been of great interest to
spatial cognition researchers (Maguire et al. 2000)
who study how humans acquire and use spatial
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knowledge during navigation and wayfinding and
how navigation experience affects these processes
(Griesbauer et al. 2022). Compared to the general
population, licensed male London taxi drivers have
been found to have a larger hippocampus, a brain
area strongly associated with spatial memory and
navigation (Maguire et al. 2000). The volume
increase is suspected to be a consequence of exten-
sive training for an exam called “The Knowledge,”
learning how to navigate in the City of London
without any navigation assistance (Maguire et al.
2000). This made (male) taxi drivers in Beijing
attractive participants for our study, as they have
already been using in-car navigation systems exten-
sively (8.17 years on average) and have consistent
usage habits (following auditory instructions).
Notably, navigation aids in taxi applications have
constantly evolved in recent years, making it diffi-
cult to systematically track and quantify taxi drivers’
past experiences with in-car navigation aids.
Nonetheless, our participants already exhibited sig-
nificant and distinguishable differences in their
dependence on digital in-car navigation assistance
within a decade of use. Hence, we aimed to examine
how the spatial learning ability of professional taxi
drivers is modulated by the degree to which they
rely on digital in-car navigation aids.

Inspired by previous research (e.g., Ishikawa 2019;
Ruginski et al. 2019), we first hypothesized that
long-term exposure to in-car navigation aids would
impair expert navigators’ ability to acquire spatial
knowledge (i.e., landmark knowledge, route knowl-
edge, and survey knowledge), which we aimed to
assess in a video-based route-following task while
driving through an unknown urban environment
(Hypothesis 1). We further wished to study naviga-
tors’ cognitive processes during spatial learning and
how these might be associated with in-car naviga-
tion aid dependence. To this end, we focused on
two critical indicators of these cognitive processes:
visual attention allocation and cognitive load. Visual
attention allocation involves searching for and
acquiring visual-spatial information from the tra-
versed environment (Kiefer et al. 2017; Br€ugger,
Richter, and Fabrikant 2019). More visual interac-
tion with the environment during navigation has
been shown to facilitate navigators’ spatial learning
(Kapaj et al. 2023). We thus hypothesized that after
long-term exposure to digital navigation aids, expert
navigators would show less visual interaction with

the environment in our video-based route-following
task (Hypothesis 2). Cognitive load is generated dur-
ing visuo-spatial information processing and encod-
ing (Klimesch 1999; Osipova et al. 2006) and it is
employed to indicate visuo-spatial working memory
capacity in spatial navigation (Cheng et al. 2022;
Cheng et al. 2023). We thus hypothesized that indi-
viduals with longer past exposure to in-car naviga-
tion aids would show greater cognitive load in a
video-based route-following task because of the dete-
rioration of visuo-spatial information encoding
capacity (Hypothesis 3).

To test these hypotheses, we designed and imple-
mented an in-lab, video-based navigation experi-
ment. To study the cognitive and perceptual
processes involved in navigation behavior and spatial
learning performance, we employed a mixed-methods
approach combining electroencephalogram (EEG)
and eye tracking (ET) data collection methodologies
with traditional behavioral measurement approaches
(e.g., response accuracy). With the acquired EEG
data, we could measure human brain electrocortical
activity; specifically, we calculated the theta power
in the frontal cortex, which has been suggested to
be indicative of cognitive load during navigation
(Cheng et al. 2022; Cheng et al. 2023). We also col-
lected ET data to capture participants’ gaze behavior
and computed relevant fixation-based and saccade-
based metrics to study navigators’ visuo-spatial atten-
tion allocation and interaction processes with the
traversed environment (Dong et al. 2022; Kapaj
et al. 2023).

Background and Related Work

Spatial Learning Ability and Evaluation Methods

Navigators continuously acquire spatial knowledge
when they interact with the surrounding environ-
ments (Block 1998). They encode spatial knowledge
into memory and eventually form cognitive maps
(Downs and Stea 2011). This process is defined as
spatial learning. Spatial learning can occur directly
by exploring environments from a first-person per-
spective or indirectly by learning external represen-
tations of the environment (e.g., maps, globes,
bird’s-eye views; Zhang, Zherdeva, and Ekstrom
2014). In this spatial learning study, we focused on
immediate intentional spatial learning during naviga-
tion, which is consistent with how people most
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commonly acquire spatial knowledge in daily situa-
tions. With this approach, we could better control
for potential confounding effects related to other
individual- and group-based abilities (e.g., map read-
ing, etc.). Siegel and White’s (1975) seminal contri-
bution postulates the acquisition of spatial
knowledge in three stages: landmark knowledge,
route knowledge, and survey knowledge. Landmark
knowledge refers to the identification and recall of
spatial anchors in the environment (i.e., salient
buildings, linear features such as a river, regions
including neighborhoods, etc.). Route knowledge
refers to the recall of landmark sequences constitut-
ing a route, which can facilitate one’s judgment of
the connection between landmarks or turning
behavior at route intersections. Survey knowledge
refers to the configurational understanding of the
environment, enabling navigators to self-localize and
locate landmarks and routes using a Euclidean frame
of reference from an allocentric perspective.
Individuals could vary drastically in their ability to
acquire these three types of spatial knowledge and to
form map-like representations of complex environ-
ments in their memory; that is, they differ in their
spatial learning ability (Ishikawa and Montello 2006;
Weisberg and Newcombe 2018).

Behavioral methods based on researchers’ observa-
tions of participants and data extracted from explicit
participant self-reports are the most commonly used
approaches for evaluating spatial learning ability
(Montello 2016). In addition to traditional behav-
ioral methods, physiological measures (i.e., ET, EEG,
etc.) have been used to reveal the cognitive mecha-
nisms underlying spatial behavior. During spatial
navigation, individuals differ in their ability to
search for and selectively acquire geographic infor-
mation from the environment (e.g., landmarks),
which can be measured by tracking people’s eye
movements (Kiefer et al. 2017). Navigation task-
related brain activity data are increasingly leveraged
to more deeply investigate spatial abilities and spa-
tial behavior. The well-known London taxi driver
studies mentioned earlier, for example, leveraged
functional magnetic resonance imaging (fMRI) to
evaluate the engagement of navigation-related brain
regions when participants performed navigation tasks
(e.g., route planning and route recall; Griesbauer
et al. 2022). More recently, many researchers have

preferred to employ the more flexible and mobile
EEG data collection method, a noninvasive tech-
nique used to measure electrical activity in the
human brain. For this approach, electrodes are
placed on the surface of the participants’ scalps to
measure the activity of cortical areas of interest rele-
vant to the research question at hand. EEG has
coarser spatial signal resolution than other neuroim-
aging approaches, such as fMRI, but it has excellent
temporal signal resolution. Scalp-recorded oscilla-
tions captured in the frontal cortex in the theta-fre-
quency range (i.e., 4–8Hz) have long been
associated with visual attention and memory-related
processes, such as encoding new visual information
into working memory and episodic memory, and dur-
ing memory retrieval processes (Hsieh and
Ranganath 2014). Increased theta power during
information encoding and retrieval has been sug-
gested to reflect greater cognitive demands. It is also
associated with elevated task difficulty, which, con-
sequently, could result in degraded task performance
(Klimesch 1999). Previous studies in the context of
cognitive load theory in instructional design and
learning (Paas et al. 2003) suggest an increase in
frontal theta power to serve as an indicator of higher
levels of cognitive load of learners (Antonenko
et al. 2010). Task-related cognitive load might also
be affected by an individual’s cognitive capacity in a
given task (Xie and Salvendy 2000). In their predic-
tion model of mental workload, Xie and Salvendy
(2000) suggested that individuals with lower cogni-
tive capacity might experience greater cognitive load
in a given task than that imposed by the task itself.
Scalp-recorded frontal theta activity has also been
found to be sensitive to changes in cognitive
demands for various navigation-related tasks (Lin
et al. 2022; Liu et al. 2022). Cheng et al. (2022;
Cheng et al. 2023) reported an increase in frontal
theta power and P300 amplitudes, as a measure of
cognitive load during map-assisted navigation in vir-
tual reality (VR), in parallel to an increasing fre-
quency of landmark presentations on a mobile map.
Sharma et al. (2017) identified individual differences
in navigation skills and spatial learning capacities
using EEG activity. Drawing inspiration from these
prior related navigation studies, we thus computed
cognitive load indicators from frontal theta spectra
to capture and study potential differences in
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participants’ cognitive capacity for encoding geo-
graphic information acquired from the environment
during a route-following task.

The Influence of Mobile Navigation Aids on
Individuals’ Spatial Cognition

Previous empirical map-assisted navigation studies
have suggested that navigation aids negatively affect
wayfinding performance and spatial knowledge
acquisition (i.e., short-term effects). For example,
pedestrian navigation studies have shown that
mobile map-assisted navigators make more naviga-
tion errors and show lower navigation efficiency dur-
ing wayfinding than when assisted with paper maps
or when exploring the environment without any
navigation aids (Ishikawa et al. 2008; Kuo, Chang,
and Chu 2022). Other studies have shown that assis-
ted navigators form less accurate cognitive maps
(M€unzer et al. 2006; Parush, Ahuvia, and Erev 2007;
Willis et al. 2009) because they have worse spatial
memory of the traversed environment (Brishtel et al.
2021; Sugimoto et al. 2022). Map-assisted driving
studies have obtained consistent results. For exam-
ple, in driving studies conducted in VR, drivers
learned a route with or without an in-car navigation
system and were subsequently asked to navigate to a
given location by memory. Navigation-assisted driv-
ing was associated with worse navigation perfor-
mance (Seminati et al. 2022) and greater cognitive
load (Brishtel et al. 2021). Ben-Elia (2021) extended
driving experiments to a real-world environment and
revealed similar degradation in drivers’ spatial learn-
ing when they used turn-by-turn route guidance.
Several studies suggest that the distracted attention
caused by navigation devices and the consequent
disengagement from relevant environmental proper-
ties are the key reasons for poorer spatial learning in
navigators (Leshed et al. 2008; Gardony, Bruny�e,
and Taylor 2015). Using ET technology, Hejtm�anek
et al. (2018) reported a negative correlation between
the time participants spent on mobile maps and
their spatial learning performance. Another potential
reason is that navigation aids make most spatial
decisions for navigators, making it less necessary for
them to encode, transform, and memorize elaborate
spatial information (von St€ulpnagel and Steffens
2013; Grinschgl, Papenmeier, and Meyerhoff 2021).

To date, only a handful of behavioral studies have
investigated the long-term cognitive decline caused
by prolonged reliance on navigation devices in daily
routines (i.e., long-term effects). For example,
Ishikawa (2019) and Ruginski et al. (2019) used
self-report questionnaires to assess participants’ expe-
rience using navigation aids. Structural equation
modeling analysis revealed the negative effects of
accumulated Global Positioning System (GPS) expe-
rience on individuals’ wayfinding performance, spa-
tial orientation, and spatial learning performance in
a novel environment. Topete et al. (2024) replicated
this result in their investigation using a more com-
prehensive self-reported GPS dependency scale that
differentiated across various navigation scenarios.
Furthermore, a longitudinal study by Dahmani and
Bohbot (2020) reported that individuals who used
navigation aids showed a steeper decline in spatial
memory over time. In these studies, the cognitive
and perceptual processes that could explain these
behavioral outcomes have not been studied in detail.
Studying these processes, however, could elucidate
how the decline in spatial abilities with increased
use of navigation technology could be mitigated.

Methods

Participants

A total of twenty-four male taxi drivers in Beijing
participated in the experiment (see Table 1 for back-
ground characteristics). We collected information on
participants’ use of in-car navigation aids and other
background information through interviews con-
ducted before the video route-following portion of
the study. Of the twenty-four participants, two (8
percent) reported that they had never used in-car
navigation aids in their daily taxi driving. The other
twenty drivers (92 percent) used auditory navigation
instructions in different ways. We accordingly
grouped participants into two navigation aids groups:
low-dependence (LD) and high-dependence (HD).
Specifically, the LD group used navigation assistance
only when they felt it was necessary; that is, when
they were unfamiliar with the environment, and
thus felt unable to perform route planning them-
selves. The two participants who reported that they
had never used navigation assistance were included
in the LD group. In contrast, the HD group pre-
ferred to constantly use navigation devices while

4 Ying, Dong, and Fabrikant



driving. Ultimately, eleven and thirteen participants
were assigned to the LD and HD groups, respec-
tively. Independent t tests of the two groups regard-
ing the reported hours per day spent using in-car
navigation aids also revealed significant differences
in their dependence on in-car navigation aids
(p< 0.001, Cohen’s d¼ 2.05). Furthermore, the two
groups were balanced concerning a range of individ-
ual differences previously shown to influence naviga-
tion ability, including spatial ability and spatial
anxiety assessed with the Santa Barbara Sense of
Direction (SBSOD) Scale and the Spatial Anxiety
Scale (Lawton 1994; Hegarty et al. 2002; Wolbers
and Hegarty 2010), as well as demographic factors,
such as age (Klencklen, Despr�es, and Dufour 2012),
educational background (Ritchie and Tucker-Drob
2018), nationality, culture, language (Coutrot et al.
2018), driving experience (Woollett and Maguire
2010), and living environment (Farzanfar et al.
2023). Following prior related research (i.e., Maguire
et al. 2000), the two experimental groups were
homogenous in terms of gender, a group difference
factor that has been shown to influence navigation
ability (Nazareth et al. 2019).

Participants were recruited using online and
printed posters. They were required to complete an
online questionnaire about their background infor-
mation and in-car navigation aid usage habits, allow-
ing us to prescreen for suitable participants. All

participants had normal or corrected-to-normal
vision, and none reported a history of neurological
or psychiatric disease. Given the specialized partici-
pant group, namely, professional taxi drivers, we
implemented an incentive for participation and a
reward depending on their experimental performance
to boost these expert navigators’ motivation and
engagement in the experiment. Specifically, the
remuneration they received depended on their accu-
racy in completing the first two tasks and the num-
ber of landmarks they marked on the correct route
segment on the sketched map; these values were cal-
culated immediately by the experimenter once par-
ticipants finished the experiment. Participants were
informed of these incentives before the experiment.

Materials and Experimental Design

This study followed a between-participants design.
As shown in Figure 1A, participants were asked to
watch real-world driving videos of given routes in an
urban environment (learning phase) and to subse-
quently complete tasks, according to which we
investigated their spatial knowledge acquisition abil-
ity. We designed the tasks by referring to and adapt-
ing previously used paradigms, as detailed further in
what follows. Participants performed a scene recogni-
tion task in which their landmark knowledge was
assessed (Wen, Ishikawa, and Sato 2014), a route

Table 1. Background characteristics of the two groups of participants

Descriptive Inferential

LD HD t test

M SD M SD t p value Cohen’s d

Age (years) 49.182 5.930 53.077 3.616 −1.978 0.061 (ns) 0.81
Years of taxi-driving experience 20.818 3.710 20.692 4.939 0.069 0.945 (ns) 0.03
Hours per day spent using in-car navigation aids 1.700 1.735 5.545 1.827 −4.693 0.000��� 2.05
SBSOD 37.909 13.881 42.846 11.014 −0.972 0.342 (ns) 0.40

Mann–Whitney U test

W p value g
2

Working hours per day 10.091 2.256 10.538 1.330 70.5 0.976 (ns) 0.02
Spatial anxiety scale 22.455 9.720 28.000 7.461 44.5 0.124 (ns) 0.10

Chi-square test

Yes No Yes No v
2 p value Cohen’s w

Educational background (completed high school) 5 6 3 10 0.524 0.469 (ns) 0.24

Note: LD¼ low-dependence group; HD¼high-dependence group; SBSOD¼Santa Barbara Sense of Direction Scale.

ns ¼ p> 0.05.
���p< 0.001.
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Figure 1. Experimental design, procedure, and data analysis. (A) Materials and apparatus used in the experiment. (B) The experimental
procedure. (C) The data analysis procedure of this study. Note: SBSOD¼ Santa Barbara Sense of Direction Scale;
EEG¼ electroencephalography; ICA¼ independent component analysis; PSD¼ power spectral density.
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recognition task in which their route knowledge was
evaluated (Burte and Montello 2017), and a sketch
mapping task in which their survey knowledge was
examined (Ishikawa and Montello 2006).
Participants completed all tasks without any time
pressure.

Learning Phase. The videos presented to the
participants were obtained from the University of
Modena’s public data set of driving scenarios
DR(eye)VE (Palazzi et al. 2019), which shows driv-
ing scenes in Modena, Italy (Figure 1A). The videos
were filmed with a wide-angle Garmin camera
placed on the car’s roof at 1080 p/25 frames per sec-
ond (fps). We selected videos filmed during the day-
time under good weather conditions and removed
scenes with temporary stops. We also slowed the
chosen segments down to 75 percent of the original
filming speed. After this process, we obtained two
two-minute videos following two routes. Route 1 was
approximately 1,000 m long and included four inter-
sections; Route 2 was approximately 600 m long and
included five intersections. We prepared one addi-
tional video with a one-minute and thirty-second
duration, which was used as a training video for the
practice trial before the actual experiment.

Scene Recognition Task. A set of photographs
depicting random scenes from driving videos were
presented to the participants. Half of the images
came from the video presented in the learning phase
and the other half came from other videos in the
data set, which were also recorded in Modena but at
other locations. The selected photographs contained
significant landmarks or were taken at intersections
(Figure 1A). Participants were asked to indicate with
a yes or no answer whether the photographs came
from the environment they had just learned from the
driving video. In this task, there were fourteen and
sixteen trials for Routes 1 and 2, respectively.

Route Recognition Task. Participants viewed
photographs of intersections with superimposed
arrows (pointing straight, to the right, or to the left;
see Figure 1A for an example). The participants
were asked to indicate which driving action matched
the driving direction in the viewed video at that
intersection.

Sketch Mapping Task. The photographs of
scenes from the learned driving route were again
presented to the participants in random order. The

participants were asked to sketch a map of the driv-
ing route and then to mark the viewing positions of
the photographs on this map.

Procedure

The Beijing Normal University Ethics Committee
reviewed this study before it was conducted, and all
participants provided informed consent. An over-
view of the experimental procedure used in the
experiment is illustrated in Figure 1B. We first inter-
viewed the participants for approximately twenty
minutes to collect their demographic information
(i.e., age, gender, educational background, year in
which they started driving taxis, year in which they
started using in-car navigation aids while driving,
and working hours per day). We also asked them
about their in-car navigation assistance systems use
(i.e., hours per day using in-car navigation aids,
when and how they would use navigation aids,
including whether auditory instructions were used).
Subsequently, the spatial learning experiment was
explained to the participants. The experiment com-
prised a video-presenting phase, and the three tasks
presented earlier were performed sequentially. The
video was presented to the participants three times,
with each presentation followed by the scene recog-
nition task; that is, participants performed this task
three times. After the last video presentation and
subsequent scene recognition task, participants were
asked to complete the route recognition task and the
sketch mapping task. The participants first per-
formed a practice trial, as explained earlier, to get
familiar with the experimental procedure. After the
practice trial, we connected participants to the eye
tracker and the EEG device. Next, the participants
completed the actual experiment with the two
routes. Finally, they completed the SBSOD Scale
and the Spatial Anxiety Scale. The participants
took approximately 90 to 120minutes to complete
the entire experiment.

Apparatus

In this study, eye movement data were collected
using an SMI RED250 eye tracker with a sampling
rate of 120Hz, sampling accuracy of 0.4�, and a spa-
tial resolution of 0.03�. Participants’ brain activity
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was simultaneously recorded using a thirty-two-chan-
nel EEG device (Enobio 32) with a sampling rate of
500Hz and a sampling bandwidth between 0 and
125Hz. The distribution of electrodes is shown in
Figure 1A. We ran our study using two laptops that
we could easily carry. The reason for this was that
data collection happened during the COVID-19
pandemic and our taxi drivers were not allowed to
enter any campus facilities. To solve this problem,
we ran the study on highly mobile laptops in an off-
campus meeting room that we set up every day dur-
ing data collection, together with recording devices
that we transported from the campus research labo-
ratory. One laptop was dedicated to practice trials
without any data collection before the actual learn-
ing phase and to display stimuli for the sketch map-
ping task after the learning phase. This laptop
featured a 13.3-inch screen with a resolution of
2560� 1600 pixels. During the actual experiment,
we used another laptop that featured a 15.6-inch
screen with a screen resolution set to 1920� 1080
pixels. It was used to simultaneously display the driv-
ing video and the photograph stimuli and to record
all participant responses. This included gaze behav-
ior, EEG, and behavioral responses for the scene rec-
ognition task and the route recognition task.

Data Processing and Analysis

Figure 1C illustrates the analysis framework used
in this study, which involved eye movement and
EEG response during the spatial learning phase, as
well as behavioral performance in the subsequent
tasks. In the following sections, we describe the data
processing methods and analysis steps in detail.

Behavioral Data Analysis. For the scene recog-
nition task and route recognition task, we used accu-
racy (calculated as the percentage of correctly
answered trials relative to the total number of trials)
to indicate participants’ performance. Notably, only
the accuracy of participants completing the third
scene recognition task was considered when calculat-
ing their final performance metrics. In the analysis of
the collected sketch maps, we compared participants’
sketch maps with Google Maps of the driven area.
The marked viewing positions of the scene photo-
graphs were imported as anchor points (instead of the
landmarks themselves) into the Gardony Map
Drawing Analyzer (GMDA: Gardony, Taylor, and
Bruny�e 2016). As indicators of participants’ sketch

mapping accuracy, we applied the GMDA to compute
the bidimensional regression index (r2), absolute scal-
ing bias, and absolute rotational bias. To calculate the
scaling bias, the interlandmark distances were first
scale-equalized by dividing the distance between every
two landmarks by the maximum interlandmark dis-
tance on the map. The differences between the inter-
landmark distance ratios of the sketch map and the
Google Map were subsequently summed. The rota-
tional bias was calculated in the same way but using
the interlandmark direction instead of the interland-
mark distance. Therefore, a larger scaling bias and a
larger rotational bias, respectively, represented a sig-
nificant deviation in the distance and direction
between anchor points. Hence, all three metrics cap-
ture distortions of the sketch map compared to
Google Map.

Eye Movement Analysis. Basic fixation-related
and saccade-related eye movement metrics can rep-
resent participants’ visual attention allocation and
visual information acquisition during navigation
(Kiefer et al. 2017). We calculated participants’ fixa-
tion count, saccade count, and average fixation dura-
tion during the learning phase. These three eye
movement metrics have been meaningfully used in
previous research to assess navigators’ visual atten-
tion allocation (Br€ugger, Richter, and Fabrikant
2019; Dong et al. 2022). Although pupil dilation is
also a commonly used indicator—for example, when
comparing within-subject differences in cognitive
load during static map reading (Kiefer et al. 2017)—
our study followed a between-subjects design using
dynamic videos with changing image characteristics.
Therefore, we leveraged EEG methodology to study
cognitive load instead. The definitions and meanings
of these metrics are interpreted as follows:

� Fixation count: A greater fixation count suggests that
participants attended to more visual information.

� Saccade count: A greater saccade count suggests that
participants moved their eyes more, for example,
when searching for visual information.

� Average fixation duration (in milliseconds): A longer
average fixation duration indicates that participants
are either more interested in the attended visual
information or have greater difficulty understanding
this information and thus show less efficiency in
interpreting visually attended information.

We excluded participants with sample rates lower
than 80 percent, which were calculated by dividing
the number of correctly identified ET samples by the
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number of attempts. This meant that after prepro-
cessing, seventeen participants were included in the
data analysis for Route 1 (NLD ¼ 9, NHD ¼ 8), and
fifteen participants were included for Route 2 (NLD

¼ 9, NHD ¼ 6).
EEG Analysis. All the raw data were input

into EEGLAB v2021.0 (Delorme and Makeig
2004) run in MATLAB (version 2018a) for prepro-
cessing. We first applied a high-pass filter with a
0.01-Hz cutoff frequency and a low-pass filter with
a 40-Hz cutoff to remove high-frequency artifact
and low-frequency drift. Then, all electrodes were
referenced to Cz. The Clean_rawdata toolbox in
EEGLAB was subsequently used to automatically
identify channels containing significant noise.
These bad channels were then removed and
replaced with interpolated data using spline inter-
polation. Next, we performed independent compo-
nent analysis and used the ICLabel toolbox
(Pion-Tonachini, Kreutz-Delgado, and Makeig
2019) in EEGLAB to identify and label indepen-
dent components (ICs). ICs with a greater than 80
percent probability of being classified as eye or
muscle activity were removed.

We used the mouse click recorded in the ET data
to identify the exact start time for presenting each
video during the learning phase. Based on this infor-
mation, we extracted the learning phase as EEG
events with a duration of 120 seconds, the same as
the video duration. At this stage of data processing,
we excluded data from one participant for Route 1
and four participants for Route 2, as we failed to
synchronize the mouse click event with the EEG
data. Finally, the EEG data of twenty-three partici-
pants for Route 1 (NLD ¼ 11, NHD ¼ 12) and
twenty participants for Route 2 (NLD ¼ 8, NHD ¼
12) were left for subsequent analysis.

We then performed a power spectrum analysis on
each epoch of the cleaned EEG data using
EEGLAB. Given that we were particularly interested
in theta power in the frontal cortex, we selected five
electrodes—Fz, F3, F4, AF3, and AF4—located in
this brain region for analysis (see Figure 1A for the
location of the electrodes). We applied the periodo-
gram to compute the power spectral density (PSD)
of the specific frequency range. To reduce the
impact of individual differences in the absolute PSD
on the results of the current between-participants
design study, we referred to previous studies using
relative power (Bian et al. 2014; Cheng et al. 2022)

and calculated the relative PSD in the theta band
using the following equation.

Relative theta PSD ¼
PSD of theta ð4 − 8HzÞ

PSD of 1 − 30Hz

We further analyzed the Fz electrode data to
determine changes in the relative PSD over time.
We first split the learning phase EEG epoch into
five-second time windows with one-second intervals.
Subsequently, each EEG video event yielded 115
continuous EEG epochs. We then performed the
power spectrum analysis as described earlier on these
epochs.

Statistical Analysis. We conducted statistical
tests between the LD and HD experimental groups.
We applied the Scheirer–Ray–Hare test to analyze
the behavioral data. For the continuous psychophysi-
ological variables derived from the background char-
acteristics, eye movement, and EEG data, we
conducted independent t tests or Mann–Whitney U
tests, depending on whether the data were normally
distributed. For the categorical variables, we
employed the chi-square test.

Results

In the following sections, we first report on the
behavioral performance of the participants in the two
experimental groups as a direct indicator of their spa-
tial learning ability modulated by navigation aid use.
Then, we present the results of the eye movement
and EEG analyses during the spatial learning phase.

Behavioral Performance

Figure 2 shows the summary statistics for partici-
pants’ performance in the scene recognition, route
recognition, and sketch mapping tasks. The
Scheirer–Ray–Hare test revealed that the scene rec-
ognition accuracy of the LD group (Mroute1 ¼ 0.77,
SDroute1 ¼ 0.13; Mroute2 ¼ 0.90, SDroute2 ¼ 0.07)
was significantly better than that of the HD group
(Mroute1 ¼ 0.66, SDroute1 ¼ 0.16; Mroute2 ¼ 0.79,
SDroute2 ¼ 0.14, H¼ 5.57, p¼ 0.02, g2 ¼ 0.13). We
also found a main effect of the route in this task
(H¼ 9.79, p¼ 0.002; g

2 ¼ 0.17). Participants per-
formed better on Route 2 than on Route 1.

There was no significant difference in accuracy in
the route recognition task between the LD (Mroute1

¼ 0.84, SDroute1 ¼ 0.20; Mroute2 ¼ 0.89, SDroute2 ¼
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0.13) and the HD groups (Mroute1 ¼ 0.75, SDroute1

¼ 0.25; Mroute2 ¼ 0.78, SDroute2 ¼ 0.21; H¼ 2.49,
p¼ 0.12, g

2 ¼ 0.06). Additionally, for the sketch
mapping task, no significant differences in r2

(H¼ 2.74, p¼ 0.10, g
2 ¼ 0.06) or rotational bias

(H¼ 1.11, p¼ 0.29, g
2 ¼ 0.02) were found across

the experimental groups. A significant difference in
scaling bias was found, however, between the LD
(Mroute1 ¼ 0.04, SDroute1 ¼ 0.03; Mroute2 ¼ 0.03,
SDroute2 ¼ 0.02) and the HD groups (Mroute1 ¼
0.06, SDroute1 ¼ 0.05; Mroute2 ¼ 0.05, SDroute2 ¼
0.03; H¼ 4.03, p¼ 0.045, g

2 ¼ 0.10), indicating
that participants in the LD group could better esti-
mate the interlandmark distance. For all five indica-
tors, no interaction effects were detected between
the experimental group and the experimental route
(p> 0.05).

Eye Movement

Regarding fixation behavior and saccade behavior,
as shown in Figure 3, we found no statistically signifi-
cant differences in fixation count, saccade count, or
average fixation duration between the LD and the
HD groups (p> 0.05) for either route. The eye move-
ment results indicated that participants in the two
groups did not differ in the amount of visual informa-
tion searched or processed during spatial learning or
the efficiency of processing visual information.

Cognitive Load

We analyzed the relative theta PSD in the
selected frontal electrodes (i.e., Fz, F3, F4, AF3, and
AF4) while participants watched the driving videos

Figure 2. Comparison of the behavioral performance of the low-dependence (LD) and high-dependence (HD) groups. (A) Accuracy in
the scene recognition task. (B) Accuracy in the route recognition task. (C) r2 of the sketch map. (D) Scaling bias of the sketch map.
(E) Rotational bias of the sketch map. Note: ns ¼ p> 0.05. �p< 0.05. ��p< 0.01.
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to indicate their cognitive load during the learning
phase. The Route 1 results are shown in Figure 4A.
Taking Fz as an example, the average relative theta
PSD of the LD group was lower than that of the HD
group in all three trials, and the difference was sig-
nificant in the second trial (MLD ¼ 0.07, SDLD ¼
0.04; MHD ¼ 0.13, SDHD ¼ 0.04, p¼ 0.03, g

2 ¼
0.41). The statistical analysis results for all trials are
shown in Tables A.1 and A.2 in the Appendix.

We further visualized the relative PSD of the Fz
electrode on the map to indicate the cognitive load
of participants according to location; that is, when
the car used to record the video traveled to a certain
point. To achieve this, we used the driving speed
data from the DR(eye)VE data set (twenty-five
records per second) to calculate and normalize the
driving distance per second. We then averaged the
Fz relative PSD over time (as described in the

Methods section) in the three trials and matched
the outcomes with the preceding distance series.
The results were visualized and overlapped with
Google Maps as a base map (Figure 4B). We found
differences in the spatial distribution of the calcu-
lated Fz relative PSD in terms of intersections and
route segments separated by intersections across
experimental groups. The reason for this difference
could be explained by the cognitive load of partici-
pants in the LD group, which only sharply increased
at intersections. Conversely, participants in the HD
group demonstrated high cognitive load throughout
the entire route and did not show any significant
cognitive load differences between intersections and
route segments. Further statistical analysis revealed
the cognitive load of the LD group to be signifi-
cantly lower than that of the HD group for the first
four route segments (p< 0.05), with no significant

Figure 3. Results of eye movement metrics. (A) Fixation count. (B) Average fixation duration (ms). (C) Saccade count.
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difference between the two groups at intersections
(Figure 4C). We observed similar results for Route 2,
as shown in Figure A.1 in the Appendix.

Discussion

In this research, we compared two groups of
Beijing taxi drivers with different levels of depen-
dence on in-car navigation aids in their visual atten-
tion and cognitive load during a video-based route-
following task and their spatial knowledge acquisi-
tion performance. With this experiment, we aimed
to address the proposed research question of whether
and how in-car navigation aids impair the spatial
learning ability of expert navigators. We found that
participants with greater dependence on in-car navi-
gation aids had worse performance in the scene rec-
ognition task, and there was greater distortion in the
interlandmark distance but not in the interlandmark
direction in the sketch maps they drew. There were
no significant group differences, however, in the
route recognition task. Cognitive indicators from the
EEG data demonstrated that greater dependence on
in-car navigation aids might be linked to greater
cognitive load. Eye movement metric results
revealed no group differences in either fixation
behavior or saccade behavior. Overall, these results
support Hypothesis 3 and partly support Hypothesis
1. They also suggest that Hypothesis 2 should be
rejected. In the following sections, we discuss the
empirical behavioral, visual attention, and brain
activity results in detail within the context of the
findings of the state-of-the-art literature.

In-Car Navigation Aids Impair Participants’
Ability to Acquire Landmark Knowledge and
Survey Knowledge but Not Route Knowledge

According to the behavioral results, the LD group
outperformed the HD group in acquiring low-level
landmark knowledge and in using high-level survey
knowledge to estimate interlandmark distance.
These findings support our hypothesis and partly rep-
licate the results of previous research using structural

equation modeling (Ruginski et al. 2019). Contrary
to their findings, though, participants in our experi-
ment showed no significant group difference in esti-
mating the distance between landmarks. This
discrepancy could be attributed to the difference in
experimental design because participants in their
experiment performed distance estimation from an
egocentric perspective, whereas in our experiment,
they drew sketch maps from an allocentric perspec-
tive. Another possibility is that in their investigation
of participants’ experiences using navigation aids,
they did not distinguish pedestrian navigation aids
from in-car navigation aids, whereas we focused on
only in-car aids.

Contrary to our expectations, route knowledge
acquisition did not differ by group. One possible
explanation might be that the route recognition task
requires participants to remember a series of consec-
utive actions, which is exactly what turn-by-turn
navigation instructions emphasize (e.g., “Turn left at
the next intersection”). To our knowledge, only two
previous studies related to turn-by-turn in-car navi-
gation aids have used the same task to assess partici-
pants’ performance in acquiring route knowledge.
Kelly, Lim, and Carpenter (2022) reported that
using turn-by-turn navigation aids did not impair
route recognition performance. Ben-Elia (2021)
demonstrated that using in-car navigation aids
affected route knowledge acquisition less than land-
mark knowledge acquisition. Furthermore, our find-
ings corroborate the previously proposed idea that
the three types of spatial knowledge are acquired
independently and simultaneously, without the need
to acquire high-level knowledge on the basis of low-
level knowledge (Montello 1998; Meilinger,
Frankenstein, and B€ulthoff 2013; Kim and Bock
2021). Otherwise, we should have observed accor-
dant results in all three tasks.

Additionally, we found a significant main effect of
route on landmark knowledge acquisition.
Participants showed better spatial knowledge acquisi-
tion performance for Route 2 than for Route 1. This
difference might be because Route 2 has a more
complex structure and scenery, providing

3

Figure 4. Electroencephalography (EEG) results for Route 1. (A) Relative theta power spectral density (PSD) of EEG data from five
frontal electrodes (Fz, F3, F4, AF3, and AF4) were significantly different between the low-dependence (LD) group and high-dependence
(HD) group in several trials. (B) The relative theta PSD of the Fz electrode is mapped along the navigated route, indicating the spatial
context of the recorded cognitive load. The locations of intersections and route segments are also labeled on the map. (C) Statistical
analysis of the relative theta PSD for each intersection and route segment. Note: �p< 0.05. ��p< 0.01.
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participants with more recognizable landmarks. This
finding adds to the existing evidence suggesting that
the appearance and structure of an environment
have an impact on navigators’ perception and cogni-
tion of space (Manley, Filomena, and Mavros 2021)
and their navigational behavior (Yesiltepe et al.
2023). In future research, the complexity of the
experimental environment and the salience of land-
marks presented to participants could be controlled
to further investigate this issue. In addition to envi-
ronmental complexity, individuals’ prior knowledge
of a structured environment (e.g., a particular type
of city), conceptualized as spatial schemas, might
influence their spatial learning in environments
resembling familiar environments. Specifically, a spa-
tial schema has been demonstrated to interfere with
the acquisition of spatial knowledge from novel
environments with schema-incongruent elements but
rather facilitates the acquisition of spatial knowledge
from similar environments with schema-congruent
elements (Farzanfar et al. 2023). In this study, we
used the city of Modena, which is significantly dif-
ferent from Beijing in terms of structure and city-
scape, as our study area. Future investigations should
consider spatial schemas and use similar structured
environments more familiar to participants.

This Impairment Stems from Cognitive Processes
During Spatial Learning: Evidence from Eye
Movement and EEG Response Data

As mentioned earlier, we did not observe signifi-
cant differences between the LD and HD groups in
terms of their eye movement behavior according to
fixation-related and saccade-related metrics. The
recorded EEG data, however, show that the HD
group exhibited greater frontal relative theta PSD,
which might suggest a greater cognitive load of the
HD group during spatial learning compared to the
LD group. Taking these findings together, it appears
that long-term use of in-car navigation aids does not
affect the allocation of visual attention to environ-
mental information but does affect subsequent cogni-
tive mechanisms—in other words, the process of
encoding this visuo-spatial information into memory.
Theta spectral power in the frontal cortex, as
observed in the HD group, could also be explained
by a potential increase in cognitive difficulty
(Antonenko et al. 2010; Maurer et al. 2015), thus
further implying that task demands exceeded

participants’ already limited cognitive resources in
the HD group. This has already been shown in
related tasks such as spatial learning, driving, and
navigation (Young et al. 2015; Cheng et al. 2022;
Cheng et al. 2023). A possible explanation for the
greater cognitive load of the HD group, therefore,
might be that participants in this group encountered
more difficulty in both processing the visual informa-
tion perceived from the environment and encoding
it into spatial knowledge. This inference from both
the visual attention and EEG data aligns with previ-
ous research demonstrating that the accuracy of cog-
nitive maps formed by individuals during
environmental exploration is not associated with
visual information input but with individuals’ ability
to encode such information (Keller and Sutton
2022).

There are, however, other possible explanations
for the eye movement results considering the partici-
pant characteristics, the experimental design, and
the experimental environment. As participants’ in-
car navigation aid use habits mainly involve follow-
ing auditory instructions, they do not have to pay
attention to the mobile maps visually presented on
their devices during daily driving. The division of
nonvisual attention by auditory aids (Gardony et al.
2013), therefore, could lead to long-term cognitive
decline in individuals without affecting gaze behav-
ior. Moreover, the driving videos used as stimuli in
our experiment were recorded with a forward-facing
fixed-view camera. Therefore, participants mainly
observed the presented environmental information
ahead of the road. According to previous findings,
however, digital navigation aids could also influence
the distribution of eye fixations to both sides of
(Haupt, van Nes, and Risser 2015) and behind
(Br€ugger, Richter, and Fabrikant 2018) the body on
the ground during navigation, which is not discussed
in this article. The videos were presented to partici-
pants on a flat, two-dimensional, and nonimmersive
laptop screen of arguably small size. In more immer-
sive virtual environment test settings (i.e., stereo-
scopic VR, etc.), additional sensory inputs such as
auditory cues and body-based cues could be included
and possibly contribute further to spatial learning
(Steel, Robertson, and Taube 2021). Although pre-
vious studies suggest that the intensity of immersion
has little impact overall on spatial learning perfor-
mance (Zhao et al. 2020; Dong et al. 2022), greater
immersion could lead to distinct changes in visual
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attention distribution during navigation (Dong et al.
2022). Additionally, larger screen sizes and higher
display resolutions in virtual environments have
been reported to benefit navigators in searching for
and navigating to a destination (Ni, Bowman, and
Chen 2006). In a future study, our findings, espe-
cially concerning eye movement behaviors, could be
compared to immersive, large-screen, head-mounted
VR, or real-world study settings.

A Comparison of Intersections and Route
Segments

Previous studies have described the beneficial
effect of acquiring spatial information at intersec-
tions on understanding the configuration of space,
developing an internal representation of the envi-
ronment, and navigating in that environment
(Klippel and Winter 2005). In this study, we found
that the two experimental groups differed in their
spatial distribution pattern of the calculated Fz rela-
tive PSD, which might be explained by the distinct
increase in cognitive load at intersections for the LD
group, compared to the overall high cognitive load
throughout the entire route for the HD group.
Previous research has shown that theta power
increases with increasing use of cognitive resources
(Sauseng et al. 2010; Puma et al. 2018), especially
when tasks require sustained concentration (Gevins
and Smith 2003). Therefore, a possible explanation
for our findings might be that the LD group tended
to allocate more cognitive resources to processing
information at intersections, whereas the HD group
used approximately the same cognitive resources
along route segments and at intersections. In other
words, long-term dependence on in-car navigation
aids might affect spatial learning strategies and
increase the difficulty of efficiently allocating cogni-
tive resources.

Limitations and Future Work

Based on our experimental design, participants
were informed before the experiment that there
would be a spatial knowledge test, and that they
would receive rewards for better performance. This
leads to intentional learning, which, although still
controversial, is considered to potentially affect spa-
tial learning performance (Van Asselen, Fritschy,
and Postma 2006). Future studies could target

specifically incidental learning to further assess our
findings. Moreover, we focused on turn-by-turn audi-
tory assistance due to the in-car navigation aid use
habits of our particular pool of participants. Further
empirical studies are needed to examine our findings
on navigation aids with various design elements,
which have been shown in prior studies to affect spa-
tial learning performance; these include different
automatization levels (Br€ugger, Richter, and
Fabrikant 2019), different interactions between users
and devices (Richter, Dara-Abrams, and Raubal
2010), and different methods for presenting spatial
information (Ishikawa and Takahashi 2014). Follow-
up research could also target other cognitive pro-
cesses of navigation (e.g., route planning). Another
limitation of this study is the small participant group
due to the difficulty of conducting on-site experi-
ments during the COVID-19 pandemic and recruit-
ing participants from such a specialized professional
group of expert navigators. Moreover, because data
collection happened in a mobile research lab and we
could only use laptops with arguably small display
sizes for this reason, future studies could further
investigate how display size (beyond traditional lap-
top screens) and immersiveness (i.e., in VR) might
influence the results. It would also be interesting to
increase participants’ activity in the experiment, for
example, by allowing them to actively explore the
environment themselves, which has been shown to
lead to different outcomes than those obtained via
passive learning settings, as applied in this study
(Chrastil and Warren 2012). Furthermore, in a
between-subjects study, we cannot eliminate the
influence of differences in individual characteristics
on the experimental results. In future investigations,
longitudinal within-subjects experiments could be
conducted, and participants’ spatial learning abilities
and navigation system use habits could be recorded
over time.

Additionally, recent studies have indicated that
several specific brain areas, including the hippocam-
pal, parahippocampal, entorhinal, and retrosplenial
cortices, play crucial roles in human navigation and
cognitive map formation (Epstein et al. 2017). The
activity of these deep brain structures, however, can-
not be detected well by the thirty-two-channel scalp
EEG system used in this study, considering the diffi-
culty and inaccuracy of inferring the brain region
location according to the neuronal activity measured
on the scalp. Therefore, another future research
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direction is to use neuroimaging techniques with higher
spatial resolution, such as fMRI and magnetoencepha-
lography (MEG), to explore the influence of mobile
navigation aids on the structure and function of specific
brain regions related to spatial information encoding,
spatial memory, and spatial decision-making.

Conclusions

Our empirical results for participants’ behavioral
performance, eye movement, and EEG activity indi-
cated that long-term dependence on in-car naviga-
tion aids can deteriorate expert navigators’ spatial
learning ability. Specifically, greater dependence on
in-car navigation systems might increase participants’
difficulty in encoding visual-spatial information,
leading to a significantly greater cognitive load with
the same amount of visual input. We suggest that
this is the reason for the behavioral difference we
observed in their performance in acquiring landmark
knowledge and survey knowledge from the explored
environment and might explain how in-car naviga-
tion aids lead to cognitive decline in frequent users.

This study contributes to the ongoing debate on
the long-term impacts of digital technology on
human cognitive ability (Cecutti, Chemero, and Lee
2021) by elaborating on the detrimental effects of
the enhancement of geographical information tech-
nology on individuals’ spatial learning ability.
Moreover, by empirically exploring how this naviga-
tion-related cognitive decline occurs, our study has
implications for the design and development of
future navigation systems, which could encourage
users to use more of their inherent capacity and
acquired spatial knowledge instead of overlying on
navigation instructions in the digital era.
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Appendix

Figure A.1. Electroencephalography (EEG) results for Route 2. (A) Relative theta power spectral density (PSD) of EEG data from five
frontal electrodes (Fz, F3, F4, AF3, and AF4) were significantly different between the low-dependence (LD) group and high-dependence
(HD) group in several trials. (B) The relative theta PSD of the Fz electrode is mapped along the navigated route, indicating the spatial
context of the recorded cognitive load. The locations of intersections and route segments are also labeled on the map. (C) Statistical
analysis of the relative theta PSD for each intersection and route segment. �p< 0.05. ��p< 0.01. ���p< 0.001.
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Table A.1. Statistical analysis of the relative theta power spectral density of electroencephalography activity at five
frontal electrodes (Fz, F3, F4, AF3, and AF4) for Route 1

Descriptive Inferential

LD HD t test
Effect size

M SD M SD t p value Cohen’s d

Route 1 Trial 1_Fz 0.104 0.046 0.140 0.046 −1.893 0.072 0.790
Route 1 Trial 3_Fz 0.089 0.061 0.126 0.037 −1.787 0.088 0.746
Route 1 Trial 1_F3 0.122 0.064 0.127 0.037 −0.227 0.823 0.095
Route 1 Trial 2_F3 0.105 0.082 0.130 0.037 −0.939 0.364 0.404
Route 1 Trial 3_F3 0.098 0.057 0.114 0.050 −0.688 0.499 0.287
Route 1 Trial 1_F4 0.107 0.052 0.130 0.041 −1.164 0.258 0.486
Route 1 Trial 2_F4 0.070 0.042 0.126 0.036 −3.441 0.002�� 1.436
Route 1 Trial 3_F4 0.088 0.049 0.114 0.044 −1.334 0.197 0.557
Route 1 Trial 1_AF3 0.105 0.053 0.125 0.037 −1.040 0.310 0.434
Route 1 Trial 2_AF3 0.071 0.041 0.127 0.034 −3.539 0.002�� 1.477
Route 1 Trial 3_AF3 0.084 0.039 0.122 0.036 −2.392 0.026� 0.998
Route 1 Trial 1_AF4 0.107 0.050 0.130 0.035 −1.253 0.224 0.523
Route 1 Trial 2_AF4 0.075 0.042 0.127 0.030 −3.503 0.002�� 1.462
Route 1 Trial 3_AF4 0.086 0.037 0.114 0.048 −1.569 0.131 0.655

Mann–Whitney U test Effect size

W p value g
2

Route 1 Trial 2_Fz 0.066 0.041 0.134 0.043 30 0.029� 0.41

Note: LD¼ low-dependence group; HD¼high-dependence group.
�p< 0.05.
��p< 0.01.

Table A.2. Statistical analysis of the relative theta power spectral density of electroencephalography activity at five
frontal electrodes (Fz, F3, F4, AF3, and AF4) for Route 2

Descriptive Inferential

LD HD t test
Effect size

M SD M SD t p value Cohen’s d

Route 2 Trial 1_Fz 0.079 0.029 0.136 0.044 −3.197 0.005�� 1.459
Route 2 Trial 2_Fz 0.086 0.054 0.141 0.061 −2.044 0.056 0.933
Route 2 Trial 3_Fz 0.104 0.046 0.119 0.052 −0.706 0.489 0.322
Route 2 Trial 1_F3 0.093 0.043 0.129 0.037 −2.015 0.059 0.920
Route 2 Trial 2_F3 0.096 0.040 0.133 0.036 −2.189 0.042� 0.999
Route 2 Trial 3_F3 0.102 0.047 0.126 0.034 −1.305 0.208 0.595
Route 2 Trial 2_F4 0.079 0.035 0.147 0.048 −3.421 0.003�� 1.561
Route 2 Trial 3_F4 0.097 0.043 0.129 0.045 −1.590 0.129 0.726
Route 2 Trial 1_AF3 0.080 0.032 0.124 0.037 −2.729 0.014� 1.246
Route 2 Trial 2_AF3 0.081 0.039 0.130 0.038 −2.799 0.012� 1.278
Route 2 Trial 3_AF3 0.097 0.041 0.128 0.036 −1.782 0.092 0.813
Route 2 Trial 1_AF4 0.078 0.033 0.125 0.035 −2.977 0.008�� 1.359
Route 2 Trial 2_AF4 0.080 0.029 0.138 0.033 −3.981 0.001��� 1.817
Route 2 Trial 3_AF4 0.099 0.045 0.134 0.046 −1.683 0.110 0.768

Mann–Whitney U test Effect size

W p value g
2

Route 2 Trial 1_F4 0.079 0.036 0.127 0.039 16 0.015� 0.3

Note: LD¼ low-dependence group; HD¼high-dependence group.
�p< 0.05.
��p< 0.01.
���p< 0.001.
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