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A B S T R A C T   

Data quality and control parameters are becoming more important in metabolomics. For peak picking, open- 
source or commercial solutions are used. Other publications consider different software solutions or data 
acquisition types for peak picking, a combination, including proposed and new quality parameters for the process 
of peak picking, does not exist. This study tries to examine the performance of three different software in terms of 
reproducibility and quality of their output while also considering new quality parameters to gain a better un-
derstanding of resulting feature lists in metabolomics data. We saw best recovery of spiked analytes in MS-DIAL. 
Reproducibility over multiple projects was good among all software. The total number of features found was 
consistent for DDA and full scan acquisition in MS-DIAL but full scan data leading to considerably more features 
in MZmine and Progenesis Qi. Feature linearity proved to be a good quality parameter. Features in MS-DIAL and 
MZmine, showed good linearity while Progenesis Qi produced large variation, especially in full scan data. Peak 
width proved to be a very powerful filtering criteria revealing many features in MZmine and Progenesis Qi to be 
of questionable peak width. Additionally, full scan data appears to produce a disproportionally higher number of 
short features. This parameter is not yet available in MS-DIAL. Finally, the manual classification of true positive 
features proved MS-DIAL to perform significantly better in DDA data (62 % true positive) than the two other 
software in either mode. We showed that currently popular solutions MS-DIAL and MZmine perform well in 
targeted analysis of spiked analytes as well as in classic untargeted analysis. The commercially available solution 
Progenesis Qi does not hold any advantage over the two in terms of quality parameters, of which we proposed 
peak width as a new parameter and showed that already proposed parameters such as feature linearity in samples 
of increasing concentration are advisable to use.   

1. Introduction 

Metabolomics, the analysis of endogenous metabolites, is one of the 
big -omic fields still increasing in popularity and application with a rise 
from around 1400 publications on PubMed in the year of 2010 to above 
12,000 in the year of 2022 [1,2]. Over the last years, metabolomics has 
been applied in different research fields, including biomarker research 
[3], drug discovery [4], the study of diseases [5], and very recently, 
forensic medicine or clinical and forensic toxicology [6–9]. 

In principle, the investigation of metabolome changes can be tackled 
by two different analytical approaches – targeted or untargeted [3, 
10–14]. While targeted analysis evaluates changes in a preselected, 
limited number of (endogenous) metabolites, untargeted metabolomics 
tries to analytically capture theoretically all metabolite information 

within a sample. This is followed by a selection of statistically relevant 
features in later stages. Untargeted metabolomics hugely benefitted 
from advancements in measuring techniques but even more so from an 
increase in available computational power and improved software for 
the analysis of untargeted data. The acquisition and particularly pro-
cessing of untargeted metabolomics data is a long and multi-stepped 
process also associated with various pitfalls. When data has been ac-
quired, one of the first steps after data conversion (if necessary) would 
be to perform an automated peak picking. Further data processing steps 
include data cleaning, normalization, and transformation before statis-
tical evaluation of interesting features and their annotation. Numerous 
different commercial, freeware, or open-source software (packages) are 
nowadays available for a whole untargeted metabolome workflow or 
different sub-steps of it [15,16]. Overall, comparative analysis of the 
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influence of the different parameters and/or different software solutions 
on the outcome of an untargeted metabolome experiment is scarce [17]. 
However, it is evident that each of these steps can introduce changes and 
variations to the data set and as such it is not surprising that depending 
on the chosen analytical settings (sample preparation, analytical 
methods, etc.) and processing (software, peak picking, data normaliza-
tion or transformation, statistics, etc.) results might differ. [18] Even 
more so, there seems to be a lack of measurable quality markers in 
processed data [17,19]. Overall, little data exists regarding the repro-
ducibility of findings obtained in untargeted metabolome analysis. 

The topic of different data acquisition modes, mainly comparing Full 
Scan, data-independent (DIA), and data-dependent acquisition (DDA), 
and various software options was partially explored by Guo et al. [19] 
and others [20–23]. Regarding different software tools and their influ-
ence on the results, Li et al. evaluated a mixture of 1100 analytes uti-
lizing four different software solutions. 130 of those analytes 
significantly varied in concentration. They proposed the linearity of 
concentration increase across samples as a quality marker, something 
others have proposed as well [24–27]. Hemmer et al. compared Com-
pound Discoverer 3.1, XCMS online, and a custom R script for their 
suitability in untargeted metabolomics data analysis. The group relied 
on an established measuring procedure of full scan acquisition followed 
by the acquisition of only MS/MS spectra of significant features. While 
this might ensure high-quality MS/MS data, it involves multiple mea-
surements and hence increases workload [18]. Liao et al. have studied 
the influence of Progenesis Qi, MarkerView, and XCMS on metabolite 
annotation and pathway enrichment while considering signal drift and 
peak number as parameters [28]. Other groups have made suggestions 
about parameter settings and algorithm improvements in certain soft-
ware [29–31]. A common problem to all workflows remains feature 
quality and the detection of true positive features. Analyzing the 
above-mentioned publications and our own work, it becomes apparent 
that the total number of features detected by a certain software does not 
indicate quality or hint at the rate of true positive features in any way. It 
also shows that there is huge variation in the utility of certain software 
for differently acquired data, e.g., different measuring set-ups such as 
gas- or liquid chromatography and different mass analyzers. 

Following the lack of sufficient comparative studies on different 
software tools and quality markers for data processing the aim of the 
present study was to compare currently employed software solutions 
offering a graphical user interface (GUI) and the possibility of processing 
metabolomics data in a full workflow consisting of data loading, peak 
picking, alignment, gap filling and if needed annotation and/or library 
search. For the chosen software tools, little to no programming knowl-
edge should be required as the software should be easy to deploy in any 
lab environment. Therefore, MZmine 3 [45] and MS-DIAL (msDial) 4.9 
[46], as well as the commercially available vendor software Progenesis 
Qi (ProgQi), should be compared with regard to their peak picking ca-
pabilities focusing on LC-MS data acquired in DDA as well as FullScan 
mode. 

2. Materials and methods 

2.1. Materials 

Adenine, adenosine, alanine, arginine, butyrylcarnitine, caffeine, 
cholic acid, creatinine, decanoylcarnitine, dodecanoylcarnitine, dopa-
mine, glycocholic acid, hexadecanoylcarnitine, hippuric acid, histidine, 
inosine, isoleucine, kynurenine, leucine, lysine, methionine, octadeca-
noylcarnitine, octanoylcarnitine, ornithine, phenylalanine, proline, 
propionylcarnitine, taurine, taurocholic acid, tetradecanoylcarnitine, 
theobromine, theophylline, threonine, tryptophane, tyrosine, uridine, 
ursodexcholic acid and were purchased from Sigma Aldrich (Buchs, 
Switzerland). Deuterated and heavy labelled internal standards (IS) 
adenosine ribose-D1, arginine-13C6, caffeine 3-methyl-13 C, carnitine 
trimethyl-D9, creatinine N-methyl-D3, deoxycholic acid-D4, dopamine- 

D4, glycine-13C2, glycocholic acid-D4, hippuric acid 15 N, kynurenine- 
D4, leucine-D10, lysine-D4, phenylalanine-D1, proline 15 N, serine-D3 
and tryptophan-D5, were purchased from Cambridge isotope labora-
tories, which were delivered by ReseaChem Life Science (Burgdorf, 
Switzerland) or Sigma Aldrich (Buchs, Switzerland). Water, acetonitrile 
(ACN), methanol (MeOH) of HPLC grade were obtained from Fluka 
(Buchs, Switzerland). All other chemicals used were from Merck (Zug, 
Switzerland) and of the highest grade available. 

2.2. Sample preparation and measurement 

QC samples were prepared and measured as described previously by 
Boxler et al. [23]. In summary, authentic plasma was collected from a 
healthy volunteer and stored in ammonium heparin tubes at −20 ◦C. The 
volunteer has given written informed consent. Protein precipitation was 
performed using methanol. The plasma was once analyzed in its native 
form (QC1) and additionally fortified with known analytes (n=38 
analyzed in the current study) in increasing concentrations (QC2 lowest 
concentration, QC4 highest concentration; chosen analytes and con-
centrations given in Supplementary material Table S1 [23]) on four 
different days of which samples from one day were chosen for this study. 
Measurements were performed in duplicate (Sample A and B) for each 
QC level. All samples were randomized and measured on a Thermo 
Fischer Ultimate 3000 UHPLC system (Thermo Fischer Scientific, San 
Jose, CA, USA) coupled to a high-resolution TOF instrument system 
(TripleTOF 6600 Sciex, Concord, Ontario, Canada). The mobile phases A 
and B consisted of 10 mM ammonium formate and 0.1 % (v/v) formic 
acid in water or 0.1 % (v/v) formic acid in methanol respectively. The 
liquid chromatography was performed using a reversed phase (RP) 
column (XSelect HSST RP-C18 column; 150 mm×2.1 mm i.d; 2.5 µm 
particle size; Waters, Baden, Daettwil, Switzerland). The gradient was 
set as follows: 1 minute 100 % A; 1–15 minutes 100 % B; 15–18 minutes 
held at 100 % B and then decreased to starting conditions and 
re-equilibration for 2 minutes. The flow rate was increased after 15 mi-
nutes to 0.7 mL/min. MS and MS/MS data was acquired by two methods: 
TOF-MS only (no MS/MS information acquired, FullScan) and data 
dependent acquisition (DDA). The analysis was performed using a 
DuoSpray ion source at a resolving power (full width at half maximum at 
m/z 400) of 30,000 (high resolution mode) or 15,000 (high sensitivity 
mode) for MS and MS2 in positive electrospray ionization (ESI) mode. 
The FullScan method scanned over a mass range of m/z 50 to m/z 1000 
with an accumulation time of 100 msec at 5 eV collision energy (CE). 
The DDA method included a FULLSCAN scan over the same mass range 
but with 50 msec accumulation time at a CE of 5 eV. Subsequent DDA 
experiments, each experiment with an accumulation time of 100 msec at 
a CE of 35 eV with a spread of 15 eV, were preformed after dynamic 
background subtraction with the four most intense ions above 100 
counts per second (cps) and an exclusion time of 5 s after two occur-
rences in high sensitivity mode. 

2.3. Data processing 

This study used data from the FullScan only and from the DDA 
measurements. Each set of data (FullScan or DDA) was analyzed in 
ProgQi (Version 2.4), MZmine 3 (Version 3.3.0), and msDial (Version 
4.9.22), 

Parameters in each software were optimized as much as possible 
(based on the recovery rate of spiked/known analytes and total features 
found) while keeping parameters available in more than one software 
identical (e.g., m/z tolerances available in msDial and MZmine were 
kept at m/z 0.005, while the noise filter was only available in MZmine 
and hence optimized for best results). The parameter ranges tested for 
optimization, as well as the final parameters chosen are given in the 
supplementary information Table S2, grouped by the respective work-
flow step they belong to. 

Data processing in the three different software tools was performed 
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in two different subsets:  

− A: “Targeted” data analysis for selected analytes: For data analysis 
concerning spiked analytes, each QC sample pair (e.g., QC1 sample A 
and QC1 sample B) was analyzed in a separate project per QC level 
and data acquisition mode (FullScan, DDA) using the parameter 
settings described above.,  

− B: “Targeted” and untargeted data analysis for total features: To 
analyze the total number of features found by each program, all QC 
sample levels were analyzed together in one project per acquisition 
condition (FullScan or DDA). 

After data processing in each software, the alignment results were 
exported as text file (either.csv or.txt) and imported into R (Version 
4.2.3). Further data analysis was performed using R and R packages 
shown in Supplementary material Table S3. 

2.4. Data evaluation 

2.4.1. Identification capabilities for spiked analytes (targeted) and for all 
features (untargeted) 

All features found in the individual QC datasets (data evaluation A 
and B) were compared to the expected data of the spiked reference 
standards with an allowed error margin of 0.005 m/z and 0.3 min 
retention time difference. If multiple features matched these criteria, the 
one with the closest retention time to the reference was chosen to be the 
correct one. To allow for comparability between all methods and pro-
cessing variants, m/z and retention time were the only identifying 
metrics for features found. 

In addition, the number of total features without additional filter 
criteria was evaluated. 

2.4.2. Linearity of target compounds 
Linearity of the 38 target compounds was assessed with a weighted 

(1/x) linear model and its corresponding R2. All 38 models were 
manually confirmed to exclude the chance of arbitrarily good R2 results. 

The mean percentage difference (over all 4 QC levels and duplicates 
per level) of peak areas determined by the software, to manually curated 
peaks, was calculated. Per level, percentage difference was then sub-
tracted by the above-described mean percentage difference. 

Potential quality indication parameters: peak width 
For MZmine and ProgQi, all detected peaks were divided according 

to their peak widths in too short (<0.05 min), adequate (> 0.05 min, <
0.50 min), and potentially too long peak width (stratified in >0.50/ 
1.00/2.00 min categories in the context of the here employed chroma-
tography) following a filter step to exclude peaks with a peak area of less 
than 300 cps. 

2.4.3. Manual peak classification 
Following a sample size calculation (N=10,000, z=1.96, p̂=0.5, 

ε=0.07), 200 features of each dataset (no filtering) containing all QC 
samples (data evaluation B, DDA, FullScan, all 3 software) were 
manually selected at random. These 200 features were then analyzed 
and based on expert opinion, classified in either true positive or false 
positive. Criteria included peak shape, intensity, resolution, overlap 
between QC samples of the same level and overlap or linear increase 
between QC samples of increasing concentrations (in case the feature 
was part of one of the spiked analytes). 

2.5. Software performance 

Each software has been additionally evaluated for its performance. 
For this, our data set of 8 samples (duplicates per QC level, one sample 
set per acquisition mode) has been processed in each software as 
described above (processing method B). A timer was started as soon as 
the software began its independent data processing but only after 

entering all processing parameters. The timer was stopped once the 
software returned a final feature list that could be exported. This ensures 
that only raw software performance is reported and no user bias 
(entering, parameters, opening software, finding samples etc.) is 
included. Because ProgQi works slightly different compared to the other 
two, we report both the time for its automatic processing as well as the 
first step which in ProgQi is creating the experiment. All performance 
analysis was carried out on the same workstation equipped with dual 
Intel Xeon E5–2630 v4, 128 GB of ECC DDR4 memory running at 
2133 MHz and an ATA ST2000DM001–1ER1 SCSI hard drive with a 
capacity of 1.8 TB. 

3. Results 

3.1. Parameter optimization 

In ProgQi the peak picking sensitivity was tested at 3, 4 and 5. With 
the highest number of spiked analytes recovered at sensitivity 5, this 
setting was chosen. For the other software, with parameters such as mass 
accuracy in MS1, scan-to-scan accuracy, noise level, peak duration 
range, and minimum # of data points, an estimation from manual data 
inspection was made and compared to sensible presets recommended by 
the developers. In all cases, these were in line with each other. Testing 
extreme values such as a massively lower mass accuracy (0.02, 0.05) or 
very tight retention time allowance (0.05, 0.1) proved to be less effective 
at analyte recovery. Minimum peak height was tested in msDial at 
various levels (200, 300, 500, 1000) with the last setting recovering the 
most analytes while giving an adequate number of total features. Set-
tings available in multiple software (such as minimum peak height) were 
kept identical to ensure similar starting conditions. Deviating from 
sensible presets recommended by the developers in all other parameters 
did not lead to significant improvements for spiked analyte recovery. 
Alignment parameters only mattered for the untargeted analysis of this 
study (processing B), as all other analyses were done in separate projects 
with only one QC level per project. Correspondingly, we found that even 
with separate projects, the retention time of known analytes in the 
targeted evaluation did shift minimally, with most exhibiting differences 
between projects (and hence QC levels) of less than 0.1 min. Depending 
on the software, few analytes shifted up to 0.2 (most in ProgQi) and only 
one analyte in ProgQi shifted between 0.2 and 0.3 min. 

3.2. Identification capabilities for spiked analytes (targeted) 

In Table 1 the number of analytes found after automatic peak picking 
with the different software tools is shown. Two different data processing 
strategies were applied, separate for each QC level (data processing A) 
and all QC levels combined (data processing B). Although not done in a 
real untargeted metabolome experiment, data processing A was per-
formed not to influence peak picking, alignment and especially gap 
filling by higher concentrated samples. Recovery of individual analytes 
on all QC levels are shown in Supplementary material Table S4. 

msDial found the most spiked analytes at every level (processing A), 

Table 1 
Recovery of known analytes: Number of features found per QC level (data 
processing A) and the number of features found at all QC levels (complete cases, 
data processing B) for each software and acquisition mode. Manually, a total of 
38 analytes was identified in the dataset.   

msDial MZmine ProgQi 
QC Levels DDA FullScan DDA FullScan DDA FullScan 
1  34  35  31  31  26  28 
2  34  35  34  34  31  31 
3  36  35  33  34  29  32 
4  36  36  35  35  32  31 
complete features  30  34  31  31  23  27  
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only being tied by MZmine at QC level 2 in DDA mode. A total of 38 
analytes were found when manually identifying peaks in the dataset. 
With 36 analytes found at QC level 3 in the DDA dataset and QC level 4 
in both DDA and FullScan data, msDial comes closest to this number. 
Additionally, the data is summarized over all QC levels (processing A) 
and only spiked analytes are considered that were found on all QC levels. 
In this analysis msDial finds the most analytes but only in FullScan data. 
In DDA acquisition, MZmine shows best recovery with ProgQi in last 
place. 

3.3. Peak picking capabilities for all features (untargeted) 

Analyzing data originating from the datasets processed with all 
samples of one acquisition condition at once (hence allowing for gap 
filling, data processing B) the total numbers of found features are shown 
in Table S6. Additionally, the data was filtered for features found on all 
QC levels. These features are called “complete features”. There is 
virtually no difference in numbers between DDA and FullScan, and total 
vs. complete features for msDial, indicated by of the near 100 % retained 
features after filtering. A difference between DDA and FullScan data is 
seen in MZmine with more than twice as many detected following 
FullScan acquisition (18,851/18,412 DDA, 55,601/55,183 FullScan). 
ProgQi shows the largest discrepancy between feature numbers from 
DDA and FullScan (5568/4898, 88 %, DDA; 35,628/30,482, 86 % 
FullScan) with similarly lower percentage of retained features for both 
acquisition types compared to msDial or MZmine. 

3.4. Potential quality indication parameters 

3.4.1. Linearity of target compounds 
All target analytes were spiked in increasing concentrations, the 

observed linearity is, exemplified for adenosine, shown in Fig. 1. Both 
msDial and MZmine show a comparable linear model for DDA and 
FullScan data, with MZmine having lower and msDial higher areas than 
the manually curated peaks. ProgQi shows a much bigger difference in 
slope between DDA and FullScan data. Results of all linear models are 
shown in Supplementary material Table S5. 

The mean percentage difference (over all 4 QC levels and duplicates 
per level) of peak areas determined by the software, to manually curated 
peaks, was calculated. Per level percentage difference was then sub-
tracted by the above-described mean percentage difference. Results of 
this calculation are shown in Fig. 2. In this analysis MZmine takes a clear 
lead with the least variability, meaning it showed the biggest 

consistency in peak area calculation. This nearly perfect consistency 
drops slightly off in FullScan data with a minor upward trend towards 
higher concentrated samples. These results are followed by msDial’s 
performance. Results for msDial are influenced by a few analytes having 
higher variability, while many remain constant. There seems to be no 
clear trend for either acquisition type. ProgQi takes last place with 
strong variability, especially in FullScan data. 

3.4.2. Peak width, area, and complete cases 
To find further potential quality-indicating parameters, the peak 

width and area of features was looked at. Unfortunately, only MZmine 
and ProgQi offer both parameters in their output. The author could at 
the time of writing (msDial, version 4.92) not find a way to export peak 
width information with msDial or any other parameters from which 
peak width could have been back calculated. Table 2 shows the number 
of features of short (<0.05 min), adequate (>0.05 min and < 1.00 min) 
and longer peak width (> 1.00 min, stratified) with a minimum peak 
area of 300. Except for the few spiked analytes, most features should be 
present in all QC samples, hence the number of features found in all 
samples (complete features) is also looked at. 

3.5. Manual peak classification 

An overview of a manual peak classification of 200 randomly 
selected features as “true positive” peaks vs. noise or insufficient peaks 
(false positive) for integration is given in Fig. 3. Overall, only slightly 
more than half of the peaks were considered true positives, with msDial 
providing the best result in DDA (62 %). FullScan data generally showed 
worse performance than DDA. When calculating the absolute number of 
true positive features using the respectively found “incidence” and an 
unfiltered dataset, FullScan outperforms DDA when using MZmine 
(FullScan: 11,051true pos. features; DDA: 5678true pos. features) and 
ProgQi (FullScan: 2493 true pos. features; DDA: 1726 true pos. features) 
but not in msDial (FullScan: 3192 true pos. features; DDA: 6553 true pos. 
features). 

3.6. Software performance 

As shown in Table 3, MZmine was superior to the other two software 
in terms of processing time. While MZmine cannot handle native.wiff 
files, msDial can but benefits massively from conversion in.mzML as 
seen in the timings. ProgQi does not seem to be influenced by file con-
version. In fact, it performed slightly worse when processing the open. 

Fig. 1,. Linearity of known analytes: Examples of linearity (adenosine, caffeine, hippuric acid) over 4 QC levels (x-axis; individual concentrations per analyte and QC 
level are given in Table S1) in each software and data acquisition mode are shown. Except for ProgQi, each software or manual integration observes high similarity 
between DDA and FullScan data. There is no clear explanation for the huge discrepancy of DDA and FullScan data in ProgQi. 
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Fig. 2. Variability of difference to mean: The variation of percentage change per level compared to manual peak areas is shown for all three software and both data 
acquisition modes over 4 QC levels (x-axis, individual concentrations per analyte and QC level are given in Table S1). While MZmine shows very little variation, 
closely followed by msDial, ProgQi shows large variation. 

Table 2 
Feature width subsets: Features with a peak area > 300 are shown. The retained percentage of features compared to no peak area filter is indicated as well. Features 
with a peak width shorter than 0.05 min are considered too short. Features with a peak width greater than 0.50 min could potentially be too long and are shown in 
stratified manner below the likely adequately wide features.   

msDial MZmine ProgQi  
DDA FullScan DDA FullScan DDA FullScan 

Total features* 
(% retained after area filter) 

10,570 (100 %) 10,643 (100 %) 18,851 (100 %) 55,256 (99 %) 5545 (99 %) 34,019 (95 %) 

< 0.05 min / / 4237 44,560 1407 29,693 
> 0.05 min, < 0.50 min / / 14,500 10,630 3900 4051 
> 0.50 min, < 1.00 min / / 114 64 199 231 
> 1.00 min, < 2.00 min / / 0 2 27 44 
> 2.00 min / / 0 0 12 0 
% adequate peaks / / 76.92 19.24 70.33 11.91 
Complete features* 10,404 10,147 18,224 47,409 4638 26,454 
< 0.05 min / / 4122 37,222 951 22,316 
> 0.05 min, < 0.50 min / / 13,991 10,122 3465 3870 
> 0.50 min, < 1.00 min / / 111 64 193 228 
> 1.00 min, < 2.00 min / / 0 1 22 40 
> 2.00 min / / 0 0 7 0 
% adequate peaks / / 76.77 21.35 74.71 14.63  

Fig. 3. True positive feature rate: The percentage of true positive features 
(n=200, chosen at random) is shown. 

Table 3 
Processing times of each software for the two sample sets (DDA/FullScan) for 
both vendor format files (.wiff) as well as converted files (.mzML). Time is re-
ported as mm:ss. Total processing time for ProgQi is followed by the time it took 
to create the experiment and the then the automatic processing with the entry of 
parameters excluded from timings.   

msDial MZmine ProgQi 
File 
Format 

DDA FullScan DDA FullScan DDA FullScan 

wiff 07:20 48:31 / / 05:14 
(01:46/ 
03:27) 

18:18 
(01:49/ 
16:29) 

mzML 02:24 15:49 01:27 08:10 05:19 
(01:29/ 
03:50) 

25:54 
(01:38/ 
24:16)  
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mzML format compared to the vendor specific.wiff file. 

4. Discussion 

Nowadays, numerous different commercial, freeware, or open- 
source software (packages) are available for a complete untargeted 
metabolome workflow. Awareness among users that depending on the 
chosen analytical settings (sample preparation, analytical methods, etc.) 
and processing (software, peak picking, data normalization or trans-
formation, statistics, etc.), results might differ seems to be widespread. 
Nonetheless, few systematic studies on the influence of the different 
software tools on processed data quality are available. We wanted to 
extend on the existing knowledge of software influences by comparing a 
commercially available software, ProgQi, to software that nowadays 
seems to be state of the art and was mentioned in an increasing number 
of studies (msDial, MZmine). The main rationale for including the two 
latter ones was the focus on software tools, that use a well-explained GUI 
and offer the possibility to process metabolomics data in a full workflow 
(peak picking, alignment, gap-filling, etc.) with a feature table for 
further evaluation as an output. Although a metabolomics study’s final 
goal is to obtain said feature tables for further statistical analysis, po-
tential model building, and/or biomarker identification, we focused on 
maximizing the potential for true positive hits during the initial data 
processing phase. Therefore, we chose spiked matrix samples to include 
and compare targeted and manual comparison of features/analytes as a 
measure of software performance. In an authentic metabolome study, 
downstream statistical processing would be required, which is highly 
individual to a particular study’s purpose, something we deliberately 
excluded from this study. However, other groups have presented various 
options for downstream processing such as Ramell et al. [32]. Often, the 
number of picked features, most likely due to the lack of alternative 
quality markers and its simplicity, is considered a or even the major 
criterium when optimizing data processing workflows. As such, studies 
preferred FullScan acquisition followed by separate acquisition of 
MS/MS generating methods as superior to solely DDA acquisition [18, 
33]. Our study focused on more detailed criteria, elaborating on previ-
ous works [18,19,27,30,34,35], including not only the number of picked 
features (untargeted evaluation) but also the recovery of known present 
analytes in varying concentrations (targeted evaluation), the linearity 
(targeted), peak width and peak area (untargeted), and to the best of our 
knowledge for the first time manual inspection of true positives in a 
representative number of features. 

Data used in this study was previously acquired for LC-MS method 
evaluation by Boxler et al. [23] The selected analytes were chosen based 
on identifications in previous forensic and other metabolome studies. 
The decision to choose only data acquired on RP (ESI positive) in Full-
Scan and DDA mode was based on the fact that for software comparison 
a dataset had to be selected that was supported by all software packages 
(e.g., DIA – SWATH was not supported in our version of ProgQi) and that 
was not introducing further complications and potential pitfalls in 
analysis (e.g., combining multiple measuring mode results into one 
dataset for analysis). This selection reduced the number of initially 
spiked analytes to 38 manually, reliably detected analytes chosen as 
target compounds in the current data analysis comparison. [23] Data 
used in this study originates from spiked authentic plasma samples. It is 
important to consider potential “matrix effects” on the performance of 
the software. While plasma still is one of the most widely used matrices 
for metabolomic studies with the increase in sensitivity of untargeted 
mass spectrometry, less concentrated matrices such as oral fluid are 
examined as well. It cannot be guaranteed that our findings hold true for 
such low abundant and concentrated or even higher concentrated 
matrices (e.g. urine) as well. Additionally, while not actively observed in 
this study, the spiking and, hence, increase in the concentration of 
certain analytes (even above common concentration ranges) could in-
fluence our findings through well-known mechanics such as signal 
enhancement/suppression, among others. Nonetheless, the data used in 

this study can be considered representative of a standard metabolomics 
study using plasma samples. 

Regarding the number of identified target compounds (Table 1), the 
performance of all three software is very close. While msDial seems to 
have a slight edge over the others, the difference is mostly around 10 % 
to MZmine or ProgQi. Exceptions are observed at lower QC levels, e.g., 
at QC1 where ProgQi finds 26 or 28 analytes in DDA or FullScan data 
respectively while msDial already recovers 34 or 35 analytes. QC3 
shows an unexplained slight decrease in recovery rate for both MZmine 
and ProgQi but not for msDial. We have no clear explanation for this 
observation at the time of writing. None of the software managed to 
match the manual peak identification where a maximum of 38 analytes 
were confidently identified. This is somewhat explained by the fact that 
analytes not found in all or at least most software and acquisition modes 
were either low in intensity or already difficult to integrate manually. 
These included: dopamine, kynurenine, or taurocholic acid, among 
others. A complete list can be found in the Supplementary material 
Table S4. When limiting our dataset to analytes that were only found at 
all QC levels, hence also in all 4 separately performed peak picking 
projects, only MZmine recovers a similar number of analytes as before 
(Table 1). Surprisingly, the other two software perform worse than their 
lowest number of analytes found in the above-mentioned data, indi-
cating that not only method sensitivity plays a role, but other factors can 
also lead to false-negatives (in higher QC samples). Most likely, still low 
signal-to-noise ratios and/or low abundant peaks for particular com-
pounds, such as, e.g., alanine, can be considered responsible for this 
phenomenon, also in higher QC levels. In addition, unfavorable peak 
shapes, e.g. jitter, wider or non-bell-shaped peaks can affect the false- 
negative rate. Curiously, FullScan data seems to be less affected by 
this constraint than DDA data, maybe because of the higher number of 
data points generated per peak. Once again, ProgQi performs the worst, 
with a considerable gap in its performance also between the two 
acquisition strategies. 

Looking at the total number of features (untargeted), msDial delivers 
similar numbers for both data acquisition modes. Different trends are 
observed for MZmine and ProgQi, where DDA yields in far fewer fea-
tures than FullScan in line with published data [33]. It is also seen that 
while msDial delivers about 10,000 features, ProgQi finds about half of 
that in DDA while it finds more than three-fold more features in FullScan 
data. MZmine on the other hand outperforms msDial and ProgQi 
massively with two-fold more features in DDA and about five-fold more 
features in FullScan. 

Very slight differences in retained features for complete cases are 
observed in all the data. Overall, it could be interpreted that ProgQi 
performs slightly worse than the other two. This is a first indication of 
how well or also how aggressive all three software perform gap filling. 
ProgQi offers no parameters to change gap filling, msDial does offer 
some while MZmine, as with all other steps, offers a huge selection of 
adjustable parameters. If time and knowledge permits, adjusting those 
parameters can increase true positive features and hence reduce the data 
for statistical analysis in a later step. With current technology, it seems 
unlikely that this leads to a significant decrease in analysis time as 
computing power is more than sufficient for handling a few ten thousand 
features simultaneously. If the strategy is to keep as many features in the 
data as possible, hence increasing the total features by optimizing peak 
picking parameters towards that goal, we strongly advise having 
meaningful parameters to filter out some of the more dubious features 
found. Having as many true positive features as possible seems para-
mount for multivariate statistical analysis where false positive features 
would potentially skew statistics in many ways if left uncontrolled. 

Considering the total number of identified features, one could 
conclude a massive advantage of MZmine over the other two. However, 
the total amount of features in general, is a bad quality indicator for 
metabolomics data. Given the large number of features detected, manual 
differentiation between good features (“true positives”) and bad features 
(“false positives”) is not feasible for all of them. Nevertheless, such a 
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differentiation would allow a precise comparison of software perfor-
mance. We, therefore, performed a sample size estimation, calculating 
the necessary number of features to manually evaluate the whole dataset 
representatively. At first glance, the percentage of true features in each 
dataset shows a stark decrease for FullScan data in general and a very 
bad performance of ProgQi. These values must be put into perspective 
by back-calculating the “incidence” with the number of features in each 
dataset (unfiltered). Considering these absolute numbers, MZmine 
potentially provides the highest number of true positive features when 
using FullScan data. msDial does preform exceptionally well in DDA 
data where it takes first place with fewer initial features and very high 
true positive rate of 62 %. In FullScan data it can’t hold up to the others 
though with a lower number of features combined with an average 30 % 
true positive rate. While considering total numbers of true positive 
features is necessary for perspective, the above-mentioned multivariate 
statistics or another automated modeling still benefits from higher true 
positive numbers in one single dataset and hence should profit from high 
rates found in e.g., msDial DDA data. 

As manual comparison is not possible in large datasets anyway, 
quality parameters that can be applied automatically, e.g., during data 
filtering, need to be established. Parameters evaluated in the current 
study, therefore included feature linearity, peak area, and peak width. 

The per analyte linearity analysis (not shown) revealed little more 
than what the previous results already indicated. Interestingly the slope 
trends for the different software were reproducible considering the data 
sources. It seems that there is an unexplained gap between FullScan and 
DDA data in ProgQi analysis while the other software differs from 
manual integration and from each other but not between acquisition 
types. With the limited parameters that can be adjusted in a ProgQi 
analysis, we could not form a definitive hypothesis as to why that gap 
occurs. While in the other software, things such as m/z isolation width 
could be considered as potential culprits, this is not the case for ProgQi. 
The actual issue could be a combination of peak width estimation, peak 
integration algorithm, and potentially smoothing. While both the ADAP 
chromatogram builder of MZmine and the peak picking algorithm 
developed by msDial are rather consistent in both data acquisition types, 
ProgQi clearly is not. 

ProQi sums the abundance of different compound ions (e.g. different 
adducts attributed to one compound) to the final abundance given in the 
export. Varying numbers of detected adduct ions in FullScan versus DDA 
mode might be a valuable explanation for over- or underestimation of a 
certain compound abundance. Ultimately, we could not confirm this 
hypothesis though. 

Looking at the variability of the software peak integration, MZmine 
clearly takes the lead. There is minimal variation between QC levels and 
hence even different MZmine projects. The slight increase in variability 
in FullScan is consistent with the other software’s and might be 
explained by various factors that also influence the other analyses. One 
of them being that our FullScan data tends to show more baseline jitter 
due to the increased number of datapoints in the same timeframe 
compared to DDA data. In extremer cases this might increase the diffi-
culty for software to correctly interpret peak shape, start and end. Once 
again ProgQi takes last place in this analysis with some concerning levels 
of variability, especially in the FullScan dataset. Overall, in line with 
former works, we would recommend implementing linearity filtering of 
metabolomics data. A common approach seems to be the introduction of 
a QC dilution series and the calculation of a correlation between the 
dilution and feature responses. [24–26] Although the presented data did 
not allow for such an analysis, this approach would allow to not only 
filter spiked/targeted analytes but all features of a metabolomics dataset 
hence providing information on their respective quality and usefulness 
under given circumstances. 

There seems to be little effect of filtering for a minimum area of 300. 
This was expected as at least in MZmine and msDial minimum peak 
intensities were defined at reasonable or even low values. The biggest 
impact of this parameter seems to be for FullScan data in both MZmine 

and ProgQi. One explanation could be that both datasets contain a huge 
number of features to begin with, increasing the chance for lower 
abundant features. Overall, we would recommend thinking about area 
and peak intensities when filtering but already choosing sensible values 
for peak picking should limit false positive features regarding low 
abundancy or incorrectly integrated peaks and hence the effect of this 
filtering criteria. 

Filtering datasets that allow for peak width calculation for sensible 
peak widths has a major impact on the number of retained data. In our 
context, a peak width of at least 0.05 min was determined to be suffi-
cient, shorter peak widths are very unlikely to result in reliable features. 
Looking at the percentage of retained features it is apparent that espe-
cially in FullScan data a very high number of features exhibits inade-
quate peak width. This could either be due to incorrectly integrated 
peaks or false positive peak picking to begin with. Using this filtering 
strategy also puts the massive total feature counts observed for MZmine 
and ProgQi into perspective. Filtering for sensible peak widths could 
help reduce datasets to sensible features for further statistical analysis. 
On that note, an implementation of peak width into the export of msDial 
seems reasonable and needed for future releases. 

Lastly, filtering for features that are only present in all samples does 
make a lot of sense in this experiment since all QC samples should 
contain the same metabolites. But this also means the effect of this 
parameter is observably limited. 

Considering software performance, MZmine is clearly superior to 
msDial and ProgQi. It takes less than half of the time in both data sets 
compared to the other two software with their respective best file 
format. While we tried to ensure even benchmarking conditions, it is 
important to stress that msDial and MZmine give options to improve 
their performance in the parameter’s settings while ProgQi does not. 
Interestingly, both open-source software solutions benefit from a prior 
file conversion into the open format.mzML, while ProgQi performs 
better with the original vendor files. Additionally, due to ProgQi 
licensing options, a physical workstation was needed for the license 
USB-Stick to be plugged in. In contrast, with the open-source solutions 
(MZmine and msDial), high-performance cluster infrastructure could be 
utilized to further speed up the analysis. We are aware that the used data 
set with eight samples is much smaller than many authentic metab-
olomics studies. It is well known that processing time does not increase 
linearly with the addition of more files/larger files, but options like 
multithreading (available for msDial and MZmine) can improve per-
formance drastically for large batches. Other recommendations to speed 
up data processing time, might be upgrading available memory (size, 
then speed) and the use of fast storage (e.g. SSD or even NVMe) as also 
seen in other studies [50]. 

5. Conclusion 

Overall, our software comparison showed that the performance of 
msDial and MZmine are close, while ProgQi falls behind current open- 
source software. Especially considering the steep price point of 
ProgQi, this is disappointing. From a user-oriented standpoint, msDial 
comes closer to the sleek-looking and rather straightforwardly organized 
user interface of ProgQi. We believe the expertise required to success-
fully generate meaningful and useful data is lowest in msDial and ProgQi 
while MZmine can be intimidating and hard to learn. Nevertheless, new 
software releases during our study (e.g., MZmine version 3.0) signifi-
cantly increased the software performance along with the user interface 
and workflow. MsDial version 5.0 and future versions of MZmine can 
likely further improve on certain shortcomings mentioned in this work. 

With regard to the quality criteria of metabolome data, we could 
show again that the total number of features found is not a suitable 
parameter to judge the peak picking performance of a software. Espe-
cially once multivariate statistics are considered, the “garbage in – 

garbage out” principle holds true. It is, therefore, essential to minimize 
false positive features in the input data for these analyses. Various 
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evaluations were made to further understand, improve, and judge 
datasets generated by msDial, MZmine, and ProgQi. Next to reasonable 
area filtering, we found that peak width is a very insightful parameter 
that should be used for data quality in metabolome experiments, 
although it is not yet implemented in the msDial export. We also 
recommend including QC samples of the desired matrix, along with QC 
dilutions to analyze the linearity of all features in a metabolomics 
dataset. These samples shall be looked at in a targeted fashion (analytes 
known to be present/spiked etc.). This deepens the understanding of 
potential peak width, m/z accuracy (also over several samples and 
concentrations), and potential regions of interest in the chromatog-
raphy. Using that knowledge, researchers are encouraged to set their 
choice of software parameters, e.g. r/t tolerance, in line with reasonable 
values found before. The software’s original feature list output should 
then be filtered for the mentioned quality criteria prior to further (sta-
tistical) analysis. Considering msDial and MZmine, our data does not 
agree with the literature promoting the use of FullScan over DDA to 
increase meaningful (e.g., true positive) features in metabolomics data. 
These results, in combination with the time, cost, and material savings 
when measuring with DDA leave us to believe that initial screenings can 
readily be performed using DDA. 

With our experience from this study, we would like to promote the 
following standards for benchmarking a metabolomics (data processing) 
workflow: The inclusion of QC samples with known or even spiked an-
alyte concentrations. Analysis of linearity in known QC samples either 
spiked or diluted; ideally both. Analysis of peak width and the likeliness 
of it for the employed LC-method (reporting high likelihood false posi-
tives). Manual evaluation of a subset (power analysis) of features and 
estimating the true positive rate of the workflow. We would also like to 
discourage the use of total features found as a meaningful parameter of 
software performance as it promotes the integration of noise and false 
positive features. Additionally, reporting the ease of use (e.g. GUI, 
explanation of parameters, documentation of developers) is highly 
encouraged as we believe it can help developers improve their tools, 
enabling users to choose a workflow adequate to their skillset. 

While our data evaluation largely focused on peak picking, a com-
plete metabolome workflow also relies on data normalization, statistical 
evaluation, and particularly compound annotation and/or biological 
interpretation (e.g., through pathway analysis). Taking these important 
steps into account was outside the scope of the current manuscript but, 
of course, might influence the preference for particular software, e.g., 
because of included normalization or identification procedures. In 
conclusion, the choice of software in a metabolomics workflow is crucial 
and should be considered before starting the actual data processing. 
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