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Grouping in working memory guides chunk formation in long-term 
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A B S T R A C T   

The Hebb effect refers to the improvement in immediate memory performance on a repeated list compared to 
unrepeated lists. That is, participants create a long-term memory representation over repetitions, on which they 
can draw in working memory tests. These long-term memory representations are likely formed by chunk 
acquisition: The whole list becomes integrated into a single unified representation. Previous research suggests 
that the formation of such chunks is rather inflexible and only occurs when at least the beginning of the list 
repeats across trials. However, recent work has shown that repetition learning strongly depends on participants 
recognizing the repeated information. Hence, successful chunk formation may depend on the recognizability of 
the repeated part of a list, and not on its position in the list. Across six experiments, we compared these two 
alternatives. We tested immediate serial recall of eight-letter lists, some of which partially repeated across trials. 
We used different partial-repetition structures, such as repeating only the first half of a list, or only every second 
item. We manipulated the salience of the repeating structure by spatially grouping and coloring the lists ac-
cording to the repetition structure. We found that chunk formation is more flexible than previously assumed: 
Participants learned contiguous repeated sequences regardless of their position within the list, as long as they 
were able to recognize the repeated structure. Even when the repeated sequence occurred at varying positions 
over repetitions, learning was preserved when the repeated sequence was made salient by the spatial grouping. 
These findings suggest that chunk formation requires recognition of which items constitute a repeating group, 
and demonstrate a close link between grouping of information in working memory, and chunk formation in long- 
term memory.   

1. Introduction 

Repetition learning plays a fundamental role in acquiring new 
knowledge and skills. For example, it is a common practice to engage in 
repeated study or exposure to content until we have solidly memorized 
something for an exam. This iterative process of repetition learning in-
volves both working memory and long-term memory (Burgess & Hitch, 
2005; Page & Norris, 2009). Working memory is a capacity limited 
system and is needed to hold currently studied information temporally 
available for use in thought and action (Cowan, 2017; Luck & Vogel, 
1997; Oberauer, 2009). Long-term memory serves as a repository for our 
knowledge and experiences and has an extensive storage capacity 
(Brady et al., 2008; Tulving, 1972). 

A well-known example to study repetition learning experimentally is 
the Hebb paradigm. In the Hebb paradigm, participants are presented 

with several memory lists for an immediate memory test. One of these 
lists, the Hebb list, is repeated occasionally. What is typically observed is 
that memory performance improves with repetitions for the repeated list 
but not for the non-repeated lists (Hebb, 1961). This finding demon-
strates that repeated exposure to the same information in working 
memory can lead to the formation of stable representations in long-term 
memory, which, in turn, can be used to assist performance in a working 
memory task (Burgess & Hitch, 2005; Mızrak & Oberauer, 2022; Page & 
Norris, 2009; Souza & Oberauer, 2022). Although the Hebb effect has 
been demonstrated for a wide range of different materials (Couture & 
Tremblay, 2006; Johnson & Miles, 2019; Musfeld et al., 2023b; Souza & 
Oberauer, 2022; Sukegawa et al., 2019), it has been most extensively 
used to study verbal sequence learning (i.e., sequences of digits, letters, 
or phonemes). The Hebb effect for verbal materials has even been pro-
posed as a model for the acquisition of new word forms (Norris et al., 

* Corresponding author. 
E-mail addresses: philipp.musfeld@psychologie.uzh.ch (P. Musfeld), joscha.dutli@psychologie.uzh.ch (J. Dutli), k.oberauer@psychologie.uzh.ch (K. Oberauer), l. 

bartsch@psychologie.uzh.ch (L.M. Bartsch).  

Contents lists available at ScienceDirect 

Cognition 
journal homepage: www.elsevier.com/locate/cognit 

https://doi.org/10.1016/j.cognition.2024.105795 
Received 31 January 2024; Received in revised form 5 April 2024; Accepted 15 April 2024   

mailto:philipp.musfeld@psychologie.uzh.ch
mailto:joscha.dutli@psychologie.uzh.ch
mailto:k.oberauer@psychologie.uzh.ch
mailto:l.bartsch@psychologie.uzh.ch
mailto:l.bartsch@psychologie.uzh.ch
www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2024.105795
https://doi.org/10.1016/j.cognition.2024.105795


Cognition 248 (2024) 105795

2

2018; Page & Norris, 2009; Saint-Aubin & Guérard, 2018; Szmalec et al., 
2009). Yet, it is not clear how the information learned through repetition 
is represented in long-term memory, and how these representations can 
benefit working memory. Here, we aim to address this question. 

1.1. Theories on the mechanisms underlying Hebb repetition learning 

Originally, researchers have approached this question by considering 
how serial order of information within a sequence is coded in memory. 
Two major families of models have been proposed: The first are chaining 
models, which are based on the idea that a sequence is coded by forming 
associations between subsequent items. When retrieving a sequence, 
each item serves as a cue for retrieving the next item, thereby recon-
structing the sequence in its correct order (Lewandowsky & Murdock, 
1989; Murdock, 1995; Solway et al., 2012). Although these models have 
been largely abandoned due to their inability to account for several 
empirical benchmark findings in serial recall (Henson, 1999; Henson 
et al., 1996; Oberauer et al., 2018; Osth & Dennis, 2015; Osth & Hurl-
stone, 2023), variations of the chaining idea still build the foundation of 
successful computational models of serial order (Logan, 2021; Logan & 
Cox, 2021). The second family of models are positional models, which are 
based on the idea that a sequence is coded by associating each item to its 
relative position within the list. At test, the positional context of an item 
serves as a cue for retrieving the item (Brown et al., 2000; Cumming 
et al., 2003; Farrell, 2006; Henson, 1999). Positional models are far 
more widely accepted than chaining models and build the foundation of 
several successful models of short-term and working memory (Brown 
et al., 2007; Farrell, 2012; Lewandowsky & Farrell, 2008; Oberauer 
et al., 2012). 

Within the research on the Hebb effect, both models of serial order 
provide grounds for explaining how the representation of a repeated 
sequence becomes stronger over repetitions, but for different reasons: In 
a chaining account of repetition learning, it is plausible that repetitions 
strengthen the association between subsequent items, whereas in a po-
sitional account of repetition learning, repetitions plausibly strengthen 
the association between an item and its position within the list. 

Hitch et al. (2005) tested the explanatory power of these accounts of 
repetition learning by making use of a Hebb-like paradigm in which only 
specific parts of a sequence repeated over trials. In their experiments, 
participants encoded lists of letters of various lengths for an immediate 
serial recall test. Within blocks of four consecutive trials, specific parts of 
the lists were repeated. To test the predictions of the chaining account of 
learning, the authors constructed lists which always contained the same 
partial sequence of letters (e.g. “BZL”) but at different positions within 
the list (i.e., shifting a coherent partial sequence within the whole list, 
“STBZL – BZLGH - ZLJHB”). This condition solely repeated associations 
between subsequent items, but not between the items and their position 
within the list. To compare this to the predictions of the positional ac-
count of repetition learning, the authors constructed lists in which only 
every other item repeated (“BSZFL – BMZNL – BCZHL”). This condition 
solely repeated associations between an item and its position within the 
list, without repeating any associations between subsequent items. 
Additionally, the authors also realized conditions in which either the 
beginning or the end of a sequence repeated. These conditions repeated 
both item-item and item-positions associations, but in one case positions 
are repeated relative to the beginning of the list and in the other, relative 
to the end of the list. Their results showed learning effects through 
repetition only when the beginning of the sequence repeated, but in 
none of the other conditions. These results are inconsistent with pre-
dictions from both a chaining and a positional account of repetition 
learning, suggesting that learning of sequences can be explained by 
neither of the two (see also Cumming et al. (2003), and Schwartz and 
Bryden (1971), for similar conclusions). 

Hitch et al. (2005) proposed that learning of repeated sequences 
might involve more global processes like chunk formation, which 
operates on the level of a sequence as a whole, instead of the level of 

single item associations. Chunk formation is understood as a process by 
which multiple separate elements of information are integrated into one 
unified representations of these elements and their structure (Cowan & 
Chen, 2008; Ericsson & Kintsch, 1995; Gobet et al., 2016; Miller, 1956), 
thereby allowing to represent the same amount of information in a more 
efficient (or compressed) way (Brady et al., 2009; Chekaf et al., 2016; 
Huang & Awh, 2018; Norris et al., 2020; Norris & Kalm, 2021; Thal-
mann et al., 2019). In sequence learning, this could be the integration of 
a string of letters into an acronym, or the integration of syllables into a 
word. Chunk formation in itself is a rather broad concept, and the 
mechanisms underlying the associated efficiency gain in representing 
information are still debated (see, e.g., Gobet et al. (2016) or Norris and 
Kalm (2021) for reviews). Yet, it has been widely accepted as a funda-
mental mechanism for learning of new representations (Anderson, 1993; 
Burgess & Hitch, 2005, 2006; French et al., 2011; Gobet & Simon, 1996; 
Huang & Awh, 2018; Jones et al., 2014; Mızrak & Oberauer, 2022; 
Orbán et al., 2008; Page & Norris, 2009; Robinet et al., 2011). 

1.2. The role of awareness in repetition learning and chunk formation 

Over the past decades, repetition learning has often been considered 
an example for an implicit learning process, that is, people don’t have to 
be aware that they are encoding the same information over and over 
again for building up a long-term memory representation (Attout et al., 
2020; Couture & Tremblay, 2006; Guérard et al., 2011; Hebb, 1961; 
McKelvie, 1987). Yet, mechanistic explanations of repetition learning 
have agreed that some form of recognition mechanism is required to 
ensure that long-term memory representation of previous experiences 
are used only, when a sufficient overlap between a previous and a new 
encounter of the same information is detected (Burgess & Hitch, 2005, 
2006; Page & Norris, 2009). More recently, Musfeld et al. (2023a) 
provided strong empirical support that recognizing a repeated memory 
list is indeed a necessary condition for repetition learning, and that such 
a recognition process does not occur implicitly. That study tracked 
learning on the level of individual participants and showed that par-
ticipants only learn after they explicitly recognized the repetition of a 
repeating memory list. Until the repetition was recognized, no learning 
was observed (see also Ngiam et al., 2019, for similar findings in asso-
ciative learning tasks). 

The insight that recognition of repeating patterns is a necessary 
condition for learning also offers an explanation for why partial repe-
titions lead to learning at the beginning of a list but not at other positions 
in the list: It makes them easier to be recognized. One can think about it 
as follows: In a standard Hebb paradigm, in which a whole list is 
repeated, the information which constitute a repeating unit (i.e. the 
entire repeated list) is clearly defined by the start and the end of the list. 
However, with partially repeated list structures like the ones used by 
Hitch et al. (2005), it is harder to recognize which subset of the items 
could be learned as a new unit. It might still be relatively easy to identify 
the repeated information if it is presented at the beginning of the list, as 
it matches the natural boundary of the list. However, moving the 
repeated information to the end of the list, or even interleaving it with 
other items, might make it more difficult to recognize the repetition 
within the sequence, thereby preventing learning in the first place. 

To account for these differences in the ability to recognize and learn 
repeated patterns in partially repeated lists, Burgess and Hitch (2006) 
proposed a cumulative recognition mechanism, which operates incre-
mentally from the beginning of a list. In their model, every presented list 
becomes associated with a context set that is stored in long-term 
memory. When a new list is presented, the overlap between the enco-
ded list and all available context sets in long-term memory is computed. 
The overlap is computed incrementally as the list is presented: After 
every new item the cumulative mismatch of the new list up to that item 
is computed for every context set in long-term memory. Every context 
set for which the degree of mismatch exceeds a threshold is discarded. 
Thus, when partially repeated lists don’t match at the beginning, all 
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context sets will be discarded and the repetition in a later section of the 
list will never be recognized, preventing learning. 

The cumulative recognition mechanism proposed by Burgess and 
Hitch (2006) helps to account for the findings observed by Hitch et al. 
(2005), but also introduces rather strong constraints on the flexibility 
with which repeated patterns can be recognized (and learned) more 
generally. Following their model, repetitions are only recognizable and 
beneficial for learning when they occur at the beginning of a sequence. 
However, the recognizability of a repeated segment arguably not only 
depends on its position within a sequence but might also be influenced 
by other variables. Hence, people might be far more flexible in learning 
repeated patterns, as long as they are able to recognize them. We argue 
that if we increase the recognizability of a repeated pattern within a list 
by making it more salient, people should be able to learn these patterns 
regardless from their position within a sequence. However, if chunk 
formation in sequence learning is indeed limited by positional con-
straints, facilitating participants’ awareness of repeated list structures 
should not help learning. The goal of the present study is to test this 
hypothesis. 

2. The present study 

The present study provides a conceptual replication of the study by 
Hitch et al. (2005), while also extending it by an experimental manip-
ulation of the recognizability of the repeated structure within the lists. 
We conducted six experiments, which realized six different partially 
repeated list conditions. We used a typical Hebb paradigm, in which 
participants saw sequences of eight consonants for an immediate serial 
recall task. On every third trial, half of the presented consonants were 
repeated according to the partial repetition structure of the experiment 
(these lists are referred to as the partial Hebb lists). We used the following 
repetition structures: start repeat, repeating the items at the first four list 
positions (Experiment 1); middle repeat, repeating the items at the four 
positions in the middle of the list (Experiment 2); end repeat, repeating 
the items at the last four positions of the list (Experiment 3); chaining, 
repeating a coherent string of four subsequent consonants, but at vary-
ing positions within the list (Experiment 4); odd repeat, repeating the 
items at the odd positions of the list (Experiment 5); even repeat, 
repeating the items at the even positions of the list (Experiment 6). 

For all experiments, we manipulated the recognizability of the 
repeated structure within the list in a between-subjects design. In the No 
Salience condition, participants encoded all eight consonants sequen-
tially across a row of eight black boxes. This served as a control condi-
tion, in which the potentially repeated list structure was inconspicuously 
integrated into the rest of the list; we expected this condition to replicate 
the findings by Hitch et al. (2005). In the High Salience condition, we 
increased the salience (and therefore the recognizability) of the repeated 
structure by spatially grouping and coloring the eight boxes in accor-
dance with the repetition structure of the experiment (see Fig. 1 for a 
visualization of all different highlighting schemes). Crucially, the 
highlighting scheme was not only applied to the partial Hebb list but 
also to all unrepeated Filler lists, to not make the Hebb list stand out 
against the Filler lists, but to only highlight the potentially repeated part 
within the presented lists. Our prediction was that the highlighting of 
the repeated structure would facilitate participants’ awareness of which 
items can be integrated into a chunk, and as a result, enable learning 
even in those conditions that did not lead to learning in the study by 
Hitch et al. (2005). 

In the following, we present the results of the six experiments in three 
parts. In the first part, we report the results of the start repeat (Experi-
ment 1), middle repeat (Experiment 2) and end repeat (Experiment 3) 
conditions, asking whether the repeated items have to be presented at 
the beginning of the list for learning to occur. These experiments clearly 
establish that learning of the repeated sequence was not limited to 
conditions in which the repetition occurred at the beginning of the list. 
Partial repetitions could also be learned in the middle or at the end of the 

list. Yet, these experiments only showed weak effects of our salience 
manipulation. This could mean that, contrary to our hypothesis, the 
recognizability of the repeated sequence did not affect learning, or else, 
that the sequences were relatively easy to recognize even without 
additional highlighting. We address this issue in the second part with the 
results of the chaining condition (Experiment 4). This experiment 
revealed strong effects of the salience manipulation, indicating that 
when it was hard to recognize the repeated sequence within the list, 
learning could be facilitated by increasing its recognizability. In the last 
part, we present the results from the odd repeat (Experiment 5) and even 
repeat (Experiment 6) conditions to further test the flexibility of chunk 
formation under conditions in which the repeated information is inter-
leaved by other items. 

Overall, our results reveal that people can learn repeated sequences 
much more flexibly than suggested in previous work. Learning was not 
dependent on any specific list condition, but on (1) participants’ ability 
to recognize the repeated structure within the list, and (2) the repeated 
items being presented as a coherent string. We propose that these results 
are best explained by assuming a direct link between the grouping of 
information in working memory, and the formation of new chunks in 
long-term memory: How information is structured in working memory 
during encoding guides chunk formation in long-term memory. 

3. General method 

3.1. Transparency and openness 

All experiments in this study were preregistered on the Open Science 
Framework (OSF) prior to data collection, and all data analyses were 
conducted as described in our preregistered analysis plan. The pre-
registrations for Experiments 1–3 and 5–6 are available at https://osf. 
io/dgu2z and the preregistration for Experiment 4 is available at 
https://osf.io/8dg5v.1 Experimental software, data, and analysis scripts 
for all experiments reported here are available in the OSF at https://osf. 
io/pb6vx/ (Musfeld, Dutli, Oberauer, & Bartsch, 2023) https://osf. 
io/pb6vx/?view_only=e4bcd9fb131e49eb97544a654d6e8d7d. 

The experiments were programmed using the free and open online 
experiment builder lab.js (Henninger et al., 2022). Data analyses were 
conducted using R (R Core Team, 2023) and the R-packages tidyverse 
(Wickham et al., 2019), here (Müller, 2020), rstan (Stan Development 
Team, 2023), brms (Bürkner, 2017), tidybayes (Kay, 2023), and bayes-
testR (Makowski et al., 2019). 

3.2. Participants and exclusion criteria 

All participants were recruited online, either from the student pop-
ulation of the University of Zurich or from the online participant plat-
form Prolific. For Experiments 1–3 and 5–6, data collection was part of a 
university course and an initial sample from the student population of 
the University of Zurich participated in exchange for partial course 
credit. We recruited additional participants on Prolific, as evidence for 
our research questions remained inconclusive in the initial sample. For 
Experiment 4, we recruited all data on Prolific. Participants on Prolific 
received £4.50 for their participation. Final sample sizes and de-
mographic information for all Experiments are presented in Table 1. 

All participants were between 18 and 35 years old, fluent in German, 
and did not have any language or speech related disorder. They were not 
allowed to participate in more than one of the Experiments. To ensure 
high data quality, several quality checks were implemented: First, par-
ticipants had to complete a questionnaire after reading the instructions, 
which tested their understanding of the study. Participants were only 

1 We originally conducted the Experiments in a different order but changed it 
for the paper to create a more coherent structure. There is no deviation from the 
preregistered hypotheses we tested with the different experiments. 
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allowed to participate if they answered all questions correctly. Second, 
we tracked participants’ active browser window during the experiment 
and aborted the study if participants left the browser window during the 
experiment more than five times. Third, we tracked a measure of care-
less responding, which was defined as responding with the same letter 
more than four times within a trial (e.g., K K K K K L L L; it was not 
possible for a letter to appear twice within a list) and aborted the study if 
careless responding was detected more than 5 times. Fourth, after 

completing the experiment, we asked participants if they participated 
seriously and if they had used any aids to improve their performance 
during the experiment (Aust et al., 2013). Participants were only 
considered for data analysis if they indicated serious participation and 
no use of any aids. Lastly, we excluded all participants from the data 
analysis whose average performance in Filler trials was at chance level 
during at least one half of the experiment. Chance level was defined as 
performance below the 99% quantile of the binomial distribution, with 

Fig. 1. Illustration of the general experimental design and the highlighting of specific list structures in the High Salience Condition of the six experiments. The panel 
in the first row shows an outline of the general repetition scheme within all six experiments. The two panels in the second row illustrate item presentation in the No 
Salience Condition and the recall procedure, which was the same for all six experiments. The remaining panels show the highlighting schemes in the High Salience 
condition for the different list structures implemented in the six experiments. 

Table 1 
Sample Size and Demographic Information for all Experiments in this Study.   

Before Exclusion After Exclusion 
Experiment N Collected n Excluded N Final n Prolific n No Salience n High Salience Age 

Start Repeat 122 1 121 43 60 61 18–35 
(M = 23.4; SD = 3.67) 

Middle Repeat 120 2 118 49 60 58 18–35 
(M = 24.9; SD = 4.66) 

End Repeat 122 4 118 43 59 59 18–34 
(M = 23.0; SD = 3.65) 

Chaining 121 1 120 120 60 60 18–35 
(M = 25.4; SD = 4.40) 

Odd Repeat 118 0 118 40 59 59 18–35 
(M = 23.0; SD = 4.14) 

Even Repeat 121 3 118 52 58 60 18–35 
(M = 23.7; SD = 4.26)  
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guessing probability set to 1/18 and number of responses set to 160, 
leading to a cut-off value of at least 10% correct responses. 

The experiments were carried out in accordance with the guidelines 
of the Ethics Committee of the Faculty of Arts and Social Sciences at the 
University of Zurich. As the experiments involved minimal risk, no 
formal approval was required. All participants took part after giving 
informed consent. 

3.3. Design 

All experiments followed the structure of a typical Hebb paradigm, 
which is schematically presented in Fig. 1. On each trial, participants 
were sequentially presented with lists of 8 consonants for an immediate 
serial recall test and asked to type in the presented consonants in for-
ward order immediately after presentation. In one of these lists, the 
“partial Hebb list”, half of the presented consonants was repeated ac-
cording to the repetition structure of the corresponding experiment. This 
partial Hebb list was presented on every third trial, starting with trial 
two. All other trials consisted of Filler lists, which did not contain any 
repeating item structures. In total, participants completed 60 trials, 
leading to 20 repetitions of the partial Hebb list. 

Over the six Experiments, we realized six different partially repeated 
list structures (see Fig. 1 for an overview): (1) In the Start Repeat 
Experiment, the first four consonants of the list repeated; (2) in the 
Middle Repeat Experiment, the four consonants in the middle of the list 
repeated; (3) in the End Repeat Experiment, the last four consonants of 
the list repeated; (4) in the Chaining Experiment, a sequence of four 
consecutive items repeated over the Experiment, but the position of this 
sequence was shifted within the list across repetitions. Specifically, the 
repeated sequence could start somewhere between list positions one and 
five. Each starting position of the repeated sequence was realized 
equally often but the order of starting positions throughout the experi-
ment was randomized; (5) in the Odd Repeat Experiment, the four items 
at the odd numbered list positions repeated; (6) in the Even Repeat 
Experiment, the four items at the even numbered list positions repeated. 

In all experiments, participants were randomly assigned to one of 
two between-subject Salience conditions upon starting the experiment: 
In the No Salience Condition, all consonants were presented sequentially 
in a row of eight black framed boxes in the middle of the screen. There 
was no additional highlighting of the repeating list structure to increase 
its salience. In the High Salience condition, the consonants were also 
presented in a row of 8 boxes, but the boxes were spatially grouped in 
accordance with the repeated list structure of the experiment and the 
boxes of the repeating list positions were framed in orange. This high-
lighting was applied to both Filler and Hebb lists to ensure that it only 
increased the salience of the repeating structure, but not of the partial 
Hebb list itself. An overview of the highlighting schemes for the different 
list structures is presented in Fig. 1. 

3.4. Stimuli 

All memory lists were created randomly for each participant upon 
the start of the experiment by sampling 8 consonants from the pool of all 
consonants, excluding “Y” and “W”. The following constraints were 
imposed on the creation of lists: (1) No letter was allowed to appear 
twice within the same list; (2) the letters “M” and “N” were not allowed 
to be part of the same list due to their high amount of phonological 
similarity; (3) all partial Hebb lists had to differ in at least 3 items to 
avoid item repetition within the unrepeated part of the Hebb lists; (4) all 
filler lists had to differ in at least 5 item-position associations from all 
other lists to decrease chances of accidental repetitions; (5) we created a 
list of 56 well-known German 3- and 2-letter acronyms. These acronyms 
were not allowed to be part of a list to avoid any unintended chunking 
effects (the list of known acronyms is available in the OSF). 

3.5. Procedure 

All participants took part online from their own devices (computers 
only, no tablets or phones). The experiment began with a detailed 
explanation of the task. Participants were not informed about the pos-
sibility of repetitions within lists. After reading the instructions, par-
ticipants had to complete a short test on their understanding of the task, 
which they had to pass in order to take part in the experiment. 

After passing the instruction test, participants performed three 
practice trials to make themselves familiar with the experimental task, 
before moving on to the main part of the study. Each trial of the 
experiment started with the presentation of 8 empty boxes for 1000 ms, 
which were spatially aligned and colored according to the repetition 
scheme of the experiment and the assigned salience condition (see 
Fig. 1). Afterwards, the 8 consonants appeared sequentially from left to 
right inside their corresponding boxes. Each consonant was visible for 
500 ms, with a 100 ms inter-stimulus-interval.2 After the last consonant 
had been presented, an immediate serial recall task followed without an 
additional retention interval. For this, the 8 boxes stayed on screen and a 
prompter indicated to participants to type in the letters into their cor-
responding box in forward order. In the No Salience condition, the recall 
phase looked the same as the presentation phase. In the High Salience 
condition, the spatial alignment and coloring of the boxes was removed 
so that the recall phase looked the same as for the No Salience condition 
(see Fig. 1). After recalling all consonants, participants received short 
feedback about the number of correctly recalled items (e.g. “5/8 answers 
were correct!”) and moved on to the next trial at a self-chosen pace. 

After finishing all 60 trials of the serial recall task, a short ques-
tionnaire followed in which participants were asked about their 
awareness of the repeated list structure: First, participants were asked if 
they had noticed anything special about the experimental design and 
typed in their response in an open-ended text field. Next, participants 
were informed that there was a repeated sequence within the partial 
Hebb list and directly asked if they had recognized this repeated struc-
ture. Participants gave their response by answering with “yes” or “no”. 
Lastly, participants were asked to recall the four repeatedly presented 
consonants in their correct order and typed their answer into a row of 
four empty boxes. 

3.6. Data analysis 

For each experiment, we were interested in three main questions: (1) 
Is there a difference in learning of the repeated list structure, as reflected 
in immediate recall performance, between the No Salience and the High 
Salience condition? (2) Is there a difference in the proportion of partic-
ipants who report recognition of the repeated list structure after the 
working memory task between the No Salience and the High Salience 
condition? (3) Is there a difference in participants’ ability to recall the 
repeated list structure after the experiment between the No Salience and 
the High Salience condition? We describe the analytical models used to 
analyze these questions in detail below. 

All analyses were conducted in a Bayesian framework, and we esti-
mated Bayes Factors to quantify the evidence in favor or against a dif-
ference between the two salience conditions for the three measures of 
interest. We estimated Bayes Factors using the Savage-Dickey Density 
Ratio (Wagenmakers et al., 2010), which compares the probability of a 
specific parameter value under the prior distribution to the probability 
of the same parameter value under the posterior distribution. In our 
case, all analytical models included a parameter reflecting the difference 

2 The timing in our study is slightly different from the timing in Hitch et al. 
(2005), who presented each letter for 500 ms with an inter-stimulus-interval 
(ISI) of 500 ms. We shortened the ISI to reduce the baseline performance in 
Filler trials, which increases the sensitivity for observing performance im-
provements due to sequence repetitions in the partial Hebb trials. 
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between the No Salience and the High Salience condition. Estimating 
Bayes Factors for this parameter value being equal to 0 provides evi-
dence in favor or against the hypothesis of a difference between the two 
conditions. We used Cauchy priors with location = 0 on all effect pa-
rameters of our models.3 We varied the scale of the prior with values of 
0.5, 0.75, 1, and 1.25 to assure robustness of the obtained results to 
variations of the prior. Additionally, all Bayes Factors were re-estimated 
five times to ensure stability of the estimated results. In our results 
section, we report the median Bayes Factor over all prior scales and re- 
estimations, together with the obtained range. 

3.6.1. Analysis of the learning effect in the working memory task 
Learning during the working memory task can generally be defined 

as an increase in the probability of giving a correct response in the 
partial Hebb list compared to Filler lists over repetitions of the partial 
Hebb list. To analyze this, we used a Bayesian hierarchical logistic 
regression model with a binomial likelihood, and modeled the proba-
bility of a correct response (θ) given the number of correctly recalled 
items within each trial (n out of k correct) following Eq. 1: 
θ = logit−1

(

β
0
+ β

1
*repetition + β

2
*salience + β

3
*repetition*salience+

β
4
*repetition*trialType + β

5
*repetition*trialType*salience)

n ∼ Binomial(k, θ)

(1) 
Here, the repetition variable reflects the number of previous pre-

sentations of the partial Hebb list and was entered into the model as a 
continuous predictor, starting at the value 0 and scaled to a standard 
deviation of 0.5 (Gelman et al., 2008). The trialType variable reflects if 
the current trial was a Hebb- or Filler-list and was dummy-coded with 
Filler lists = 0 and Hebb lists = 1. The salience variable reflects the 
assignment to one of the two salience groups and was effect coded with 
No Salience = −0.5 and High Salience = 0.5. In this specification of the 
model, the interaction between repetition and trialType reflects the in-
crease in the probability of giving a correct response on the partial Hebb 
list compared to Filler lists over repetitions, hence, the learning effect of 
interest. The three-way interaction between repetition, trialType and 
salience reflects the difference in the learning effect between the two 
salience conditions. In the result section, we focus on reporting the ev-
idence in favor or against a difference in the learning effect between the 
two salience groups. 

The described analytical model includes the assumption that 
learning is reflected in a gradual increase in performance over repeti-
tions which starts with the first presentation of the repeated Hebb list. 
Generally, this approach can provide an appropriate test to what extent 
the overall learning effect is affected by the salience manipulation. 
However, as has been shown by Musfeld et al. (2023a), this assumption 
is often an oversimplification of the underlying learning process and 
does not appropriately reflect the learning process on the level of indi-
vidual participants. The learning curves of individuals are often rather 
steep but vary in when the learning process begins. To account for this, 
Musfeld et al. (2023a) introduced a Bayesian hierarchical mixture 
modeling approach, which includes additional parameters to describe 
the learning effect on the level of individuals: (1) a mixture proportion, 
which describes the proportion of participants in a sample who have 
shown evidence of learning; (2) a parameter for the onset point of the 
learning effect; (3) a parameter for the rate of the learning process. The 
exact specification of the model can be found in Musfeld et al. (2023a). 
Using this model, the authors have shown that the onset of the 

individual learning effects was closely tied to the timepoint in the 
experiment at which participants recognized the repetition. This means 
that differences in the mixture proportion and in the onset point of 
learning seem to be related to differences in the ability to recognize a 
repeated pattern, whereas differences in the learning rate parameter can 
be associated with differences in the learning process itself. 

Here, we applied this model separately to each between-subject 
condition of the six experiments and compared the estimated posterior 
distributions for all parameters of interest between the two salience 
conditions. We hypothesized that the salience manipulation should only 
affect the mixture proportion and the onset point of the learning process, 
but not the rate of the learning effect. However, applied to our design, 
the model could only provide rather unprecise estimates of the described 
parameters. This is because participants were only able to learn parts of 
the Hebb list, rendering individual learning curves much noisier 
compared to a classic Hebb experiment in which the whole list can be 
learned. Thus, we only consider the results of the model to show an 
overall tendency in our data, but do not draw statistical inference from 
them. 

In the analyses reported here, we included the data from all list po-
sitions, that is, repeated and unrepeated list positions. We also prereg-
istered to conduct the same analyses by only considering those list 
positions which contained the repeated items in the corresponding ex-
periments. These analyses led to the same conclusions, and we report 
their results in the supplementary materials (see Table S2 and Figs. S3 
and S4). 

3.6.2. Analysis of recognition of repetition 
To analyze the difference in the proportion of participants who re-

ported to have recognized the repeated list structure between the two 
salience conditions, we modeled the probability of recognizing the 
repetition (θ) as a function of the salience condition, using a simple 
Bayesian logistic regression model, with n for the number of participants 
in a group who recognized the repetition, and k for the group size 
θ = logit−1(β

0
+ β

1
*salience)

n ∼ Binomial(k, θ)
(2) 

The salience variable was again effect coded with No Salience = −0.5 
and High Salience = 0.5, and therefore, the parameter estimate reflects 
the difference in the probability of recognizing the repetition between 
the two salience conditions. 

3.6.3. Analysis of long-term memory recall 
To analyze differences in participants’ ability to recall the repeated 

list items in their correct order at the end of the experiment, we again 
modeled the probability of giving a correct response as a function of the 
salience condition by a Bayesian logistic regression model, using the 
same model equation as presented in Eq. 2. Here, the salience variable 
reflects the difference in the probability of giving a correct response in 
the final recall task between the two salience conditions. 

4. Experiments 1–3: Does repetition learning depend on 
repetitions at the beginning of a list? 

The findings by Hitch et al. (2005) led to the conclusion that repe-
titions have to be presented at the beginning of a list for sequence 
learning to occur. This strong constraint is predicted from the assump-
tion of a cumulative recognition mechanisms, which incrementally 
matches the representation of a new list to the episodic records of pre-
viously encoded lists. Mismatching items at the beginning of the list 
pushes the match below a threshold, and in consequence, prevents the 
recognition and learning of a repeating sequence (Burgess & Hitch, 
2005, 2006; see also Page and Norris (2009) for a similar dependency on 
the beginning of a list). In Experiments 1–3, we ask if such a positional 
constraint is indeed a necessary assumption for models of sequence 
learning, or, if instead, repeated segments of a sequence can be learned 

3 In our preregistration, we specified to use Normal priors. However, we 
realized that this prior setting was too restrictive on the parameters of the 
model, which is why we deviated from this approach. The change in the prior 
distribution did not affect the conclusion from our results and we show the 
results obtained with the preregistered prior distributions in our supplementary 
materials (see Table S1). 
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more flexibly if the recognizability of the repeated information is 
enhanced independently of its position in the list. To test this, we con-
ducted the start repeat, middle repeat, and end repeat experiment (Exp. 
1–3, respectively), and manipulated the salience of the repeated 
sequence within the presented lists to increase its recognizability. 

Our predictions were the following: If it is a necessary condition for 
sequence learning that the repeated information has to be presented at 
the beginning of the list, learning should occur only in the start repeat 
experiment, but not in the middle repeat or end repeat experiment. This 
should be independent of the salience condition. If, however, learning 
only depends on the recognizability of the repeated sequence within the 
list, regardless of its position, we should see different results depending 
on the list structure and salience condition: For the start repeat experi-
ment, there should be learning in both salience conditions, because the 
repeated sequence should be easy to identify at the beginning of the list. 
However, for the middle repeat and end repeat experiment, we expected to 
see little to no learning in the No Salience condition, but a learning effect 
in the High Salience condition. Here, the highlighting of the repeated 
sequence should facilitate its recognizability and in consequence, also 
allow learning in these list condition. 

4.1. Results 

4.1.1. The effect of salience on learning 
We evaluated the effect of our salience manipulation on the three 

measured variables of interest: the increase in performance in the 
working memory task over repetitions, the percentage of participants 
who indicated to have recognized the repetition in the partial Hebb list, 
and the performance on the final long-term memory recall test. Fig. 2 
shows the results from the working memory task on the left, and the 
results of the recognition and long-term memory test on the right. 
Table 2 summarizes the Bayes Factors in favor of an effect of the salience 
manipulation for all experiments and all measures. 

For the performance in the working memory task, we observed 
strong learning effects in both salience conditions across all three ex-
periments. In the start repeat experiment, we found overwhelming evi-
dence for learning in both the High Salience condition (BF10 = 6.67 × 109 

[3.32 × 108 
– 6.18 × 1012]), and the No Salience condition (BF10 = 3.51 

× 107 [7.85 × 104 
– 2.14 × 1012]). This was consistent with our pre-

dictions, and Bayes Factor analyses showed substantial evidence against 
a difference in learning between the two salience conditions (see 
Table 2). To our surprise, we observed similar results for the middle 
repeat and end repeat experiment. Here, we not only found strong evi-
dence in favor of a learning effect in the High Salience condition (middle: 
BF10 = 6.71 × 107 [4.41 × 106 

– 4.08 × 108]; end: BF10 = 6.01 × 105 

[8.99 × 104 
– 5.94 × 107]), but also in the No Salience condition (middle: 

BF10 = 2.46 × 104 [5.59 × 103 
– 1.28 × 105]; end: BF10 = 9.25 × 102 

[4.48 × 102 
– 9.37 × 103]). Descriptively, the learning effects appeared 

slightly stronger in the High Salience condition compared to the No 
Salience condition, but there was no evidence in support of any differ-
ence. In the middle repeat experiment, evidence remained inconclusive 
but showed a tendency to support the absence of an effect (BF10 = 0.32 
[0.23 – 0.53]). For the end repeat experiment, evidence remained 
completely inconclusive (BF10 = 1.13 [0.77 – 1.76]). Overall, these re-
sults illustrate that participants were capable of learning the partially 
repeating lists in all three experiments, regardless of any enhancements 
to the structure’s salience. 

Next, we turn to the results of the percentage of participants who 
reported recognition of the repeated sequence. Here, we observed a 
descriptive trend across all experiments that the repeated structure had 
been recognized more often in the High Salience condition compared to 
the No Salience condition. For the start repeat and middle repeat experi-
ments, this was supported by moderate to strong evidence in favor of a 
difference in the Bayes Factor analysis. For the end repeat experiment, 
evidence remained inconclusive (Table 2). 

We observed a similar pattern for performance in the final long-term 

memory recall task. Here, performance was better in the High Salience 
compared to the No Salience condition across all three experiments. For 
the start repeat and middle repeat experiment, this difference was 
confirmed by overwhelming evidence. For the end repeat experiment, 
evidence was again inconclusive. 

Our results show that the salience manipulation had an effect on the 
final recall of the repeated sequence in all experiments. This effect was 
not reflected in the learning rates during the working memory task. One 
potential explanation for this difference might rely in the complexity of 
the statistical models. In the working memory task, differences in 
learning rates are reflected in a three-way interaction, for which much 
more data is needed to obtain conclusive evidence (especially in case the 
effects are small), as compared to the main effect in the model for the 
long-term memory task. To account for this, we pooled the data from the 
working memory task over all three experiments and again computed 
the Bayes Factor for the effect of the salience manipulation on the 
learning rates, using all available data (see Fig. 2D).4 Although the Bayes 
Factor overall increased (BF10 = 2.44 [0.95 – 5.13]), the relative evi-
dence in favor of a salience effect remained inconclusive. 

4.1.2. Parameter estimates of the mixture model for learning in the WM 
task 

Fig. 3 shows the estimated posterior distributions for the mixture 
proportion, the onset of learning, and the learning rate for all three 
experiments. Consistent with our results so far, there were only small 
differences in the estimated parameters between the two salience con-
ditions. For the mixture proportion, there was a general tendency across 
all three experiments that the proportion of participants who showed 
evidence for learning was higher in the High Salience condition 
compared to the No Salience condition. In the end repeat experiment, 
there was also a tendency for an earlier onset of learning in the High 
Salience compared to the No Salience condition. However, this tendency 
was not present for the middle repeat experiment, and even turned in the 
opposite direction for the start repeat experiment. Still, the results sug-
gest that if there was any effect of the salience manipulation, it rather 
affected parameters which have been related to recognizing the repeti-
tion (i.e., onset point and mixture proportion), but not so much the 
parameter for the learning rate itself. 

4.1.3. Exploratory analysis: Learning and repetition awareness 
The results of the first three experiments showed strong evidence of 

learning for all three experiments. However, we found no evidence that 
this was affected by the salience manipulation. This raises the question if 
participants were simply able to recognize the repeated sequence 
regardless of the salience manipulation, or if the recognizability of the 
repeated structure did not matter for learning. To further explore this, 
we looked into the relationship between participants’ self-reported 
repetition awareness, and the produced learning effect during the 
working memory task. Although this can only provide correlative evi-
dence on the role of recognizing the repeated sequence, it provides a 
check if this relationship was at least present in our data. For this, we 
pooled the data from all three experiments, and then split it between 
those participants who reported recognition of the repeated sequence, 
and those who did not (see Fig. 4). To compute Bayes Factors, we used 
the same models as described in Eqs. 1 and 2, but now used the reported 
repetition awareness as a between-subjects predictor, instead of the 
salience group. The results showed overwhelming evidence for a dif-
ference in the learning effect for both the working memory task (BF10 =

4 An alternative approach for addressing this issue is to only pool the data 
from the middle repeat and the end repeat experiments, because we only ex-
pected to observe an effect of the salience manipulation in these two experi-
ments. We report this analysis in the supplementary materials (see Figure S5 
and Table S3). It yielded the same inconclusive results as the analysis reported 
here. 
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Fig. 2. Descriptive results for the start repeat (A), middle repeat (B), and end repeat (C) experiment, presenting the results of the working memory task on the left, 
and the results of the recognition and long-term memory recall task on the right. Panel D shows the results when data is pooled over all three Experiments. Error Bars 
reflect 95% within-subject confidence intervals. 
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7.30 × 109 [2.22 × 102 
– 3.26 × 1012]) and the long-term memory task 

(BF10 = 1.23 × 1018 [9.72 × 1014 
– 2.68 × 1021]), thereby confirming a 

strong correspondence between repetition awareness and learning. 

4.2. Discussion 

Experiments 1 to 3 tested if it is a necessary condition for sequence 
learning that the repeated information has to be presented at the 
beginning of the list, or if repeated information can be learned at 
different positions within lists, if its recognizability within the list is 
increased. For this, we conducted the start repeat, middle repeat, and end 
repeat experiment and manipulated whether the repeated structures 
within the lists were highlighted (High Salience) or not (No Salience). Our 
results provided clear evidence against the assumption that repetitions 
have to be presented at the beginning of the list. Instead, participants 
learned the repeated sequence at all three positions within the list. This 
is inconsistent with previous findings by Hitch et al. (2005) and the 
assumption of a cumulative recognition mechanism, which incremen-
tally matches the episodic record of previous list encounters from the 
beginning of the list. Instead, it shows that people are much more flex-
ible in learning repeated patterns than previously assumed. Against our 
hypotheses, the observation of learning in the middle repeat and end 
repeat experiment was not limited to the High Salience condition. Here, 
we observed equally strong learning effects also in the No Salience 
condition, suggesting that the salience manipulation did not affect 
learning. 

The absence of an effect of the salience manipulation in Experiments 
1–3 calls our assumption into question that repetition learning effects 
can be facilitated, when the recognizability of the repeated information 
within the list is increased. We see two possible reasons why this was the 
case: First, our assumption could be wrong, and the recognizability of 
the repeated information within the list does not matter for repetition 
learning. Although this appears rather unlikely considering the strong 
relationship we observed in our exploratory analysis between learning 
and repetition awareness, it cannot be ruled out by our results. The 
second possibility is that people might have been able to easily recognize 
the repetition in all list structures, even if there was no additional 
highlighting. In this case, we reached a ceiling effect, and the salience 
manipulation could not contribute much to further facilitating recog-
nition and subsequent learning of the repeated sequence. This possibility 
is consistent with the rather high number of participants who reported to 
have recognized the repeated sequence even in the No salience condi-
tions (50–80%), but it leads to the question why participants were able 
to easily recognize the repetitions in the middle repeat and end repeat 
condition in our study, but not in the study by Hitch et al. (2005). 

There are three important differences between our experiments and 
the ones by Hitch et al. (2005), which might account for such a differ-
ence. First, we spatially arranged the presented items side-by-side in 
both conditions, whereas Hitch et al. (2005) presented all items in the 
center of the screen. An arrangement of items to distinct positions in 
space has not only been shown to improve short-term retention of items 

(e.g., Yousif et al., 2021), but also long-term associations in sequence 
learning (e.g., Darling et al., 2020). Thus, the spatial arrangement in the 
No Salience condition could have facilitated the recognizability of the 
repeated pattern within the lists even without any additional high-
lighting, leading to a ceiling effect in pattern recognizability. 

A second difference to Hitch et al. (2005) is the number of repeti-
tions: we repeated the partial Hebb list 20 times throughout the exper-
iment, whereas Hitch et al. (2005) only showed four repetitions of the 
same partial sequence. To account for this difference, we re-analyzed the 
data from Experiments 1–3 and estimated the evidence for learning ef-
fects in the two salience conditions, when only considering the first four 
presentations of the partial Hebb list. The results of this analysis are 
presented in Table 3. We obtained evidence for credible learning effects 
in only two out of the six conditions. For all other conditions, evidence 
was inconclusive or even supported the absence of a learning effect. 
When comparing these results to the study by Hitch et al. (2005), it 
should be noted that they are not directly comparable, because Hitch 
et al. (2005) did not interleave the partially repeated sequences with 
additional Filler trials. Yet, it suggests that that participants in Hitch 
et al. (2005) might not have had enough repetitions and thereby expo-
sure to the repeated lists, in order for stable learning effects to occur. 

The last difference between the two studies is that Hitch et al. (2005) 
varied the set size between consecutive repetitions, whereas set size was 
fixed in our experiments. This has an effect on the absolute position of 
the repeated sequence within the lists. In our case, repetitions in the start 
repeat condition always appeared at positions 1, 2, 3, and 4, and repe-
titions in the end repeat condition always appeared at positions 5, 6, 7, 
and 8. In the study by Hitch et al. (2005), the absolute position of the 
repeated sequence was only fixed for the start repeat condition, but 
varied in the end repeat condition with different set sizes. For example, 
for a list with set size 10 in the end repeat condition, the repeated items 
were presented at positions 7, 8, 9, and 10, but for a list with set size 12, 
the repeated items moved to positions 9, 10, 11, and 12. 

All these differences could have facilitated the ease of recognizing 
the repeated sequence within the list in our study, thereby leading to 
learning regardless of any salience manipulations. We address this po-
tential ceiling effect in Experiment 4 by further decreasing the recog-
nizability of the repeated sequence within the partial Hebb list. 

5. Experiment 4: Can learning of repeated sequences be 
facilitated by increasing their recognizability? 

Experiment 4 aimed to shed light on why our salience manipulation 
had so little effect in Experiments 1–3. If this arose because it was 
relatively easy to identify the repeating sequence in all three list struc-
tures, the effects should become stronger in a list condition in which it is 
harder to identify the repeating segment without further highlighting. 
To test this, we implemented another list structure, which was similar to 
the chaining condition used by Hitch et al. (2005). In this condition, we 
again repeated a coherent string of four consonants within the partial 
Hebb list, but this time, this repeated string was not presented at a fixed 

Table 2 
Results of the Bayes Factor analysis for the effect of salience on performance in the working memory task, percentage of participants who reported to have recognized 
the repetition, and performance in the final long-term memory test in Experiments 1–3. The first value shows the median, the values in parentheses the range of the 
obtained Bayes Factors in the prior sensitivity analysis.    

Salience Effect  
Experiment BF10 ΔLearning Effect in Working Memory Task BF10 ΔRecognition BF10 ΔLong-Term Recall 

Start Repeat 0.20 
[0.14–0.34] 

7.89 
[5.10–9.54] 

1.69 × 103 

[7.57 × 102
–2.67 × 103] 

Middle Repeat 0.32 
[0.23–0.52] 

33.48 
[27.55–42.86] 

2.64 × 104 

[8.05 × 103
–4.68 × 105] 

End Repeat 1.13 
[0.77–1.76] 

0.44 
[0.33–0.59] 

1.48 
[0.96–1.86] 

Pooled 2.44 
[0.95–5.13] 

125.77 
[93.15–183.55] 

1.74 × 106 

[2.52 × 105
–1.37 × 107]  
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position within the list but changed position across repetitions. This 
should make it much harder to identify the repeating sequence across 
repetitions if it is not highlighted (see Fig. 1 for a visualization of the 
highlighting scheme). Our prediction was the following: If repetition 
learning depends on recognizing the repeated sequence within the list, 
learning should be facilitated in the High Salience compared to the No 
Salience condition. In the No Salience group, it should be very difficult to 
identify the repeating string of letters, therefore preventing any learning 
effects. In the High Salience condition, however, the highlighting of the 
position of the repeated sequence within the list should increase its 
recognizability and thus, eventually also facilitate its learning. If, 
instead, recognizability of the repeated information does not matter for 
sequence learning, we would expect to see no difference between the 

two salience conditions. This would challenge our assumption about the 
importance of repetition recognizability for sequence learning and 
require a reconsideration of the proposed mechanisms of Musfeld et al. 
(2023a). 

5.1. Results 

5.1.1. The effect of salience on learning 
The results are presented in Fig. 5, with the data from the working 

memory task on the left, and the data from the recognition and long- 
term memory task on the right. The Bayes Factors in favor of an effect 
of the salience manipulation are presented in Table 4. 

We again observed overall credible learning effects in both, the High 

Fig. 3. Estimated posterior distributions of the mixture proportion, onset point and rate of learning in the high salience and no salience condition for the first three 
experiments. Points display the median of the posterior distribution. Black bars reflect the 95% Highest Density Interval. 
Note. The Learning Rate is estimated on the logit scale, which is why negative values are possible. The absolute values have no direct interpretation and can only be 
interpreted by comparison. Larger values reflect higher learning rates. 
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Salience (BF10 = 1.06 × 107 [1.66 × 105
–2.30 × 109]) and the No 

Salience condition (BF10 = 8.25 × 102 [5.37 × 102 
– 2.30 × 103]). 

However, this time, we found a clear difference in learning of the 
repeated sequence between the two salience conditions. In the High 
Salience condition, performance improvements during the working 
memory task were similar to Experiments 1–3, but they were strongly 
reduced in the No Salience condition. This was confirmed by the Bayes 
Factor analysis, showing overwhelming evidence in favor of a difference 
in the learning effect between the salience conditions (BF10 = 760.05 
[294.45 – 1815.00]). Consistently, salience also increased the percent-
age of participants who reported recognition of the repeated sequence, 

and performance in the final long-term memory test (see Table 4). 

5.1.2. Parameter estimations of the mixture model for learning in the WM 
task 

We fitted the mixture model from Musfeld et al. (2023a) to the data 
of the working memory task. The results are presented in Fig. 6. As for 
Experiments 1–3, we found higher proportion of participants who 
showed evidence for learning in the High Salience condition compared to 
the No Salience condition (Mixture Proportion), this time accompanied 
by a pronounced difference in the onset point of learning. The parameter 
for the Learning Rate, however, showed no difference between the 

Fig. 4. Results of the Working Memory Task and Long-Term Memory task pooled over the data of Experiment 1–3, and split into participants who indicated to have 
recognized the repeated sequence and those who indicated to have not recognized the repeated sequence. Error Bars reflect 95% within-subject confidence intervals. 

Table 3 
Results of the Bayes Factor analysis for learning effects in the working memory task for both salience conditions of the start repeat, (Experiment 1), middle repeat 
(Experiment 2), and end repeat (Experiment3) experiment, when only considering the data from the first 4 presentations of the partial Hebb list. The first value shows 
the median, the values in parentheses the range of the obtained Bayes Factors in the prior sensitivity analysis.   

Evidence for Learning Effect in Working Memory Task after 4 Repetitions 
Experiment No Salience Condition High Salience Condition 
Start Repeat 1.94 [1.42–2.97] 8.10 × 103 [2.97 × 103

–2.21 × 104] 
Middle Repeat 16.51 [8.62–23.83] 0.96 [0.65–1.55] 
End Repeat 0.20 [0.13–0.32] 3.23 [2.22–4.72]  

Fig. 5. Descriptive results for the chaining experiment (Experiment 4). The results of the working memory task are presented on the left, and the results of the 
recognition and long-term memory recall task on the right. Error Bars reflect 95% within-subject confidence intervals. 
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groups. These estimates are consistent with the assumption that the 
salience manipulation primarily affects participants’ ability to recognize 
the repeated sequence within the list (as reflected by the mixture pro-
portion and the onset point parameter), but not so much the learning 
process itself (as reflected by the learning rate parameter). 

5.2. Discussion 

We conducted Experiment 4 to test if the weak salience effects 
observed in Experiments 1–3 occurred because the repeated sequences 
were relatively easy to identify regardless of the salience condition, or if 
instead the identifiability of the repeated sequence within the list did not 
matter for learning. Under conditions that made recognizability of the 
repeated sequence harder (i.e., a chaining condition), we observed a 
strong effect of the salience manipulation on learning: In the High 
Salience condition, learning effects were comparable to those observed 
in Experiments 1–3. In the No Salience condition, learning effects were 
severely reduced. This shows that the recognizability of the repeated 
sequence within a list has a crucial role for learning, and even allows 
participants to learn in a chaining condition, which was not observed by 
Hitch et al. (2005). It further suggests that this salience effect might have 
been masked in the first three Experiments, because participants were 
able to identify the repeated sequence regardless of the salience condi-
tion, when given enough repetitions. 

Taken together, the results from Experiments 1–4 provide strong 
evidence that learning of repeated sequences is not limited to the 
beginning of a list, nor to any other specific position within the list. 
Instead, participants learned repeated sequences even when their posi-
tion changed with every repetition, as long as they were able to identify 
the repeated sequence within the list. This is consistent with the findings 
by Musfeld et al. (2023a) and emphasizes the idea that chunk formation 
requires people to recognize which items could be unitized into a new 
chunk. 

6. Experiment 5–6: Do repeated items have to be presented in a 
coherent sequence for chunking to occur? 

The results of Experiments 1–4 have shown that repetition learning 
can occur much more flexibly than previously assumed – that is, also 
when lists are only partially repeated either at the start, the middle, the 
end, or at varying consecutive positions. Yet, in all experiments so far, 
we only manipulated the position of a coherent sequence within the list, 
but never interrupted the coherent structure of the repeated items. 
Therefore, another boundary condition of the Hebb effect, apart from 
the recognizability of the repeated structure, might be being able to 
encode and output the repeated information in a coherent unit. Hitch 
et al. (2005) implemented list conditions in which only every other item 
repeated, thereby interrupting the encoding and recall of the repeated 
items by unrepeated information. Their results showed small benefits in 
recalling the items on the repeated positions, but these effects were 
weak, and limited to the first four positions of the list. This again raises 
the question if these results reflect a boundary condition of chunk for-
mation in sequence learning, or if participants did not properly recog-
nize the repeated structure within the list. Thus, it could be the case that 
chunk formation is possible even in interleaved list conditions if the 
recognizability of the more complex pattern is enhanced within the list. 

Evidence suggesting that people might be able to learn repeated 
sequences even when they are interleaved with unrepeated items comes 
from studies which found Hebb effects in complex span tasks (Araya 
et al., 2022, 2023; Oberauer et al., 2015). In a complex span task, the 
presentation and/or recall of list items is interleaved with the presen-
tation of distractors. Hence, in a Hebb paradigm, the presentation of the 
repeated list is interrupted by distractors, which could disrupt the 
integration of the presented items into a new chunk. Araya et al. (2022, 
2023) have shown that the Hebb effect in simple and complex span tasks 
share the same underlying learning mechanism - which is most likely 
chunking. One explanation for why learning over repetitions in a 

Fig. 6. Estimated Posterior Distributions of the Mixture Proportion, Onset Point and Rate of Learning in the High Salience and No Salience Condition for Experiment 
4. Points Display the Median of the Posterior Distribution. Intervals reflect the 95% Highest Density Interval. 
Note. The Learning Rate is estimated on the logit scale, which is why negative values are possible. The absolute values have no direct interpretation and can only be 
interpreted by comparison. 

Table 4 
Results of the Bayes Factor analysis for the effect of salience on performance in the working memory task, percentage of participants who reported to have recognized 
the repetition, and performance in the final long-term memory test in Experiment 4. The first value shows the median, the values in parentheses the range of the 
obtained Bayes Factors in the prior sensitivity analysis.   

Salience Effect 
Experiment BF10 ΔLearning Effect in Working Memory Task BF10 ΔRecognition BF10 ΔLong-Term Recall 

Chaining 760.05 
[294.45–1815.00] 

172.71 
[122.51–289.66] 

2.35 × 109 

[1.94 × 108
–3.78 × 1010]  
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complex span task occurs is that, in such a task, people know that the 
distractors are not part of the memory list, and thus, the structure of the 
list is very salient to them. They can then focus on integrating only the 
relevant items into a new chunk. 

In Experiments 5 and 6, we asked if chunk formation in sequence 
learning can occur in conditions in which every repeated item is inter-
leaved with an unrepeated item – in case the repeated pattern within the 
list is made salient. Compared to a complex span task, this is still more 
demanding, because participants cannot remove the interleaving unre-
peated items from memory to form a coherent representation of the 
repeated sequence, as they still have to recall those items at test. To 
integrate the repeated items into a new chunk, participants might have 
to restructure the items during encoding into two coherent groups, and 
then reconstruct the sequence during recall by alternating between the 
groups. Alternatively, another possibility for representing and learning 
such a structure could be to create a template in which some of the list 
positions are fixed (the repeating item positions), and the other list 
positions are flexible and can be filled with new input during encoding. 
Such cognitive structures have been proposed by the Template Theory 
(Gobet & Simon, 1996), which has been influential to explain expertise 

effects in chess players. Yet, we argue that both ways of representing and 
learning the input most likely require participants to explicitly recognize 
the repeating structure within the lists. 

To test if participants can form such structures, we realized two more 
list conditions from Hitch et al. (2005) in which either the items at the 
odd list positions (Experiment 5), or the items at the even list positions 
were repeated (Experiment 6). Again, we highlighted the repeated 
structure within the list in the High Salience group to facilitate the 
recognizability of the repeated items, but not in the No Salience group 
(see Fig. 1). Although being more demanding than the previously real-
ized list conditions, we predicted that participants can eventually learn 
these patterns, if they can recognize them within the lists. This should be 
reflected in a difference in the learning effect between the High Salience 
and the No Salience condition because the High Salience condition should 
facilitate the recognizability of the repeated structure within the list. 

6.1. Results 

6.1.1. The effect of salience on learning 
There was little learning in both experiments (see Fig. 7 and Table 5). 

Fig. 7. Descriptive results for the odd repeat (A) and even repeat (B) experiment, presenting the results of the working memory task on the left, and the results of the 
recognition and long-term memory recall task on the right. Error Bars reflect 95% within-subject confidence intervals. 

Table 5 
Results of the Bayes Factor analysis for the effect of salience on performance in the working memory task, percentage of participants who reported to have recognized 
the repetition, and performance in the final long-term memory test in Experiments 5 and 6. The first value shows the median, the values in parentheses the range of the 
obtained Bayes Factors in the prior sensitivity analysis.   

Salience Effect 
Experiment BF10 ΔLearning Effect in Working Memory Task BF10 ΔRecognition BF10 ΔLong-Term Recall 

Odd Repeat 0.07 
[0.05–0.12] 

0.31 
[0.22–0.46] 

0.24 
[0.17–0.40] 

Even Repeat 0.08 
[0.05–0.14] 

1.98 
[1.56–2.19] 

0.23 
[0.15–0.35]  
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In the working memory test, performance on the interleaved Hebb lists 
improved only slightly above performance on Filler lists. Although 
Bayes Factor analyses showed that this improvement was credible in 
both, the High Salience (Odd: BF10 = 29.74 [16.31 – 51.58]; Even: BF10 
= 9.178 × 104 [9.74 × 103 

– 2.00 × 107]) and the No Salience condition 
(Odd: BF10 = 7.26 [4.84 – 13.83]; Even: BF10 = 1.05 × 104 [2.30 × 103 

– 

3.02 × 104]), it was much weaker than what we observed in every 
previous list condition. This was also reflected in the performance in the 
final long-term memory recall task, which was much lower than in all 
other experiments. 

Our analysis of the effect of the salience manipulation further 
revealed that highlighting the repeated structure within the list had no 
effect on learning. For the working memory task, Bayes Factors showed 
strong evidence against a difference in learning between the two 

salience groups for both experiments. The same was true for the long- 
term memory recall task (see Table 5). For the proportion of partici-
pants who reported recognition of a repeated pattern within the lists, 
results slightly differed between the two experiments: In the odd repeat 
experiment, Bayes Factors again showed conclusive evidence against a 
difference between the two salience conditions. For the even repeat 
experiment, evidence remained inconclusive, but tended to favor the 
presence of a difference. 

Because of the overall weak learning effects observed for both ex-
periments, estimation of the parameters of the mixture model was very 
unprecise and did not contain any additional information. The results 
can be found in our supplementary material in Fig. S1. 

6.1.2. Comparison of learning effects between experiments 
The interleaved list conditions in Experiments 5 and 6 revealed 

overall smaller learning effects than the coherent list conditions in Ex-
periments 1–4, suggesting that interleaved list conditions are more 
difficult to learn than coherent list conditions. However, in comparison 
to Experiments 1–4, the proportion of participants who reported 
recognition of the interleaved patterns was also reduced, and barely 
affected by our salience manipulation. Thus, it is unclear whether 
observed differences in the learning effect reflect differences in the 
ability to learn the different patterns, or whether they can be attributed 
to differences in the ease of recognizing these patterns. 

To investigate this, we compared the learning effects between all six 
experiments by only considering those participants who reported 
recognition of the repeating pattern. This allows us to compare how well 
participants were able to learn the repeated pattern given that they 
recognized it. The results are shown in Fig. 8, with the data from the 
working memory task on the left, and the estimated logistic regression 
coefficients for the interaction between repetition and trial type (i.e., the 
learning effect) on the right. The estimated model coefficients can be 
directly compared with each other because we fitted the same model for 
all experiments, with the data standardized to the same scale. The results 
show that when controlling for differences in recognition by including 
only those participants who reported recognition of the repeated 
pattern, the learning effects were still consistently stronger in the ex-
periments with coherent repeating sequences, compared to the two ex-
periments with interleaved list conditions. 

6.2. Discussion 

In Experiments 5 and 6, we investigated if learning can even occur in 
interleaved list conditions, as long as the recognizability of the repeated 
pattern is increased. Our results did not support this idea. Consistent 
with the results reported by Hitch et al. (2005), we only found weak 
learning effects when repeating items in every other list position, and 
learning was not bolstered by highlighting the repeated pattern within 
the lists. Even when only considering the data of those participants who 
indicated recognition of the repeated pattern, learning effects were still 
severely reduced compared to the coherent list conditions in Experi-
ments 1–4, showing that participants were not able to benefit from the 
interleaved repetitions. This adds an important boundary condition to 
our initial assumption: Chunk formation not only requires identifying 
which information could be integrated into a new chunk but also to 
represent this information as a coherent unit in memory. 

At first glance, this conclusion might contradict chunking as an 
explanation for the Hebb effect in complex span tasks (Araya et al., 
2022, 2023), but there is an important difference between the two tasks: 
In a complex span task, distractors do not have to be remembered, but 
can be removed from memory immediately after processing (Oberauer 
& Lewandowsky, 2016). Thus, they do not become part of the mental 
representation of the list in memory, and still allow participants to 
represent the list items as a contiguous sequence that can be unified into 
a chunk. In our task, the interleaving items could not be removed from 
memory, but had to be remembered at their corresponding positions 

Fig. 8. Results from the working memory task of all six Experiments (left), 
together with the estimated learning effects (right), when only considering 
participants who indicated to have recognized the repeating pattern within the 
partial Hebb list. Error bars reflect 95% within-subject confidence intervals. 
Points display the median of the posterior distributions, intervals the 95% 
highest density interval. The dashed line provides an arbitrary visual support 
for emphasizing the clear difference in learning effects between the four 
coherent list conditions and the two interleaved list conditions. 
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within the list. Thus, to correctly represent the order of the whole 
sequence, the unrepeated items still interleaved the representation of 
the repeated sequence in memory and thereby prevented the integration 
of these items into a coherent unit. 

7. Serial position curves reveal further evidence for chunk 
formation in repeated sequences 

Previous research on chunking has shown that when pre-known 
chunks are combined with non-chunked items in the same lists, mem-
ory performance was not only improved for the chunk itself, but also for 
the other non-chunked items within the list (Bartsch & Shepherdson, 
2022; Mathy et al., 2023; Mızrak & Oberauer, 2022; Norris et al., 2020; 
Thalmann et al., 2019). This suggests that chunks allow a more efficient 
representation of information in memory, thereby freeing up capacity 
for new information. This mostly affected items which followed the 
chunk in the list, but not so much items which preceded the chunk, 
suggesting that chunks can only free up capacity for other items pro-
actively, but not retroactively. Our study design allows to investigate 
similar effects, which can provide additional evidence for a chunking 
mechanism in sequence learning. If the repeated sequence within the 
partial Hebb list was learned as a chunk, we would not only expect to see 
beneficial effects of repetition on the repeated list positions, but also on 
unrepeated list positions which follow the repeated sequence within the 
list. To investigate how learning of the repeated sequence within the 
Hebb list affected recall of items in unrepeated list positions, we plotted 
serial position curves for each list condition. For this, we only included 
the data from the last three mini-blocks of each experiment, as this is 
where the learning effect should be strongest and plotted the average 
performance in Hebb and Filler lists as a function of list positions. For 
the start repeat, middle repeat, and end repeat experiments, these serial 
position curves are presented in Fig. 9. The serial position curves for the 
other three experiments were less informative for analyzing pro- and 
retroactive effects; they can be found in Fig. S2 in the supplementary 
materials. 

To analyze pro- and retroactive effects in the presented data, we 
conducted two additional analyses. For proactive effects, we combined 
the data from the start repeat and the middle repeat experiment, and 
filtered the data to those list positions, which followed the repeated 
sequence. Similarly, for the retroactive effects, we combined the data 
from the middle repeat and end repeat experiment, and filtered the data to 
those list positions, which preceded the repeated sequence. We then 
compared the average performance on the selected list positions be-
tween the partial Hebb list and the Filler lists. The results showed 
overwhelming evidence for improved memory performance on 

unrepeated list positions which followed the learned sequence (BF10 =
8.20 × 1012; proactive benefit), and strong evidence in favor of bene-
ficial effects on list positions which preceded the learned sequence (BF10 
= 2242.03; retroactive benefit). However, the proactive benefit was 
much larger – with an average increase of 19.47% in the probability of 
giving a correct response to an item on an unrepeated list position – 

compared to the retroactive benefit, which only led to an increase of 
3.99%. This suggests that learning of the repeated sequence effectively 
freed up capacity for other unrepeated items in the list, as predicted 
from the assumption that the repeated sequence was learned as a new 
chunk in long-term memory. 

8. General discussion 

In the present study, we investigated mechanisms and boundary 
conditions of chunk formation in sequence learning. Chunking is a 
mechanism by which multiple individual elements are integrated into a 
single unified representation and this has been the most prominent 
explanation for the learning of repeated sequences (Burgess & Hitch, 
2006; Mızrak & Oberauer, 2022; Page & Norris, 2009; Szmalec et al., 
2009). Yet, the conditions under which chunking of repeated informa-
tion occurs are not well defined. 

In this study, we investigated the role of chunk recognizability in 
sequence learning. Recognizing what is being repeated has been shown 
to be a crucial condition for repetition learning to occur (Musfeld et al., 
2023a; Ngiam et al., 2019). Computational models of repetition learning 
have incorporated the need for a recognition mechanisms but in a rather 
inflexible way, assuming that recognition is determined by matching 
repeated sequences incrementally from their beginning (Burgess & 
Hitch, 2006; Page & Norris, 2009). This leads to the constraint, that 
repeated patterns can only be recognized and learned when presented at 
the beginning of a sequence. Here, we argued that this assumption is too 
rigid, and that repeated pattern can be learned more flexibly, if their 
recognizability within a sequence is enhanced. 

Across six experiments, we obtained strong support in favor of our 
proposal. Contrary to previous studies, our findings show that learning 
of partially repeated lists is not dependent on which part of a list is 
repeated. Instead, participants learned repeated sequences when pre-
sented at the beginning, in the middle, and at the end of a list - as long as 
they were able to recognize the repeated sequence. Even when the 
repeated sequence changed its position with every repetition, learning 
eventually occurred when the structure of the list was made salient by a 
spatial grouping manipulation. Only when the repeated sequence was 
interleaved by other unrepeated items, learning was severely reduced. 
These findings have important implications for our understanding of the 

Fig. 9. Serial Position Curves for the two salience conditions in the start repeat (A), middle repeat (B), and end repeat (C) experiment. The presented data shows the 
average performance in Hebb and Filler lists from the last three mini-blocks of the working memory task as a function of list position. The positions containing the 
repeated sequence within the Hebb list are highlighted in red. Error Bars reflect 95% within-subject confidence intervals. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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mechanisms and boundary conditions underlying chunk formation. 
First, they emphasize that chunk formation is an explicit process which 
requires participants to recognize which items can be integrated into a 
new chunk. Second, our results show that the successful recognition of a 
repeated sequence can be guided by how information is structured 
during encoding. This suggests a strong link between grouping of in-
formation in working memory, and the formation of new chunks in long- 
term memory. In the following, we will elaborate on these conclusions in 
more detail, and discuss their implications for the mechanisms under-
lying sequence learning and the representation of order information in 
working memory. 

8.1. Implications for mechanisms underlying sequence learning 

Overall, our results are consistent with the assumption that repeated 
sequences are learned as chunks (Hitch et al., 2005; Mızrak & Oberauer, 
2022; Page & Norris, 2009). This was not only supported by the 
improved memory performance observed for the repeated sequence it-
self, but also by the proactive (and small retroactive) effects we observed 

on the other items within the list. This suggests that after multiple 
repetitions, the repeated sequence was represented more efficiently in 
memory, and thereby freed up capacity for other items in the list, which 
is consistent with behavioral signatures of chunking (Norris et al., 2020; 
Thalmann et al., 2019). Apart from this, our findings also reveal new 
insights into mechanisms underlying chunk formation in sequence 
learning. 

Most importantly, chunk learning in repeated sequences depends on 
participants’ ability to recognize which items constitute a pattern of 
regular co-occurrence that could be learned as a new chunk. Although it 
has been noted before that chunking requires a marker for the onset of a 
chunk (see e.g., Norris & Kalm, 2021), this assumption has not yet been 
tested empirically. Consistent with the findings by Musfeld et al. 
(2023a), our results show that (1) under conditions in which recognition 
of the repeated pattern was easy, the learning effect was mostly driven 
by participants who recognized the repeated pattern (Experiments 1–3), 
and (2) under conditions in which it was hard to recognize the repeti-
tion, learning was facilitated by increasing the salience of the repeated 
pattern within the list (Experiment 4). This emphasizes that chunking is 

Fig. 10. Visualization of the proposed relation between the structure of representations in working memory and the learning of new chunks in long-term memory. A 
shows an example of the High Salience condition from the Chaining experiment (E4). The displayed structure during encoding guides how information is structured 
in memory, and allows an exact match of the repeated sequence, even if it appears at a different position within the list. The top row of the figure shows how the lists 
are presented; the middle row illustrates their grouping in working memory through frames around each group; the bottom row shows the strength of episodic- 
memory representations of each group, with the colors of the bars corresponding to the colors of the frames around groups in working memory. B shows an 
example of the No Salience condition from the Chaining experiment. No structure is given at encoding, and we assume that the list is spontaneously grouped into two 
groups of 4 items, shown as frames in the middle row. This leads to a mismatch between the groups encoded into episodic memory at two subsequent repetitions, and 
a failure in recognizing the repetition. 

P. Musfeld et al.                                                                                                                                                                                                                                 



Cognition 248 (2024) 105795

17

an explicit learning process, which does not occur implicitly with each 
repetition of the repeated sequence. As a consequence, models of 
sequence learning have to include some recognition mechanism, which 
determines whether the repetition of a specific sequence is explicitly 
recognized as having been seen before or not, before any learning can 
occur. The models by Burgess and Hitch (2006) and Page and Norris 
(2009) both already incorporate such a recognition mechanism. In their 
models, a representation in long-term memory is only retrieved to 
support recall if there is a sufficient overlap to the currently encoded list. 

Yet, our results as well as the ones by Musfeld et al. (2023a) make 
clear that the implementations of these recognition mechanisms are 
both too liberal and too rigid. On the one hand, they are too liberal 
because they never fail in case the overlap between a presented list and a 
previously encoded list is sufficiently large. For a standard Hebb para-
digm, in which a whole list is repeated, this always leads to successful 
recognition of the repeated sequence, and as a result, predicts gradual 
learning with every repetition. This is inconsistent with the results from 
the mixture model (Musfeld et al., 2023a): For many participants the 
onset of learning occurs only after several repetitions, and a substantial 
number of participants never start learning. To account for this, more 
elaborated recognition mechanisms are needed, which would also have 
to integrate assumptions on why recognizing a repeated sequence can 
fail, even if there is a perfect overlap with previously presented lists. 

On the other hand, the recognition mechanisms in previous models 
(i.e. Burgess and Hitch (2006) are too rigid in that they require the 
current list to match a representation of a previous list from the begin-
ning for learning to occur. In contrast to this prediction, our findings 
show that people were able to learn repeated sequences not only at the 
beginning of a list, but also in the middle or at the end of a list, and even 
if the position of the repeated sequence within the list changed across 
repetitions. This cannot be explained by the model of Burgess and Hitch 
(2006), and potentially causes similar problems for the model by Page 
and Norris (2009). 

8.2. The relationship between grouping in working memory and chunk 
formation in long-term memory 

Our findings show that current models of the Hebb effect fall short 
because they explain chunk formation in sequence learning on the level 
of an entire list. One way to overcome this would be to assume a 
matching and learning mechanism which does not occur on the level of a 
whole list, but on groups of the list. Mızrak and Oberauer (2022) came to 
a similar conclusion and suggested a continuous matching procedure 
inspired by the TRACX model (French et al., 2011), which continuously 
computes the overlap of the last n encoded items to chunks stored in 
long-term memory. However, the continuous matching mechanism 
implemented in the TRACX model is based on the assumption of some 
form of implicit sequence learning and would predict that repeated 
chunks can be matched and recognized regardless of their identifiability 
within the list. This is inconsistent with the results from our Experiment 
4, because a continuous matching mechanism would predict recognition 
and learning of the repeated sequence regardless of the salience condi-
tion. Yet, participants only showed substantial learning effects in the 
High Salience condition of this experiment. Consequently, a continuous 
assessment of chunk matching seems too flexible to adequately account 
for our data. 

As an alternative, we propose that chunk matching and subsequent 
learning is guided by how information is structured in working memory 
during encoding. We will explain this in the following (see also 
Fig. 10A): We first consider the High Salience condition in our experi-
ments. This condition always imposes a specific structure during 
encoding by suggesting how to divide the presented sequence into 
smaller groups. We assume that each of these groups initially leaves a 
separate trace in episodic memory. When the partial Hebb list is pre-
sented again, the imposed grouping in the High Salience condition will 
lead participants to group the sequence in the same way as before. Each 

group is matched against representations in episodic memory, and if a 
match is detected, the repeated group is recognized as such. Thus, when 
partially repeated lists are consistently grouped such that the repeated 
part forms a separate group, the chance of recognizing the repetition is 
high. When recognition occurs, the episodic-memory representation 
found to match a current group in WM is strengthened, and that forms 
the basis of repetition learning. This even allows learning of the repeated 
sequence when it appears at different positions within the list (like in 
Experiment 4), as long as the repeated sequence within the list is 
demarcated in the displayed structure to ensure that the repeated 
sequence forms its own group in working memory (see Fig. 10A). 

How can this account for the learning effects in the No Salience 
group? In that case, no grouping is imposed on participants. Yet, it is 
unlikely to assume that under this condition, participants just represent 
the sequence as one large unit. In fact, it has been shown that partici-
pants spontaneously divide lists into smaller groups, even when there is 
no prior knowledge related to these groups (Chekaf et al., 2016; Cowan 
& Chen, 2008; Jones & Macken, 2015; Mathy et al., 2023; Mızrak & 
Oberauer, 2022). Because the formation of these groups is not guided by 
the structure of the presented list, grouping might differ between par-
ticipants, or even between trials for the same participant. For example, 
some participants might represent a sequence of eight letters in groups 
of 4–4, whereas others create groups of 3–3-2, or 2–2–2-2. This could 
decrease the probability of creating an exact match to a previously 
encoded chunk in episodic memory, and thus make learning less likely. 
However, if a repeated sequence is always presented at the same posi-
tions within the list, participants might eventually recognize repeating 
groups within the list, especially if the repeated sequence is presented at 
the beginning of the list. This would explain why we see substantial 
learning also in the No Salience condition of Experiments 1–3. However, 
when the repeated sequence moves within the list as in Experiment 4, 
participants’ spontaneous grouping patterns will almost never match 
previous sub-sequences stored in episodic memory, and as a result, not 
lead to learning. 

Our proposal suggests a strong link between grouping of encoded 
information in working memory, and the formation of new chunks in 
long-term memory. This is consistent with previous findings in the 
literature (Bower & Winzenz, 1969; Guitard et al., 2022; McLean & 
Gregg, 1967; Mızrak & Oberauer, 2022; Szmalec et al., 2009; Winzenz, 
1972). For example, Bower and Winzenz (1969), and also Winzenz 
(1972) found that repetition learning can be impaired, when the 
grouping structure of a repeated list changes across repetitions. In their 
studies, lists of nine digits were presented in temporal (auditory) or 
spatial (visual) groups of one to four items. While keeping the order of 
items in the repeated Hebb list the same, they manipulated whether the 
grouping of items was the same across repetitions or changed with every 
repetition. Their results showed that learning only occurred when the 
grouping of the list remained constant. These findings on the relation 
between grouping and repetition learning imply that the creation of new 
traces in episodic long-term memory is directly guided by how infor-
mation is structured in working memory during encoding. 

8.3. Implications for the representation of order in working memory 

The question of how the serial order of a sequence is represented in 
short-term and working memory has a long history, and eventually 
resulted in the abandonment of models relying on inter-item associa-
tions, and the acceptance of models relying on item-position associa-
tions (see Osth and Hurlstone (2023) for a recent review). Here, we 
don’t want to revive this debate, but rather provide a clarification on 
how our findings fit in with the assumptions of positional models for the 
representation of order. 

In our study, we observed strong learning effects when sequences 
were presented as a coherent sequence within the list (Experiments 1–4), 
but learning was weak when the repeated items were interleaved by 
other unrepeated items (Experiments 5–6). In other word, for learning to 
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occur, a consistent association between subsequent items was more 
important, than a consistent association between an item and its position 
within the list. At first glance, this seems to contradict positional models 
of order in working memory. However, as Hitch et al. (2005) have 
already argued, the mechanisms which underly the representation of 
serial order in working memory don’t have to be the same as the 
mechanisms which underly long-term learning of repeated sequences. If 
one assumes that these mechanisms can operate differently, our findings 
are in line with the assumption of positional models of order in working 
memory. 

Specifically, considering a scenario prior to any learning effects, each 
item of a list can be regarded as a separate unit of information. To 
represent the order of a list, positional models assume that each item 
(and therefore each unit of information) is temporally bound to its po-
sition within the list, which then serves as a cue to retrieve the associated 
item during recall (Farrell, 2006; Henson, 1999; Oberauer, 2019; 
Oberauer et al., 2012). Moving to a scenario in which the first four items 
of a list repeat over multiple trials in the experiment, we assume that the 
repeated items are learned as a new chunk in long-term memory, which 
means that the separate representations of four items become integrated 
into one unified representation. When the repeated sequence is pre-
sented again, the chunk representation of the first four items becomes 
activated in long-term memory, which allows to temporally bind the 
whole unit to a single positional marker in working memory. This not 
only allows to represent the first four items of the list more efficiently, 
but also frees up capacity in working memory because less bindings are 
required to represent the order of the whole list (Norris et al., 2020; 
Thalmann et al., 2019). This is different from a scenario in which every 
other item of the list is presented repeatedly. Not only does this seem to 
prevent the formation of an integrated representation of the repeated 
items, it might also not help to improve serial recall performance if such 
an integrated representation existed. To preserve the correct order of the 
presented sequence, it wouldn’t be possible to bind a chunk of the 
repeated items to a single positional cue in working memory as this 
would already distort the order of the presented sequence. Instead, it 
would be necessary to create separate bindings between each item and 
its position within the list. This limits the effects of interleaved item 
repetitions on serial recall performance, which is consistent with our 
results. Taken together, the assumption that the chunking mechanism 
underlying sequence learning depends on coherent item-item relations 
between repeated items is compatible with the assumptions of positional 
models of WM. 

8.4. Conclusion 

Across six experiments we show that chunk formation in sequence 
learning is not dependent on the occurrence of the repeated chunk at a 
specific position within a list, but rather on its recognizability. This 
stresses the conceptualization of chunking as an explicit rather than 
implicit learning mechanism. Furthermore, our findings reveal a strong 
link between grouping in working memory and subsequent chunk for-
mation in long-term memory: The formation of a new chunk in long- 
term memory is guided by how information was initially structured in 
working memory. 
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