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The better the code quality and the less complex the code, the easier it is for software developers to compre-

hend and evolve it. Yet, how do we best detect quality concerns in the code? Existing measures to assess code

quality, such as McCabe’s cyclomatic complexity, are decades old and neglect the human aspect. Research

has shown that considering how a developer reads and experiences the code can be an indicator of its quality.

In our research, we built on these insights and designed, trained, and evaluated the first deep neural network

that aligns a developer’s eye gaze with the code tokens the developer looks at to predict code comprehension

and perceived difficulty. To train and analyze our approach, we performed an experiment in which 27

participants worked on a set of 16 short code comprehension tasks while we collected fine-grained gaze

data using an eye tracker. The results of our evaluation show that our deep neural sequence model which

integrates both the human gaze and the stimulus code, can predict (a) code comprehension and (b) the

perceived code difficulty significantly better than current state-of-the-art reference methods. We also show

that aligning human gaze with code leads to better performance than models that rely solely on either code

or human gaze. We discuss potential applications and propose future work to build better human-inclusive

code evaluation systems.

CCS Concepts: • Software and its engineering → Empirical software validation; • Human-centered comput-

ing → Laboratory experiments; • Computing methodologies → Neural networks.
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code-fixation attention
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1 INTRODUCTION

Comprehending code is crucial for software developers as it forms the basis for maintaining

and evolving code. The easier it is for a developer to understand the code they are working

with, the easier it is for them to make the changes and the less likely they introduce any new

defects [8, 43, 48]. Yet, how do we know whether a piece of code is easier or more difficult to

comprehend for developers and whether the developer is able to understand it correctly? Answers

to these questions would allow us to, for example, know how much effort it might take to make a

code change, how likely it is to create a bug, or where to best put effort into refactoring.

Authors’ addresses: Tarek Alakmeh, University of Zurich, Zurich, Switzerland, tarek.alakmeh@uzh.ch; David Reich, Univer-

sity of Potsdam, Potsdam, Germany, david.reich@uni-potsdam.de; Lena Jäger, University of Zurich, Zurich, Switzerland,

jaeger@cl.uzh.ch; Thomas Fritz, University of Zurich, Zurich, Switzerland, fritz@ifi.uzh.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART88

https://doi.org/10.1145/3660795

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 88. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.



88:2 Tarek Alakmeh, David Reich, Lena Jäger, and Thomas Fritz

Various measures and approaches have been introduced to address these questions, including

metrics such as the cyclomatic complexity [47] or models based on static and other code-related

measures to detect quality issues in the code [52, 83]. The majority of these approaches focus on

metrics of the code, e.g., its size, nesting, or the change in the code, yet fail to capture the human

and in particular, the developer’s comprehension process that plays a big role.

One potential way to access developers’ cognitive processes when reading code is to measure

their eye movements. Eye movements with a high temporal resolution have long been known to

reflect cognitive processes in reading natural language [38] and are considered a “window on mind

and brain” [78]. Eye movements are categorized into oculomotor events, including fixations (when

the eye stays still and obtains visual information, ≈200-300ms) and saccades (fast movements

between fixations, ≈30-80ms) [35]. Sequences of fixations, so-called scan paths, have been used

as a gold-standard measure in cognitive psychology [59] for many decades.

For code comprehension, researchers have also started to use eye-tracking and study devel-

opers’ eye movements [4, 37, 68]. Some work has even used eye-related features with machine

learning to predict programming proficiency [3]. In our research, we go a step further and aim to

explore the potential of using human eye gaze on code to design and train a deep neural network

that predicts human code comprehension and perceived code difficulty. Using a deep learning

neural network, we explore whether it is feasible to directly extract “hidden” features from a

developer’s eye fixations and the benefit of aligning it with the code token the developer looked at.

Specifically, we address the following research questions:

RQ1 How accurately can we predict (a) code comprehension and (b) perceived difficulty from a

reader’s eye movements using a deep neural network?

RQ2 How well does our model perform compared to previous models of related work?

RQ3 How much does the alignment of code and fixations contribute to the performance of our

model compared to a code-only and fixations-only model?

To address our research questions, we first conducted a lab experiment with 27 participants

working on a set of 16 diverse code comprehension tasks while we tracked their eye movements

using an eye-tracking system. Since there are generally no standardized code snippet sets [81], we

carefully chose diverse code comprehension tasks that are representative of real-world code tasks

and fit our experimental constraints. These tasks allowed us to effectively train and analyze our

novel deep network architecture using the collected data.

In a second step, we developed and evaluated an end-to-end trained deep neural sequence

model using both eye-tracking data and code as input. We exploit the capabilities of natural-

language programming-language models (NL-PL) to extract contextualized code-token embed-

dings and align these code-tokens with gaze data via code-fixation attention. In a comparison

with three reference models, our analysis shows that our approach achieves state-of-the-art re-

sults, outperforming all three reference models for predicting code comprehension and perceived

difficulty. In a short ablation study, we also show that aligning human gaze and code outperforms

models that solely rely on either human gaze or code. We discuss potential applications of our

approach and future work on extending the approach to build better human-inclusive code

evaluation systems that might not even require the active use of an eye-tracker. We make the

following contributions:

• The first end-to-end trained deep neural network to predict code comprehension and

perceived code difficulty from a developer’s eye gaze and the code, together with empirical

findings that show that our proposed method outperforms the current state-of-the-art.

• Empirical evidence on the benefit of aligning fixations and code on a fine-grained level for

predicting code comprehension.
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• An eye-tracking dataset on a carefully selected set of diverse code comprehension tasks.

The rest of the paper is structured as follows: In Section 2, we introduce relevant background

information and related work. Our data collection is described in Section 3. Section 4 introduces

the machine learning problem setting, which we approach with our novel deep neural sequence

model presented in Section 5. We evaluate our deep learning architecture in Section 6. Section 7

discusses our results, while Section 8 analyzes the limitations of our study. Section 9 concludes

our work.

All stimuli, anonymized eye-tracking data, and code to reproduce the results are provided

online [1].

2 RELATED WORK

In this section, we first start with an overview of code comprehension and studies thereof before

discussing research on detecting code quality issues using code-related metrics. We also give a

brief overview of measures that capture more of the human in the process before we present an

overview of research that uses eye-related data to study code comprehension, also discussing the

three reference models that we use as a baseline in our experiments in Section 6.

2.1 Defining and Studying Code Comprehension

A recent systematic mapping study examined 95 studies on code comprehension experiments

over the last 40 years showing that there is a lot of ambiguity in the terms used in the domain [81].

For example, terms such as comprehensibility, readability and even legibility are often used

interchangeably [6, 14, 79, 80] and need to be defined more clearly as pointed out [23, 81]. In

our work, we focus on the comprehensibility of code rather than its legibility that focuses on

the non-semantic visual appearance of text or code, or as Oliveira et al. stated it, “the ability of

developers to identify the elements of code while reading it” [7, 18, 54].

Code comprehension or its synonym code understanding is often referred to as the process of

comprehending code, especially in literature on the mental models of comprehending code, such

as the bottom-up [57, 69], top-down [9, 70] and integrated code comprehension models [46]. At

the same time, the term is often used as a metric to measure how well someone understands the

code [81]. In our work, we refer to code comprehension as the ability to understand code, which

can also be referred to as a metric.

To assess whether a developer comprehends a code snippet, prior research has often directly

asked a participant to either (a) assess the code themselves by rating it [67], (b) answering com-

prehension questions about the code [62], (c) summarizing the code [22], (d) locating bugs [21],

or (e) evolving the code by either fixing a bug, refactoring or extending it [23, 53, 81]. Since there is

no standardized way of conducting code comprehension experiments yet, most studies either

take the code snippets from textbooks, open-source repositories, or create them themselves. In

our study, we use open-source code snippets, focusing on self-assessment (a) and the answer to

comprehension questions (b), since code comprehension itself might not necessarily imply that a

developer is able to summarize, refactor, extend, or fix it as previously pointed out [81].

2.2 Detecting Code�ality Issues

Since code quality issues can result in high costs, a lot of research has been trying to automatically

assess it. Early on, approaches have focused on static code features to measure the complexity of

code, such as cyclomatic complexity or Halstead complexity [6, 44, 47]. While these metrics have

their benefits and can easily be applied broadly to determine areas in the code that might be more

complex, they fail to capture the human aspect of understanding the code (i.e., comprehensibility).
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Fig. 1. Two code snippets having vastly different comprehensibility, but same cyclomatic complexity [11].

The example in Figure 1 illustrates this shortcoming. It depicts two code examples that both have

the same cyclomatic complexity, yet one is generally very easy for a human to understand (right

side), while the other is not (left side) [11]. In a study using an fMRI, Peitek et al. [55] also showed

that popular complexity metrics fail to capture comprehension aspects of participants of the code

snippets they worked on.

More recent research in the area of automatically detecting quality concerns has also looked

into the use of further code metrics [45, 49], metrics on the changes in code [51, 52, 83], or even

examined developers’ interactions with the code in the IDE [42]. In our research, we complement

this research by combining information from developers’ eye gaze with code information in a

sequence model using a neural network to predict how difficult the code is to comprehend for a

developer.

2.3 Using Psycho-Physiological Measures to Capture the Human Element

Several studies have examined the use of various psycho-physiological measures to better capture

the human element, including measures on eye-related features such as pupil size, saccades, eye

blinks, and fixations gathered from eye-tracking devices, brain-related features such as frequency

bands collected with EEG devices, or heart-, skin- and breathing-related measures such as changes

in perspiration gathered with EDA and HR sensors. These studies are predominantly feasibility

studies and have shown that the captured psycho-physiological measures relate to higher level

concepts such as cognitive load [32], memory load [29], mental workload [36, 61], code review

performance [68, 76], and also code quality and comprehension difficulty [25, 50]. In our research,

we also use psycho-physiological data, in particular eye-related features, and align the data with

code tokens in a neural network architecture to predict a developer’s code comprehension.

2.4 Eye-Tracking for Code Comprehension

Most related to our research is work that uses eye-related data in the context of code compre-

hension. Several studies have used eye-tracking devices to investigate aspects such as reading

patterns and eye movements in code comprehension experiments [4, 6, 10, 37, 68, 75, 76]. These

studies found, for example, that novices look at more code elements than experts [4, 5] and that

scanning time inversely correlates with defect detection time [68, 76]. Peitek et al. also went a step

further and analyzed area-of-interest-based differences in code reading behaviours using EEG

and eye-tracking in combination [56].

Eye-tracking data has also been used in combination with machine learning to predict aspects

related to code comprehension. For example, Lee et al. [41] conducted a study with an eye-tracker

and an EEG for code comprehension tasks. Using a Support Vector Machine (SVM), they examined
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the use of features engineered from the collected data to predict task difficulty and a developer’s

level of expertise. Unfortunately, we could not find sufficient detail or a public implementation

for their approach that would allow a comparison.

Our work compares a novel architecture and model with three other state-of-the-art methods in

the area. In the method by Fritz et al. [25], the authors examined the use of psycho-physiological

features engineered from eye movements, EDA, and EEG data, together with a Naïve Bayes

classifier to infer participants’ difficulty reading code. In our comparison, we focus on the eye-

related features of their method, specifically the fixational, saccadic and pupil features. Different

to Fritz et al. [25] that aggregates the features by time, Al Madi et al. [3] used eye-related features

aggregated on the word level. By focusing on the word level, the method exploits information

about the stimulus but loses the temporal information of the scan path. For their method, Al

Madi et al. use eight fixational features (no saccadic information) as input for a Random Forest

approach to estimate programming proficiency. Finally, Harada and Nakayama [33] examined

the use of several eye-related features to estimate code reading ability using an SVM. In their

method, they engineered fixational and saccadic features for larger areas of interest in the code

snippets, including transition probability features and power spectra in different frequencies that

occur during fixational micromovements (drift and tremor) [19]. To date, no study has explored

the ability of deep learning to extract “hidden” features from eye-related data and from the code

tokens looked at during the task. We will explore this in the presented study.

3 STUDY METHOD

To create a representative eye-tracking data set on code comprehension and examine our research

questions, we conducted an experiment with 27 participants in an eye-tracking laboratory. For the

experiment, each participant worked on up to 16 code comprehension tasks while we collected

their eye gaze as well as participants’ ratings on the perceived difficulty and their response to the

tasks. Since the main objective for this experiment was to create a data set that is representative of

real-world comprehension tasks and includes a diverse set of code snippets, we applied a multi-

step process to identify the code snippets for the comprehension tasks used in the experiment

that we will describe in Section 3.4.

3.1 Procedure

The experimental procedure consisted of three phases: an introduction, a main phase, and

a debrief. In the introduction phase, we introduced each participant to the physical and the

virtual environment (i.e., the graphical user interface for the comprehension tasks). The physical

environment is depicted in Figure 3 and described below. We then had each participant perform a

sample comprehension task to familiarize themselves with the environment, the type of tasks, and

the procedure. We also gave them the option to ask any questions they had. Finally, we calibrated

the eye-tracker to the participant using a 9-point calibration, requiring a good calibration result

with an average offset error of < 1.0◦ and maximum error of < 1.5◦ [63, 72].

In the main phase, participants were asked to complete a randomly assigned list of compre-

hension tasks. We predefined 5 lists of comprehension tasks, each with 7 to 10 comprehension

tasks, to ensure that (a) each participant works on a diverse and broad range of comprehension

tasks including a mix of easy and more difficult ones as well as tasks with and without recursion

and iteration, (b) each of our 16 predefined comprehension tasks (see Section 3.4) is performed

by several (at least 5) participants, (c) the order of tasks assigned varies between the lists, and (d)

the overall time on tasks does not exceed a maximum of 60 minutes per participant. Additionally,

since we had several participants performing two sessions, we designed two of the five lists of

comprehension tasks to be mutually exclusive from the other three lists. For logistic reasons of
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Fig. 2. Comprehension task example with the task prompt (top right), the code snippet CS-07 (le�), and the
answer options (bo�om right).

the eye-tracking setup, we randomly predefined an order for the tasks within each list. Note that

the second sessions were scheduled several weeks after the first one to reduce the burden on

participants.

For each comprehension task, participants were presented with a task prompt, the code snippet,

and four answer options. The fourth answer option for each task was “I don’t understand the

code”. An example is presented in Figure 2. We designed the task prompt of each comprehension

task to require the participant’s understanding of the whole code snippet while keeping the

prompt short so that the participant has to spend little time reading and understanding it. All

task prompts (top right of Figure 2) started with the question “What will be printed if you run the

following code?” followed by a very short code snippet (one to a maximum of four lines of code),

such as ‘print(key_value_type(“x=test”))’, ’print(pigeon_sort([0,7,4,1,1]))’, or ‘n=5;

print(foo(n))’. The main purpose of the task prompt code is to invoke functions of the main

code snippet and then print the return value, so that participants spend their time comprehending

the code snippet (left side of Figure 2). In the end, participants had to choose an answer option

(bottom right). See also Section 3.4 for more details on the comprehension tasks.
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(a) Plan of eye-tracking booth and host (b) Inside the booth

Fig. 3. Physical setup of the experiment. The participant (P) sat in front of the monitor (1) of the display PC
(DISP) with their head stabilized by a chin and forehead rest (4). Their eye movements were recorded by a
stationary video-based eye tracker (2). A keyboard (3) was placed on the desk for the participant to interact
with the experiment. The participant was seated inside a noise-insulated booth (5) with an observation
window (6) for the experiment instructor (INS) who controls the eye tracker via the HOST computer that is
synchronized with the display computer DISP.

We designed the comprehension tasks to be short and solvable in less than five minutes.

Keeping the comprehension tasks short enables us to collect a greater number of data points per

participant and also accommodates logistical constraints posed by the eye-tracker and the display

used for presenting the comprehension tasks. To avoid participants spending too much time on a

single code snippet, we imposed a 5-minute limit per comprehension task and reminded them to

select an answer 20 seconds prior to reaching the time limit. We informed participants that the

time limit served a logistical purpose, not to induce pressure or stress, allowing participants to

proceed to other tasks without getting stuck on challenging ones. Once an answer was selected

or the time limit was reached, participants were presented a short questionnaire asking them

(1) to state whether they understood the code snippet (true or false), (2) to state whether they

encountered the code or concepts presented in the code snippet beforehand (true or false), and

(3) to rate on a 5-point Likert-type [77] scale (1:very difficult to 5:very easy) how difficult the code

snippet was for them to understand. The latter will be used as the perceived difficulty score. After

completing the questionnaire, participants were shown an aquatic video to help them relax before

the next comprehension task was presented, similar to other experiments [25]. We chose videos

featuring nature scenery to promote the restoration of emotional and cognitive resources [27].

After participants completed the list of comprehension tasks, we had a debrief phase. In this

part, we conducted a brief (less than 5 minutes) semi-structured interview with participants. In

the interview, we asked participants for general remarks on the experiment and their experience

as well as specific questions, such as whether any task was extremely difficult or easy, whether

they used the comments in the code to understand the code, and whether they remember looking

at blank space to think. The qualitative answers from the brief interviews were merely used to

confirm the validity of the study and detect any participant issues (of which there were none).

More details on the procedure and the specific comprehension tasks for each of the code snippets

can be found online [1].

3.2 Experimental Setup

To collect highly accurate and fine-grained eye gaze data that also reduces any potential distrac-

tions, we conducted the experiment in a lab with a booth in which participants performed the

comprehension tasks. For eye-tracking, we used the EyeLink Portable Duo from SR Research [60]

that provides a sampling rate of up to 2000 Hz, has high accuracy with a spatial resolution offset
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of 0.01◦, records saccades, fixations and blinks, and is compatible with participants wearing

glasses or contact lenses. The device works by sending near-infrared light to the eye, causing a

reflection on the cornea. The eye’s fixation locations are then computed through image processing

algorithms using the center of the pupil and the cornea reflection [72].

The overall setup is depicted in Figure 3a with the booth on the right in which the participant (P)

sits and the instructor (INS) sitting outside behind a window (6) on the left. Inside the booth, the

display computer (DISP) runs the experiment and displays it to the full HD 22-inch 16:9 stimuli

screen (1). The eye-tracking device (2) is located in front of the stimuli screen. A keyboard (3) is

placed within arm’s reach between the eye-tracking device and the head mount (4), which is fixed

to a height-adjustable desk. The instructor and participant can communicate with each other via

an intercom. Figure 3 depicts a picture of the inside of the booth.

We used the Experiment Builder from SR Research [73] to configure and execute the experiment

procedure as described in Section 3.1. This setup allowed us to collect all data from the eye-

tracking device as well as the user input via keyboard and additional measures, such as the time

to respond, that we configured in the Experiment Builder.

3.3 Participants

We advertised our study among undergraduate and graduate students in computer science or a

related field via e-mail and word-of-mouth at two universities. To be eligible, participants had

to have at least basic Python programming experience (i.e. having completed an introductory

programming course or having equivalent knowledge). Prior to the voluntary participation, all

students have been informed verbally and in written form about the study procedure, data

collection and privacy, their right to withdraw from the experiment at any time, and their right to

data deletion at any time without providing a reason. All participants accepted the conditions by

signing a comprehensive consent form. In total, we recruited 30 students and ended up with 27

participants since the calibration showed that the eye tracker was not able to accurately track the

gaze of three participants, presumably due to irregular corneas of one or both of their eyes. For the

27 participants, the Python programming experience ranged from 0.5 to 10 years (mean M=2.96,

standard deviation ±2.23 years), the professional experience ranged from 0 to 7 years (M=1.80,

±1.82), and the age ranged from 20 to 33 years (M=24.44, ±3.33). 21 participants identified as

male, and 6 as female.

3.4 Selecting Comprehension Tasks

To best train and assess the potential and value of the novel deep neural network architecture for

predicting perceived code difficulty, and to support its generalizability, we carefully selected the

code snippets and comprehension tasks for the lab experiment because there is no standardized

way of creating comprehension tasks as mentioned in section 2.1. In particular, we focused on

four characteristics in the selection process:

Real-World. Tasks should be representative of real-world tasks developers face in their daily

lives.

Diverse. Tasks should cover a diverse set of code snippets, including varying levels of difficulty,

and various code constructs used in the snippets.

No Domain Knowledge. Tasks should require no domain knowledge so that we can examine

developers’ comprehension of the code and reduce the effect of preexisting knowledge.

Fits Physical Constraints. Tasks need to fit within the physical constraints of the experimental

setup, especially to ensure a high quality and accuracy of the eye-tracking data.
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To create code comprehension tasks that are based on code snippets that exhibit these char-

acteristics, we used a multi-step process detailed in the following. The careful selection process

is necessary since the eye-tracking experiment analysis and model training not only rely on the

quality of the individual code snippets but also on the quality of the entire set, in particular, its

diversity regarding varying levels of difficulty and code constructs used in the snippets.

To select the code snippets, we chose Python as the programming language because it is

popular among professional developers and students [20, 30, 64, 74], it is the second-most popular

language in Github’s trending repositories [30], and also because it is supported by multiple natural

language programming language (NL-PL) models [24, 31].

Project and Code File Filtering. To have real-world tasks, we started out by selecting the 500

most popular open-source Github repositories. We then discarded all repositories with less than

30% Python code to only keep projects with a substantial amount of it. From the remaining

repositories, we extracted all Python files, ending up with 47’282. We then filtered out all Python

files with less than 10 lines of code (LOC) and more than 100 LOC. From a manual inspection,

we noted that files with less than 10 LOC (5’014 files) often contained only class definitions and

variable settings or were empty (e.g. __init__.py files), not allowing us to create reasonable code

comprehension tasks. Another 22’891 files were larger than 100 LOC, and thus were too long given

the physical constraints for the experimental setup and the code having to fit onto the screen.

After the filtering we ended up with 20’377 code files.

Filtering for Diversity. To end up with a diverse set of code snippets, we decided to categorize

the code files with respect to their usage of recursion and iteration. Since recursion and iteration

are fundamental programming techniques, and recursion is considered one of the most difficult

concepts to comprehend when learning to program [2, 40], explicitly including these criteria,

should result in a diverse set of tasks and varying levels of comprehension difficulty. We, therefore,

implemented an abstract syntax tree (AST) walker that we used to check for while/for loop

statements and recursive calls. We included files with mutually recursive functions up to the

second degree. Using the AST walker, we then classified code files into four categories: (1) 15’138

files (74.3%) with neither while/for loops nor recursive calls, (2) 3’980 files (19.5%) with at least

one while or for loop but not recursion, (3) 181 files (0.9%) with both recursion(s) and while/for

loop(s), and (4) 105 files (0.5%) containing at least one recursive call but no while/for loop. We

excluded 973 files that produced a syntactic error when parsing, caused by erroneous files or

external modules. To select a diverse set of snippets, we then randomly selected 50 files from each

category, ending up with 200 files. Note that by focusing on the “vanilla” Python language and API,

we capture code elements frequently used in most projects yet exclude code involving external

library calls or other language features, for which further research is necessary.

Manual Inspection. We manually inspected the remaining 200 code snippets according to our

selection criteria. Based on the manual inspection, we then ended up with 18 files, filtering 182

code snippets that required extensive domain knowledge (e.g. relating to frameworks such as

django, keras, pytorch or tensorflow), were trivial, or operated on external data. Of the 18 code

snippets, 2 were semantically the same (i.e., both performing exponentiation), so we discarded

one of the two. In addition, we removed one code snippet to reduce the number of theoretical

snippets that are not representative of real-world tasks. We ended up with a final set of 16 code

snippets, 5 without loops and/or recursion, 5 with a loop but no recursion, 2 with a loop and

recursion, and 4 with recursive calls.

Creating Comprehension Tasks. For each of the 16 code snippets, we then created a comprehen-

sion task. We designed the tasks so that they require the participant’s understanding of the entire
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code snippet while also being very short so that the participants have to spend little time reading

and understanding the task prompt. In most cases, the tasks are one to at most four lines of code

long, calling a function in the code snippet, printing the return value, e.g. print(foo("x=test")), and

then asking the participant to select the correct print output from a set of options. An example

is presented in Figure 2. For the code snippets with recursion or loops, we designed the tasks

to capture understanding rather than cognitive capacity for going through multiple iterations /

recursive steps.

Each comprehension task had four answer options, with one of the four being “I don’t un-

derstand the code”. We designed the other three options to not give away the correct answer

easily, making all options plausible. We focused specifically on input-output-based single-choice

comprehension questions to capture participants’ eye-tracking data for comprehending the entire

code file, rather than other tasks, such as bug identification, code extension, or code summariza-

tion, that might also include other artifacts in the collected data [81].

In addition to the original 16 comprehension tasks, we created and added up to 2 variations

for some of the tasks to add some variation in the way developers write or document code and

also slightly vary the burden for comprehending the code. Studies have shown that comments

and variable/function names can impact the code’s difficulty and comprehensibility [25]. To

encompass a diverse range of difficulty levels, we therefore introduced variations. In particular,

we altered the information contained in the names of variables and parameters by obfuscating

them and also removed docstrings and comments.

Validation Survey. In a final step for selecting comprehension tasks, we conducted a small-

scale survey with four computer science students who did not participate in our eye-tracking

experiment. We used the survey to examine whether the selected code snippets capture a diverse

range of difficulty levels and asked participants to assess the comprehensibility, feasibility, clarity,

and ambiguity of each code snippet and task. Based on the survey responses, we made minor

adjustments and were confident that the identified tasks represent a diverse set that varies in the

perceived difficulty of comprehending the code snippets, and that the tasks are feasible.

3.5 Data Collection & Analysis

Overall, we recorded 270 data points from the 27 participants and removed 36, ending up with a

total of 234 data points for our analysis. One data point represents one participant solving one of

the 16 comprehension tasks. We had to remove 36 data points since we initially had experiment

sessions in which we used a dark mode display for realism purposes. After we noticed severe

inaccuracies in the recorded eye gaze data due to the dark mode, we only used light mode for the

rest of the experiment sessions and removed the affected data points. Seven of the 27 participants

took part in a second session.

The recorded gaze data amounts to 164’446 fixations and their corresponding features (e.g.

position, duration, pupil dilation). After removing fixations outside the code snippet area (i.e.

fixations on the task prompt or answer options), we use 129’125 fixations and their features to

train and test our model.

The study participants solved 58%±49% of the tasks correctly, requiring an average of 3.60±2.33

minutes to solve a task. The high standard deviation shows that we have successfully covered a

broad range of complexities in our code snippet pool with some tasks being correctly solved in

less than 17% of the cases, while other tasks have been solved correctly by everyone (i.e. 100%).

Since most tasks were completed well within the time limit, we believe that the time limit had

minimal impact on participants.
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Code Snippet ID
Comprehension

Correctness

Perceived

Difficulty

Cyclomatic

Complexity
Number of Fixations

Lines

of Code

Number of

Participants

CS - 05 - V2 1.00 4.67 2 124.50±33.53 11 6

CS - 05 - V1 1.00 4.50 2 182.33±63.66 13 6

CS - 01 1.00 4.00 7 224.03±114.26 38 17

CS - 04 - V1 1.00 3.83 5 271.33±145.73 37 6

CS - 09 - V1 1.00 3.45 2 270.91±93.71 26 11

CS - 13 0.83 2.17 3 323.00±95.33 24 6

CS - 02 0.76 2.82 8 534.06±217.31 29 17

CS - 11 0.69 3.38 11 469.77±214.46 37 13

CS - 14 0.62 3.31 14 320.54±260.34 38 13

CS - 07 0.61 2.65 12 496.83±169.05 37 23

CS - 03 - V1 0.60 2.80 4 611.40±154.85 27 5

CS - 08 0.58 2.58 9 566.11±192.68 37 19

CS - 10 0.58 2.08 6 725.00±248.64 23 12

CS - 03 - V2 0.50 2.67 4 594.67±237.38 13 6

CS - 06 - V1 0.50 2.42 3 356.42±156.19 12 12

CS - 09 - V2 0.42 3.00 2 254.00±148.28 2 12

CS - 04 - V2 0.17 2.42 5 759.50±152.22 22 12

CS - 16 0.14 3.14 7 301.86±89.86 16 7

CS - 15 0.14 1.71 5 355.14±84.76 17 7

CS - 12 0.14 1.57 5 594.14±198.58 36 7

CS - 03 - V3 0.08 1.75 4 625.33±250.79 13 12

CS - 06 - V2 0.00 2.00 3 331.40±115.35 12 5

Table 1. Overview of code snippets and participant’s average comprehension performance.

The participants rated the difficulty of understanding presented code snippets (perceived

difficulty) as 2.85±1.13 on average on a 5-point Likert-type scale (1 being very difficult, 5 being

very easy). The average comprehension correctness (i.e. correct comprehension task outcome),

number of fixations (# fixations), and number of participants who solved the corresponding task

per snippet can be found in Table 1. Note that the variation in the number of participants that

worked on a given code snippet stems from the assignment of participants to the lists of tasks

that we predefined due to logistic reasons (see Section 3.1) and the fact that we were only able to

recruit 7 participants for a second experiment session. The table also presents the total cyclomatic

complexity calculated using radon [39] and lines of code for each code snippet.

The data also provides evidence that measures such as the cyclomatic complexity do not

properly capture perceived code difficulty or comprehension correctness. The Pearson Correlation

Test shows that there does not exist a significant correlation between the cyclomatic complexity

and comprehension correctness (r ≈ 0.00; p > 0.05). In contrast, the perceived difficulty correlates

significantly with the comprehension correctness (r = 0.76; p < 0.05).

Hereafter, we refer to specific code snippets by their ID that can be traced throughout the entire

study and to the code itself found online [1]. A code snippet is identified by its origin ID (e.g.

CS-1) and an optional suffix that indicates the readability variation (i.e. V1 for the original, and

V2 or V3 for readability variations). When devising the code snippet dataset, we tried to adhere

to the action items proposed by Wyrich et al. [81], such as clearly defining our proxy for code
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comprehension (i.e. solving comprehension tasks correctly), or stating the selection criteria for

the code snippets, allowing future research to integrate our dataset.

4 PROBLEM SETTING

We examine two eye-tracking inference problems in code reading: perceived difficulty and com-

prehension. Given a piece of code and a comprehension question presented together on a screen,

as well as the reader’s eye gaze on this stimulus, we want to infer the reader’s code comprehen-

sion and the perceived code difficulty. Formally, we have a dataset D = {(C1,E1,1, y1,1), . . . , (Cc ,

Ec,p , yc,p )}, where c is the number of code snippets, p is the number of participants, Ei , j are the

eye movements of reader j recorded during the presentation of the i ’th code snippet Ci . The

eye movement sequence is represented as a sequence of n fixations, i.e. Ei , j = 〈 f1, . . . , fn〉. The

predicted label yi , j is either (a) reader j ’s task outcome having value 0 if the task was solved

incorrectly and 1 if the task was solved correctly or (b) the perceived difficulty of understanding

the code snippet Ci perceived by reader j . To model and evaluate both problem settings (i.e., code

comprehension and perceived difficulty) uniformly, and since we designed the comprehension

task as a binary problem aligned with related work (task solved and therefore comprehended

correctly or not), we decided to model the perceived difficulty (b) problem also as a binary classifi-

cation. For (b) we therefore computed the mean subjective difficulty over all trials and converted

the perceived subjective difficulty label to 0 if the reported subjective difficulty was below the

mean (i.e. the perceived difficulty was hard) or 1 otherwise (easy). Thus, given eye movements

Ei , j of reader j on code snippet Ci we want to predict the reader’s (a) comprehension and (b)

perceived difficulty of the code snippet yi , j .

Since both problems are modeled as binary classification tasks, the model’s performance

can be characterized by a false-positive rate and a true-positive rate. By changing the decision

threshold, one can observe a receiver operator characteristic curve (ROC curve). The area under

the ROC curve (AUC) provides an aggregated measure of performance for all possible classification

thresholds. It therefore acts as a suitable measure of model discrimination without being tied to a

specific threshold (contrary to the f1 score). In summary, while the f1 score is useful for finding a

balanced classification threshold, AUC is a more comprehensive measure of a model’s ability to

discriminate between the classes across all possible thresholds. It provides a global view of the

model’s performance.

5 A NOVEL DEEP NEURAL SEQUENCE MODEL TO PREDICT CODE

COMPREHENSION AND PERCEIVED CODE DIFFICULTY

We developed the first deep neural network architecture that processes a code snippet together

with the reader’s eye gaze to predict the reader’s comprehension or, alternatively, the perceived

difficulty of the given code. Our proposed architecture consists of several building blocks: a

natural-language programming-language (NL-PL) model, a neural attention mechanism that

aligns the code stimulus with the fixation sequence (Code-Fixation Attention), a neural sequence

model that processes the fixation sequence together with the neural representation of the stimulus

code snippet, and, to compute the final prediction, a fully connected neural network with sigmoid

output. An overview of the architecture is presented in Figure 4.

Natural-Language Programming-Language Model. NL-PL models such as CodeBERT can pro-

cess both natural-language and programming-language. They are commonly utilized for tasks

such as code summarization or documentation. Pre-training of NL-PL models on both code-

snippets and natural language leads to state-of-the-art performance in code-related tasks [24, 31].
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Dimensionality Reduction
Word Positional Embedding

Natural Language
Programming Language Model

Merging Tokens
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def fibonacci ... d) [SEP][CLS]

Neural Sequence Model

Pooling
Fully-Connected Network
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d
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Fixation Sequence

...
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Fig. 4. Model architecture. The architecture processes both the code and the corresponding eye movement
sequence. The properties of the following building blocks are treated as hyperparameters: Neural Sequence
Model, Code-Fixation A�ention, Word Positional Embedding, Dimensionality Reduction, Pooling and Fully
Connected Network. For more details, see Section 6.1 and Table 2.

For our approach, the code-words are first split into subword-tokens using WordPiece tok-

enizer [71] (see Figure 4, bottom right). This subword tokenization is common practice in neural

language models and, amongst other advantages, enables the model to process unknown words

that did not occur in the training data. Subsequently, the subword-tokens are used as input to a

pre-trained Transformer [24, 31] whose weights are frozen (i.e., the weights of the NL-PL model

are not adjusted during the training of our architecture). This Transformer computes a high-

dimensional embedding of each token that takes into account the entire input code as context.

The representations of the subword-tokens are then merged to correspond to the original code-

words. To reduce the dimension of the embedding, we feed the code-words into a bottleneck-layer.

The output of the bottleneck-layer is then our contextualized code-word representation. To ac-

count for the position of each code-word within the entire code, we add a learnable positional

encoding [17].

Code-Fixation Attention. As readers do not read code linearly in the order of the code-words,

but rather skip words or lines and perform regressive saccades to previously already fixated parts

of the code, eye movements in code reading are characterized by two not-aligned sequence axes:

the chronological axis of the fixations and the axis that defines the order of the code-words. A

major architectural challenge consists of aligning these two axes without aggregating the data

over one or the other axis. We resort to neural attention as a mechanism to align these two

sequences. Conceptually, the idea is that we try to mimic human visual processing: Humans not

only process visual information that is displayed directly on the fixation location (fovea), but also
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Hyperparameter Values

NL-PL model GraphCodeBERT, CodeBERT

Word Positional Embedding {yes, no}

Neural Sequence Model LSTM, BiLSTM

Number of Sequence Layers {1, . . . , 5}

Number of Sequence Units {2i for i ∈ [4, . . . ,10]}

Bottleneck Embedding {yes, no}

Pooling Type {Max, Average, Last Hidden State}

Fixation-Code Attention Window {1, 3, 5 }

Number of Fully-Connected Layers {1, . . . 5}

Number of FC Hidden Units {2i for i ∈ [4, . . . ,8]}

Table 2. Hyperparameters tuned during nested cross-validation.

from the surrounding area (parafovea), which usually extends a couple of words to the left and

the right of the fixated word. Although in this parafoveal region, vision is less acute, it has been

shown that readers still extract semantic information from this region [65]. To account for this,

we use windowed neural attention, where each fixation acts as a query, while the code-words

are keys and values. Broadly speaking, attention learns, depending on the fixation location, how

important each code-word in the attention window is for our task. The specific window-size, i.e.

the code-words taken into account around the fixated word, is a hyperparameter (see Table 2).

Our representation of each fixation is the output of the neural attention mechanism concate-

nated with the corresponding fixation duration.

Neural Sequence Model. The neural sequence model takes as input the sequence of fixations

and the code. The specific neural sequence architecture is a hyperparameter. We either use an

LSTM [34] or BiLSTM [28, 66] model. LSTM and BiLSTM inherently take the sequential order of

the data into account. Each architecture is comprised of several layers followed by either global

max or average pooling.

Fully-Connected Neural Network. The output of the pooling layer described above is the input

to a fully-connected neural network. This network consists of several fully-connected layers, each

followed by a rectified linear unit (ReLU) activation function. The final output layer is a single-unit

followed by a sigmoid activation function. The final output is interpreted as a binary score for

code comprehension, or perceived difficulty.

6 MACHINE LEARNING EXPERIMENTS

In this section, we first provide details on the evaluation protocol before we report on the results

of our experiments.

6.1 Evaluation Protocol

To evaluate the performance of our models as well as to tune our architecture, we use nested

cross-validation on the collected dataset (see section 3.5). We stratify the data such that readability

variants of the same code snippets are part of the same fold, and that each label class is represented

at least once in the test data. We split the data into two categories: ‘New Participant’ and ‘New

Code Snippet’. In the ‘New Participant’ split, we ensure that training data does not contain any
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data from the test participants. In the ‘New Code Snippet’ split, we analogously ensure that none

of the code snippets of the testing set is used during training. Due to the imbalance in the dataset

(see table 1), we aggregated the code snippet split into 7 folds and the participants split into 4

folds to stabilize the results and reduce standard error. For the hyperparameter search, we tune

our hyperparameters (see table 2) for all split and problem-setting combinations. The aggregated

search results are provided in the data package [1].

Hardware and Framework. We train all neural networks using the Keras [13] and Tensorflow [16]

libraries on an NVIDIA A100-SXM4-40GB GPU using the NVIDIA CUDA platform. We use the

Adam optimizer.

6.2 Results

Overall, our proposed architecture achieves a new state-of-the-art performance when aligning

code and fixations in a deep neural network. Table 3 provides an overview of the results.

RQ1. Our approach (bimodal) achieves an AUC of 0.746 when predicting code comprehension,

and 0.739 when predicting perceived code difficulty for a participant that has not been encoun-

tered before. While the AUC of 0.743 is similar for predicting perceived code difficulty for a new

code snippet, the AUC for code comprehension decreases to 0.675 showing that it is more difficult

to predict code comprehension for a new code snippet than for a new participant.

Note that a leave-one-participant-out cross-validation with 27 folds instead of the 4 folds we

used for stability reasons, showed that we could achieve higher performance, but also resulted in

a higher standard error, leading to unstable results that are highly dependent on the characteristic

of an individual fold. Using less but larger folds mitigates these effects, which is why we only

report on these.

RQ2. In comparison to the three state-of-the-art methods [3, 25, 33], in almost all settings

our model significantly outperforms two of the three current state-of-the-art machine learning

models. For Perceived Code Difficulty, we can see that for both splits, our model outperforms the

state-of-the-art methods and is significantly better than two of them. These results indicate that

the stimulus code, which is only integrated in Harada and Nakayama [33] and our method, leads

to major performance improvements when trying to predict perceived code difficulty.

RQ3. To examine the value of aligning fixations with code, we performed an ablation study

comparing our bimodal model (using both code and fixations as input) to its ablated versions

of a code-only and fixations-only model. The results show that the bimodal model outperforms

its ablated versions in all splits and problem settings, except for the New Participant Split in

the Code Comprehension setting, where an even mean AUC score is achieved between the

bimodal and fixations-only model of our approach. While fixations appear to be the dominant

contributor to performance in our approach, aligning the fixations with code into a bimodal

model improves the overall performance in all splits and problem settings. Especially for the New

Participant Perceived Code Difficulty evaluation, where the fixation-only model performs worse

than Harada and Nakayama [33] and also exhibits a high standard error of 0.090, the bimodal

model outperforms Harada and Nakayama [33] and has a reduced standard error of just 0.026.

Even for the New Participant Code Comprehension evaluation, where the mean AUC performance

is on par, the bimodal has a slightly lower standard error.

Note that we have included the results for the New Participant split with the code-only model

for completeness reasons, but they should be interpreted with caution. Different participants

that are part of training and test folds (in the New Participant split) might have worked on some

of the same code comprehension tasks. Since the code-only model solely extracts information
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Model New Participant New Code Snippet

Code Fritz et al. [25] 0.522±0.006*† 0.515±0.025†

Comprehension Al Madi et al. [3] 0.597±0.041† 0.549±0.014*†

Harada et al. [33] 0.596±0.022*† 0.595±0.066*†

Our (bimodal) 0.746±0.021* 0.675±0.050*

Our (fixations) 0.746±0.031* 0.616±0.040*

Our (code) 0.742±0.064* 0.513±0.061†

Perceived Fritz et al. [25] 0.487±0.097† 0.461±0.028†

Code Difficulty Al Madi et al. [3] 0.539±0.049† 0.521±0.096†

Harada et al. [33] 0.699±0.019* 0.632±0.115*

Our (bimodal) 0.739±0.026* 0.743±0.058*

Our (fixations) 0.690±0.090* 0.730±0.040*

Our (code) 0.663±0.042* 0.449±0.023†

Table 3. AUC results ± standard error. Using a one-tailed t-test, the asterisk * indicates values that are be�er
than random guessing (p-value < 0.05), while † indicates models that are significantly worse than best model
for a se�ing (two-tailed t-test, p-value < 0.05). We perform nested cross-validation.

from the code snippet data and no participant-related data to make predictions, the model could

potentially overfit for certain tasks.

7 DISCUSSION

We have developed and evaluated an end-to-end trained deep neural sequence model that pro-

cesses both written code and a developer’s eye gaze to predict code comprehension and perceived

difficulty of understanding the code. Our results show that our proposed deep neural network

is able to predict code comprehension with an AUC of 0.746 (RQ1a) and perceived code diffi-

culty with an AUC of 0.739 (RQ1b), outperforming current state-of-the-art in all settings and

splits (RQ2) with detailed results found in Table 3. Especially for the prediction of code com-

prehension when split by code snippet (New Code Snippet), we can see that the best baseline

does not achieve a performance significantly above random guessing. This indicates that our

approach using deep learning to extract features from the “raw” signals (of both stimulus code

and eye movements) is beneficial. Our method incorporates recently developed NL-PL models to

encode the fixations on the code. In contrast to previous approaches, our end-to-end approach

overcomes the need for hand-crafted areas of interest and/or engineered eye movement features,

such as mean or total fixation durations on a certain pre-defined part of the code as done by all

other reference methods [3, 25, 33]. Instead, our approach takes as input the code and the chrono-

logical sequence of fixation locations and durations. The mapping of fixations to code, specifically

the semantic representation computed by the NL-PL model, is achieved via a windowed neural

code-fixation-attention mechanism (a detailed description can be found in section 5). In the

evaluation, each parameter in the hyperparameter grid was selected at least once. In most folds,

the neural code-fixation-attention mechanism utilized a window size of at least three. Additionally,

the model architecture included a learnable word position embedding, with four LSTM and three
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fully connected layers. All other hyperparameters were approximately evenly distributed across

folds.

To answer (RQ3) we performed an ablation study of our bimodal approach, where we have

shown that a model that solely relies on code in the form of contextualized embeddings as input

is not able to predict perceived code difficulty accurately and can not generalize well over new

code snippets, given the amount of training data provided in this study. However, leveraging

the information gain of integrating code and aligning it with fixations of the human gaze into a

bimodal model results in a performance increase that outperforms the dominant fixations-only

model as well as previous state-of-the-art reference models.

Note that the model’s generalizability is limited regarding the code snippet selection criteria

and the participants. While we put effort into the selection process to capture a diverse set of

code snippets representative of real-world code, the selected snippets are also limited due to the

logistical constraints imposed by the eye-tracker and the controlled study setup. For instance, by

focusing on the “vanilla” Python language and API, we capture code elements frequently used

in most projects yet exclude code involving external library calls or other language features, for

which further research is necessary to assess the model’s applicability. Also, while the number

of participants is similar to related eye-tracking studies [3, 25], it is limited based on logistical

constraints (time and location) and the way we advertised, restricting the model’s generalizability

regarding aspects such as experience or domain knowledge. Investigating the model’s perfor-

mance with a larger dataset is an interesting prospect, also since neural networks generally have

better performance the larger the training set. However, even with the current dataset our model

outperforms the reference models and shows its ability to capture at least some human aspect.

Human-Inclusive Measure of Code Quality. While this exploratory study focused on developing

a novel approach to predict the comprehension and perceived difficulty of code, it also lays the

foundation for future work towards a human-inclusive quality measure of code. Evaluating the

performance of a deep neural sequence model that aligns fixations and code-words on a fine-

grained level has been the first step. As Peitek et al. [55] already demonstrated, popular complexity

metrics fail to capture comprehension aspects that developers use when subjectively rating

comprehension tasks. Our human-inclusive model goes a step further, taking into account the

human gaze in predicting comprehension and perceived code difficulty. However, further studies,

for example with an fMRI, are needed to examine how much of the developers’ subjectivity is

captured. Especially if the gaze data is automatically simulated at some point (see below) rather

than tracked from the individual developer, the model might have to be adjusted for the variation

in developers, such as their different levels of expertise.

To apply our approach as a human-inclusive measure of code quality directly in practice, one

would require an eye-tracker to collect the eye gaze data and then map it to the code. Several

approaches have already examined the value of tracking and sharing real-time eye gaze data to

support scenarios such as pair programming [15], code review [12] or code tutoring [82]. With the

advances in technology that allow us to use webcams for tracking eye gaze [82], such an approach

might soon be feasible.

Our longer-term objective, however, is to eliminate the need for an eye-tracker to collect eye

movement data as input for our model. In particular, we propose developing an eye movement

generator to automatically simulate human gaze on code and provide the synthetically predicted

scan paths to our model, an approach that has been looked at for natural language text [26, 58].

Augmenting our current data set could further improve the model’s performance and eventually

eliminate the need for human gaze as input to the model. The model would then be able to predict

the perceived code difficulty based solely on code input and without the need of an eye-tracker,
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while still providing a human-inclusive quality measure of code. Yet, as mentioned above, one

might have to account for variations in developers, such as their level of expertise in some way.

A comprehensibility measure like our perceived difficulty score could be used in continuous

integration pipelines or as an educational tool to provide instant feedback for programming

novices trying to optimize their code for better comprehensibility. Providing such a code quality

measure that evaluates the human perception of code comprehension difficulty rather than

artificially aggregating code statements could have a far-reaching impact on the industry and

education by increasing efficiency, lowering entry barriers, and improving maintainability through

better understandable code.

While we modeled both code comprehension and perceived code difficulty as a binary score in

our study, future work should explore using a more fine-grained score (either discrete or continu-

ous). Compared to our current binary score which serves more as an indication of problematic

code, fine-grained gradations could better reflect small changes in code quality and improve the

model’s applicability in practice.

More than Code. The data presented in Section 3.5 illustrates that a perceived difficulty measure

reflects human code comprehension better than traditional measures like McCabe’s cyclomatic

complexity. Table 1 also illustrates a further weakness of the cyclomatic complexity measure: it

neglects docstrings, comments, and meaningful identifiers in the score calculation. By having

introduced code snippet variations with removed docstrings and obfuscated identifiers to our

code snippet pool, we can observe how the cyclomatic complexity stays the same across code

snippet variations, whereas the perceived difficulty changes in correlation to comprehension

correctness. For example, the original code snippet CS-03-V1 that contains docstrings, comments,

and meaningful identifiers has been solved correctly by 60% of the participants with a perceived

difficulty score of 2.8. However, the same code snippet but without docstrings, without comments,

and with obfuscated naming (CS-03-V3) was only solved correctly by 8% of the participants. The

performance drop is not reflected in the cyclomatic complexity, which stays the same (i.e. 4 on an

open-end scale), whereas our perceived difficulty score drops from 2.8 to 1.75 (on a scale from 1

to 5; 1 being very difficult, 5 being very easy).

8 THREATS TO VALIDITY

There are several threats to the external, internal, and construct validity of our study.

External Validity. Our study was conducted with undergraduate and graduate students who

had varying degrees of programming experience (from novices to programmers with eight or

more years of programming experience). The experiments were conducted during all working

days of the week at times ranging from morning to late afternoon. The majority of participants felt

awake (only one stated to be very tired). Due to the broad range of programming experience of our

participants and the well-distributed experiment times, our results provide some initial evidence

of the ability to generalize to developers of different expertise and mental states. However, we do

want to point out that conducting experiments with professionals could be necessary to confirm

the applicability of our findings to the professional environment.

We selected the code snippets for this study in a multi-phase filtering and selection process to

ensure that we select a broad range of complexities in our snippets. The comprehension tasks for

the code snippets have been crafted as simple function calls to the code snippet with the intend

to maximize a participant’s focus on the snippet and reduce their focus on the tasks. Although we

tried to minimize the task’s impact and focus the participant’s attention and effort on the actual

snippet, we cannot be certain of its influence. We validated our snippets and tasks to minimize

author bias and confirm that our snippet pool covers a broad range of complexity. Further studies
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are needed to investigate to what extent our findings generalize beyond individual code snippets

that fit on a single screen or to code that requires substantial domain knowledge. For instance, by

focusing on the “vanilla” Python language and API, we capture code elements frequently used

in most projects yet exclude code involving external library calls or other language features, for

which further research is necessary to assess the model’s generalizability and applicability.

Internal Validity. We conducted the study in a controlled experiment setting. The experimenter

followed a script to introduce and guide the participants through the experiment. The experiment

started with a familiarization phase in which the participants got to know the virtual environment

by completing two practice trials. Learning effects within code snippets were avoided by arranging

the stimuli such that each participant saw only one version of each code snippet. This has been

achieved by creating multiple random lists of code snippets with the condition that variations of

code snippets are mutually exclusive across the lists. To additionally facilitate the possibility of

participants taking part in a second session, we had prepared two lists of code snippets that were

mutually exclusive with the three main lists. The mutual exclusivity led to some imbalance in the

dataset, where a few of the code snippets have been seen by more participants than others. While

the imbalance can impact the performance of our neural network, we tried to mitigate potential

effects by training and evaluating using larger folds as described in section 6.1. Furthermore,

the snippets and comprehension tasks are quite distinct, reducing the possibility of learning

effects. Most importantly, the comprehension questions were carefully designed such that they

required in-depth code comprehension. We followed these steps and protocol to mitigate threats

to internal validity.

Construct Validity. Code comprehension is a diffuse construct and researchers disagree on

how studies should be designed to examine code comprehension [81]. We limited ourselves to

assert code comprehension by using single-choice comprehension tasks, to avoid contamination

of our eye-tracking data with comprehension-unrelated behavior. Code comprehension does

not necessarily imply the ability to summarize, extend, or fix code. More research is necessary

to establish a better theoretical foundation on the human comprehension process, such that

standardized code comprehension methodologies can be developed and applied by studies like

ours. Similar issues have been reported and summarized by Wyrich et al. [81].

To improve our construct validity, we asked our participants after each comprehension task

whether they understood the code snippet. The subjective comprehension assessment of our

participants was congruent with a correct comprehension task outcome in about 80% of the cases.

However, subjective comprehension assessments might not be an ideal measure themselves, as

participants stated that they understood the code snippet but were unable to solve the correlating

task correctly in some instances.

9 CONCLUSION

This paper introduces the first end-to-end deep neural network that predicts code comprehension

and perceived difficulty from a developer’s eye movements during code reading. In a novel

architecture that aligns code tokens with a developer’s eye gaze via code-fixation attention, our

approach takes advantage of both, human features extracted from developers’ eye fixations and

code and language features from natural-language programming-language models.

Based on a carefully designed code comprehension experiment with 27 participants working

on 16 diverse tasks, we collected an eye-tracking-while-code-reading dataset. Using this dataset,

we trained and assessed our developed neural network. The results of our analysis demonstrate

that our bimodal approach outperforms its ablated versions (code- or fixations-only) and three

state-of-the-art reference models.
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The results provide evidence for the potential of a more human-inclusive and accurate model

of code quality that is capable of detecting when and where a developer may have difficulty

understanding code. Such a model, when integrated into the IDE or the continuous integration

pipeline, could assist developers in writing better code in the first place or point out and prioritize

segments for refactoring or bug fixing. At the same time, such a model could also be used to

support developers by determining when a developer might not comprehend the code they are

working on and maybe should take a break or ask a colleague.

Even though the current approach is based on eye movement data collected for a set of code

snippets, the findings show that applying it to new code snippets (not trained on) yields good

results. Approaches to generate synthetic eye movement data might even allow us to apply the

model to arbitrary code snippets in the future without the need for eye-tracking, opening up

further opportunities.

10 DATA AVAILABILITY

All anonymized raw and processed eye-tracking data of this study, as well as code snippets and

scripts to reproduce the results are openly provided online [1].
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