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Abstract 

Animals adapt to a constantly changing world by predicting their environment and the consequences of 

their actions. The predictive coding hypothesis proposes that the brain generates predictions and 10 

continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles 

conflicting top-down predictions and bottom-up sensory information remains unclear. To address this 

question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex 

and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had 

learnt the task with fixed tone-texture matching, presentation of mismatched pairing induced conflicts 15 

between tone-based texture predictions and actual texture inputs. When decisions were based on the 

predicted rather than the actual texture, top-down information flow was dominant and texture 

representations in both areas were modified, whereas dominant bottom-up information flow led to 

correct representations and behavioral choice. Our findings provide evidence for hierarchical 

predictive coding in the mouse neocortex.  20 

Introduction 

Predictive processing has long been an attractive theory of the mind. This theory states that the brain is 

organized hierarchically, with predictions generated in high-level areas passed down to lower areas, and 

mismatched sensory inputs that do not fit the predictions creating bottom-up flow that represents prediction 

errors1. Despite the computational attractiveness of this model, its implementation in the brain remains 25 

elusive. While reward prediction has been studied extensively2–5, sensory prediction in the neocortex is less 

understood. It often originates from prior experience, typically through learnt associations with other sensory 

cues, and occurs across many sensory modalities6–10. Such prediction can increase the encoding speed and 

reduce the neural response to expected stimuli in primary sensory areas6,8, facilitating decisions and 

behavioral output. Strong sensory predictions can also modify perception, in extreme cases causing 30 

hallucination11–13.  

One challenge in studying sensory prediction is to simultaneously observe bottom-up and top-down 

information. Studies targeting long-range projection axons as a proxy for top-down inputs to local populations 
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have demonstrated that such pathways can indeed modulate sensory perception and decision making6,9,14. 

However, studies focusing on how neuronal populations along the brain hierarchy represent and transform 35 

information, as well as how they communicate with each other, began only recently15–20. These studies 

discovered, for example, that top-down and bottom-up information are channeled through separate activity 

subspaces15,16, and that the communication channels are shaped by experience or learning, especially the top-

down subspace18,19,21. Despite these insights, it is still unknown how top-down predictions and bottom-up 

sensory inputs interact during behavior and affect behavioral outputs, particularly when they are in conflict. 40 

A key area for routing primary sensory information during active behaviors is the posterior parietal cortex 

(PPC). PPC is densely interconnected with primary sensory areas such as visual (V1), somatosensory (S1), 

and auditory (A1) cortex, as well as frontal areas such as the orbitofrontal cortex and the anterior cingulate 

cortex, and the associative subdivision of thalamus22. PPC subserves a wide range of functions including 

multisensory integration, decision making, working memory, and navigation22. In particular, PPC integrates 45 

tactile, visual and auditory information in rodents23–25 and routes relevant sensory information to frontal areas 

during active behaviors26–28. As a key area for multisensory integration, PPC is a candidate for generating 

cross-modal sensory predictions from previously learnt associations. Of particular relevance here is that 

different subdivisions of PPC engage differentially in processing distinct stimulus modalities: the rostrolateral 

area (PPC-RL) is activated together with S1 barrel cortex during texture discrimination, whereas the anterior 50 

area (PPC-A) activates with auditory cortex areas in an auditory discrimination task26. These PPC areas are 

critical for generating sensory associations and transforming sensory information into decisions26,29–31, making 

them potential key high-level areas for generating predictions. 

Here, we aim to better understand how cortical areas along the cortical hierarchy interact when sequential 

stimuli from two modalities (auditory and tactile) provide task-relevant information. In this case, repeatedly 55 

matching specific pairs of auditory-tactile stimuli allows the animal to form predictions about the second 

stimulus. It is then especially interesting to reveal how regional neural representations and cross-areal 

interactions are affected when conflicts between predictions and sensory inputs are imposed. Specifically, we 

focused on the S1 barrel field and PPC subdivisions as representative areas along the hierarchy. We designed 

a behavioral task with cross-modal sensory predictions (by training mice on matched tone-texture sequence 60 

pairs), and then introduced prediction conflicts by occasionally presenting mismatched tone-texture pairs. We 

used the behavioral choices of mice as a proxy for their perceptual representations. We found that during 

mismatch, when mice made decisions according to predictions, texture representation in both S1 and PPC 

were modified. Moreover, these changes only occurred when top-down information flow from the relevant 

subdivision of PPC was dominant, whereas strong bottom-up information flow from S1 led to both correct 65 

texture encoding and corresponding behavioral outcome. These results demonstrate the impact of predictions 

on sensory encoding and suggest that the dynamic interaction between top-down and bottom-up information 

shapes sensory encoding and affects perceptual choice. 
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Results 

An auditory-cued texture discrimination task 70 

To study sensory prediction, we developed an auditory-cued texture discrimination task for mice. Mice were 

trained to discriminate two textures (rough vs. smooth), each associated with a distinct preceding tone (10 kHz 

vs. 18 kHz). Each tone-texture sequence entailed a reward from one of the two lick ports (Fig. 1a-b). During 

learning, the tone-texture pairing remained fixed, allowing mice to develop specific tone-texture association 

(“matched trials”). Then, in expert mice, we randomly presented 10-30% tone-texture mismatches 75 

(“mismatched trials”) to introduce prediction conflicts (Fig. 1b). In these trials, reward was given according to 

the tone, to encourage mice to engage in active predictions. For tone-texture mismatches, mice could make 

two types of choices: 1) choose the lick port according to the tone (“mismatch-choose-tone” or “MM→Tone” 

trials), indicating that the tone-based prediction, rather than the actual texture stimulus, dominated the 

decision; 2) choose according to the texture (“mismatch-choose-texture” or “MM→Texture” trials), indicating 80 

that the decision was made based on the actual texture rather than the tone-based prediction (Fig. 1c).  

We trained 16 mice expressing GCaMP6f in L2/3 neurons (see Methods), all of which could successfully 

learn the task (Fig. 1d; Extended Data Fig. 1a). Compared to naïve condition, expert mice showed suppressed 

licking during tone presentation, and delayed decision time during texture presentation (Extended Data Fig. 

1b-e), indicating that mice associated the tone-texture sequence rather than tone alone with reward. At the end 85 

of the experiment, we presented the mice with only tone or only texture, while maintaining the same task 

structure. With single-modality stimuli, mice still performed above chance level, albeit with lower success 

rate, indicating that mice integrated both sensory modalities to make decisions. Furthermore, mice performed 

better for only-texture compared to only-tone presentation (Fig. 1e). The latter condition resulted in a higher 

task disengagement rate (miss rate, Fig. 1f), suggesting that mice regard the missing texture as incomplete task 90 

structure. Finally, testing under texture-only condition with whiskers removed diminished task performance to 

chance level (Fig. 1e). Together, these results indicate that mice integrate tone and texture to perform the task, 

with texture being the most relevant stimulus, presumably due to its closer temporal link to trial outcome. 

In mismatched trials, when an unexpected texture followed the tone, mice decided less likely according to the 

texture identity than in matched trials (Fig. 1g, Correct vs. MM→Texture; in both these trial types decisions 95 

were according to texture identity). Similarly, the tone biased the choice of mice to a degree not explainable 

by mere mistakes (Fig. 1g, Incorrect vs. MM→Tone; in both these trial types decisions were opposite to 

texture identity). When mice chose according to texture under mismatched condition, the lick probability 

during the texture and decision windows was slightly reduced (Fig. 1h left, Fig. 1k), indicating lower decision 

confidence. When mice chose according to tone, mice licked more decisively (Fig. 1h right, Fig. 1k), 100 

responded faster in general (Fig. 1i), and were more likely to lick before texture onset (Fig. 1j). It is worth 

noting that in most trials, for all trial types, mice started licking after texture onset (Fig. 1h), indicating that the 

texture was the most relevant stimulus for the task. These observations were not due to the reward rule in 
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mismatched condition: the observations were similar when we rewarded mismatched trials according to 

texture (Extended Data Fig. 1f-i). We also analyzed movements and pupil diameter of mice. While face and 105 

body movements were not significantly different across trial types, the pupil diameter was overall higher in 

mismatch-choose-texture trials (Extended Data Fig. 1k-m), indicating a higher arousal state that could 

contribute to mice paying more attention to the texture type. Overall, despite the prominence of the texture 

stimulus, mice do associate the auditory tone with the following texture stimulus, and the preceding auditory 

tone does bias the behavior and choice of mice.  110 

 

Figure 1. Mouse behavior in an auditory-cued texture discrimination task under matched and mismatched conditions. (a) 
Schematic of experiment setup with head-fixed mice, with a cranial window over S1 and PPC under a two-photon microscope. (b) 

Schematic of behavior paradigm. Mice were trained to discriminate two textures paired with distinct auditory tone cues. After 

mice became expert, tone-texture mismatch trials were introduced. The choice window lasted maximally 2-s, and reward window 

was triggered immediately when the mouse licked during this window. (c) Schematic, nomenclature and color code of different 

trial types. Trials were categorized based on the contingency of tone, texture, and choice. Colored bars on the left indicate the 

color code of each trial type. (d) Learning curves of all mice. M30, M33 and M40 were unstable performers (see Extended Data 

Fig. 1a). (e) Performance in single-modality experiments, in which only tone, only texture, or only texture without whiskers was 

presented. Markers indicate individual mice. The outlier (star) is M40 in (d). (f) Miss rates for experiments in (e). (g) Percentage 

of each trial type for matched and mismatched conditions. (h) Lick probability over trial time on the lick ports according to texture 

identity (left) or the opposite lick port (right), calculated as percentage of trials in each session with a lick event at each given 

time point. (i) Response time for different trial types. (j) Percentage of trials in each session, in which licks on the final choice 

spout were recorded during tone presentation. (k) Lick rate during texture presentation for different trial types. (e-f: n = 10 mice, 1 

session per mouse, naïve was the average of first 3 sessions, expert was the average of best 3 sessions; g-k: n = 16 mice, total 148 

sessions; Wilcoxon Signed-Rank test; here and in subsequent panels: *p < 0.05, **p < 0.01, ***p < 0.001; for exact p-values, see 

Supplementary Table 1) 
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Simultaneous imaging of S1 and PPC areas during the task 

Using a custom-built two-area two-photon microscope32, we simultaneously imaged population activity in S1 

and PPC when expert mice performed the task (Fig. 2a). Previously, auditory and tactile stimuli were shown 

to recruit distinct PPC subdivisions: PPC-A (anterior) and PPC-RL (rostrolateral), respectively26. To study 

interactions of cortical areas along the sensory hierarchy, we simultaneous recorded from S1 and PPC-A (9 115 

mice, 40 sessions) or S1 and PPC-RL (14 mice, 91 sessions; 9 mice also had S1 and PPC-A sessions) (Fig. 

2b). The location of S1 and PPC areas were determined by sensory mapping as well as retinotopic mapping33 

(Extended Data Fig. 2a). We recorded in layer 2/3 across multiple (3-4) depths (100-300 µm), covering ~50-

600 neurons from each population (Extended Data Fig. 2b-c; Methods). Calcium indicator fluorescence 

signals from individual neurons and deconvolved spike rate were extracted using Suite2p34. All following 120 

analysis was performed on deconvolved spike rates.  

All three areas were engaged in the task, showing a varying degree of activation across the task windows. We 

identified task-responsive and discriminative neurons from matched conditions (correct and incorrect trials), 

using neuronal activity in each task window (Fig. 2c; Extended Data Fig. 2d; Methods). Neurons were defined 

as task-responsive if their activity level was significantly higher in a specific task window compared to a null 125 

distribution generated by randomly sampling frames outside of this window with matching number of frames. 

 

Figure 2. Simultaneous two-photon imaging of task-related S1 and PPC activity. (a) Temporal multiplexing-based 

simultaneous two-area two-photon imaging. Laser pulses were split into two copies, one of which was delayed by half of the 

pulse interval. Each copy was directed to an independently positioned field of view (FOV), and the emitted fluorescence was 

demultiplexed online with fast acquisition hardware. (b) Left: locations of S1, PPC-RL and PPC-A on the left hemisphere (top). 

Example widefield sensory mapping response, as well as example FOV locations, are shown in the bottom panel. Right: example 

FOVs of simultaneously imaged S1 and PPC-RL. (c) Example ΔF/F traces (black) and spike rates (red) of task-responsive 

neurons. (d) Percentage of task-responsive neurons for each task window in S1, PPC-RL and PPC-A. (e) Percentage of 

discriminative neurons for each task variable in the three areas. (f) Percentage of joint responsive neurons (neurons that are 

responsive in two task windows). The percentage was calculated as Ni⋂Nj/Ni⋃Nj, where Ni and Nj are sets of responsive 

neurons for task phase i and j. (S1: 14 mice, 118 sessions; PPC-RL: 14 mice, 78 sessions; PPC-A: 9 mice, 40 sessions; Wilcoxon 

Rank Sum test; mice and session number are the same for the following figures; Supplementary Table 1). 
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Among the responsive neurons, neurons with significantly higher activity in one task condition versus the 

other (e.g., texture 1 vs. 2) were defined as discriminative neurons. While S1 and both PPC-A and PPC-RL 

displayed highest task-related activity during the texture window, PPC-A had the highest fractions of both 

task-responsive and discriminative neurons in the remaining tone, choice, and reward windows (Fig. 2d-e), 130 

indicating its higher position in the hierarchy. In addition, both tone and texture neurons were more abundant 

in the medial part of PPC-A (Extended Data Fig. 2e). PPC-RL was less involved than PPC-A during sensory 

processing, but was also more engaged than S1 after reward delivery. In PPC-A, joint responsive neurons for 

tone and texture accounted only for a small percentage. Texture and choice, however, shared ~20% of 

overlapping neurons (Fig. 2f). Overall, S1 was most tuned to texture processing, PPC-A was engaged 135 

throughout the trial time, and PPC-RL was involved in texture and reward processing. 

Tone-texture mismatch alters texture neuron tuning 

We first asked whether tone-based prediction could alter texture-evoked responses of single neurons. To 

answer this question, we analyzed the response amplitude of tone- and texture-discriminative neurons. While 

tone-discriminative neurons showed differential responses to the distinct tones, they did not show significant 140 

trial type-dependent selectivity (Extended Data Fig. 3). In contrast, the activity of texture-discriminative 

neurons could be altered by the tone. In S1, texture-discriminative neurons showed texture selectivity only in 

mismatch-choose-texture trials; when mice chose according to tone, these neurons showed mixed preferences, 

responding to a combination of expected and actual texture (Fig. 3a-c, top panels). Similar results were 

obtained in PPC-RL (Fig. 3a-c, bottom panels). In PPC-A, the texture-discriminative neurons showed strong 145 

preference to the expected rather than the actual texture when mice chose according to tone, but not when they 

chose according to texture (Fig. 3a-c, middle panels). This could not be explained by the choice selectivity of 

 

Figure 3. Tone-texture mismatch alters neuronal tuning to texture. (a) Average normalized spike rate of texture 2 

discriminative neurons in S1, PPC-RL and PPC-A, in matched and mismatched trials. The spike rate of each neuron was 

normalized to be between 0 and 1 within each session. (b) The mean response amplitudes of all texture discriminative neurons in 

the texture window. Plots are shown across areas (rows) and trial types (columns). Each dot represents the responses of one neuron 

in one imaging session. (c) Selectivity index of the texture discriminative neurons during texture window, in different trial types. 

Selectivity index was calculated as the difference between the average response to the preferred texture and the average response 

to the non-preferred texture. (S1 1486 neurons; PPC-A 400 neurons; PPC-RL 618 neurons; Wilcoxon Rank-Sum test; 

Supplementary Table 1) 
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texture neurons or licking behavior, because we observed the same effect in PPC-A texture neurons that were 

not choice-selective as well as in trials with no early licks (Extended Data Fig. 4). To further exclude the 

influence of choice-related activity, we applied a GLM model to identify texture and choice neurons from the 150 

mean activity in the texture window, which yielded a similar number of texture and choice neurons and 

revealed similar texture selectivity change in mismatch-choose-tone trials (Extended Data Fig. 5). It is worth 

noting that in all our analysis, this inverted texture preference is distinct from the response distribution 

observed for incorrect trials, where the texture-choice pairing is the same (choice not according to the texture). 

These results provide strong evidence that tone-based prediction can shift the texture representation of 155 

individual neurons in PPC-A to the expected texture, while disrupting the texture representation in PPC-RL 

and S1.  

Tone-texture mismatch alters population encoding 

To further investigate encoding of different task variables in neuronal populations of these three areas and 

representational changes, we trained linear support vector machine (SVM) decoders on the population activity 160 

patterns to discriminate tone, texture, choice, and reward (Fig.4a-e; Extended Data Fig. 6a-c). Each decoder 

was trained and cross-validated using the time-concatenated spike rates of all neurons from the corresponding 

task window (e.g., texture window for the texture decoder; Fig. 4a) and from matched trials (correct and 

incorrect trials). Each classifier defines a hyperplane that best separates the two variables; by projecting the 

population firing rate onto the orthogonal axis of this hyperplane, or the “projection axis”, we could estimate 165 

the encoding strength of the task variables over trial time10 (Fig. 4a; Methods).  

Among the three areas, PPC-A encoded tone information best (Fig. 4b, top; Fig. 4c), consistent with PPC-A 

showing the highest fraction of tone-tuned neurons. While tone encoding was stronger in the tone window, it 

persisted after texture onset (Fig. 4d). Interestingly, tone encoding strength coincided with behavioral choice: 

in mismatch-choose-texture trials, PPC-A tone encoding was weaker compared to correct trials (Fig. 4c), but 170 

not in mismatch-choose-tone trials. In the latter case, the tone (and thus the expected texture) was still 

decodable during texture presentation (Fig. 4d, middle). We observed similar results in S1 and PPC-RL 

despite their weaker tone encoding. These observations are consistent with our findings that the tone could 

bias the behavior and choice of mice. 

All three areas strongly encoded texture (Fig. 4b, bottom). Consistent with the results in single neurons, in 175 

mismatched trials, the actual texture was encoded by the populations only when mice chose texture, although 

weaker compared to correct trials; when mice chose tone, the expected texture was encoded instead (Fig. 4e). 

The timing of texture encoding is also worth noting. In matched correct trials, the actual texture was encoded 

slightly before texture onset, indicating an active ongoing prediction (Fig. 4b, bottom left). However, in 

mismatch-choose-texture trials, although the texture was encoded correctly, this early texture encoding was 180 

absent (Fig. 4b, bottom middle right). In addition, PPC-A texture encoding lagged behind S1 and PPC-RL, 

suggesting that the integration of texture and tone stimuli was impaired by the mismatched tone, an effect 
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particularly strong in PPC-A. On the other hand, in mismatch-choose-tone trials, the expected texture was 

encoded slightly before texture onset, and texture encoding in PPC-A preceded that of S1 and PPC-RL (Fig. 

4b, bottom right; see also Extended Data Fig. 6c). These results indicate that the tone facilitated the encoding 185 

of the expected texture. This early texture encoding was not due to choice-related activity, as choice could not 

be decoded during the tone window in these trials (Extended Data Fig. 6b). In addition, texture decoder axes 

of incorrect trials did not resemble that of mismatch-choose-tone trials (Extended Data Fig. 6f). These results 

suggest that tone information in PPC-A led to encoding of the expected texture across S1 and PPC.  

We next wondered whether the tone alone was sufficient to evoke predictive texture encoding. We trained 190 

linear classifiers for tone-only and texture-only sessions, and indeed found that tone alone led to correct 

 

Figure 4. Tone-texture mismatch alters texture encoding in S1 and PPC populations. (a) Left: scheme of the decoders. Black 

line represents the decoder hyperplane; yellow and teal dots represent the neuronal population activity at a given time point in the 

trial; each dot was projected onto the orthogonal axis of the decoder hyperplane to represent the decoder confidence. Right: 

example procedure for texture decoding. (b) Neuronal population decoding of tone (top) and texture (bottom). Sensory encoding is 

represented by projection strength on the axes of linear decoders trained to discriminate tone and texture, in the tone and texture 

window, respectively. Line colors indicate area identity (magenta: S1; green: PPC-A; blue: PPC-RL); solid and dash lines indicate 

stimulus identity in the trial. (c) Discrimination index (DI) of tone decoder in the tone window. Stars above each box indicate 

significance compared to shuffled data (gray bars), for which neurons identities were shuffled, while trial and time correspondences 

were kept the same. Stars across boxes indicate comparison between trial types. (d) DI of tone decoder in texture window. (e) DI of 

texture decoder in texture window. (f) Decoder projection strength of tone (top row) and texture (bottom row) in single-modality 

experiments. (g) DI of tone decoder and texture decoder in single-modality experiments, in tone window and texture window, 

separately. Stars represented as in (c). (S1: 14 mice, 118 sessions; PPC-RL: 14 mice, 78 sessions; PPC-A: 9 mice, 40 sessions; 

Wilcoxon Rank Sum test was used for comparison with shuffled data, Wilcoxon Signed-Rank test for comparison between trial 

types; Supplementary Table 1) 
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texture encoding in PPC-A (Fig. 4f-g, left). In contrast, the lack of a preceding tone reduced texture encoding 

speed and strength in PPC-A (Fig. 4f-g, right), but choice engaged both S1 and PPC (Extended Data Fig. 6d-

e). Thus, PPC-A is able to generate predictive texture information from the preceding tone, likely through 

multisensory integration mechanisms, and it serves as a center for routing and transforming sensory 195 

information into decisions. 

Inter-areal interaction between S1 and PPC during task 

We next asked if such predictive information could be explained by top-down and bottom-up interactions 

between S1 and PPC areas. We started by characterizing the interaction structure of S1 and PPC populations 

during the task. To measure the population interactions, we used canonical correlation analysis (CCA) due to 200 

its symmetric way of treating the two populations. CCA has been applied to analyze the inter-areal 

interactions in several recent studies16,17,19. Conceptually, the activity of a neuronal population can be 

represented in a high-dimensional space, where each dimension represents the activity of one neuron in this 

population. For simultaneous activity of two populations, CCA finds pairs of dimensions that maximize the 

 

Figure 5. Interaction pattern of S1 and PPC areas during the behavioral task. (a) Illustration of canonical correlation analysis 

(CCA). The activity of each neuronal population can be represented as points in a high-dimensional space, where each dimension 

represents the activity of one neuron in this population. At a given time point in the trial, CCA identifies a set of canonical 

dimensions through linear combinations of variables from the two populations that have maximum correlation. (b) Illustration of 

defining separate CCA axes over the trial time. (c) Top canonical correlation between S1 and PPC-A (green), and S1 and PPC-RL 

(blue). Light colors indicate shuffled correlation, where only the trial correspondence between the two areas were shuffled, while 

trial structure was kept the same. (d) Average canonical correlation strength of (c) in each task window. (e) Number of significant 

interaction dimensions were determined by generating shuffled correlations and defining a threshold (mean + 3 S.D.) using the first 

correlation values. Canonical dimensions in real data with correlations higher than this threshold were considered significant. 

Example is from one imaging session. (f) Number of significant dimensions in S1 and PPC-A, and S1 and PPC-RL pairs. (g) 

Average number of significant dimensions of (f) in each task window. (S1↔PPC-A: 9 mice, 40 sessions; S1↔PPC-RL: 13 mice, 

71 sessions; Wilcoxon Rank Sum test; Supplementary Table 1) 
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correlation between the projections of the two populations (Fig. 5a; Methods). These pairs of dimensions 205 

(canonical dimensions) define the shared interaction axes of the two populations at this time point.  

Stable CCA models depend on having sufficient amount of data (time points) compared to the number of 

variables (neurons)35. To increase computation stability, we first applied principal component analysis (PCA) 

to both populations and kept the first 30 components. Since we are interested in the population interaction 

structure, we also subtracted the stimulus-triggered average, keeping only the residual activity that captures 210 

trial-to-trial co-variation. To capture the dynamic interaction over trial time, we applied CCA to a 0.5-s sliding 

window (Fig. 5b). Overall, the interaction between S1 and PPC-A was stronger than S1 and PPC-RL (Fig. 5c-

d). We further characterized the communication subspace between S1 and PPC by computing the number of 

significant canonical dimensions, where the canonical correlation is above chance level. Consistent with 

previous reports15,16, S1 and PPC overall interacted in a low-dimensional space, with S1 and PPC-A 215 

interacting in more dimensions than S1 and PPC-RL during tone and texture windows (Fig. 5e-g), indicating 

PPC-A was more involved in sensory processing during the task.  

Top-down and bottom-up interactions govern behavioral choice 

In behavioral tasks, sensory information flows through the cortical hierarchy to generate decisions. For our 

task, we asked whether the behavioral choice of mice under mismatch condition could be explained by the net 220 

effect of top-down (prediction) and bottom-up (sensory) information flow. Conceptually, mismatch-choose-

texture trials could be explained by stronger bottom-up information from S1 than top-down information from 

in PPC, whereas mismatch-choose-tone trials could be explained by the opposite. To test this hypothesis, we 

measured the strength of bottom-up and top-down information flow by introducing a temporal lag in CCA. 

We defined bottom-up strength by moving the S1 activity window ahead of PPC and averaging the top 225 

canonical correlation across lags (over 0.3 s), and top-down strength by moving PPC activity ahead of S1, 

respectively (Fig. 6a). We represented net information flow by an index that was defined as difference 

between bottom-up and top-down strengths normalized by the total interaction strength (Fig. 6a). 

In matched trials, S1 and PPC-A interaction showed strong bottom-up dominance during texture presentation 

(Fig. 6b,d-e, correct). In mismatch-choose-texture trials, both tone and texture windows were dominated by 230 

bottom-up information (Fig. 6b,d-e, MM→Texture), coinciding with slightly elevated bottom-up flow during 

the pre-stimulus window (Fig. 6d-e; 0.029±0.014 vs 0.006±0.016) and a higher arousal state in these trials 

(Extended Data Fig. 1j,m). In contrast, in mismatch-choose-tone trials, tone presentation was accompanied by 

top-down information flow, which persisted throughout texture presentation (Fig. 6b,d-e, MM→Tone). This 

top-down dominance was also observed from PPC-RL to S1 during tone presentation (Fig. 6c,f-g), indicating 235 

an internal state that emphasized top-down inputs.  

The information flow between S1 and PPC showed similar patterns in single-modality experiments (Extended 

Data Fig. 7). In tone-only sessions, the population interaction resembled that of mismatch-choose-tone trials: 

top-down flow from PPC-A to S1 in the tone window that persisted throughout the texture window (without 
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texture), consistent with a role of PPC-A in tone-based predictions. In texture-only sessions, bottom-up flow 240 

from S1 to PPC-A during texture presentation occurred instead, resembling the interaction observed for 

mismatch-choose-texture trials. To exclude the possibility that these observations were specific to the CCA 

method, we alternatively computed population interaction strength with Pearson correlation. Overall, all 

results were reproduced, although Pearson correlation does not capture the optimal interaction between 

populations (Extended Data Fig. 8).  245 

To investigate whether such inter-areal interactions could be reflected by the response strength of S1 and PPC 

on a single-trial basis, we compared the normalized decoder projection strength of S1 and PPC-A in individual 

trials. While texture encoding strengths of S1 and PPC-A were similar in correct and mismatch-choose-texture 

trials, PPC-A showed stronger texture encoding than S1 in mismatch-choose-tone trials (Extended Data Fig. 

9a-b). In the latter trials, the encoding coefficient of PPC-A tone response vs. S1 texture response was also 250 

elevated, indicating that the tone in PPC-A was weighted more than the texture information in S1 compared to 

other trial types (Extended Data Fig. 9c-d). Additionally, the texture/tone encoding coefficient within PPC-A 

was higher in mismatch-choose-texture and lower in mismatch-choose-tone trials, indicating that in PPC-A 

 

Figure 6. Top-down and bottom-up interactions between S1 and PPC areas during prediction mismatches. (a) Top-down 

interaction strength (PPC-A/RL to S1) was calculated by the average canonical correlation with a negative lag for PPC, and 

bottom-up interaction strength was calculated by the average correlation with a negative lag for S1 (left and middle panels). The 

direction and strength of S1-PPC interaction was characterized by the information flow index (IFI), defined as ratio of the 

difference between the two interactions to their sum (right panel). (b) Lagged canonical correlation between S1 and PPC-A, 

averaged across all sessions, for different trial types. (c) Information flow index computed from (b). (d) Quantification of 

information flow index between S1 and PPC-A. (e) Lagged canonical correlation between S1 and PPC-RL, averaged across all 

sessions, for different trial types.  (f) Information flow index computed from (e).  (g) Quantification of information flow index 

between S1 and PPC-RL. (S1↔PPC-A: 9 mice, 40 sessions; S1↔PPC-RL: 13 mice, 71 sessions; Wilcoxon Signed-Rank test; 

Supplementary Table 1) 
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texture was weighted more in mismatch-choose-texture trials, whereas tone was weighted more in mismatch-

choose-tone trials (Extended Data Fig. 9e-f). These findings further support our observation of different top-255 

down and bottom-up interactions underlying these conditions.  

Our task design allowed the mice to rely in their behavior either more on tone-based prediction or more on the 

texture input. We wondered whether these different states were accompanied by different neuronal 

representations even in correct trials, where tone and texture were paired normally. We approximated the state 

of mice from their choices under mismatch condition. We defined texture-preferring sessions as the top 10 260 

sessions where mice were more prone to choose texture in mismatch condition, and tone-preferring sessions 

as the top 10 sessions where mice were more prone to choose tone (Extended Data Fig. 10a). We observed 

both behavioral and neural differences between these two sets of sessions. Behaviorally, mice showed slightly 

shorter response time, higher probability of licking during tone, and higher lick rate during texture 

presentation in tone-preferring vs. texture-preferring session (Extended Data Fig. 10b-e). On the neuronal 265 

level, in tone-preferring sessions, with comparable numbers of tone neurons in S1 and PPC-A, tone decoding 

was stronger and top-down information flow from PPC-A to S1 was enhanced, suggesting a more efficient 

transfer of tone information. On the other hand, in texture-preferring sessions, S1 featured more texture 

neurons, weaker predictive texture encoding, slower texture encoding, and slightly stronger bottom-up flow 

(Extended Data Fig. 10f-n). These differences suggest a flexible reconfiguration of S1 and PPC populations 270 

according to behavioral state. 

Together, our results demonstrate that the dynamic interactions between S1 and PPC can shape sensory 

representation and govern the behavioral choices of mice (Fig. 7). 

Discussion 

We utilized a two-area two-photon microscope to study the interaction between a primary sensory area (S1) 275 

and the next-higher association area (PPC) during an auditory-cued texture discrimination task. We focused 

on cortico-cortical interactions underlying cross-modal predictive processing, by introducing tone and texture 

mismatches to induce conflicts between tone-based top-down texture predictions and bottom-up tactile input. 

When predictions dominated sensory inputs, as in trials in which mice decided based on tone instead of actual 

texture identity, we found that PPC-A encoded the expected texture, while in S1 both single-cell and 280 

population encoding of texture were disrupted. There was also stronger top-down information flow from PPC-

A to S1. When tactile input dominated predictions, as reflected by texture-based choices, texture encoding in 

S1 and PPC remained unchanged, and bottom-up information flow from S1 to PPC-A was stronger (Fig. 7). 

Overall, our results provide evidence for a cortical implementation of predictive processing in the context of 

multisensory-driven decision making. 285 

Although predictive processing provides an attractive framework for understanding key brain functions, the 

specific neural circuits involved are yet to be fully understood. With experience, primary sensory cortices can 

develop specific predictions that impact stimulus responses: expected stimuli are suppressed, and unexpected 
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stimuli are amplified6,7,36,37. This occurs for both redundant unimodal stimulation7,36,37 and multi-modal 

stimulation where animals associate two stimuli6,13. Such predictions can be conveyed directly between 290 

sensory cortices6, but also depend on long-range projections from higher areas7,14,38. Whereas frontal higher 

areas have been extensively studied in contextual sensory processing7,37,39, posterior association areas received 

less attention. Frontal areas can modulate the activity in posterior areas of single sensory modalities through 

long-range projections9,40. Posterior association areas, in contrast, may integrate multiple sensory modalities 

and send processed information to primary as well as frontal areas. Here, we provide evidence for such a 295 

process: PPC-A formed an association between paired sensory stimuli and carried sufficient predictive 

information based on an initial tone to encode the expected texture.  

How cortical areas communicate with each other, and what information is exchanged during behavior, are still 

open questions. Direct projections from higher cortical areas to primary sensory areas can carry specific task-

related information such as expected stimulus and reward7,9,14, providing one mechanism for how top-down 300 

predictions affect responses in primary areas. Recent studies demonstrated that interactions between primary 

 

Figure 7. A model of S1, PPC-A, and PPC-RL interactions during the behavioral task. (a) In the correct trials, tone 

information is encoded in PPC-A, potentially through inputs from auditory cortex (A1). PPC-A generates and communicate 

texture prediction with S1. During the texture presentation, S1 sends texture information to PPC-A, while all three areas are 

involved in the processing and transformation of texture information. The decision is formed through coordinated efforts from S1 

and PPC. (b) In mismatch-choose-texture trials, mice are in a state that attends more to S1 inputs. Texture information in S1 is 

sent to PPC-A, and choice is made according to actual texture. (c) In mismatch-choose-tone trials, tone induces strong texture 

prediction in PPC-A, which is sent to S1 during the tone and texture windows, overwriting the actual texture information in S1. 

Choice is made according to the predicted texture. Solid arrows represent directional interactions between recorded areas, dashed 

arrows represent putative interactions between pairs of areas that were not recorded simultaneously in this study. 
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and higher areas usually occur in low-dimensional subspaces that do not necessarily align with the stimulus-

encoding subspace15,41, and that such interactions dynamically vary throughout stimulus presentation and 

behavioral tasks16–19. Our study adds to these findings by showing that the task-relevant variables are encoded 

in low-dimensional subspaces in S1 and PPC, and that the dominance of either top-down or bottom-up 305 

processing corresponds to perceptual choices during the task. These findings are consistent with the predictive 

processing theory and reveal mechanisms underlying cortical information transformation and communication. 

Specifically, we observed that the disrupted texture encoding in S1 is accompanied by stronger top-down 

information flow from PPC. Our multi-modal task design contributes to this observation, because PPC is 

involved in multisensory processing22,23,25,42 and therefore is well-positioned to develop cross-modal 310 

predictions. On the circuit level, such predictions could be implemented by disinhibition through top-down 

projections: in PPC as well as in primary areas, inhibitory interneurons play a key role in suppressing 

expected stimuli and augmenting unexpected stimuli23,43,44. Other brain areas such as the thalamus might be 

involved as well: higher-order thalamic nuclei are interconnected with many cortical areas20,45, providing 

another information routing station for processing of sensory conflicts by comparing top-down and bottom-up 315 

information. 

In our task design, predictive processing is likely implemented through a multisensory integration process. We 

chose to use the term ‘predictive processing’ because it adequately describes the specific sensory association 

process, with two sensory modalities engaged sequentially such that a preceding tone is stably associated with 

a subsequent texture. Other forms of multisensory integration processes, for example resolving conflicting 320 

simultaneous auditory and visual inputs that underlie conflicting reward rules23,46, do not necessarily involve 

specific sensory predictions. Furthermore, predictive processing can be implemented through other 

mechanisms as well. For example, reward predictions2,5,8 and unimodal sensory predictions (e.g. mismatch 

negativity)37,47 likely involve different neural circuits rather than the association cortex. 

The composition and exact locations of rodent PPC and its subregions are still a topic of debate22,26,48. 325 

Historically, rodent PPC has been described as a part of higher visual areas, with PPC-RL largely overlapping 

with VISrl, and PPC-A overlapping with VISam33,48. However, PPC not only receives visual input, but also 

extensive inputs from somatosensory, auditory and olfactory cortices, as well as higher cortical areas22,49. 

Most PPC studies so far defined PPC as a single area with varying coordinates, leading to contradictory 

results in some cases23,50–52. In our study, PPC-A and PPC-RL exhibited different task relevance, and both tone 330 

and texture neurons were more enriched towards the medial PPC. This coincides with the reports that PPC 

contains modality-specific subregions along the medial-lateral axis26,49, but also suggests a functional 

reorganization of PPC through learnt multisensory pairing53. PPC is not only a center for multisensory 

processing, but also participates in decision making 29,50,54,55. Recent literature has shown that a topographic 

difference exists between the anterior and mediomedial regions of the PPC in encoding decisions56. Therefore, 335 

subregions in PPC likely serve as a continuum of intermediate routing stations of weighted sensory 
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information flow towards frontal areas, and top-down information back to sensory cortices. Further work is 

required to characterize in detail the specific roles of PPC subregions and their interactions.  
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Figure Captions and Legends 

Figure 1. Mouse behavior in an auditory-cued texture discrimination task under matched and 

mismatched conditions. (a) Schematic of experiment setup with head-fixed mice, with a cranial window over 355 

S1 and PPC under a two-photon microscope. (b) Schematic of behavior paradigm. Mice were trained to 

discriminate two textures paired with distinct auditory tone cues. After mice became expert, tone-texture 

mismatch trials were introduced. The choice window lasted maximally 2-s, and reward window was triggered 

immediately when the mouse licked during this window. (c) Schematic, nomenclature and color code of 

different trial types. Trials were categorized based on the contingency of tone, texture, and choice. Colored 360 

bars on the left indicate the color code of each trial type. (d) Learning curves of all mice. M30, M33 and M40 

were unstable performers (see Extended Data Fig. 1a). (e) Performance in single-modality experiments, in 

which only tone, only texture, or only texture without whiskers was presented. Markers indicate individual 

mice. The outlier (star) is M40 in (d). (f) Miss rates for experiments in (e). (g) Percentage of each trial type for 

matched and mismatched conditions. (h) Lick probability over trial time on the lick ports according to texture 365 

identity (left) or the opposite lick port (right), calculated as percentage of trials in each session with a lick 

event at each given time point. (i) Response time for different trial types. (j) Percentage of trials in each 

session, in which licks on the final choice spout were recorded during tone presentation. (k) Lick rate during 
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texture presentation for different trial types. (e-f: n = 10 mice, 1 session per mouse, naïve was the average of 

first 3 sessions, expert was the average of best 3 sessions; g-k: n = 16 mice, total 148 sessions; Wilcoxon 370 

Signed-Rank test; here and in subsequent panels: *p < 0.05, **p < 0.01, ***p < 0.001; for exact p-values, see 

Supplementary Table 1) 

Figure 2. Simultaneous two-photon imaging of task-related S1 and PPC activity. (a) Temporal 

multiplexing-based simultaneous two-area two-photon imaging. Laser pulses were split into two copies, one 

of which was delayed by half of the pulse interval. Each copy was directed to an independently positioned 375 

field of view (FOV), and the emitted fluorescence was demultiplexed online with fast acquisition hardware. 

(b) Left: locations of S1, PPC-RL and PPC-A on the left hemisphere (top). Example widefield sensory 

mapping response, as well as example FOV locations, are shown in the bottom panel. Right: example FOVs 

of simultaneously imaged S1 and PPC-RL. (c) Example ΔF/F traces (black) and spike rates (red) of task-

responsive neurons. (d) Percentage of task-responsive neurons for each task window in S1, PPC-RL and PPC-380 

A. (e) Percentage of discriminative neurons for each task variable in the three areas. (f) Percentage of joint 

responsive neurons (neurons that are responsive in two task windows). The percentage was calculated as 

Ni⋂Nj/Ni⋃Nj, where Ni and Nj are sets of responsive neurons for task phase i and j. (S1: 14 mice, 118 

sessions; PPC-RL: 14 mice, 78 sessions; PPC-A: 9 mice, 40 sessions; Wilcoxon Rank Sum test; mice and 

session number are the same for the following figures; Supplementary Table 1). 385 

Figure 3. Tone-texture mismatch alters neuronal tuning to texture. (a) Average normalized spike rate of 

texture 2 discriminative neurons in S1, PPC-RL and PPC-A, in matched and mismatched trials. The spike rate 

of each neuron was normalized to be between 0 and 1 within each session. (b) The mean response amplitudes 

of all texture discriminative neurons in the texture window. Plots are shown across areas (rows) and trial types 

(columns). Each dot represents the responses of one neuron in one imaging session. (c) Selectivity index of 390 

the texture discriminative neurons during texture window, in different trial types. Selectivity index was 

calculated as the difference between the average response to the preferred texture and the average response to 

the non-preferred texture. (S1 1486 neurons; PPC-A 400 neurons; PPC-RL 618 neurons; Wilcoxon Rank-Sum 

test; Supplementary Table 1) 

Figure 4. Tone-texture mismatch alters texture encoding in S1 and PPC populations. (a) Left: scheme of 395 

the decoders. Black line represents the decoder hyperplane; yellow and teal dots represent the neuronal 

population activity at a given time point in the trial; each dot was projected onto the orthogonal axis of the 

decoder hyperplane to represent the decoder confidence. Right: example procedure for texture decoding. (b) 

Neuronal population decoding of tone (top) and texture (bottom). Sensory encoding is represented by 

projection strength on the axes of linear decoders trained to discriminate tone and texture, in the tone and 400 

texture window, respectively. Line colors indicate area identity (magenta: S1; green: PPC-A; blue: PPC-RL); 

solid and dash lines indicate stimulus identity in the trial. (c) Discrimination index (DI) of tone decoder in the 

tone window. Stars above each box indicate significance compared to shuffled data (gray bars), for which 
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neurons identities were shuffled, while trial and time correspondences were kept the same. Stars across boxes 

indicate comparison between trial types. (d) DI of tone decoder in texture window. (e) DI of texture decoder 405 

in texture window. (f) Decoder projection strength of tone (top row) and texture (bottom row) in single-

modality experiments. (g) DI of tone decoder and texture decoder in single-modality experiments, in tone 

window and texture window, separately. Stars represented as in (c). (S1: 14 mice, 118 sessions; PPC-RL: 14 

mice, 78 sessions; PPC-A: 9 mice, 40 sessions; Wilcoxon Rank Sum test was used for comparison with 

shuffled data, Wilcoxon Signed-Rank test for comparison between trial types; Supplementary Table 1) 410 

Figure 5. Interaction pattern of S1 and PPC areas during the behavioral task. (a) Illustration of canonical 

correlation analysis (CCA). The activity of each neuronal population can be represented as points in a high-

dimensional space, where each dimension represents the activity of one neuron in this population. At a given 

time point in the trial, CCA identifies a set of canonical dimensions through linear combinations of variables 

from the two populations that have maximum correlation. (b) Illustration of defining separate CCA axes over 415 

the trial time. (c) Top canonical correlation between S1 and PPC-A (green), and S1 and PPC-RL (blue). Light 

colors indicate shuffled correlation, where only the trial correspondence between the two areas were shuffled, 

while trial structure was kept the same. (d) Average canonical correlation strength of (c) in each task window. 

(e) Number of significant interaction dimensions were determined by generating shuffled correlations and 

defining a threshold (mean + 3 S.D.) using the first correlation values. Canonical dimensions in real data with 420 

correlations higher than this threshold were considered significant. Example is from one imaging session. (f) 

Number of significant dimensions in S1 and PPC-A, and S1 and PPC-RL pairs. (g) Average number of 

significant dimensions of (f) in each task window. (S1↔PPC-A: 9 mice, 40 sessions; S1↔PPC-RL: 13 mice, 

71 sessions; Wilcoxon Rank Sum test; Supplementary Table 1) 

Figure 6. Top-down and bottom-up interactions between S1 and PPC areas during prediction 425 

mismatches. (a) Top-down interaction strength (PPC-A/RL to S1) was calculated by the average canonical 

correlation with a negative lag for PPC, and bottom-up interaction strength was calculated by the average 

correlation with a negative lag for S1 (left and middle panels). The direction and strength of S1-PPC 

interaction was characterized by the information flow index (IFI), defined as ratio of the difference between 

the two interactions to their sum (right panel). (b) Lagged canonical correlation between S1 and PPC-A, 430 

averaged across all sessions, for different trial types. (c) Information flow index computed from (b). (d) 

Quantification of information flow index between S1 and PPC-A. (e) Lagged canonical correlation between 

S1 and PPC-RL, averaged across all sessions, for different trial types.  (f) Information flow index computed 

from (e).  (g) Quantification of information flow index between S1 and PPC-RL. (S1↔PPC-A: 9 mice, 40 

sessions; S1↔PPC-RL: 13 mice, 71 sessions; Wilcoxon Signed-Rank test; Supplementary Table 1) 435 

Figure 7. A model of S1, PPC-A, and PPC-RL interactions during the behavioral task. (a) In the correct 

trials, tone information is encoded in PPC-A, potentially through inputs from auditory cortex (A1). PPC-A 

generates and communicate texture prediction with S1. During the texture presentation, S1 sends texture 
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information to PPC-A, while all three areas are involved in the processing and transformation of texture 

information. The decision is formed through coordinated efforts from S1 and PPC. (b) In mismatch-choose-440 

texture trials, mice are in a state that attends more to S1 inputs. Texture information in S1 is sent to PPC-A, 

and choice is made according to actual texture. (c) In mismatch-choose-tone trials, tone induces strong texture 

prediction in PPC-A, which is sent to S1 during the tone and texture windows, overwriting the actual texture 

information in S1. Choice is made according to the predicted texture. Solid arrows represent directional 

interactions between recorded areas, dashed arrows represent putative interactions between pairs of areas that 445 

were not recorded simultaneously in this study. 
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Methods 

All procedures of animal experimentation were carried out according to the guidelines of the Veterinary 

Office of Switzerland and following approval by the Cantonal Veterinary Office in Zurich (licenses 234/2018, 

211/2018).  

Mice and dataset 570 

Mice were housed on a 12-h reversed light/dark cycle at an ambient temperature of between 21 °C and 23 °C 

and humidity between 55% and 60%. 16 mice were included in this study. Mice were one of the following 

strains: RasGRF2a-dCre;CamK2a-tTA;TITL-GCaMP6f (M10, M11, M12, M25, M26, M28, M29, M33, 

M34, M35), GP5.17(C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, Jackson Laboratory 025393) (M14, 

M15), Snap25-IRES2-Cre-D;CamK2a-tTA;TITL-GCaMP6f (M17), RasGRF2a-dCre;tTA2-GCaMP6f (M30, 575 

M38, M40). All transgenic strains express GCaMP6f in layer 2/3 pyramidal neurons of the neocortex. Both 

sexes were included in this study (male: M10, M14, M15, M25, M26, M30, M33, M34, M35; female: M11, 

M12, M13, M17, M28, M29, M38, M40). All mice were adults (12-16 weeks old) when experiment started. 

Out of the 16 mice, S1-PPCA imaging was performed on 9 mice (M25, M26, M28, M29, M30, M33, M34, 

M35, M40); S1-PPCRL imaging was performed on 14 mice (M10, M11, M12, M14, M17, M25, M26, M28, 580 

M29, M30, M33, M34, M35, M40). Two mice (M15, M38) were only included in behavioral studies but not 

in the neuronal data analysis due to the decayed cranial window quality. One mouse (M17) was removed from 

cross-area analysis due to decayed S1 imaging quality from lateral skull bone growth under the cranial 

window. Mice were 2.5-4 months old at the beginning of behavior training, and 3-5 months old at the time of 

experiment. 585 

Surgical procedures 

A craniotomy was performed on all mice over S1 and PPC in the left hemisphere. Mice were anesthetized 

with 2% isoflurane mixed with oxygen, and body temperature was maintained at 37℃. After analgesia 

treatment (Metacam, 5 mg/kg, s.c.; lidocaine gel over the skull skin), the skull was exposed, a 4 mm round 

cranial window was made with dental drill, and covered with glass coverslip using dental cement (Tetric 590 

EvoFlow). A light-weighted head-bar was fixed on the skull using dental cement. After the surgery, animals 

were continually monitored for at least three days, and treated with analgesics (Metacam, 5 mg/kg, s.c.). For 

strains that expressed destabilized Cre (dCre), we induced stable GCaMP6f expression by administering 

trimethoprim (TMP, Sigma T7883). TMP was reconstituted in Dimethyl sulfoxide (DMSO, Sigma 34869) at a 

saturation level of 100 mg/ml, and intraperitoneally injected (150 mg TMP/g body weight; 29 g needle) at 595 

least one week before imaging commenced.  

Behavior training 
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Mice were allowed to recover for at least 1 week before behavior training started. Mice were first accustomed 

to the hands of the experimenter at the home cage for several days until showing no sign of stress, then 

accustomed to head fixation. Then, mice were put under water scheduling, and were introduced to the 600 

behavior setup. During the first 2-3 sessions, mice were given sugar water reward from one of the two lick 

ports after the choice tone (2 beeps at 3 kHz of 50-ms duration with 50-ms interval). Once they learned to lick 

after the choice tone to obtain the water reward, we introduced the textures. Textures were followed by reward 

delivery on the corresponding lick port upon licking, and licks on the wrong port did not result in punishment 

or trial abort. This stage lasted for 1-2 sessions. Once mice were accustomed to the trial structure, we started 605 

formal training.  

Behavior training was carried out using a custom written LabView software. Each trial started with one of two 

distinct auditory tones (10 kHz or 18 kHz, 6 repetitions, 50-ms duration and 50-ms intervals). One second 

after tone onset, the presentation of one of two distinct textures followed (sandpaper, P100 vs. P1200 for 

M10-17, P280 vs. P800 for M25-40).  A rotary motor “swung” the texture onto the whisker pad from the top. 610 

The texture was presented for 1 second and then moved away from the mouse with a linear motor stage. At 

the end of the texture window, choice window started, indicated by the choice tone described above. The 

choice window lasted for up to 2 seconds. As soon as mice licked during the choice window, choice window 

was terminated and the reward window started. If mice choose the correct lick port, a small water reward was 

delivered (~4 µl sugar water); wrong choices were not punished. The inter-trial interval was randomly 615 

distributed between 4-8 seconds. 

During training, when a mouse made incorrect choices, the same tone-texture stimulus pair was presented 

again in the following trial until the mouse chose correctly. This “repeat incorrect” strategy facilitates learning 

and prevents the mice from forming a bias towards one of the two lick ports. If the mouse disengages from 

licking, in 10% of these miss trials the reward was delivered after the choice window to motivate the mouse. 620 

Each day, the training lasted as long as the mouse was actively engaged in the task, typically 200-400 trials. 

Training was done once per day, 5-6 days per week. Weight, health, and water intake were monitored daily. 

All training was performed in the dark and monitored through a behavior camera with a small infrared light 

source. Mice were considered experts when they reached 75% correct performance for three sessions. Among 

all mice, three mice showed an unstable behavior, with relatively high fluctuations of the within-session 625 

performance (Extended Data Fig. 1a); however, they all showed clear signs of learning, reaching sub-session 

performance peaks above expert level for consecutive days. We attributed the unstable behavior to 

environmental stress; in particular, the training of M40 coincided with construction work in the animal 

facility, resulting in longer training duration.  

Mismatched trial design 630 

After mice became stable experts, we started introducing mismatched trials. In these sessions, the first 20-30 

trials were with matched stimuli (without mismatch), and only afterwards mismatch trials were randomly 
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presented in 10%-30% of the trials. To avoid confusion for mice and prevent re-learning of new rules, we kept 

the repeat incorrect strategy throughout these sessions for matched trials, reinforcing the learnt rules. Because 

the task is mostly a texture-dependent task (see Results section, Fig. 1, and Extended Data Fig. 1), we 635 

rewarded according to the tone in mismatched trials, in order to encourage mice to pay attention to the tone 

and generate more mismatch-choose-tone response.  

Single sensory modality experiments 

Tone-only and texture-only sessions were done at the end of the experiment, after mice completed all 

mismatched sessions (7-12 sessions). In tone-only sessions, trials started with a 1-s auditory tone, as for the 640 

matched pairing condition. Afterwards, the rotary motor carrying the texture swung in, generating the same 

motor noise, but stopped above the whisker pad of mice. Therefore, texture was “presented” above the mice, 

out of reach for their whiskers. Choice window, reward window and inter-trial interval were the same as in 

matched condition. In texture-only sessions, the tone before the texture presentation was omitted. Trial started 

with a 1-s window with no sensory stimulus, followed by normal texture presentation, and then choice and 645 

reward windows. These single modality sessions typically were restricted to 100-150 trials to prevent re-

learning. 

After the single-modality experiments, we trimmed the whiskers of the mice, and conducted another texture-

only session. This session served as a control experiment to exclude the possibility that mice relied on other 

environmental cues (visual, olfactory, etc.) to perform the task.  650 

Behavior monitoring 

Face and body movements as well as the pupil diameter of the mice were monitored and recorded using a 

CMOS infrared-sensitive camera (Basler acA1440-220um). A small 940-nm infrared LED was positioned in 

front of the mice to illuminate their face and body. Since mice were in complete darkness, their pupils were 

dilated by default. To monitor the pupil diameter with a larger dynamic range, we restrained the pupil by 655 

carefully positioning a small UV LED (385 nm, Thorlabs LED385L) close to the eye contralateral to the 

texture presentation. Trial-related behavior was recorded at 50 Hz, simultaneously with calcium imaging, 

triggered by each trial start. Licking was recorded throughout tone, texture, and choice windows, and was 

estimated based on the event rate from the capacitive lick sensor sampled at 100 Hz.  

To extract body and face movements, we manually selected two regions of interest (ROIs), one on the whisker 660 

pad, the other on the forelimb and chest region. Movement was calculated as frame-to-frame variation by 

computing (1-corr(ft, ft+1)), where corr(ft, ft+1) denotes the frame-to-frame correlation of the ROI. We tracked 

the pupil diameter using a custom MATLAB script: we first manually selected an ROI over the eye region, 

then binarized the pupil (pupil was bright due to two-photon illumination of the cortex at 920 nm). Then, pupil 

diameter was estimated by fitting the binary region to an ellipse. Body and face movements, as well as pupil 665 

diameter, were smoothed with a median filter of 200-ms width.  
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Sensory mapping 

To determine the exact locations of S1 and PPC, we performed widefield sensory mapping on all the mice 

before the two-photon imaging sessions started, following a previously described procedure26. Mice were 

lightly anesthetized under 1% isoflurane and kept at 37℃. Three types of sensory stimuli were delivered: 670 

visual, whisker, and hindlimb. For visual stimulation, a small blue LED was positioned close to the eye 

contralateral to the cranial window, and a brief 200-ms flash was presented, followed by 10-s recovery time. 

For whisker and hindlimb stimulation, a loud speaker-coupled vibrating bar was used to induce a vibrating 

touches of the whiskers and hindlimb paw (20 Hz for 2 s) on the side contralateral to the cranial window. Each 

stimulus modality was repeated 30 times.  675 

Widefield imaging was simultaneously performed through the cranial window. A blue LED light source 

(Thorlabs; M470L3) was used for excitation of GCaMP6f, together with an excitation filter (480/40 nm 

BrightLine HC). The excitation light was directed through a dichroic mirror (510 nm; AHF; Beamsplitter 

T510LPXRXT) to a 4x objective (Thorlabs TL4X-SAP, NA 0.2). Emission light was filtered (emission filter 

529/24 nm, BrightLine HC), and passed through the dichroic mirror to separate emission light with excitation 680 

light, then through a tube lens (Thorlabs TTL100-A) onto a sensitive CMOS camera (Hamamatsu Orca Flash 

4.0). 

To obtain a more precise location of PPC-RL and PPC-A, we further generated a retinotopic map through 

visual field sign mapping, following a previously described procedure33. Briefly, a drifting spherically-

corrected checkerboard visual stimulus was presented on an LED screen (Adafruit Qualia 9.7" DisplayPort 685 

Monitor, 2048x1536 Resolution) across the visual field of the mice at 0.043–0.048 Hz. The stimulus sequence 

consisted of four cardinal directions, each presented with 10 repetitions. The screen was positioned in front of 

the eye contralateral to the cranial window, such that the stimulus covered retinotopic locations from 

approximately -20 to +30 degrees in altitude and -10 to +90 degrees in azimuth. The retinotopic map was 

calculated using previously reported analysis pipeline33. The final location of S1, PPC-A and PPC-RL was 690 

determined by optimally aligning the sensory map and retinotopic map together to the Allen Mouse Common 

Coordinate45. 

Two-area two-photon imaging 

Two-area two-photon imaging was performed using a custom-built microscope that has been previously 

reported32. The simultaneous two-area imaging was implemented through a temporal multiplexing technique, 695 

where the laser pulse train from a Ti:sapphire laser (Mai Tai HP DeepSee, Spectra-Physics) was split in two 

temporally interleaved copies, each directed through an independently movable unit to a separate field of 

view. Each beam path was equipped with an electrically tunable lens (Optotune EL-10-30-C) to enable rapid 

focal changes for imaging multiple depths. Imaging was done at 920-nm excitation with a green emission 

filter (510/42 nm bandpass). A 16x objective was used (N16XLWD, Nikon, NA 0.8). The microscope was 700 
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controlled by a custom-written software Scope (http://sourceforge.net). Calcium imaging was acquired at 3 

different depths in layer 2/3, separated by 40-50 µm. The FOV size was ~450×500 µm, at a resolution of 

~370×256 pixels. The volume rate was typically ~9.32 Hz for two areas and three imaging depths per area. 

Laser power was adjusted for each plane, at 40-70 mW under the objective. For each mouse, the FOV 

positions and/or depths were slightly adjusted for each imaging session to cover different neuronal 705 

populations in S1 and PPC. Imaging was triggered by the start of each trial, and the image acquisition finished 

0.5 s before the end of the inter-trial interval (i.e., the start of the next trial). During the duration of the 

experiment, most mice maintained a clear window with good imaging quality. The number of imaging 

sessions for each mouse is as following: For S1-PPCA imaging, the number of sessions was 3, 4, 5, 5, 4, 4, 7, 

4, 4, for M25, M26, M28, M29, M30, M33, M34, M35, M40, respectively. For S1-PPCRL imaging, the 710 

number of sessions was 10, 9, 10, 2, 1, 8, 5, 4, 8, 5, 3, 4, 4, 3, for M10, M11, M12, M14, M17, M25, M26, 

M28, M29, M30, M33, M34, M35, M40, respectively. Note that the number of PPC-RL sessions was higher 

for M10, M11 and M12 due to a lower percentage of mismatch trials (~10% mismatch trials).  

Processing of two-photon imaging data 

We used Suite2p to extract neuronal traces34. This pipeline includes a rigid motion correction on the raw data, 715 

a model-based background subtraction, a neuron-identification algorithm, fluorescence extraction, and a 

neuron classifier. Raw fluorescence and neuropil traces were extracted from identified neurons, and neuropil-

corrected traces were obtained. A deconvolution algorithm was applied to the corrected fluorescence traces to 

estimate the spike rate of neurons (in arbitrary units). Spike rate was further normalized by the baseline F0 

estimated by Suite2p. We tuned the neuron classifier in the above pipeline to identify potential neurons, and 720 

we further manually curated each dataset to discard non-neuronal structures or low-quality ROIs. All analysis 

was performed using deconvolved spike rates.  

To exclude redundant neurons due to fluorescence signal bleed-through between two areas or between two 

neighboring depths, we removed neurons that were highly correlated neighboring neurons, using similar 

criteria as previously described57. We defined potential duplicated neuron pairs as: (1) spike rate correlation 725 

above 0.5; (2) lateral distance between centroids below 5 µm regardless of depths; (3) appeared in adjacent 

imaging depths in the same imaging area (signal bleed-through in the same area from adjacent imaging 

planes), or appeared in the same imaging depths in different imaging areas (signal bleed-through across areas 

from the same imaging plane). In these duplicated neuron pairs, we kept the neuron with highest average 

fluorescence level, and discarded the one with less fluorescence.  730 

Due to the variable length of the choice window, we defined choice window as the 0.5-s time period before 

the lick that triggered reward window (equivalent to the 0.5-s period before the reward window). We 

resampled all behavior data to match the calcium imaging rate. Due to slight differences in imaging rate 

(caused by slightly different pixel numbers), when combining datasets together, we resampled all dataset to a 

standard 10 Hz rate. These procedures were applied before all the analysis below. 735 
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Responsive neuron analysis 

To identify neurons that are responsive to different task phases, we tested the activity level of individual 

neurons across task windows, for Ttone, Ttexture, Tchoice, and Treward. We first denoised the deconvolved spike rates 

by a small Gaussian window (3 frames, sigma=1); then, for each neuron Ni and each task window Tj, we 

compared its average activity within the window, and generated a baseline distribution by randomly sampling 740 

the same number of frames outside of window Tj and computing average activity, for 100 times. If the activity 

of neuron Ni in Tj was significantly higher than outside of Tj, determined by a one-tailed Wilcoxon Rank Sum 

test (p<0.05), then we define neuron Ni as responsive in task window Tj. 

To identify neurons that are discriminative for a specific task variable (tone, texture, choice, and reward), we 

compared the activity of responsive neurons as defined above for the different values of the task variables. For 745 

each task variable (for example texture), there are two potential values s1 and s2 (for example, texture 1 and 

texture 2). We compared the average activity of each neuron within the corresponding task window (texture 

window in this example) between s1 trials and s2 trials, using Wilcoxon Rank Sum test. If the neuronal activity 

was significantly higher (p<0.05) in s1 trials, then the neuron was defined as a discriminative neuron with 

preference for s1. We performed this procedure for all the four task variables. Responsive and discriminative 750 

neurons identified with this method are non-random, as no significant neurons were identified in shuffled data, 

where the activity of individual neurons was randomized within sessions. The relatively low percentage of 

discriminative neurons is due to several factors: (1) We calculate percentage using all detected neurons from 

the entire imaged population (several hundreds of neurons using our custom microscope); (2) we defined 

discriminative neurons as a subset of responsive neurons, i.e., they were required to have increased firing rate 755 

during the specific task phase; (3) we used two relatively similar textures P280 and P800 in our task design. 

Responsive neuron analysis with GLM 

To further dissect texture- and choice-related activity during texture presentation, we built Gaussian GLM 

(with identity link function) with two regressors (texture and choice) to predict the average texture window 

activity of each neuron, following a previously published procedure58. Each regressor contains two values: -1 760 

(texture 2 and choice 2) and 1 (texture 1 and choice 1). For each neuron, we trained a full model using all 

regressors with two-fold cross-validation. To avoid overfitting, we applied ridge regularization with a lambda 

penalty of 0.1. We quantified model performance by computing the correlation value between the predicted 

activity and real activity. To identify the contribution of each regressor, we shuffled each regressor vector 100 

times while maintaining the rest unchanged, and fitted model as above. We considered a neuron to be texture- 765 

or choice-responsive if the correlation value of full model is 1.96 standard deviation away from the shuffled 

distribution. Among these neurons, discriminative neurons were identified as described in the section above. 

Decoder analysis 
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We trained four types of linear support vector machine (SVM) decoders: tone, texture, choice, and reward 

decoders, respectively. Similar to the responsive neuron analysis, each type of decoder was trained with two 770 

class labels (texture 1 vs. texture 2, for example), using frame-concatenated spike rate data from the 

corresponding task window (texture window, for example). A separate decoder was trained for each imaging 

session and each area (S1, PPC-A, PPC-RL), due to different imaging populations. Only matched pairing 

trials were used for training decoders.  

For each imaging session, we randomly divided all the matched pairing trials into 10 subsets. We trained 10 775 

decoders by excluding one subset at one time, therefore each decoder was trained on 90% of the training set. 

To avoid overfitting, we regularized the SVM coefficients with ridge (L2) penalty. The regularization term 

was cross-validated in a log space of 10 parameters from 10-5 to 101. To avoid overfitting due to unbalanced 

class number, we also implemented a misclassification cost that is inversely correlated with the total number 

of each class. The projection strength of each trial was calculated using the decoder that was not trained using 780 

this trial. The projection strength at time t of a trial was defined as the dot product between the decoder 

coefficient (without the constant term) and the population spike rate vector at t. Shuffled controls were 

generated by randomizing the neuron identities in the dataset and applying the decoders to shuffled data. To 

evaluate the decoder performance, the ROC (receiver operating characteristic) curve and the AUC (area under 

curve) were calculated using standard approaches, and discrimination index (DI) was defined as (AUC-785 

0.5)×2. DI=0 represents chance level; DI=1 represents perfect classification performance.  

CCA analysis 

To measure the optimal population correlation between cortical areas, we applied a previously reported 

method, the canonical correlation analysis (CCA)16,19. CCA identifies pairs of dimensions from the imaged 

neuronal populations in the two cortical areas, such that the correlation between the projected activities onto 790 

the dimension is maximized. Given the activity of two neuronal populations, a nx × t matrix X from area 1, 

and a ny × t matrix Y, where t is the number of time points, and nx and ny are the number of neurons in each 

area, CCA identifies in total min(nx,ny) pairs of dimensions, and the projection correlation of these dimensions 

decreases from the first to last. Similar to principal component analysis (PCA), CCA finds a set of projection 

axes for each area; the difference is that PCA aims at maximizing the variance explained by top axes from X 795 

and Y, independently, while CCA aims at maximizing the projection correlation between the activity matrices 

X and Y. 

CCA requires a sufficient amount of samples to generate stable solutions35. In our experiments, we typically 

imaged 200-300 neurons in each area, and we recorded 200-400 trials per session. A previous study using 

simulated datasets has shown that ~50 samples per variable is required to generate a stable solution35. To 800 

ensure such condition is met, we first performed PCA to reduce the dimensionality (number of variables) per 

area, keeping the first 30 principal components (PCs). Overall, the top 30 PCs captured a substantial part of 

the variance in the dataset (variance explained by 30 PCs: S1 55.0±1.2, PPC-A 59.9±1.4, PPC-RL 53.7±1.5 
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[mean±SEM]). We aimed at generating a separate CCA model at each time point over the trial time; to further 

increased the sample number, and to avoid outliers as well as to introduce certain temporal smoothness, we 805 

took a sliding time window of 0.5 s (5 frames) for training. Using a smaller time window (0.3 s) yielded more 

noisy but overall similar results (Supplementary Figure 1). For each time window, we randomly divided the 

data into 10 subsets, and generated 10 models by leaving one subset out each time. The final correlation is 

computed as the average from the 10 models. 

The stimuli in the task result in co-activation of neurons caused by common inputs. As we were interested in 810 

the intrinsic interaction between cortical areas, we analyzed the residual activity by subtracting stimulus-

triggered averages of PCs, from eight types of stimulus combination (2 tones, 2 textures, 2 choices). 

Additionally, we observed performance variability within individual sessions, and to ensure that we were 

analyzing trials during which mice were engaged in the task, we divided each session into sub-sessions of 20 

trials, and used only the sub-sessions with performance rate above 75% for analysis. For tone-only and 815 

texture-only conditions, we kept the last 50 trials (out of 100-150 trials) when performance had stabilized. 

This resulted in 40-400 trials for each session.  

Since we reduced the dimensionality of each population to its top 30 PCs, the CCA model generated 30 

dimensions with descending inter-areal correlation. To determine the number of significant dimensions, we 

shuffled the trial correspondence between the two areas 100 times and computed the CCA correlations in the 820 

same way as above. Significance threshold was defined as mean + 3 S.D. (standard deviation) of the highest 

shuffled correlation. CCA dimensions with correlations exceeding the significance threshold were regarded as 

significant dimensions. Overall, we observed 1-2 significant dimensions across datasets and time points, 

therefore we focused on the first CCA dimension for analysis. 

To analyze top-down and bottom-up interactions, we introduced a negative lag of up to 0.5 s with 0.1-s 825 

increment to each area, separately. For top-down interaction, we introduced a negative lag to the PPC data 

(PPC-A or PPC-RL); for bottom-up interaction, we introduced a negative lag to the S1 data. At each lag, we 

generated a CCA model, consisting of two separate loading matrices corresponding to the two areas. Then, for 

each trial type (correct, mismatch-choose-texture, and mismatch-choose-tone), we computed the projection 

correlation of all trials in this trial type. This approach avoided the potential instability of training the CCA 830 

model for each trial type, which does not guarantee enough sample numbers. From here, the lagged 

correlation map was slightly smoothed with a small Gaussian kernel (3 frames, sigma=1) to reduce noise 

between temporally consecutive models, and top-down and bottom-up interaction strengths were computed as 

the average CCA correlations across 0.3 s lags. Using different lags (0.1 s, 0.5 s) gave similar results as shown 

in Fig. 6. The direction and strength of information was quantified as information flow index (IFI), defined as 835 

(bottom-up – top-down)/(bottom-up + top-down). IFI is bounded between -1 and 1; values close to -1 

represent top-down dominant information, values close to 1 represent bottom-up dominant information, 

whereas values close to 0 represent simultaneous or no information transfer. 
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Pearson correlation analysis 

To verify our results of CCA, we also calculated population correlations using Pearson correlation instead of 840 

CCA. The imaging data were processed in the same way as for CCA analysis but population correlation was 

computed as the Pearson correlation between the flattened residual matrices of the two areas. Shuffled 

correlation was computed from trial-shuffled residual matrices. Unlike CCA, which found positive correlation 

in all cases, Pearson correlation resulted in negative values in some cases. For the calculation of IFI, we first 

normalized the lagged correlation map to be between 0 and 1, then calculated IFI for each trial type. 845 

Statistics and Reproducibility  

All statistical analysis was done in MATLAB. In general, Wilcoxon signed-rank test was used for paired 

samples, and Wilcoxon Rank Sum test was used for non-paired samples. No normality test was performed 

since these tests do not assume normality. Equal variance was assumed but not formally tested. Two-sided 

tests were performed unless otherwise indicated. No statistical methods were used to pre-determine sample 850 

sizes, but our sample sizes are similar to those reported in previous publications10,26,59. Error bars represent 

mean±SEM. Boxplots indicate the median (center line), 25% and 75% quartiles (box limits), and 1.5 × 

interquartile range (whiskers). The exact p-values are included in Supplementary Table 1. Mice were 

randomly assigned to imaging conditions (S1-A or S1-RL imaging) on each day. Stimulus presentation during 

imaging was fully randomized. Data collection and analysis were not performed blind to the conditions of the 855 

experiments. 

Data availability 

A subset of the data is available at a Zenodo repository60 due to space limitation. The full dataset is available 

from the corresponding authors upon request.  

Code availability 860 

Example data processing and analysis code is available at a Zenodo repository60. 
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Extended Data Figures 

 875 

Extended Data Figure 1. Additional behavior analysis. (a) Each day, all the trials were split into 2-5 

subsessions of 100-150 trials. Three unstable performer mice that did not reach expert threshold in daily 

average all showed expert performance in individual subsessions. (b) Lick rate over time for naïve and expert 

mice. (c) Response time of naive (performance<55%, 16 mice, 80 sessions) and expert mice 

(performance>75%, 13 mice, 74 sessions). (d) Percentage of trials with lick during tone on the lick port of 880 

final choice for naïve and expert mice. (e) Lick rate during texture for naïve and expert mice. (f) Lick 

probability over trial time on the lick ports according to texture identity (left) or the opposite lick port (right), 

during sessions where mismatched trials were rewarded according to texture (same for g-i). (g) Response time 

for different trial types. Mismatch-choose-tone condition shows a shorter response time overall (p = 0.0147). 

(h) Percentage of trials in each session, in which licks on the final choice spout were recorded during tone 885 

presentation (p=0.0186). (i) Lick rate during texture presentation for different trial types (p=0.0399, 0.0068).  

(j) z-scored pupil diameter in different trial types. (k) Body movement (normalized between 0 and 1 within 

each day) across trial types. (l) Face movement (normalized between 0 and 1 within each day) across trial 

types. (m) Statistics of pupil diameter across trial time. (***p<0.001, **p<0.01, *p<0.05, same for all 

following figures; (b-e): Wilcoxon Rank Sum test, (f-m): Wilcoxon signed-rank test; (a-e, j-m) mice and 890 

session numbers are the same as Fig. 1; (f-i) 6 mice, 17 sessions; Supplemental Table 1). 
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Extended Data Figure 2. Example traces and additional control experiment statistics. (a) The locations 

of S1, PPC-A and PPC-RL were determined by widefield sensory mapping using whisker, visual and 895 

hindlimb stimulation (top) under light anesthesia, as well as visual field sign mapping (bottom). (b) Example 

ΔF/F (black) and deconvolved spike rate (red) of two simultaneously imaged S1 and PPC-A populations. Due 

to space limitation, only 50 neurons are shown for each area. Colored stripes in the background indicate task 

windows. Some neurons were silent in the example time period shown in the plot. (c) Number of imaged 

neurons for each area are not significantly different. (d) Example single trial activities of texture 900 

discriminative neurons. Three example neurons from the same imaging session are shown for each texture 

preference; choice window was resampled to be the 0.5-s window before the reward window. Trial structure 

color code is the same as in (b).  (e) Distribution of PPC task-responsive neurons along the medial-lateral (M-

L) axis. Task-responsive neurons in PPC-RL and PPC-A were assigned to 3 spatial bins along the M-L axis. 

Percentage was calculated using the number of total neurons in each area. Shuffled data is represented in gray, 905 

where the neurons that the match number of responsive neurons were randomly drawn from the population. 

(Wilcoxon signed-rank test; Supplemental Table 1) 
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Extended Data Figure 3. Response amplitude of tone-discriminative neurons. (a) Averaged normalized 910 

spike rate of tone 1 discriminative neurons in S1, PPC-RL and PPC-A, in matched and mismatched trials. The 

spike rate of each neuron was normalized to be between 0 and 1 within each session. (b) Response amplitude 

to tone 1 and 2 of all tone discriminative neurons, during tone window, across areas and trial types. (c) 

Selectivity index of texture discriminative neurons during texture window, in different trial types. Significance 

level was determined from shuffled data where the trial labels were shuffled.  (Wilcoxon Rank Sum test; S1: 915 

130 neurons; PPC-A: 179 neurons; PPC-RL: 105 neurons; Supplemental Table 1) 
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Extended Data Figure 4. Response amplitude of texture-discriminative neurons without the influence of 

choice. (a) Response amplitude to texture 1 and 2 of all texture discriminative neurons that were not choice-920 

responsive, during texture window, across areas and trial types. Each dot represents the response of one 

neuron in one imaging session. (b) Selectivity index of texture discriminative neurons during texture window, 

in different trial types. Selectivity index was calculated as the difference between the average response to the 

preferred texture and the average response to the nonpreferred texture. (S1: 1275 neurons; PPC-A: 248 

neurons; PPC-RL: 514 neurons). (c) Response amplitude to texture 1 and 2 of all texture discriminative 925 

neurons, in trials without early licks. (d) Selectivity index of neurons in (c). Neuron numbers in c-d are the 

same as in Fig. 3. (Wilcoxon Rank Sum test; Supplemental Table 1) 
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Extended Data Figure 5. Response amplitude of texture-discriminative neurons identified by GLM 930 

model. (a) Scheme of GLM regression. Two discrete regressors, texture and choice, were used to model the 

average activity during choice window, for each neuron. Regression performance was measured by the 

correlation value of predicted activity with real activity. Task responsive neurons were identified by 

comparing these correlation values against models generated by shuffling one regressor at a time. (b) 

Percentage of texture- and choice-responsive neurons identified by GLM from texture window. (c) Percentage 935 

of texture- and choice-discriminative neurons identified by GLM from texture window. (d) Percentage of task 

responsive neurons in Fig. 2d that are also identified by GLM method. (e) Percentage of task discriminative 

neurons in Fig. 2e that are also identified by GLM method. (f) Response amplitude to texture 1 and 2 of all 

GLM-identified texture discriminative neurons during texture window. Each dot represents the response of 

one neuron in one imaging session. (g) Selectivity index of texture discriminative neurons in (f). (Wilcoxon 940 

Rank Sum test; S1: 1478 neurons; PPC-A: 458 neurons; PPC-RL: 910 neurons; Supplemental Table 1) 
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Extended Data Figure 6. Choice and reward encoding in S1 and PPC. (a) Neuronal population encoding 

of choice (top panels) and reward (bottom panels). Line colors indicate area identity; solid and dash lines 945 

indicate texture identity of the trial. (b) Discrimination index (DI) of the choice decoder and reward decoder, 

in the tone window and texture window, separately. Stars above each box indicate the significance with 

shuffled data (gray bars) where neurons identities were shuffled, while trial and time correspondence were 

kept the same. Stars across boxes indicate comparison between trial types. (c) DI of texture decoder before 

texture onset (last 0.3 s of tone window, top panel) and after texture onset (first 0.3 s of texture window, 950 

bottom panel). (d) Neuronal population encoding strength of choice (top panels) and reward (bottom panels) 

in single modality experiments. (e) DI of choice decoder and reward decoder in single modality experiments, 

in tone window and texture window, separately. (f) Texture decoder axis similarity (projection axis 

correlation) from decoders trained with each trial type, separately. For each trial type, trials was randomly 

split to two subsets, and two separate decoders were trained. The averaged axis were used for decoder 955 

similarity between trial types, and cross folds represent the similarity between two independent decoders 

trained with the same trial type. Sessions with less than 30 trials for each trial type were excluded to ensure 

enough training samples. (Supplemental Table 1) 
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Extended Data Figure 7. Interaction between S1 and PPC in single modality trials. (a) Lagged canonical 

correlation between S1 and PPC-A averaged across all sessions, for matched stimuli (tone-texture), tone only, 

and texture only conditions. Note the stronger top-down (A to S1) interaction in tone only condition, and 

stronger bottom-up (S1 to A) interaction in texture only condition. (b) Information flow index quantified from 965 

(a). (c) Quantification of information flow index between S1 and PPC-A. (d) Averaged lagged canonical 

correlation between S1 and PPC-RL. Note the slightly stronger top-down (RL to S1) interaction during tone 

window in tone only condition. (e) Information flow index quantified from (d). (f) Quantification of 

information flow index between S1 and PPC-RL. (Wilcoxon Rank Sum test; Supplemental Table 1) 

  970 
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Extended Data Figure 8. Top-down and bottom-up interaction analysis with Pearson correlation. (a) 

Top-down and bottom-up interaction strength were evaluated in the same way as Fig. 6a, except that the 

correlation was calculated using Pearson correlation instead of CCA. (b) Population correlation between S1 

and PPC-A (green), and S1 and PPC-RL (blue). (c) S1-PPCA showed slightly stronger interaction than S1-975 

PPCRL. (d) Information flow index (IFI) of S1-PPCA interaction using Pearson correlation. (e) Quantification 

of (d). (f) Information flow index of S1-PPCRL interaction using Pearson correlation. (g) Quantification of (f). 

(h) Information flow index of S1-PPCA interaction in single modality conditions. (i) Quantification of (h). 

Consistent with CCA analysis, tone only condition led to stronger top-down information flow during tone and 

texture windows. (j) Information flow index of S1-PPCRL interaction in single modality conditions. (k) 980 

Quantification of (j). Consistent with CCA analysis, tone only condition led to stronger top-down information 

flow during tone. (Wilcoxon signed-rank test; Supplemental Table 1) 
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 985 

Extended Data Figure 9. Trial-to-trial response analysis of S1 and PPC-A. (a) Trial-to-trial S1 texture 

decoding strength (texture decoder projection strength in texture window) vs. PPC-A texture decoding 

strength, in an example session. The projection strength is averaged within the corresponding task window, 

and z-scored within each session. Response coefficient is calculated using the center of mass of all data points 

(y value divided by x value). (b) S1 vs PPC-A texture response coefficient of all sessions, using absolute 990 

values. (c) Trial-to-trial S1 texture decoding strength (texture decoder projection strength in texture window) 

vs. PPC-A tone decoding strength (tone decoder projection strength in tone window), in an example session. 

(d) S1 texture vs. PPC-A tone response coefficient of all sessions. (e) Trial-to-trial PPC-A tone decoding 

strength vs. texture decoding strength, in an example session. (f) PPC-A tone vs. texture response coefficient 

of all sessions. (Sample numbers are the same as Fig. 4; Wilcoxon signed-rank test; Supplemental Table 1) 995 
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Extended Data Figure 10. Texture-preferring sessions and tone-preferring sessions. (a) Rate of choosing 

texture in mismatch trials, in 10 highest sessions (purple) and 10 lowest sessions (yellow). The 10 highest 

sessions where mice were prone to choosing texture in mismatch trials were defined as texture-preferring 1000 

sessions. The 10 lowest sessions were defined as tone-preferring sessions. Color code remains the same for 

the rest of this figure. (b) Lick rate on the correct lick port. (c) Response time (p=0.12). (d) Percentage of trial 

with lick during tone. (e) Lick rate during texture. (f) Percentage of tone responsive neurons (left) and tone 

discriminative neurons (right) in these sessions. (g) Percentage of texture responsive neurons (left) and texture 

discriminative neurons (right) in these sessions. (h) Neuronal population encoding of tone (top panels) and 1005 

texture (bottom panels) in correct trials. Solid and dash lines indicate texture identity of the trial. (i) Tone 

decoder discrimination index (DI) quantified in tone window. (j) Tone decoder DI quantified in the first 0.3 s 

of texture window. (k) Texture decoder AUC quantified in the last 0.3 s of tone window. (l) Texture decoder 

DI quantified in the first 0.3 s of texture window. (m) Information flow index of S1-PPCA interaction in tone 

window (left) and texture window (right), during correct trials. (n) Information flow index of S1-PPCRL 1010 

interaction in tone window (left) and texture window (right), during correct trials. (3 mice for texture-

preferring sessions, 4 mice for tone-preferring sessions; Wilcoxon Rank Sum test; Supplemental Table 1) 
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Supplementary Table 1. P-values in the manuscript. 

Figure p-value 

Fig. 1e Compared with expert: p=0.0020, 0.0020, 0.0098, 0.0020; compared with tone 

only: 0.0488 

Fig. 1f p= 0.0273, 0.0488 

Fig. 1g p=4.4830e-19, 4.4830e-19 

Fig. 1h p=0.0084, 1.1619e-11, tested on average of texture window 

Fig. 1i p=0.0283 (one sided) 

Fig. 1j p=0.0002, 0.0104 (one sided) 

Fig. 1k p=0.0001, 0.0015, 0.0089 

Fig. 2d Tone: p=1.4126e-08; texture: p=7.9817e-11; choice: p=4.9107e-06; reward: p= 

1.4432e-12, 6.4039e-10 

Fig. 2e Tone: p=7.9418e-10; choice: p=2.7799e-07; reward: p= 3.1870e-11 

Fig. 2f Tone-texture: p=0.0367, 7.3858e-11; texture-choice: p=6.5923e-05; texture-

reward: p=1.9059e-07; choice-reward: p=0.0037 

Fig. 3c S1: p= 1.4323e-15, 5.4789e-16, 8.4737e-112; PPC-A: p= 8.8990e-20, 5.1659e-

13, 6.6108e-55; PPC-RL: 8.6329e-08, 4.1645e-08, 1.4826e-26 

Fig. 4c Compared with shuffled data: top: S1 p=4.3203e-34, 2.5830e-10, 3.1160e-04, 

5.9213e-11, PPC-A p=9.7800e-23, 1.9952e-22, 4.9413e-16, 8.6432e-17, PPC-

RL p=6.0660e-21, 3.2090e-08 

Between trial types: top: S1 p=2.0369e-05, 3.7612e-04, PPC-A p=1.8325e-

04[vs correct], 0.0068[vs mism], PPC-RL p=5.5810e-06, 0.0041 

Fig. 4d Compared with shuffled: S1 p=1.9298e-06, 2.6822e-07, PPC-A p= 3.2050e-04, 

0.0139; compared across trial types: S1 p=0.0164, 4.6693e-05[vs correct], 

0.0004[vs mism] 

Fig. 4e Compared with shuffled: S1 p=2.3719e-64, 2.0653e-56, 3.4437e-11, PPC-A 

p=2.1810e-24, 0.0097, 1.5753e-17, 5.3249e-13, PPC-RL p= 6.8567e-39, 

5.1950e-07, 1.2797e-36; compared across trial types: S1 p= 2.2052e-18, 

8.9334e-08, 2.3936e-16[vs correct], 7.4622e-07[vs incorrect], PPC-A 

p=3.2124e-07, 2.0661e-04, 3.2124e-07[vs correct], 2.8475e-07[vs incorrect]; 

PPC-RL p=6.5138e-11, 0.0011, 2.0903e-09[vs correct], 6.2877e-05[vs 

incorrect]) 

Fig. 4g Compared with shuffled: top left: p=3.8432e-05, 0.0334; bottom left: 

p=3.8432e-05; bottom right: p=5.2468e-07, 2.1029e-05, 0.0058 

Comparison between areas: top left: p=0.0108, 0.0477; bottom left: p=0.0063 

 

Fig. 5d p=2.2938e-04, 0.0023, 0.0023 

Fig. 5g p=0.0100, 0.0204 

Fig. 6e Tone window: p=0.0351, 0.0013; texture window: p=0.0049, 0.0076 (one side) 

Fig. 6g Tone window: p=0.0042 (one side) 

Extended Data Fig. 1c p= 2.7554e-09 

Extended Data Fig. 1d p= 3.9709e-15 

Extended Data Fig. 1e p=0.0065 

Extended Data Fig. 1g 0.0147 (one side) 

Extended Data Fig. 1h p=0.0186 (one side) 

Extended Data Fig. 1i p=0.0401, 0.0218 
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Extended Data Fig. 1m Tone window: p=1.6248e-10, 3.3100e-04; texture window: p=2.9266e-12, 

9.5395e-06; choice window: p=4.9277e-04, 1.6609e-11, 1.4924e-06; reward 

window: p=6.7886e-12, 0.0100, 2.5266e-04; ITI window: p=1.0898e-05, 

4.3163e-04 

Extended Data Fig. 2e Tone neuron: p=1.6899e-04, 0.0327, 0.0078, 0.0402; texture neuron: p= 

0.0017, 0.0155; reward neuron: p= 0.0141, 0.0206 

Extended Data Fig. 3c S1: p= 6.9836e-05, 6.5088e-04, 2.5933e-06; PPC-A: p= 0.0043, 0.0239, 

2.0700e-46, PPC-RL: p= 6.9366e-07, 0.0013 

Extended Data Fig. 4b S1: p= 3.8504e-15, 4.5298e-13, 1.6075e-80; PPC-A: p= 2.1703e-37, 6.8623e-

13, 6.8327e-55; PPC-RL: p= 2.8199e-08, 1.4840e-08, 3.0525e-22 

Extended Data Fig. 4d S1: p=5.7216e-14, 7.9508e-16, 5.4646e-113; PPC-A: p=8.3643e-20, 4.8474e-

13, 8.7548e-55; PPC-RL: p=1.3842e-07, 7.7883e-08, 1.0041e-25 

Extended Data Fig. 5g S1: 2.0967e-52, 7.8937e-08, 6.4243e-131, 3.9429e-28, 6.4268e-83; PPC-A:   

7.7203e-42, 1.8218e-05, 1.4627e-82, 1.2112e-16, 9.8593e-58; PPC-RL: 

5.8268e-17, 2.4701e-05, 1.2193e-65, 5.6878e-24, 2.4171e-43 

Extended Data Fig. 6b Compared with shuffled data: top: S1 p=0.0080, PPC-A p=0.0109, 5.0330e-05, 

1.4198e-05, PPC-RL p=0.0044; bottom: S1 p=5.2103e-48, 6.5608e-26, 

3.1616e-40, 6.6275e-34, PPC-A p=5.7491e-23, 1.0115e-17, 2.8445e-22, 

4.5501e-18, PPC-RL p=1.5158e-30, 1.3736e-06, 7.7303e-32, 9.9296e-14 

Comparison between trial types (top: PPC-A p=0.0031, 0.0014; bottom: S1 

p=6.5587e-10, 5.7919e-05, PPC-A p=0.0020, PPC-RL p=2.3651e-08, 2.2895e-

07 

Extended Data Fig. 6c Top panel, compared to shuffled data: p=5.0438e-26, 9.8588e-17, 1.0282e-12, 

1.3982e-04, 1.4672e-09, 3.4750e-05; compared between areas: p=0.0295 

Bottom panel, compared to shuffled data: p=2.4486e-59, 1.2376e-24, 5.9757e-

34, 1.1554e-05, 0.0063, 2.5388e-06, 9.4988e-46, 1.1077e-06, 2.1090e-27, 

9.3130e-08; compared between areas: p=2.4071e-04, 1.4038e-04 

Extended Data Fig. 6e Compared with shuffled data: top left: p=1.0459e-06; top right: p=9.2264e-05, 

1.6164e-05, 1.3840e-06; bottom left: p=1.7571e-04 

Comparison between areas: top left: p=0.0024; bottom left: p=0.0216 

Extended Data Fig. 6f S1: p=1.1076e-10, 1.1076e-10, 1.1076e-10, 1.1076e-10; PPC-A: p=0.0350, 

1.7344e-06, 1.7344e-06, 1.7344e-06, 1.7344e-06; PPC-RL: p=0.0247, 

1.2290e-05, 1.2290e-05, 1.2290e-05, 1.2290e-05 

Extended Data Fig. 7c Tone window: p=0.0053, 0.0264; texture window: p=0.0100, 0.0133 (one side) 

Extended Data Fig. 7f Tone window: p=0.0042, 0.0213 (one side) 

Extended Data Fig. 8e p=0.0247, 0.0167 (one side) 

Extended Data Fig. 8g p=0.0316 (one side) 

Extended Data Fig. 8i tone: p=0.0459, 0.0106; texture: p=0.0459  

Extended Data Fig. 8k p=0.0265 

Extended Data Fig. 9b p=1.0253e-04 

Extended Data Fig. 9d p=4.7115e-06 

Extended Data Fig. 9f p=0.0229, 0.0152 

Extended Data Fig. 10d p=0.0091 

Extended Data Fig. 10e p=0.0022 

Extended Data Fig. 10f p=0.0006, 0.0018 

Extended Data Fig. 10g p=0.0173, 0.0046 

Extended Data Fig. 10i p=7.6854e-04, 1.8267e-04 
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Extended Data Fig. 10j p=0.0312 

Extended Data Fig. 10k p= 0.0046, 0.0452 

Extended Data Fig. 10l p=0.0452, 0.0452 

Extended Data Fig. 10m p=0.0376 

 1015 
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Supplemental Figure 1. CCA results with 0.3 s time window. 

 

 

 1020 

(a) Top canonical correlation between S1 and PPC-A (green), and S1 and PPC-RL (blue), using a 0.3-s sliding 

window. Light colors indicate shuffled correlation, where only the trial correspondence between the two areas 

were shuffled, while trial structure was kept the same. (b) Number of significant dimensions in S1 and PPC-

A, and S1 and PPC-RL pairs, using a 0.3-s sliding window. (c). Information flow index of S1 and PPC-A 

interaction, using a 0.3-s sliding window. (d) Information flow index of S1 and PPC-RL interaction, using a 1025 

0.3-s sliding window.  (S1↔PPC-A: 9 mice, 40 sessions; S1↔PPC-RL: 13 mice, 71 sessions) 

 

 

 


