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A B S T R A C T   

Genetic load and inbreeding are recognized as important factors to be considered in conservation programs. 
Elevated levels of both can increase the risk of population extinction by negatively impacting fitness-related 
characters in many species of plants and animals, including humans (inbreeding depression). Genomic tech-
niques are increasingly used in measuring and understanding genetic load and inbreeding and their importance 
in evolution and conservation. We used whole genome resequencing data from two sibling grouse species in 
subarctic Eurasia to quantify both. We found a large range of inbreeding measured as FROH (fraction of runs of 
homozygosity) in individuals from different populations of Chinese Grouse (Tetrastes sewerzowi) and Hazel 
Grouse (T. bonasia). FROH estimated from genome-wide runs of homozygosity (ROH) ranged from 0.02 to 0.24 
among Chinese Grouse populations and from 0.01 to 0.44 in Hazel Grouse. Individuals from a population of 
Chinese Grouse residing in the Qilian mountains and from the European populations of Hazel Grouse (including 
samples from Sweden, Germany and Northeast Poland) were the most inbred (FROH ranged from 0.10 to 0.23 and 
0.11 to 0.44, respectively). These levels are comparable to other highly inbred populations of birds. Hazel Grouse 
from northern China and Chinese Grouse residing in the Qinghai-Tibetan Plateau showed relatively lower 
inbreeding levels. Comparisons of the ratio between deleterious missense mutations and synonymous mutations 
revealed higher levels in Chinese Grouse as compared to Hazel Grouse. These results are possibly explained by 
higher fixation rates, mutational melt down, in the range-restricted Chinese Grouse compared to the wide- 
ranging Hazel Grouse. However, when we compared the relatively more severe class of loss-of-function muta-
tions, Hazel Grouse had slightly higher levels than Chinese Grouse, a result which may indicate that purifying 
selection (purging) has been more efficient in Chinese Grouse on this class of mutations.   

1. Introduction 

Inbreeding (mating between relatives) is a major concern for con-
servation as it may lead to inbreeding depression (Wright, 1977; Shields, 
1987) and fixation of harmful mutations (Lynch and Gabriel, 1990), 
thereby decreasing individual fitness which will increase the risk of 
population extinction (Soulé, 1980; Frankham, 1995a,b; Newman and 
Pilson, 1997; Charlesworth and Willis, 2009; Kardos et al., 2018). 
Inbreeding may become especially prevalent over time in small, 

fragmented and isolated populations (Höglund, 2009). Therefore, 
habitat fragmentation is likely to increase extinction proneness 
(Frankham, 1995a,b; Frankham, 1995a,b). The manifestation of 
inbreeding depression is determined by the segregating mutation load in 
any given population (van Oosterhout, 2020; Bertorelle et al., 2022). 
Since mutations are more common in large populations, by the fact that 
they contain more individuals, mutation load is expected to be positively 
correlated with population size (Kardos et al., 2021). In large pop-
ulations, however, the effects of deleterious mutations will be partly or 
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wholly phenotypically masked by favorable genetic variants in hetero-
zygote diploid organisms (Kardos et al., 2021; Kyriazis et al., 2021). 
Thus, in large populations the “segregation load” increases. When 
populations become small and inbred, such mutations may become 
unmasked, causing inbreeding depression and purifying selection may 
purge them from the population (Bertorelle et al., 2022; Mathur et al., 
2022; Smeds and Ellegren, 2022). A process which is affected by the 
severity of the fitness effect of the mutation, i.e. the selection intensity, is 
stronger on serious mutations (Kyriazis et al., 2021). However, some 
deleterious mutations may become fixed by genetic drift (sometimes 
referred to as mutational meltdown) and hence the “fixation load” may 
increase in small populations (van Oosterhout, 2020; Bertorelle et al., 
2022). What load to expect in populations of conservation concern is 
thus a complex interplay between the demographic history such as 
fragmentation and population size fluctuations and the strength of 
purifying selection (Hedrick and Garcia-Dorado, 2016; Kardos et al., 
2021). 

The Chinese Grouse (Tetrastes sewerzowi) and Hazel Grouse (T. 
bonasia) are a pair of sibling species of the genus Tetrastes inhabiting 
boreal forests in the Qinghai-Tibetan Plateau (QTP) in the case of Chi-
nese Grouse (Sun, 2000) and the Eurasian taiga in the case of Hazel 
Grouse (Storch, 2000). The Chinese Grouse has a narrow and frag-
mented distribution in the southeastern edge of the QTP, as well as a 
small long-term isolated population in the Qilian Mountains (Sun, 2000; 
Sun et al., 2003; Song et al., 2020). The Hazel Grouse is distributed in the 
large boreal forest region in northern and central Eurasia (Vaurie, 1965; 
Storch, 2000). The Hazel Grouse is classified as Lower Risk (Least 
Concern) overall by the International Union for the Conservation of 
Nature (IUCN) (IUCN, 2020), but it is on the red-list in some central and 
southern European countries because local populations have become 
extinct or are declining over large portions of its range in Europe 
(Swenson, 1991; Rózsa et al., 2016). The effective population size of 
Hazel Grouse in the Far East is large, but it is lower in the European 
populations which were bottlenecked during the Last Glacial Maximum 
(Song et al., 2021). 

Here, we used whole genome resequencing data from individuals 
from different parts of the distribution range of both species to quantify 
inbreeding and genetic load. Importantly, both of these species have 
limited dispersal capabilities with narrow habitat requirements and 
some populations have been long-term isolated and have experienced 
bottlenecks (Storch, 2000). We inferred inbreeding levels by analyzing 
runs of homozygosity (ROH) for each individual. We then estimated 
genetic load for each individual by estimating the proportion of 
homozygous-derived mutations in regions of the genomes for delete-
rious missense mutations and the more severe class of loss-of-function 
mutations. Finally, we determined which genes have been fixed for 
both classes of mutations in Chinese Grouse. Our aim was to study how 
genetic load is shaped by the kind of mutations segregating in natural 
populations, as well as the demographic history and present threat status 
of the populations. 

2. Methods 

2.1. Study population and DNA samples 

A total of 29 individual grouses from 8 locations were collected, 16 
from three Chinese Grouse populations (3 from the Qilian Mountains 
(QLS); 3 from Zhuoni (ZN); 10 from the Lianhuashan National Nature 
Reserve (LHS)) along with 13 individuals from four Hazel Grouse pop-
ulations (1 from Northeast Poland (NEP); 1 from the Austrian Alps and 3 
from Bavarian forests in Germany (GER); 3 from Jämtland, Sweden 
(SWE); and 5 from Northeast China (XLJ), Fig. 1A, Appendix Table S1). 
Blood or muscle tissue was collected and preserved in 99% ethanol and 
stored at − 20 ◦C. Genomic DNA was extracted using DNeasy Blood & 
Tissue kit (Qiagen, Germany) (Song et al., 2021). 

All samples were sequenced using the Illumina 150 PE sequencing 
strategy at Annoroad Gene Technology (Beijing, China). DNA libraries 
were constructed according to the manufacturer’s recommendations. 

Fig. 1. (A) Map of the distribution of Hazel Grouse (blue) and Chinese Grouse (red). The inset shows a detailed range map for Chinese Grouse (maps from Song et al., 
2021). (B) Average fraction of the genomes in autozygosity (FROH) for Chinese Grouse and Hazel Grouse. (C) The ratio between deleterious missense mutations to 
synonymous mutations in the different individuals sequenced. (D) The ratio of loss-of-function to synonymous mutations. Brownish colors indicate Chinese Grouse 
and blueish Hazel Grouse. For population abbreviations, see text. The stars indicate statistical significance. (**P < 0.01, ***P < 0.001). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.2. Mapping and SNP-calling 

All FASTQ data were adapter and quality trimmed using Trimmo-
matic with recommended settings (Bolger et al., 2014) and mapped 
against the chicken (Gallus gallus, GRCg6a) reference genome (Warren 
et al., 2017) using bwa-mem (Li, 2013) with default settings. We map-
ped to an outgroup species to ensure our results are not affected by 
reference bias arising from mapping to an ingroup reference. Although 
mapping to an outgroup reference may result in underrepresentation of 
fast evolving sites, genetic load estimates will not be biased toward any 
of the studied taxa, as gene order and synteny are generally conserved 
among birds (Backström et al., 2006; Hale et al., 2008). Chicken and the 
two grouse species studied here belong to the same avian family “Pha-
sianidae” and have been separated for about 30 million years (Persons 
et al., 2016). Samtools was used to filter out reads below a mapping 
quality of 30 (phred-scale) (Li, 2011). Next, reads were realigned around 
indels using GATK IndelRealigner (McKenna et al., 2010) and we 
marked duplicates using Picard2.10.3 (https://broadinstitute.github.io 
/picard/). Next, we called single nucleotide polymorphisms (SNPs) 
with GATK UnifiedCaller outputting all sites (Danecek et al., 2011). Raw 
variant calls were then hard filtered following the GATK best practices 
(Van der Auwera et al., 2013). Additionally, we removed all SNPs below 
quality 30 (phred-scale), those with more than three times average 
genome-wide coverage across the data set. Sites for which >75% of 
samples had a non-reference allele in a heterozygous state, indels, and 
sites within highly repetitive regions were identified from the 
repeatmask-track for the GRCg6a reference using VCFtools (Danecek 
et al., 2011). 

2.3. Runs of homozygosity 

To evaluate the level of inbreeding, runs of homozygosity (ROH) and 
the fraction of ROHs (FROH) were called using BCFtools/RoH (Nar-
asimhan et al., 2016), a hidden Markov model approach for detecting 
autozygosity from next-generation sequencing data. We restricted this 
analysis to scaffolds identified during the mapping stage by using 
SAMtools view on each mapped file (Li et al., 2009). Variant call files 
(VCF) were generated using bcftools (Danecek et al., 2011) mpileup 
with flags “-Ou” and subsequently indels were filtered out with 
flags-remove-indels. Indels were skipped during this step, because ge-
notype calls in these regions tend to be enriched for errors, due to low 
mapping quality and mismapping. We filtered these files for sites with a 
depth greater than of 10 × and with a quality score over 30 and –maf 
0.05 in the population level. Subsequently, we ran BCFtools RoH with 
flags “-G 30” and “–AF-dflt 0.4” to specify the use of genotype calls with 
a quality of 30 or more and to set a default allele frequency. Because of 
small per population sample size, we decided to fix the alternative allele 
frequency (option –AF-dflt) to 0.4. 

2.4. Genetic load 

To estimate genetic load in the Chinese and Hazel Grouse, we used 
the mappings and genome annotation of the chicken (GRCg6a). The 
variant effect predictor tool (McLaren et al., 2016) was used to identify 
loss-of-function mutations (transcript ablation, splice donor variant, 
splice acceptor variant, stop gained, frameshift variant, inframe inser-
tion, inframe deletion, and splice region variant), missense, and syn-
onymous mutations on the filtered SNP calls. SIFT was then used to 
identify those missense mutations which are likely deleterious (Ng and 
Henikoff, 2003). As an indication of mutational load, for each individ-
ual, we counted the number of genes containing one or more 
loss-of-function and the total number of deleterious missense mutations 
and divided both by the number of synonymous mutations (dN/dS) (Fay 
et al., 2001). We excluded all missense mutations within genes con-
taining a loss-of-function mutation, as these are expected to behave 
neutrally. Dividing by the number of synonymous mutations mitigates 

species-specific bias, such as mapping bias because the reference 
genome was derived from the chicken, coverage differences, and mu-
tation rate. 

We identified all missense mutations where all Chinese Grouses carry 
the derived allele in the homozygous state and all Hazel Grouses with 
the ancestral allele or vice versa (using the chicken-reference as proxy 
for the ancestral state). Genes were then ranked by the number of fixed 
derived alleles they carry in each of the species. 

2.5. GO-term analysis 

To explore the evolution of functional categories, we used Kobas (Xie 
et al., 2011) to annotate the genes under selection in each of the species 
using the chicken reference genome (GRCg6a). These genes were sub-
mitted to Gene Ontology and KEGG databases for enrichment analysis. 
We used a false discovery rate (FDR) corrected binomial distribution 
probability approach to test significant enrichment gene function at a 
level of P < 0.05 (Benjamini and Hochberg, 1995). 

3. Results 

There was a large range of FROH in both species. The range was from 
0.02 to 0.24 among Chinese Grouse individuals and from 0.01 to 0.43 
among Hazel Grouse (Appendix Table S1). This demonstrates that some 
populations of both Chinese Grouse and Hazel Grouse populations dis-
played relatively high levels of inbreeding. This was especially so for 
individuals from the QLS population of Chinese Grouse and European 
populations of Hazel Grouse (SWE, GER and NEP). Individuals from the 
other populations of Chinese Grouse (LHS and ZN) and Hazel Grouse 
(XLJ) displayed lower inbreeding levels (Appendix Fig. S1, Table S1). On 
average, Chinese Grouse showed lower inbreeding than Hazel Grouse 
(Student’s t = 3.01, df = 27, P < 0.006, Fig. 1B). 

The ratio of deleterious missense mutations to synonymous muta-
tions was more prevalent in the range-restricted Chinese Grouse (Stu-
dent’s t = 171.0, df = 27, P < 0.001, Fig. 1C) as compared to Hazel 
Grouse. However, when we compared the ratio between loss-of-function 
and synonymous mutations, Hazel Grouse had slightly higher genetic 
load (Student’s t = 4.55, df = 27, P < 0.001, Fig. 1D) but the ratio of this 
class of mutations was an order of magnitude less than that of delete-
rious missense mutations (see also Appendix Table S2). 

We inferred the relative length and abundance of ROHs with muta-
tions and the positions of mutations for each individual on the longest 
scaffold of a Chinese Grouse assembly (Song et al., 2020) and found 
slightly longer such ROHs in Hazel Grouse than in Chinese Grouse 
(Nested ANOVA, F = 12.04, df = 1, P < 0.001, Fig. 2A). In Hazel Grouse, 
we found that mutations were evenly spread both inside and outside 
ROHs (e.g., contig 20 harbor many mutations, Appendix Fig. S1) and 
longer ROHs in the Swedish population (Nested ANOVA, F = 30.3, df =
2, P < 0.001, Fig. 2A). In Chinese Grouse, we found some ROHs absent of 
mutations (e.g., contig 20, 24, 27, 28 and 31, Appendix Fig. S1) and 
shorter ROHs in the relatively larger and more connected ZN population 
(Nested ANOVA, F = 31.62, df = 2, P < 0.001, Fig. 2A). The length of the 
genes carrying mutations were on average slightly longer in Hazel 
Grouse compared to Chinese Grouse (Nested ANOVA, F = 234.4, df = 1, 
P < 0.001, Fig. 2B). These results indicate that ROHs containing muta-
tions have been purged from the genomes of Chinese Grouse. 

We identified the genes fixed in Chinese Grouse which carried 
missense mutations and found that these included genes linked to dis-
ease resistance by being identified to be associated to anemia, cytokine 
receptors, influenza and herpes virus as well as homologous recombi-
nation (Appendix Tables S3 and S4). 

4. Discussion 

In this study, we compared inbreeding levels and genetic load in 
Hazel Grouse that has a large and wide-ranging distribution and Chinese 
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Grouse that has a more narrow and restricted distribution. If range 
distribution scales with population size one would thus expect both 
census and effective population size to have been lower through long 
periods of time in Chinese Grouse compared to Hazel Grouse, a pre-
diction not entirely borne out in a recent study of the demographic 
history of the two species (Song et al., 2021). Instead, PSMC analyses (Li 
and Durbin, 2011) using genome-wide data from the same 29 in-
dividuals from these sibling Tetrastes species as in this study revealed 
complex demographic scenarios, with each species showing different 
rises and declines in effective population size (Song et al., 2021). 
Importantly, MSMC analyses (Schiffels and Durbin, 2014) indicated 
recent declines in populations of both species. Here, we estimated ROHs 
and genetic load for each individual to quantify realized genomic 
inbreeding and to identify genomic regions that may contribute to 
inbreeding depression and which may have been subjected to purging. 

In general, the levels of ROH among populations is expected to be 
related to conservation concern with smaller and fragmented pop-
ulations having more and longer ROHs and large and connected pop-
ulations fewer and shorter ROHs (Ceballos et al., 2018). Our results 
suggest that Chinese Grouses on average are not more inbred than Hazel 
Grouse but with larger individual variation. Within species, European 
populations of Hazel Grouse were significantly more inbred when 
comparing ROHs in other populations. The effective population size of 
European populations of Hazel Grouse was lowered repeatedly during 
the last ice age 20 Kya which led to fragmented and isolated populations, 
which had to recolonize Northern Europe (Sweden and Germany) 
(Ingolfsson et al., 2006; Song et al., 2021). In contrast, the XJL popu-
lation of Hazel Grouse resided in an area which was a refugium during 
the last ice age, resulting in a relatively large outbred population at 
present (Abbott et al., 2000; Saarnisto and Lunkka, 2004). In Chinese 
Grouse, the QLS population has experienced persistent low effective 
population sizes in a small isolated population at the northeast edge of 
the QTP, the Qilian Mountains (Zhan et al., 2011; Song et al., 2021). We 
found a larger fraction of the genomes in ROH in this population which 
suggests the QLS population has suffered inbreeding for a long time but, 
despite this, has survived for many generations at small effective pop-
ulation size (Keller and Waller, 2002; Charlesworth and Willis, 2009). 

Purging can reduce genetic load and the depression of fitness 
through more efficient purifying selection facilitated by inbreeding 
(Hedrick, 1994; Tallmon et al., 2004; García-Dorado, 2012). Identifying 
the efficacy of purifying selection in large and small populations of en-
dangered species could therefore aid in animal conservation (van der 
Valk et al., 2019a,b). When we estimated the ratio between deleterious 
missense and synonymous mutations (the more benign class of muta-
tions studied here), Chinese Grouse displayed higher load than Hazel 
Grouse, possibly indicating mutation accumulation (mutational melt 
down) (Lynch and Gabriel, 1990) in the range-restricted species. How-
ever, when we measured the ratio between loss-of-function and synon-
ymous mutations (the more severe class of mutations), purifying 
selection seemed to have been operating since this class of mutations 

were an order of magnitude less common than deleterious missense 
mutations. However, there was no large difference for this class of 
mutations when comparing Chinese Grouse and Hazel Grouse although 
the range-restricted Chinese Grouse displayed slightly less load. Dele-
terious missense mutations should be less deleterious compared to 
loss-of-function mutations (van der Valk, 2019) which should imply 
stronger selection intensities (purging) on the latter. The KEGG-pathway 
and Gene Ontology analyses further suggest that the mutations that have 
become fixed in Chinese Grouse may be important for the organism and 
may even have been subjected also to positive selection as our analyses 
identified that many of them were found in genes associated with ane-
mia, cytokine receptors, influenza and herpes virus as well as homolo-
gous recombination in model organisms. 

Our population genomic analyses thus indicated that the range- 
limited Chinese Grouse had a lower mutational load when loss-of- 
function mutations are considered than the wider ranging Hazel 
Grouse. A result in line what has been found when comparing large and 
small populations in other studies such as those of Mountain Gorillas 
(Gorilla beringei beringei) (Xue et al., 2015), Channel Island Fox (Urocyon 
littoralis) (Robinson et al., 2018), Alpine Ibex (Capra ibex) (Grossen et al., 
2020), the Kākāpō (Strigops habroptilus) (Dussex et al., 2021), Indian 
tigers (Khan et al., 2021), European and Iberian Lynx (Lynx pardinus) 
and Ethiopian Wolf (Canis simensis) (Mooney et al., 2023). These pat-
terns have generally been explained by more efficient purging in smaller 
populations, a scenario which may also apply for loss-of-function mu-
tations in the case of the two sibling species of grouse in our study. The 
fact that some ROHs in Chinese Grouse are completely devoid of mu-
tations speaks in favor of such an interpretation. However, contrary to 
the studies cited above, which found the same pattern of reduced load 
also for missense mutations, we found that deleterious missense muta-
tion load was higher in Chinese Grouse than in Hazel Grouse. This in-
dicates that missense load may accumulate more easily (Feng et al., 
2019; Hedrick et al., 2019; van der Valk et al., 2019a,b; Szpiech et al., 
2013) whereas the more serious fitness effects imposed by 
loss-of-function mutations may become removed by purging (Wootton 
et al., 2023). Our results thus indicate that genetic load is shaped by a 
complex interplay of the kind of mutations segregating in natural pop-
ulations and their demographic history and present threat status. 
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