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A B S T R A C T

Crop growth simulation models are often used to estimate crop yield. For most models, this re-
quires crop, water, and soil management information, though this information is often lacking in
many regions of the world. Assimilation of Earth observation (EO) data in crop growth models
can generate field-level yield estimates over large areas. The use of EO for assimilation often re-
quires a trade-off between spatial and temporal resolution. Spatiotemporal data fusion can pro-
vide higher spatial (≤30m) and temporal resolution data to avoid this trade-off. In this study, we
evaluated the timing and frequency of EO data assimilation in the Simple Algorithm for Yield Es-
timation (SAFY) in a persistently cloudy and fragmented agroecosystem of Ethiopia for 2019 and
2020 growing seasons. We used Landsat and MODIS data fusion to obtain frequent and spatially
detailed LAI estimates and assimilated at each main maize growth stage to evaluate the effect of
timing and frequency of LAI assimilation. The jointing to grain filling stage observations were
more important (RMSE = 117 g/m2, rRMSE = 16%) than other growth stages to improve yield
estimation. Using LAI estimates at key crop growth stages was more influential than the fre-
quency of LAI estimates. Reasonably accurate yield estimation (rRMSE = 20%) was obtained us-
ing the pre-peak growth stage LAI observations, suggesting that the method is suitable for in-
season yield forecasting. LAI retrieval errors from EO data, particularly at the early and late
growth stages, were the source of yield estimation uncertainty. Therefore, assimilation of other
EO-derived biophysical variables and improving LAI retrieval accuracy from EO data could fur-
ther improve crop growth model performance in smallholder agricultural systems.

1. Introduction
Timely and accurate crop growth and yield estimates contribute to national food security assessments, production estimates, and

early warning systems (Hunt et al., 2019; Lobell et al., 2015). Such estimates are particularly important in regions where food insecu-
rity is pervasive, such as sub-Saharan Africa (Elders et al., 2022). Fragmented agricultural landscapes, data uncertainty and poor
model parameterization are the main challenges to estimate crop yield in many African countries (Lobell 2013). Crop growth models
can provide timely and reliable yield estimation, but most models are designed for plant and field-level simulations and have many in-
put data requirements that limit their application over larger areas (Curnel et al., 2011). EO data can be integrated into crop growth
models to obtain frequent field-level information for large-area crop yield estimation (Marshall et al., 2018). However, often involve a
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trade-off between temporal and spatial resolution. We outline the state of the art in crop modelling with EO data and identify knowl-
edge gaps related to the optimal assimilation of EO time series data for yield estimation and crop yield forecasting in smallholder agri-
culture landscapes.

Complex crop growth models have been developed to simulate crop yield by reproducing the interaction of crop physiology and
management activities (Jin et al., 2018b). These models require many inputs and parameters related to crop phenology, management,
and soil characteristics to estimate crop yield, which are often unavailable for smallholder farming systems (Battude et al., 2016;
Lobell et al., 2015; Meshesha and Abeje 2018). Alternatively, semi-empirical models combine the theory of light use efficiency (LUE)
(Monteith 1972) and crop biophysical processes to estimate biomass and yield with few inputs and parameters (Claverie et al., 2012).
The LUE-based models can also translate EO-derived biophysical parameters into total biomass based on the assumption that biomass
productivity is proportional to photosynthetically active radiation to fill the large ground data requirements (Lobell 2013). The Sim-
ple Algorithm for Yield Estimates (SAFY) (Duchemin et al., 2008), for example, simplifies the process of crop growth modelling by de-
scribing the biophysical crop processes (e.g., leaf senescence, biomass accumulation) with empirical parameters to overcome limita-
tions arising from complicated parameterization (Claverie et al., 2012).

EO data have been integrated with crop models - through data assimilation - to provide model parameters that require frequent
observation and then used to estimate yield over a large area (Huang et al., 2015). Assimilation of remotely sensed biophysical vari-
ables into a crop growth model can reduce the uncertainties of varying soil, crop type and crop management and improve the accu-
racy of crop growth and yield estimations (Huang et al., 2019a; Jégo et al., 2012). Assimilation of EO data for large scale yield estima-
tion in smallholder farming systems requires both high spatial and high temporal resolution EO data. Assimilation of higher spatial
resolution EO data such as Landsat can offer high spatial detail but often fails to provide sufficient observations through different crop
growth stages due to satellite revisit and cloud cover (Huang et al., 2019b; Whitcraft et al., 2015). MODIS data are available at daily
or 8- day frequencies, but the coarse spatial resolution (≥250m) contains mixed pixel information in smallholder farming systems
(Waldner et al., 2019). Assimilation using both high spatial and high temporal resolution cloud-free time series data is an ideal but of-
ten unobtainable situation (Huang et al., 2015).

Spatiotemporal data fusion that blends low spatial/high temporal with high spatial/low temporal resolution data (Zhu et al.,
2010) can be used to obtain high spatial and high temporal resolution EO data for crop yield estimation. Landsat and MODIS data
have been fused to capture the spatial variation of crop yield due to the spectral similarities of the sensors (Gao et al., 2018; Liao et al.,
2019). Dong et al. (2016) showed that data fusion improves crop growth model simulations when the number of available high-
resolution observations is limited. Previous studies in smallholder farming systems demonstrated that Landsat–MODIS fusion can de-
tect the spatial and temporal variation of crop phenology and LAI in fragmented agricultural landscapes (Sisheber et al. 2022, 2023,
2024). While these studies have addressed the trade-off between temporal and spatial resolution, there is limited research on the ef-
fect of timing and frequency of EO data in the calibration of crop growth models to obtain optimal yield prediction in data-scarce re-
gions (Tewes et al., 2020b).

Temporal gaps in EO data are the source of model parameterization uncertainties and yield estimation errors (Huang et al. 2015,
2019b; Jégo et al., 2012). The frequency of EO data can increase the accuracy of LAI retrieval and phenology detection from EO data,
which are essential in capturing the crop growth and development (Tewes et al., 2020a). Data assimilation studies also suggest that
acquiring observations at key crop growth stages is more important for optimal crop model performance (Li et al., 2017; Waldner et
al., 2019; Wu et al., 2021). For instance, Wu et al. (2021) showed that observations between jointing and booting had the highest im-
pact on WOrld FOod STudies (WOFOST) model estimation in Hebeir Province, China. Tewes et al. (2020b) stated that the assimila-
tion of one LAI estimate at the tillering or booting to the flowering stage was sufficient for accurate yield estimation.

The effect of frequency and timing of observations also depends on the data assimilation methods (Casa et al., 2012). EO data can
be assimilated using forcing, updating and calibration approaches (Huang et al., 2019a). In the forcing and updating approaches, EO-
derived state variables such as LAI replace model-simulated LAI based on the assumption that a better simulation at the date of data
assimilation will also improve the model simulation for the subsequent date's yield simulation (Jin et al., 2018b; Li et al., 2017). Al-
though the calibration approach is preferred because it minimizes model simulated and EO estimation LAI errors, the optimal fre-
quency and timing are less clear since the EO-derived LAI is used to optimize model parameters rather than directly replacing model
simulated values (Curnel et al., 2011). Therefore, evaluating the optimal timing and frequency of observations to calibrate crop
growth models needs investigation in regions where persistent cloud cover obscures the surface from remote sensing.

The objective of this study was to explore the optimal timing and frequency of optical EO to improve maize yield estimation in a
semi-empirical crop growth model (SAFY) using Landsat and MODIS fused time series observations in Ethiopia. The study analysed
the uncertainty of crop model simulation due to the temporal resolution of the input data used for assimilation. We optimised SAFY
using Landsat–MODIS fused LAI at 8-, 16-, 24- and 32-day intervals to explore the effect of frequency on yield simulation. The timing
and distribution of EO data for assimilation were subsequently analysed by assimilating LAI at different maize phenological stages.

Understanding the optimal frequency and timing of EO data required by the crop growth model can be used for pre-and post-
harvest yield estimation over growing seasons and over large areas, which is essential for food security related applications in data-
scarce smallholder agricultural systems.

2. Materials and methods
2.1. Study area

The study covers four districts surrounding the Lake Tana sub-basin in Ethiopia (Fig. 1). The elevation ranges from 1600 to
3500 m above mean sea level. The mean annual average temperature and cumulative precipitation range from 13 °C to 22 °C and
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Fig. 1. Map of the study area showing the distribution of sample points.

970 mm–1900 mm, respectively. The main rainy season (locally called kiremt, or summer) occurs between June and September. It
supports the main (meher) cropping season. The northward movement of the inter-tropical convergent zone (ITCZ) drives kiremt rain-
fall. A short and highly variable rainfall period (belg or spring) also occurs between March and May, while October to January (bega or
winter) is the dry season that also influences meher crop production (Gummadi et al., 2018). Maize is the primary crop in these dis-
tricts and is sown between June and early August and harvested between November and mid-December (see Fig. 3).

2.2. Description of the crop growth model
Complex crop models such as WOFOST and the Decision Support System for Agrotechnology Transfer (DSSAT) require large in-

puts and parameters, which are often difficult to obtain (Dong et al., 2020; Huang et al., 2019a). The simple models calculate biomass
as an empirical sum of vegetation indices derived from EOs and are uncomplicated to parameterize, but they are less suited for crop
monitoring because they do not account for crop type and management. However, semi-empirical models that combine the LUE the-
ory with a simulation of the successive plant phenological stages gather the descriptions of the main biophysical processes and empir-
ical parameterizations (Claverie et al., 2012; Lobell 2013). These models are becoming more popular due to their ability to use re-
motely sensed biophysical variables (Marshall et al., 2018; Silvestro et al., 2017).

In this study, we used the SAFY model because it has few input requirements and because it can be coupled with EO to estimate
yield over a large area (Claverie et al., 2012; Dong et al., 2016; Silvestro et al., 2017). SAFY is a semi-empirical model designed to esti-
mate the dynamics of Leaf area index (LAI), dry aboveground biomass (DAM), and yield at daily time steps from the day of crop emer-
gence (D0) to the day of senescence. The SAFY model simplifies crop nutrition and water stress into one effective light-use efficiency
(ELUE) parameter. The daily incoming shortwave radiation (Rg), climate efficiency (εC), the fraction of absorbed photosynthetically
active radiation (fAPAR), daily average air temperature (Ta) and ELUE are then used as the input to simulate DAM (eq. (1)). The final
grain yield is determined as a function of accumulated DAM production and the grain partitioning (Py) parameters, similar to the har-
vest index (eq. (2)) (Duchemin et al., 2008).

DAM = Rg ∗ AC ∗ (1 − exp (−k ∗ LAI)) ∗ ELUE ∗ Ft (1)
Y = DAMmax × Py (2)

In SAFY, LAI is the only state variable that determines the light interception capability of crops and the daily change in the ΔDAM.
During the vegetative stage, LAI tends to increase (eq. (4)) as the fraction of daily ΔDAM partitioned to leaf growth and the leaf parti-
tioning function driven by the specific leaf area of crops (SLA) (Pl: Eq (3)). LAI decreases (ΔLAI-) (eq. (5)) during the senescence
stages when the daily sum of temperature (SMT) reaches a certain threshold (STT: sum of temperature for senescence) controlled by
the rate of senescence (Rs) (Claverie et al., 2012; Duchemin et al., 2008).
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The small number of parameters and easy coupling with EO data makes SAFY an attractive option for large-area crop yield estima-
tion. LAI derived from high spatial and temporal resolution EO images has been successfully assimilated with SAFY to estimate crop
yield in various crop-growing environments (Battude et al., 2016; Claverie et al., 2012; Liao et al., 2019). We used the original SAFY
model with 15 parameters to estimate maize LAI and yield to keep the model's simplicity (Table 1). Fig. 2 shows the overall workflow
of the methodology used to evaluate the influence of LAI input timing and frequency in SAFY model accuracy.

Table 1
Initial and calibrated values of SAFY parameters.

Parameters Maize Source

Unit Range or value

Inputs
Daily incoming global variation (Rg) MJ m−2 d−1 – METRA2 and station
Daily mean air temperature (Ta) °C – Weather stations
Fixed parameters
Initial LAI m2.m−2 0.1 LAI estimated
Initial dry aboveground mass (DAM0) kg ha−1 4.0 Claverie et al. (2012)
Climatic efficiency (εC) – 0.5 In situ measurement
Light-interception coefficient (K) 0.5 In situ measurement
Temperature for crop growth (Tmin, Topt, Tmax) °C 10,30,45 Srivastava et al. (2019)
Polynomial degree (β) – 2 Claverie et al. (2012)
Specific leaf area (SLA) m2 g−1 0.024 Claverie et al. (2012)
Harvest index (HI) – 0.5 Srivastava et al. (2019)
Input parameters
Emergence date (D0) DOY [170,190] Phenology detection
Sum of temperature for senescence (STT) °C [1365,1920] Ta and phenology detection
End of simulation (EOS) DOY Phenology detection
Calibrated parameters
Partition-to-leaf function: parm a (Pla) – [0.1,0.5] Calibrated
Partition-to-leaf function: parm b (Plb) – [0.0007,0.002] Calibrated
Rate of senescence (Rs) °C d−1 [3000, 10000] Calibrated
Effective light use efficiency (ELUE) g MJ−1 [1.5, 4] Calibrated

Fig. 2. Flow chart of the methodology.
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Pl
(∑

Ta
)
= 1 − Pla × eplb×STM (3)

ΔLAI+ = ΔDAM × Pl

(∑
Ta

)
× SLA,Pl > 0 (4)

ΔLAI− = LAI × (SMT − STT) ∕Rs), SMT > STT (5)

2.3. Field data acquisition
In order to validate the SAFY model, field measurement were conducted in four districts in the study area during the 2019 and

2020 growing seasons between July and December. Fig. 1 shows the spatial distribution of the sample fields. LAI, fAPAR, and crop
yield samples were collected from 35 maize fields. LAI and fAPAR were collected two to four times during the two growing seasons
(Table 2) using Decagon's AccuPAR ceptometer®. A total of 64 maize LAI samples were measured at the vegetative, reproductive, and
maturity growth stages. LAI and fAPAR were sampled over 60 × 60 m2 elementary sampling units (ESUs) to account for possible geo-
location errors between the field measurements and Landsat pixels. Within each ESU, 10 LAI readings (averaged from multiple posi-
tions within the canopy) were recorded in 1 × 1 m2 quadrats. The results were averaged to produce one LAI reading for each ESU.
We also collected 46 maize fAPAR samples during the 2019 growing season. The fAPAR value was calculated from PAR readings
transmitted through the canopy, absorbed or reflected at the soil surface, and reflected by the canopy as specified in AccuPAR device
manual.

Crop yield was collected using destructive and non-destructive methods. During the 2019 growing season, we used the yield com-
ponent method to harvest maize ears from 17 farm fields and counted the number of ears per 5 m2 area to account for field-level spa-
tial variation, the number of kernel rows per ear, and the number of kernels per row. We dried the maize ear samples at a temperature
of 800C for 72 h and weighed using a sensitive balance to obtain grams yield per square meter. In 2020, we collected 20 maize yields
from farmers' reports due to COVID-19 restrictions to conduct field campaigns.

Daily incoming shortwave radiation (Rg) and mean daily temperature (Ta) are the two climate-forcing variables in SAFY. A
weather station was installed for the purpose of this study in the Mecha district (Fig. 1) to obtain daily Rg and temperature for the
nearby samples. To account for spatial variability, Rg was extracted from NASA's Modern-Era Retrospective Analysis for Research and
Applications (MERRA-2) (http://disc.sci.gsfc.nasa.gov), which is a reanalysis product with a spatial resolution of 0.5° latitude by
0.67° longitude. Temperature records were also obtained from the National Metrological Agency of Ethiopia (NMA).

A crop-type map classified in 2019 from Landsat-8 (Sisheber et al., 2022) was used to mask maize fields for field-level crop yield
simulation. The classified map discriminated maize from other land cover units with an overall accuracy of 82.9%, a kappa coefficient
of 0.80, a user's accuracy of 79% and a producer's accuracy of 78%. We used crop calendar information and EVI empirical thresholds
similar to Bolton and Friedl (2013) to minimize missclassification and exclude other crop types from analysis. On cropland pixels if
the green up EVI value in late June and early July is greater than 0.25 and reached peak value before the end of September (EVI>
0.6) was classified as maize following ground sowing date and LAI observation. In this way we identified 2120 km2 of maize growing
area for the pixel-level yield simulation.

2.4. Satellite imagery
Level-2 terrain corrected Landsat-8 data were acquired from the United States Geological Survey (USGS) Earth Explorer (https://

earthexplorer.usgs.gov) for path/row: 70/52 in 2019 and 2020. The images were atmospherically corrected using the Landsat-8 Sur-
face Reflectance Code (LaSRC), to improve aerosol determination (Roy et al., 2016). We obtained low cloud cover (≤30%) Landsat
images for data fusion and for validation (30–70%), distributed across the major phenologial stages of maize from land preparation
(May) to harvest (December) to capture the temporal variation in reflectance during data fusion (Fig. 3).

MODIS surface reflectance data (MOD09A1:V006.1) was acquired from NASA's LP DAAC website (https://lpdaac.usgs.gov) for
image tile: 21/7. The product consists of atmospheric and aerosol-corrected surface reflectance spectral bands at 500m spatial resolu-
tion composited over 8-day intervals. We resampled the MODIS data to WGS84 UTM zone 37 and 30m with nearest neighbour to
match the Landsat projection and resolution.

We used six of the Landsat and MODIS bands (blue, green, red, NIR, SWIR1, and SWIR2) for data fusion since using many bands
improves feature separability during fusion (Gao et al., 2015). The Landsat pixel quality and MODIS state flag bands were used to flag
low-quality pixels.

Table 2
LAI, fAPAR, and yield measurements in maize fields during the 2019 and 2020 growing season.

Observation date Sampling site Growth stage LAI samples Mean LAI (m2/m2) fAPAR samples Mean fAPAR Yield (g/m2)

July 16 to25, 2019 Bahir Dar Zuria, Green up 16 0.58 ± 0.3 16 0.23 ± 0.10 781 ± 130
Aug 28–30, 2019 Mecha, Dangla Jointing 17 2.75 ± 1.0 17 0.67 ± 0.11
Sep 16–25, 2019 Heading 17 3.72 ± 1.0 17 0.77 ± 0.07
Nov 11, 2019 Maturity 6 2.26 ± 1.0 – –
Aug 12–19, 2020 Yilmana Densa Jointing 4 1.75 ± 0.4 454 ± 135
Oct 07, 2020 Heading 4 3.25 ± 0.9 – –
Nov 09–13, 2020 Mecha Maturity 2 2.51 ± 10 – –

http://disc.sci.gsfc.nasa.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/
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Fig. 3. Distribution of relatively cloud-free Landsat images during the main maize growth stages. Black squares are images used for data fusion, and the red triangles are
images used for validation.

2.5. Analysis
2.5.1. Landsat-MODIS fusion

We used ESTARFM (Zhu et al., 2010), modified for fragmented agricultural landscapes (Sisheber et al., 2022) to fuse Landsat-8
OLI and MODIS during the 2019 and 2020 growing seasons to evaluate the importance of the timing and frequency of EO data assimi-
lation in crop models. ESTARFM uses pairs of Landsat and MODIS images at base dates (t0) before (t1) and after (t2) the prediction
dates (tp) and MODIS images at tp to predict Landsat–MODIS fused data. In the modified ESTARFM we distributed the Landsat inputs
based on the maize crop calendar to minimize the effect of reflectance change between t0 and tp due to the lack of frequent cloud-free
Landsat inputs. When frequent cloud-free Landsat inputs were available, we selected Landsat and MODIS inputs with similar acquisi-
tion dates. When the available cloud-free Landsat inputs were at different phenological stages, we used the MODIS composite that
was best correlated with MODIS input at tp and with Landsat at the base dates (MODIS t0-tp correlation) to compensate for phenology
change. Then, we searched for similar pixels based on the intersection of Landsat reflectance at t1 and t2 within a moving window (w)
of 50 × 50 Landsat pixels. We used a land cover map of the study area (Sisheber et al., 2022) as input to select similar pixels from the
homogeneous land cover class (c). Finally, the spatial weighting function (wi) and conversion coefficient (vi) were calculated based on
the original ESTARFM. A detailed description of the model is found in Sisheber et al. (2022) and Zhu et al. (2010).

The enhanced vegetation index (EVI) (Huete et al., 2002) was calculated from the Landsat–MODIS fused data to estimate LAI and
determine crop phenology. We used EVI rather than NDVI because it does not saturate in dense canopies (Yang et al., 2020). Valida-
tion of data fusion comparing EVI calculated from data fusion and the original Landsat image is presented in the supplement material
(Fig. S1).

2.5.2. Phenology detection
Phenological parameters constitute an important part of the SAFY model. We determined phenological parameters from the fused

data and used them as input variables in the model to the capture spatial variability of crop growth in smallholder systems. Maize
phenology was determined from the EVI time series using a Savtizky–Golay (S-G) smoothing and seasonal amplitude (dynamic
threshold) method in the TIMESAT software package (Eklundh and Jönsson 2017). TIMESAT was used to extract key phenological
dates from the EVI time-series as required by SAFY: start of season (SOS), representing the emergence date; the peak of season (POS),
used to determine the beginning of the day of senescence (DOS); and the end of season (EOS), which is the termination of the model
simulation. The phenological dates were used to determine the field-level input parameters of SAFY (D0, STT and EOS). SOS replaced
the D0, and the mean daily temperature aggregates between D0 and DOS were used to determine the STT. EOS was adjusted to corre-
spond to the end of maturity date and used as the termination date for the simulation. An example of a maize phenological cycle de-
termined from data fusion for one of the sample fields (Fig. S2) and phenology detection accuracy (Table S1) are presented in the sup-
plemental material.

2.5.3. LAI and fAPAR estimation
LAI and fAPAR were estimated from the S-G smoothed EVI time series to minimize distortion from cloud, data fusion uncertainty

and mixed pixel problems. LAI is the most widely used crop model state variable as it is a good indicator of crop growth status and is
closely linked to crop biomass and yield (Casa et al., 2012; Huang et al., 2015). An empirical relationship between EVI and in-situ LAI
- measured within 2–4 days of the data fusion or MODIS acquisition dates was formed to estimate pixel-level LAI. Since empirical
models lack transferability in space and time, we fitted different models for the 2019 and 2020 growing seasons (Fig. 4). To reduce
the LAI estimation error, LAI values higher than 0.1 (emergence date value) and lower than 7 (peak value) were selected for data as-
similation. The temporal LAI progression from the green up to maturity was obtained. fAPAR values were estimated from field-
measured fAPAR and LAI following the Beer–Lambert law to determine the light interception efficiency (k). The coefficient of deter-
mination (R2), the root mean square error (RMSE), and the relative root mean square error (rRMSE) were used to fit the models and
assess the robustness of the LAI and fAPAR estimations.

2.5.4. Data assimilation in the SAFY model
We assimilated LAI derived from Landsat–MODIS fused data in SAFY at different phenological stages and with different temporal

frequencies to assess the impact of timing and temporal resolution of EO data. The temporal resolution-dependent phenological para-
meters (D0, STT, and EOS) determined from crop phenology detection served as input parameters to reduce the model bias caused by
generic crop calendar information. The fixed model parameters were determined from in situ measurements, the literature, and cali-
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Fig. 4. Maize LAI estimation model for the 2019 and 2020 growing seasons.

brated from data fusion retrieved LAI (Table 1). The remaining sensitive parameters of SAFY were assimilated using the calibration
approach because calibration minimizes the error of EO data in crop growth models (Jin et al., 2018b). In order to select the proper
time scale and input frequency for optimal model accuracy, we tested the calibration of the sensitive parameters (ELUE, Pla, Plb, and
RS) identified in previous studies Sisheber et al. (2024) with LAI obtained in different maize phenological stages. The environment
and crop-specific parameters (Pla, Plb, and RS) determining the process of leaf growth and the ELUE were calibrated to evaluate the
effect of LAI frequency and timing on the model performance.

To explore the effect of the timing of LAI on the model calibration, we grouped the input LAI by phenological stages based on the
phenometrics derived from EVI time series and crop calendars of the dominant local maize variety (Firezer 2019). We calibrated the
model with the full LAI time series from green up to maturity and by excluding one growth stage at a time, including jointing, head-
ing, grain filling, and maturity, to assess the contribution of the growth stages to the final yield estimation. LAI frequency at 8-day, 16-
day, 24-day, and 32-day intervals between D0 and EOS was also assimilated to analyse the model response with different temporal
resolutions. These temporal frequencies were tested in the four districts (Fig. 1) during the 2019 and 2020 growing seasons.

The particle swarm optimization (PSO) algorithm was used for calibration for its simplicity, precision, and computational effi-
ciency at pixel-level (Silvestro et al., 2017). PSO assumes a group of m particles (m = 30 based on the previous literature) with cer-
tain speeds without quality and size in n d-dimensional space. The particles modify their position and velocity based on the best point
in the current generation ("personal best") and the best point of all particles in the swarm ("global best"). To optimize the calibrated
model parameters, we applied a cost function (eq. (6)) representing the minimum RMSE between data fusion retrieved LAI (FLAI) and
SAFY simulated LAI (SLAI). The optimization was deemed successful when the cost function approximated the least error. After opti-
mization, the crop model was run to simulate maize LAI and yield.

C =


N

i=1




sLAI−FLAI

FLAI

2

n


(6)

2.6. Accuracy evaluation
The effect of frequency and timing of LAI observation was evaluated by comparing simulated LAI and yield with measured LAI and

yield data. We used bias, which calculates the difference between observed and predicted value, RMSE and relative RMSE (rRMSE)
measuring the normalized difference between observed and predicted yield and the coefficient of determination (R2), which repre-
sents the proportion of variation between simulated LAI and yield compared to measured LAI and yield. The change in the value of
calibrated parameters and the simulated LAI and yield after optimization were examined to evaluate the contributions of different
phenological stages assimilations on SAFY model simulations. Since weather conditions and crop management variations strongly in-
fluence crop yield, we compared the model accuracy across the 2019 and 2020 growing seasons.

3. Results
3.1. Maize LAI retrieval from data fusion

Maize LAI estimated from Landsat–MODIS data fusion for the 2019 and 2020 growing seasons is presented in Fig. 4. An exponen-
tial model estimated maize LAI with moderate to high accuracy over the two growing seasons. The correlation coefficient was higher
in 2019 (R2 = 0.78) than in 2020 (R2 = 0.61), but the prediction error was higher in 2019 (RMSE = 0.70 m2/m2, rRMSE = 31%)
than in 2020 (RMSE = 0.52 m2/m2, rRMSE = 21%). The model estimated the annual dynamics of maize LAI from Landsat–MODIS
data fusion (supplement, Fig. S2) for assimilation in the SAFY crop growth model.



Remote Sensing Applications: Society and Environment 36 (2024) 101272

8

B. Sisheber et al.

3.2. SAFY model calibration and LAI simulation performance
Table 3 presents the calibrated model parameters in different phenological stages and the calibration accuracy comparing simu-

lated LAI with data fusion retrieved LAI. Calibration using the full LAI time series from green up to maturity (DOY 185 to 313) pro-
vided the best model LAI simulation accuracy (RMSE = 0.47 m2/m2, rRMSE = 17% and R2 = 0.91). When comparing the effects
of phenological stages, the jointing to grain filling stage calibration (DOY 217 to DOY 289) slightly reduced the value of ELUE and
increased RS, which decreased the model accuracy compared to calibration using the full LAI time series.

Among the phenological stages, the jointing to grain filling stages were the best estimators of LAI (RMSE = 0.57 m2/m2,
rRMSE = 23% and R2 = 0.87) compared to the data fusion retrieved LAI. In the green up to peak growth stage calibration, the senes-
cence stage parameter (RS) increased, and the agronomic parameter (ELUE) decreased to reduce model accuracy for LAI simulation
(RMSE = 0.73 m2/m2, rRMSE = 25% and R2 = 0.83) compared to the jointing to grain filling calibration. Excluding the vegetative
stage observation in the peak to maturity stage calibration (DOY 265 to DOY 313) resulted in the highest model prediction error
(RMSE = 0.91 m2/m2, rRMSE = 32% and R2 = 0.78), showing the importance of acquiring vegetative stage observations for model
calibration. Using only pre- or post-peak LAI resulted in weaker model accuracy since the model could not capture the annual dynam-
ics of LAI during the growing season. The peak-to-maturity stage calibration estimated a higher ELUE and the lowest Rs parameter
and vice-versa for green up-to-peak stage calibration. A single observation at each growth stage provided relatively reasonable model
accuracy (RMSE = 0.61 m2/m2, rRMSE = 26%, R2 = 0.86), showing the importance of a distribution of observations across the
growing season.

Fig. 5 shows the validation of SAFY-simulated LAI using field-measured maize LAI. Overall, the model performed well in terms of
representing the temporal variability of simulated LAI during the growing season. The deviation between simulated and field-
observed LAI varied with crop growth stage in all assimilation cases. The error of simulated LAI compared with field-measured LAI
was, however, higher than that between simulated and data fusion estimated LAI (Table 3) in all assimilation cases since the model
was calibrated using data fusion estimated LAI rather than field-measured values. Overall, LAI simulated using the full LAI time se-
ries (a) was more consistent with field-measured LAI than the assimilation of specific phenological stage observations (b-e). The full
growing season calibration minimized the bias between the field and simulated LAI in all the phenological stages.

SAFY LAI estimation performance was weaker when the model was calibrated using reproductive (R2 = 0.56,
RMSE = 1.19 m2/m2 and rRMSE = 46%) and vegetative (R2 = 0.61, RMSE = 0.91 m2/m2 and rRMSE = 36%) stage LAI observa-
tion alone. Calibration that included both vegetative and reproductive stages (a, b, and d) minimized LAI estimation error compared
to field observed values because the phenological parameters (Pla, Plb and RS) and the ELUE depend on crop growth dynamics
throughout the growing season. Jointing to grain filling stage LAI observations (b) (R2 = 0.72, RMSE = 0.83 m2/m2,
rRMSE = 32%) provided the best model performance among phenological stages. The early vegetative and maturity stage LAI was
not well simulated when the model was calibrated with only vegetative or reproductive stage LAI input (c-d). The bias in the maturity
stage LAI was minimized when calibrated using the peak-to-maturity date LAI assimilation, while peak LAI was best simulated in all
phenological stage calibrations.

3.3. The timing of LAI data assimilation on maize yield estimation
Table 4 and Fig. 6 show the validation of yield estimated using the five phenological stage assimilations. Consistent with the LAI

simulation performance (Fig. 5), the full LAI time series during the growing season provided the best estimate of maize yield
(R2 = 0.77, RMSE = 105 g/m2 and rRMSE = 14.8%). Among the phenological stages, jointing to grain filling observations pro-
vided the highest correlation coefficient (R2 = 0.68) between observed and predicted yield and a smaller yield prediction error
(RMSE = 117 g/m2 and rRMSE = 16.4%). The small difference between the full-time series and jointing to grain filling period cali-
brations indicates that early vegetative and maturity stage observations are less critical for yield estimation. Calibration using peak
to maturity (RMSE = 214 g/m2, rRMSE = 30.2%) and green up to peak growth stages LAI (RMSE = 140 g/m2, rRMSE = 19.7%)
increased yield prediction error compared to the jointing stage calibration. Using a single observation at each growth stage provided
reasonably good yield prediction (R2 = 0.57, RMSE = 139 g/m2, rRMSE = 20%) with few observations (n = 5), suggesting that
the distribution of inputs was more important than the frequency of inputs to capture crop growth dynamics during the growing sea-
son.

As shown in Fig. 6, the model overestimated yield when calibrated using peak-to-maturity stage LAI and underestimated yield
when the calibration inputs were only from the vegetative stage. As also shown in Table 3, calibration using only the post-peak period
increased ELUE and decreased the RS parameters that coincided with the yield overestimation and vice-versa for pre-peak stage cali-

Table 3
Effect of calibration of SAFY parameters at different maize phenological stages for the 35 maize sample fields during the 2019 and 2020 growing season.

Calibration periods #LAI Parameters LAI error R2

Pla Plb RS ELUE RMSE rRMSE (%)

Green up to maturity 17 0.375 0.0015 7500 2.796 0.47 17 0.91
Jointing to grain filling 10 0.370 0.0016 7650 2.729 0.57 23 0.87
Green up to heading 9 0.375 0.0016 8000 2.655 0.73 25 0.83
Peak to maturity 10 0.370 0.0016 7300 2.988 0.91 32 0.78
One observation at each stage 5 0.380 0.00155 7420 2.787 0.61 26 0.86
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Fig. 5. Comparison of field measured LAI and LAI simulated under different phenological stage assimilation: a) green up to maturity, b) jointing to grain filling, c) green
up to peak, d) peak to maturity, e) one observation at each growth stage.

Table 4
Validation of maize yield simulations based on different phenological stage LAI assimilation for 35 maize sample fields in 2019 and 2020.

Calibration periods #LAI Yield estimation error R2

RMSE (g/m2) rRMSE (%) Bias (g/m2)

Green up to maturity 19 105 14.8 87 0.77
Jointing to grain filling 13 117 16.4 88 0.68
Green up to peak 10 140 19.7 109 0.53
Peak to maturity 9 214 30.2 172 0.35
One observation at each stage 5 139 20.0 108 0.57

bration. In comparison, the pre-peak LAI assimilation (green up to peak) better estimated crop yield than post-peak (peak to maturity)
stage assimilations. Reasonably accurate yield estimation using the pre-peak period LAI observations and the smaller significance of
maturity stage observations suggest that the model could be used for pre-harvest yield forecasting with about 19.7% error (rRMSE)
from the actual yield at the end of the season.
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Fig. 6. Comparison of measured and simulated maize yield based on assimilation of different phenological stage LAI observations in 2019 and 2020 growing seasons.

3.4. Effect of LAI frequency on yield estimation
Fig. 7 shows that SAFY simulated LAI was sensitive to the frequency of the LAI input used for calibration. The increase in LAI in-

terval from 8 days to 16 days increased the mean LAI prediction error (from rRMSE = 20% to rRMSE = 24%). The relative mean
LAI error of the sample fields also increased (from rRMSE = 24–27%) when the interval of LAI observation increased from 24 days
to 32 days. However, Table 5 shows that the effect of LAI input frequency on the final yield prediction was smaller than on LAI simu-
lation since the optimization procedure minimizes the difference between observed and predicted LAI. Maize yield was best esti-
mated using 8-days LAI frequency, beyond which the correlation coefficient gradually decreased and the error between observed and
predicted yield increased. Yield estimation errors of the 16-day, 24-day, and 32-day intervals were comparable, suggesting that the
distribution and quality of LAI inputs were more important than the number of observations at particular crop growth stages consis-
tent with Fig. 5e.

3.5. Annual and spatial variation of yield estimation
We analysed the annual variation of SAFY crop yield estimates using the full LAI time-series calibration (Fig. 8) and the model pa-

rameters (Table 6) in the 2019 and 2020 growing seasons. SAFY was able to capture the annual variation of maize yield in the study

Fig. 7. LAI calibration error (rRMSE) of 35 maize sample fields in 2019 and 2020 at 8-day, 16-day, 24-day and 32-day frequency.

Table 5
Accuracy of maize LAI and yield estimation using different phenological stages LAI assimilations compared with field-measured yield.

LAI frequency #LAI Mean yield (g/m2) Yield estimation error R2

RMSE (g/m2) Bias (g/m2) rRMSE (%)

8 days 19 732 ± 206 105 87 14.8 0.77
16 days 9 738 ± 191 124 100 17.6 0.60
24 days 6 735 ± 197 127 103 18.1 0.59
32 days 5 745 ± 209 123 105 19.0 0.57
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Fig. 8. Comparison between measured and simulated yield in maize using the field for the 2019 and 2020 growing seasons.

Table 6
Annual variation of SAFY parameters between 2019 and 2020 growing seasons.

Parameters 2019 2020

Max Min Mean Max Min Mean

D0 185 169 175 189 160 174
STT 1091 562 681 762 531 656
Pla 0.375 0.375 0.375 0.375 0.35 0.37
Plb 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
RS 6650 6650 6650 7500 6500 7000
ELUE 3.6 2.2 2.8 3.75 2.1 2.8
Ta 22.5 15.1 18.2 20.1 15.5 17.5
Rg 28.5 6.5 18.2 23.3 5.3 17.4

area. The mean annual maize yield was higher in 2019 (778 ± 236 g/m2) than in 2020 (627 ± 160 g/m2). SAFY underestimated
maize yield in the 2019 prediction, and the underestimation decreased for the 2020 growing season. The 2019 prediction had a
slightly higher R2 (0.84) than the 2020 (R2 = 0.80) growing season, but the RMSE and relative RMSE (rRMSE) were lower for 2020
than 2019, consistent with the LAI retrieval accuracy in Fig. 4.

Table 6 shows that the crop-specific parameters (Pla, Plb and RS) were invariant between the 2019 and 2020 growing seasons.
Thus, in addition to the fixed parameters of SAFY, the crop-specific parameters can be transferable once calibrated for the study area
and crop type. However, the time-dependent parameters (D0 and STT) and the ELUE showed annual variation. These parameters re-
quire calibration every growing season and can be calibrated successfully using EO-derived time series LAI between the jointing and
grain filling stages. Therefore, inter-annual yield estimation depends on the availability of climate input data (Ta and Rg) and EO esti-
mated LAI.

Fig. 9 shows the spatial distribution of yield estimation based on the 2019 maize crop mask map. The mean maize yield based
on the assimilation of the full-LAI time series was 683 ± 111 g/m2. Maize yields varied spatially. For instance, the maize dominant
location in the mechanized farming site in Koga had the highest yield value (≥700 g/m2) whereas the highlands such as south
Mecha and Yielmana Densa, and the mixed crop growing locations of Bahir Dar Zuriya and Dera districts, where fields are small
had lower yields (≤600 g/m2). The zoom windows show higher pixel-level variability in the major maize-growing site.

4. Discussion
EO data assimilation in crop growth model is increasingly used to estimate crop yield over large areas, which is important for early

warning, production distribution, and food security assessments in such regions. However, persistent cloud cover, satellite revisit pe-
riods and mixed pixels are challenges to meet the spatial and temporal resolution input requirements of crop models from a single
open-source sensor in smallholder agricultural systems (Whitcraft et al., 2015). This study evaluated the effects of the timing and fre-
quency of EO data obtained from Landsat and MODIS fusion on maize yield estimation in Ethiopia. The main findings of the study in-
clude: (1) the full LAI time series during the growing season provided the best yield estimations when compared to calibration using
LAI at a particular phenological stage; (2) reasonably accurate yield estimation using only the pre-peak stage LAI observations can be
useful for in-season yield foresting; (3) the temporal distribution and accuracy of the EO retrieved LAI was more critical than the fre-
quency of LAI in improving yield estimation and; (4) calibration of SAFY using frequent LAI observations contributed to capturing an-
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Fig. 9. Maize yield map using the full LAI time series assimilation in 2019 growing season.

nual variability of yield estimates. Our result revealed that high temporal resolution data obtained through Landsat–MODIS fusion
improves yield estimation accuracy in persistently cloud-growing seasons in smallholder agricultural systems.

4.1. Timing of LAI assimilation on crop yield estimation
The best yield estimates were attained when SAFY was calibrated using LAI time series covering the full growing season

(R2 = 0.77, rRMSE = 15%) rather than calibrating at a particular phenological stage. Our result agrees with previous studies, which
indicated the importance of continuous time series of EO data for improved yield estimation (Dong et al., 2016; Huang et al., 2015;
Hunt et al., 2019). Temporal gaps in EO data are the source of uncertainties in model parameterization resulting in larger errors in
crop yield estimates (Huang et al., 2019b; Jégo et al., 2012). A time series of LAI observations during the growing season minimized
uncertainty in parameterization of the phenological parameters (D0, Pla, Plb and RS) and ELUE, which depend on crop growth dynam-
ics over the growing season. The accuracy of these parameter extractions depends on the timing and frequency of time series EO data,
which cannot be obtained from a single open-source optical sensor in the study area. In this regard, Jégo et al. (2012) and Dong et al.
(2016) indicated that crop growth models were not well reinitialized when the Landsat-derived LAI was not well distributed across
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the growing season, leading to large errors in crop yield estimation. Our study showed that multi-sensor data fusion offers frequent
high spatial resolution observations to determine time-dependent model parameters and improved yield estimation. Recent studies
have shown the potential application of synthetic aperture radar (SAR) in crop yield estimation because of its capability to provide
all-day and all-weather observations (Wu et al., 2021). Future studies integrating optical and radar data can provide valuable input
for yield estimation in smallholder agricultural systems.

LAI observations from the jointing to the grain filling stage increased the robustness of yield estimation (R2 = 0.68,
rRMSE = 16%) compared to the contributions from assimilation in other growth stages. LAI observations from the jointing and
grain-filling stage were important to detect the various factors influencing crop growth, such as management practices and weather
conditions. The result is consistent with the fact that yield is related to the duration of green biomass formation during the head-to-
grain filling stage (Huang et al., 2015; Tewes et al., 2020b). For instance, Li et al. (2017) found acceptable wheat yield estimation ac-
curacy with jointing to anthesis stage LAI assimilations in the CERES-Wheat model. Thus, the assimilation of LAI during these key
crop growth stages can be used for yield estimation when data are limited.

Peak LAI is the best yield estimator in many empirical models that form relationships between EO-derived biophysical parameters
and yield (Xie et al., 2017). Nevertheless, weather events and other stress factors that occur after the peak period can have a signifi-
cant influence on crop yield. This indicates that the timing of available observations could also depend on the crop model architecture
and data assimilation approach (Casa et al., 2012). In the calibration of SAFY, we found that LAI and yield estimation accuracy were
improved when observations were available in both the vegetative and reproductive stages to capture pre-heading events, such as nu-
trient stress, and post-heading events, such as water moisture and temperature stress, which are common in the study area.

Yield prediction error was the highest when the model was calibrated with only post-peak growth stage observations (R2 = 0.35,
rRMSE = 30%), which shows the small contribution of LAI observations in the maturity and senescence stage. Calibration with post-
peak period increased ELUE and decreased RS, leading to overestimation and underestimated when calibrating with pre-peak stage
LAI observation. However, our result also indicated that the pre-peak stage LAI observation estimated maize yield with a lower pre-
diction error (rRMSE = 20%), which can be useful for in-season yield forecasting by combining with seasonal weather forecasts
(Chen and Tao 2022). In-season prediction with EO can be used to complement the laborious and untimely pre-harvest yield forecast-
ing system in the study area. Therefore, developing a robust technique for in-season yield forecasting when EO data become available
within the growing season requires future investigation to complement the food security analysis in smallholder agricultural systems
in Africa.

The temporal distribution of the LAI estimation error from data fusion was the source of uncertainty in the different phenological
stages of model calibration. Despite the valuable role of assimilation in obtaining the input requirement of crop growth models, the
bias in the EO retrieved LAI could be the source of model uncertainty (Chen and Tao 2022; Li et al., 2017). We found that the devia-
tion of SAFY simulated LAI from field-measured LAI was higher than that between simulated and data fusion retrieved LAI, which
could be associated with LAI retrieval error from data fusion. The LAI retrieval error was higher at the early and late crop growth
stages. Thus, calibrating the SAFY model with peak to maturity stage LAI overestimated yield estimation. Underestimation of yield oc-
curred when the calibration inputs were only from the vegetative stage. The temporal distribution of LAI retrieval error from EO data
could be due to weather effects, the LAI retrieval method and the quality of ground input data. A lower signal-to-noise ratio at the
early crop growth stage increased LAI retrieval error. For high-canopy crops like maize, saturation during the peak growth stage could
influence the LAI retrieved from EO and hence yield estimation accuracy (Casa et al., 2012; Waldner et al., 2019). A lower correlation
between maturity stage LAI and the final crop yield could also reduce the contribution of maturity stage LAI assimilation (Xie et al.,
2017). Joint assimilation of LAI and other crop information derived from multi-source EO data (e.g., soil moisture, land surface tem-
perature) could better account for water stress in rainfed agroecosystems. Moreover, improving the LAI retrieval method could reduce
the effect of LAI input uncertainty in the model calibration.

4.2. Effect of frequency of LAI on crop model simulation
LAI and simulated yield were sensitive to the frequency of the calibration input LAI. SAFY yield estimation error tends to increase

when the number of LAI inputs for assimilation decreases. Increasing the temporal resolution improves the dynamical simulation ac-
curacy of crop model state variables (e.g., LAI) and the final crop yield estimation (Jin et al., 2018a). LAI simulation error also pro-
gressively increased as the input LAI interval increased from 8 to 16, 24 and 32 days. However, the effect of input frequency on crop
yield estimation was not as high as the impact on LAI simulation. Our finding agrees with Li et al. (2017), who found that the fre-
quency of assimilated LAI modestly affected CERES-Wheat model estimation performance, but the increased computing time becomes
problematic for large-area applications. We found that the 8-day interval was the best estimator of crop yield, and accuracy steadily
decreased when the frequency of LAI decreased to 16-day, 24-day and 32-day intervals. Previous studies also showed that the avail-
ability of good quality LAI from 7 to 10 days interval adequately characterized crop growth and provided optimal yield simulation ac-
curacy (Waldner et al., 2019; Wang et al., 2019). Multi-sensor data fusion offers sufficiently frequent high spatial resolution observa-
tions for crop model assimilation to improve yield estimation in persistently cloudy environments.

A good temporal distribution of LAI throughout the key crop growth stages was more important than the frequency of LAI observa-
tions with respect to improve yield estimation accuracy because the temporal distribution influences the optimization of some model
parameters. Our findings showed that one LAI observation at each maize growth stage provided more accurate yield estimation than
having frequent observations at a particular growth stage. Similarly, Silvestro et al. (2017) and Casa et al. (2012) indicated that the
primary source of error in data assimilation stems from the distribution of LAI inputs across the crop growth stages, and optimal esti-
mation can be found using few observations as long as the inputs are well distributed across the main phenological stages. Our result
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highlighted that the calibration of ELUE, Pla, Plb and RS requires well-distributed LAI during the late vegetative and reproductive
crop growth stages.

The effect of input frequency and timing could depends on crop model types and the data assimilation approach. Based on our cali-
bration approach, this study only evaluated the effect of EO-derived LAI assimilation into one semi-empirical model. Previous studies
showed that the frequency and timing of EO data influence the WOFOST (Huang et al., 2015; Wu et al., 2021) model using forcing
and updating data assimilation approaches (Waldner et al., 2019; Xie et al., 2017) and empirical models (Casa et al., 2012). Model in-
ter-comparisons could provide further insight into the best model/EO data assimilation approaches for yield estimation.

5. Conclusion
The study explored the effect of LAI input frequency provided from Landsat- MODIS fusion in the parameterization of the SAFY

model and resulting maize yield estimation accuracy. It also analysed the relative importance of LAI at different maize crop phenolog-
ical stages. We used Landsat and MODIS fused data to obtain frequent LAI inputs to calibrate SAFY. The simulated outputs were eval-
uated using field LAI and yield data collected during the 2019 and 2020 crop-growing seasons. In general, SAFY model calibration
was sensitive to the timing, frequency, and quality of LAI observations during the crop-growing season. We can draw the following
conclusions and recommendation.

(1) Calibration of SAFY using LAI time series throughout the growing season provided the best-estimate of maize yield. Model
calibration covering the period from days of full canopy development to the maturity is important for improved yield
prediction.

(2) The temporal distribution of LAI was more important than the frequency of LAI observation. Therefore, when LAI inputs are
limited because of cloud cover, obtaining at least one observation at each key growth stage (jointing to grain filling) can
provide a sufficiently accurate yield estimation.

(3) The quality of the LAI observation that is retrieved from EO influences the model calibration. The frequency of field
observation, field instrument uncertainties, atmospheric effect, and the difference between EO acquisition date and field
measurement all influenced LAI retrieval accuracy. Ideally ground LAI data should be collected within 2–3 days of the
satellite overpass period and the time series should be smoothed.

(4) Our validation over two growing seasons showed that the model can capture annual and spatial yield variation. However,
experiments over longer periods are required.
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