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A B S T R A C T

Renewed interest in the relationship between artificial and biological neural networks motivates
the study of gradient-free methods. Considering the linear regression model with random design,
we theoretically analyze in this work the biologically motivated (weight-perturbed) forward
gradient scheme that is based on random linear combination of the gradient. If 𝑑 denotes the
number of parameters and 𝑘 the number of samples, we prove that the mean squared error
of this method converges for 𝑘 ≳ 𝑑2 log(𝑑) with rate 𝑑2 log(𝑑)∕𝑘. Compared to the dimension
dependence 𝑑 for stochastic gradient descent, an additional factor 𝑑 log(𝑑) occurs.

. Introduction

Looking at the past developments, it is apparent that artificial neural networks (ANNs) became more powerful the more they
esembled the brain. It is therefore anticipated that the future of AI is even more biologically inspired. As in the past, the bottlenecks
owards more biologically inspired learning are computational barriers. For instance, shallow networks only became computationally
easible after the backpropagation algorithm was proposed. Deep neural networks were proposed for a longer time but deep learning
nly became scalable to large datasets after the introduction of large scale GPU computing. Neuromorphic computing aims to imitate
he brain on computer chips, but is currently not fully scalable due to computational barriers.

The mathematics of AI has focused on explaining the state-of-the-art performance of modern machine learning methods and
mpirically observed phenomena such as the good generalization properties of extreme overparametrization. To shape the future of
I, statistical theory needs more emphasis on anticipating future developments. This includes proposing and analyzing biologically
otivated methods already at a stage before scalable implementations exist.

This work aims to analyze a biologically motivated learning rule building on the renewed interest of the differences and
imilarities between ANNs and biological neural networks (BNNs) (Lillicrap et al., 2020; Schmidt-Hieber, 2023; Whittington and
ogacz, 2017) which are rooted in the foundational literature from the 1980s (Grossberg, 1987; Crick, 1989). A key difference
etween ANNs and BNNs is that ANNs are usually trained based on a version of (stochastic) gradient descent, while this seems
rohibitive for BNNs. Indeed, to compute the gradient, knowledge of all parameters in the network is required, but biological
etworks do not possess the capacity to transport this information to each neuron. This suggests that biological networks cannot
irectly use the gradient to update their parameters (Crick, 1989; Lillicrap et al., 2020; Trappenberg, 2022).

The brain still performs well without gradient descent and can learn tasks with much fewer examples than ANNs. This sparks
nterest in biologically plausible learning methods that do not require (full) access of the gradient. Such methods are called
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derivative-free. A simple example of a derivative-free method is to randomly sample in each step a new parameter. If this decreases
the loss, one keeps the new parameter and otherwise discards it without updating step. There is a wide variety of derivative-free
strategies (Conn et al., 2009; Larson et al., 2019; Spall, 2003). Among those, so-called zeroth-order methods use evaluations of
the loss function to build a noisy estimate of the gradient. This substitute is then used to replace the gradient in the gradient
descent routine (Liu et al., 2020; Duchi et al., 2015). Schmidt-Hieber (2023) establishes a connection between the Hebbian learning
underlying the local learning of the brain (see e.g. Chapter 6 of Trappenberg (2022)) and a specific zeroth-order method. A statistical
analysis of this zeroth-order scheme is provided in the companion article (Schmidt-Hieber and Koolen, 2023).

In this article, we study (weight-perturbed) forward gradient descent. This method is motivated by biological neural net-
orks (Baydin et al., 2022; Ren et al., 2022) and lies between full gradient descent methods and derivative-free methods, as only

andom linear combination of the gradient are required. The form of the random linear combination is related to zeroth-order
ethods, see Section 2. Settings with partial access to the gradient have been studied before. For example, Nesterov and Spokoiny

2017) proposes a learning method based on directional derivatives for convex functions. In this work, we specifically derive
heoretical guarantees for forward gradient descent in the linear regression model with random design. Theorem 3.1 establishes
n expression for the expectation. A bound on the mean squared error is provided in Theorem 3.3.

The structure of the paper is as follows. In Section 2 we describe the forward gradient descent update rule in the linear regression
odel. Results are in Section 3 and the corresponding proofs can be found in Section 4.

otation: Vectors are denoted by bold letters and we write ‖ ⋅ ‖2 for the Euclidean norm. We denote the largest and smallest
igenvalue of a matrix 𝐴 by the respective expressions 𝜆max(𝐴) and 𝜆min(𝐴). The spectral norm is ‖𝐴‖𝑆 ∶=

√

𝜆max(𝐴⊤𝐴). The condition
umber of a positive semi-definite matrix 𝐵 is 𝜅(𝐵) ∶= 𝜆max(𝐵)∕𝜆min(𝐵). For a random variable 𝑈 , we denote the expectation
ith respect to 𝑈 by E𝑈 . The symbol E stands for an expectation taken with respect to all random variables that are inside that
xpectation. The (multivariate) normal distribution with mean vector 𝜇 and covariance matrix 𝛴 is denoted by  (𝜇,𝛴).

. Weight-perturbed forward gradient descent

Suppose we want to learn a parameter vector 𝜽 from training data (𝐗1, 𝑌1), (𝐗2, 𝑌2),… ∈ R𝑑 × R. Stochastic gradient descent
(SGD) is based on the iterative update rule

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘+1∇𝐿(𝜽𝑘), 𝑘 = 0, 1,… (2.1)

with 𝜽0 some initial value and 𝐿(𝜽𝑘) ∶= 𝐿(𝜽𝑘,𝐗𝑘, 𝑌𝑘) a loss that depends on the data only through the 𝑘th sample (𝐗𝑘, 𝑌𝑘).
For a standard normal random vector 𝝃𝑘+1 ∼  (0, 𝐈𝑑 ) that is independent of all the other randomness, the quantity

(∇𝐿(𝜽𝑘))⊤𝝃𝑘+1𝝃𝑘+1 is called the (weight-perturbed) forward gradient (Baydin et al., 2022; Ren et al., 2022). (Weight-perturbed)
forward gradient descent is then given by the update rule

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘+1
(

∇𝐿(𝜽𝑘)
)⊤𝝃𝑘+1𝝃𝑘+1, 𝑘 = 0, 1,… (2.2)

Assuming that the exogenous noise has unit variance is sufficient. Indeed, generalizing to 𝝃𝑘+1 ∼  (0, 𝜎2𝐈𝑑 ) with variance parameter
𝜎2 has the same effect as rescaling the learning rate 𝛼𝑘+1 → 𝜎−2𝛼𝑘+1.

Since for a deterministic 𝑑-dimensional vector 𝐯, one has E[𝐯𝑡𝝃𝑘+1𝝃𝑘+1] = 𝐯, taking the expectation of the weight-perturbed
forward gradient descent scheme with respect to the exogenous randomness induced by 𝝃1, 𝝃2,… gives

E(𝝃𝑖)𝑖≥1 [𝜽𝑘+1] = E(𝝃𝑖)𝑖≥1 [𝜽𝑘] − 𝛼𝑘+1E(𝝃𝑖)𝑖≥1 [∇𝐿(𝜽𝑘)], (2.3)

resembling the SGD dynamic (2.1). If ∇𝐿(𝜽𝑘) depends on 𝜽𝑘 linearly then also E(𝝃𝑖)𝑖≥1 [∇𝐿(𝜽𝑘)] = ∇𝐿(E(𝝃𝑖)𝑖≥1 [𝜽𝑘]).
While in expectation, forward gradient descent is related to SGD, the induced randomness of the 𝑑-dimensional random vectors

𝐱𝑘+1 induces a large amount of noise. To control the high noise level in the dynamic is the main obstacle in the mathematical
analysis. One of the implications is that one has to make small steps by choosing a small learning rate to avoid completely erratic
behavior. This particularly effects the first phase of the learning.

First order multivariate Taylor expansion shows that 𝐿(𝜽𝑘+𝝃𝑘)−𝐿(𝜽𝑘) and (∇𝐿(𝜽𝑘))⊤𝝃𝑘+1 are close. Therefore, forward gradient
descent is related to the zeroth-order method

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘+1
(

𝐿(𝜽𝑘 + 𝝃𝑘) − 𝐿(𝜽𝑘)
)

𝝃𝑘, (2.4)

Liu et al. (2020). Consequently, forward gradient descent can be viewed as an intermediate step between gradient descent, with full
access to the gradient, and zeroth-order methods that are solely based on (randomly) perturbed function evaluations.

We now comment on the biological plausibility of forward gradient descent. As mentioned in the introduction, it is widely
accepted that the brain cannot perform (full) gradient descent. The backpropagation algorithm decomposes the computation of the
gradient in a forward pass and a backward pass. The forward pass evaluates the loss for a training sample by sending signal through
the network. This is biologically plausible. For a given vector 𝐯, it is even possible to compute both 𝐿(𝜽𝑘) and

(

∇𝐿(𝜽𝑘)
)⊤𝐯 in one

forward pass, Baydin et al. (2022), Ren et al. (2022) and Baydin et al. (2018). The construction can be conveniently explained
for two variables 𝜽 = (𝜃1, 𝜃2)⊤, see Fig. 1. The loss function 𝐿(𝜽) = 1

2 (𝑌 − 𝑋1𝜃1 − 𝑋2𝜃2)2 is implemented by first computing
1 = 𝑋1𝜃1 and 𝑢2 = 𝑋2𝜃2 in parallel. Subsequently, one can infer 𝑢3 = 𝑌 − 𝑢1 − 𝑢2 = 𝑌 − 𝑋1𝜃1 − 𝑋2𝜃2 and 𝑢4 = 1

2 (𝑢3)
2 = 𝐿(𝜽).

or a given vector 𝐯 = (𝑣1, 𝑣2)⊤, the update value (∇𝐿(𝜽))⊤𝐯 in the forward gradient descent routine can be computed from 𝑣1, 𝑣2,
′

2

nd 𝑢3 = 𝑌 −𝑋1𝜃1 −𝑋2𝜃2. Indeed, after computing 𝑋1𝑣1 and 𝑋2𝑣2 in a first step, one can compute 𝑢3 = −𝑋1𝑣1 −𝑋2𝑣2 and finally
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Fig. 1. Computational graphs for computing in a forward pass 𝐿(𝜽) = 1
2
(𝑌 −𝑋1𝜃1 −𝑋2𝜃2)2 (upper half) and (∇𝐿(𝜽))⊤𝐯 (lower half).

′
4 = 𝑢3𝑢′3 = (𝑌 −𝑋1𝜃1 −𝑋2𝜃2)(−𝑋1𝑣1 −𝑋2𝑣2) = −(𝑌 − 𝐗⊤𝜽)𝐗⊤𝐯 = (∇𝐿(𝜽))⊤𝐯. For more background on the implementation, see for
nstance Baydin et al. (2018).

In Schmidt-Hieber (2023), it has been shown that under appropriate conditions, Hebbian learning of excitatory neurons in
iological neural networks leads to a zeroth-order learning rule that has the same structure as (2.4).

To complete this section, we briefly compare forward gradient descent with feedback alignment as both methods are motivated
y biological learning and are based on additional randomness. Inspired by biological learning, feedback alignment proposes to
eplace the learned weights in the backward pass by random weights chosen at the start of the training procedure (Lillicrap et al.,
016, 2020). The so-called direct feedback alignment method goes even further: instead of back-propagating the gradient through
ll the layers of the network by the chain-rule, layers are updated with the gradient of the output layer multiplied with a fixed
andom weight matrix (Nøkland, 2016; Launay et al., 2020). (Direct) feedback alignment causes the forward weights to change in
uch a way that the true gradient of the network weights and the substitutes used in the update rule become more aligned (Lillicrap
t al., 2016; Nøkland, 2016; Lillicrap et al., 2020). The linear model can be viewed as neural network without hidden layers. The
bsence of layers means that in the backward step, no weight information is transported between different layers. As a consequence,
oth feedback alignment and direct feedback alignment collapse in the linear model into standard gradient descent. The conclusion
s that feedback alignment and forward gradient descent are not comparable. The argument also shows that to unveil nontrivial
tatistical properties of feedback alignment, one has to go beyond the linear model. We leave the statistical analysis as an open
roblem.

. Convergence rates in the linear regression model

We analyze weight-perturbed forward gradient descent for data generated from the 𝑑-dimensional linear regression with Gaussian
andom design. In this framework, we observe i.i.d. pairs (𝐗𝑖, 𝑌𝑖) ∈ R𝑑 × R, 𝑖 = 1, 2,… satisfying

𝐗𝑖 ∼  (0, 𝛴), 𝑌𝑖 = 𝐗⊤
𝑖 𝜽⋆ + 𝜖𝑖, 𝑖 = 1, 2,… (3.1)

ith 𝜽⋆ the unknown 𝑑-dimensional regression vector, 𝛴 an unknown covariance matrix, and independent noise variables 𝜖𝑖 with
ean zero and variance one.

For the analysis, we consider the squared loss 𝐿(𝜽𝑘,𝐗𝑘, 𝑌𝑘) =
1
2 (𝑌𝑘 − 𝐗⊤

𝑘𝜽𝑘)
2. The gradient is given by

∇𝐿(𝜽𝑘) = −
(

𝑌𝑘 − 𝐗⊤
𝑘𝜽𝑘

)

𝐗𝑘. (3.2)

e now analyze the forward gradient estimator assuming that the initial value 𝜽0 can be random or deterministic but should be
ndependent of the data. We employ a similar proving strategy as in the recent analysis of dropout in the linear model in Clara
t al. (2023). In particular, we will derive a recursive formula for E

[

(𝜽𝑘 − 𝜽⋆)(𝜽𝑘 − 𝜽⋆)⊤
]

. In contrast to this work, we consider a
ifferent form of noise and non-constant learning rates.

The first result shows that forward gradient descent does gradient descent in expectation.

heorem 3.1. We have E[𝜽𝑘] − 𝜽⋆ =
(

𝐈𝑑 − 𝛼𝑘𝛴
)(

E[𝜽𝑘−1] − 𝜽⋆
)

and thus

E[𝜽𝑘] = 𝜽⋆ +

( 𝑘
∏

(𝐈𝑑 − 𝛼𝓁𝛴)

)

(

E[𝜽0] − 𝜽⋆
)

. (3.3)
3

𝓁=1
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The proof does not exploit the Gaussian design and only requires that 𝐗𝑖 is centered and has covariance matrix 𝛴. The exogenous
randomness induced by 𝝃1, 𝝃2,… disappears in the expected values but heavily influences the recursive expressions for the squared
xpectations.

heorem 3.2. Consider forward gradient descent (2.2). If 𝐴𝑘 ∶= E
[

(𝜽𝑘 − 𝜽⋆)(𝜽𝑘 − 𝜽⋆)⊤
]

, then

𝐴𝑘 =(𝐈𝑑 − 𝛼𝑘𝛴)𝐴𝑘−1(𝐈𝑑 − 𝛼𝑘𝛴)

+ 3𝛼2𝑘𝛴𝐴𝑘−1𝛴 + 2𝛼2𝑘E
[

(𝜽𝑘−1 − 𝜽⋆)⊤𝛴(𝜽𝑘−1 − 𝜽⋆)
]

𝛴 + 2𝛼2𝑘𝛴

+ 2𝛼2𝑘 tr
(

𝛴𝐴𝑘−1𝛴
)

𝐈𝑑 + 𝛼2𝑘E
[

(𝜽𝑘−1 − 𝜽⋆)⊤𝛴(𝜽𝑘−1 − 𝜽⋆)
]

tr
(

𝛴
)

𝐈𝑑
+ 𝛼2𝑘 tr(𝛴)𝐈𝑑 .

Since 𝐴𝑘 depends on 𝜽2𝑘, the fourth moments of the design vectors 𝐗𝑖 and the exogenous random vectors 𝝃𝑘 play a role in this
equation.

The risk E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

is the trace of the matrix 𝐴𝑘. Setting

𝜅(𝛴) ∶=
‖𝛴‖𝑆
𝜆min(𝛴)

or the condition number and building on Theorem 3.2, we can establish the following risk bound for forward gradient descent.

heorem 3.3 (Mean Squared Error). Consider forward gradient descent (2.2) and assume that 𝛴 is positive definite. For constant 𝑎 > 2,
hoosing the learning rate

𝛼𝑘 =
𝑎𝜆min(𝛴)

𝑘𝜆2min(𝛴) + 𝑎‖𝛴‖

2
𝑆 (𝑑 + 2)2

, 𝑘 = 1, 2,… , (3.4)

yields

E
[

‖

‖

‖

𝜽𝑘 − 𝜽⋆
‖

‖

‖

2

2

]

≤

(

1 + 𝑎𝜅2(𝛴)(𝑑 + 2)2

𝑘 + 𝑎𝜅2(𝛴)(𝑑 + 2)2

)𝑎

E
[

‖

‖

‖

𝜽0 − 𝜽⋆
‖

‖

‖

2

2

]

+
2𝑒𝑎𝜅(𝛴)(𝑑 + 2)2

𝜆min(𝛴)(𝑘 + 𝑎𝜅2(𝛴)(𝑑 + 2)2)
.

Alternatively, the upper bound of Theorem 3.3 can be written as

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≤
(

1 − 𝑎−1𝜆min(𝛴)(𝑘 − 1)𝛼𝑘
)𝑎

E
[

‖𝜽0 − 𝜽⋆‖22
]

+ 2𝑒𝜅(𝛴)(𝑑 + 2)2𝛼𝑘.

In the upper bound, the risk E
[

‖𝜽0 −𝜽⋆‖22
]

of the initial estimate 𝜽0 appears. A realistic scenario is that the entries of 𝜽⋆ and 𝜽0 are
all of order one. In this case, the inequality ‖𝜽0 − 𝜽⋆‖22 ≤ 𝑑‖𝜽0 − 𝜽⋆‖2∞ shows that the risk of the initial estimate will scale with the
number of parameters 𝑑. Taking 𝑎 = log(𝑑) (for 𝑑 ≥ 8 > 𝑒2 such that 𝑎 > log(𝑒2) = 2), Theorem 3.3 implies that

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≲ 𝑑

(

𝑑2 log(𝑑)
𝑘

)log(𝑑)

E
[

‖𝜽0 − 𝜽⋆‖2∞
]

+
𝑑2 log(𝑑)

𝑘
.

For 𝑘⋆ = 𝑒2𝑑2 log(𝑑), 𝑑2 log(𝑑)∕𝑘⋆ = 𝑒−2 and 𝑑(𝑑2 log(𝑑)∕𝑘⋆)log(𝑑) = 1∕𝑑. Since 𝑑 > 𝑒2, this means that 𝑑
(

𝑑2 log(𝑑)∕𝑘⋆
)log(𝑑) <

𝑑2 log(𝑑)∕𝑘⋆. Moreover, 𝑘− log(𝑑) tends faster to zero than 𝑘−1 as 𝑘 → ∞. So, for 𝑘 ≥ 𝑘⋆ = 𝑒2𝑑2 log(𝑑),

𝑑

(

𝑑2 log(𝑑)
𝑘

)log(𝑑)

E
[

‖𝜽0 − 𝜽⋆‖2∞
]

+
𝑑2 log(𝑑)

𝑘
≤

𝑑2 log(𝑑)
𝑘

(

1 + E
[

‖𝜽0 − 𝜽⋆‖2∞
]

)

. (3.5)

he rate for 𝑘 ≥ 𝑒2𝑑2 log(𝑑) is thus 𝑑2 log(𝑑)∕𝑘. This means that forward gradient descent has dimension dependence 𝑑2 log(𝑑). This is
y a factor 𝑑 log(𝑑) worse than the minimax rate for the linear regression problem, Tsybakov (2003), Hsu et al. (2014) and Mourtada
2022). In contrast, methods that have access to the gradient can achieve optimal dimension dependence in the rate, Polyak and
uditsky (1992) and Lakshminarayanan and Szepesvari (2018). The obtained convergence rate is in line with results showing that
or convex optimization problems zeroth-order methods have a higher dimension dependence, Duchi et al. (2015), Liu et al. (2020)
nd Nesterov and Spokoiny (2017).

We believe that faster convergence rates are obtainable if the same datapoint is assessed several times. This means that each
ata point is used for several updates of the forward gradient 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘+1

(

∇𝐿(𝜽𝑘)
)⊤𝝃𝑘+1𝝃𝑘+1, for instance by running multiple

pochs. However, in every iteration a new random direction 𝝃𝑘+1 is sampled. We expect that if every data point is used 𝑚 ≤ 𝑑 times,
ne should be able to achieve the convergence rate 𝑑2∕(𝑘𝑚), up to some logarithmic terms. If this is true and if 𝑚 is of the order of
, one could even recover the minimax rate 𝑑∕𝑘. Using the same datapoints multiple times induces additional dependence among
he parameter updates. To deal with this dependence is the key challenge to establish the convergence rate 𝑑2∕(𝑘𝑚).

Assuming that the covariance matrix 𝛴 is positive definite is standard for linear regression with random design (Hsu et al., 2014;
ourtada, 2022; Shaffer, 1991).

For 𝑘 ≳ 𝑑2, the decrease of the learning rate 𝛼𝑘 is of the order 1∕𝑘, which is the standard choice (Kushner and Yin, 2003; Györfi
nd Walk, 1996; Benveniste et al., 1990). A constant learning rate is used for Ruppert–Polyak averaging in Polyak and Juditsky
4

1992) and Györfi and Walk (1996). For least squares linear regression, it is possible to achieve (near) optimal convergence with
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Fig. 2. Comparison of the MSE of forward gradient descent (blue) and SGD (red) for dimensions 𝑑 = 10 and 𝑑 = 100. The upper dashed line is 𝑘 ↦ 𝑑2 log(𝑑)∕𝑘,
he middle dashed line is 𝑘 ↦ 𝑑2∕𝑘, and the lower dashed line is 𝑘 ↦ 𝑑∕𝑘. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

constant (universal) stepsize (Bach and Moulines, 2013). Conditions under which a constant (universal) stepsize in more general
ettings than linear least squares works or fails are investigated in Lakshminarayanan and Szepesvari (2018).

In a small simulation study, we investigated whether there is a discrepancy between the derived convergence rates and the
mpirical decay of the risk. For dimensions 𝑑 = 10 and 𝑑 = 100, data according to (3.1) with 𝛴 = 𝐈𝑑 are generated. On these data,
e run ten times weight perturbed forward gradient descent (2.2), and compare the mean squared errors (MSEs) to one realization
f SGD (2.1). For all simulations of forward gradient descent and SGD, we use the same initialization 𝜽0, drawn from a  (0, 𝐈𝑑 )
istribution, and the learning rate 𝛼𝑘 specified in (3.4) with 𝑎 = log(𝑑). Thus, only the random perturbation vectors 𝝃𝑘 in the forward
radient descent schemes differ across different runs. The outcomes are reported in Fig. 2. For each of the 10+1 simulations, we
eport on a log–log scale the MSE for the first one million iterations. The upper dashed line gives the derived convergence rate
↦ 𝑑2 log(𝑑)∕𝑘, the middle dashed line is 𝑑2∕𝑘, and the lower dashed line is 𝑑∕𝑘. The ten paths from the ten forward gradient

escent runs are shown in blue. The path from the SGD is displayed in red. We see three regimes. In the first regime, the risk
emains nearly constant. For dimension 𝑑 = 100, this is true up to the first ten thousand of iterations. Afterwards there is a sudden
ecrease of the risk. Eventually, for large number of iterations 𝑘, the MSE of forward gradient descent concentrates near the line
↦ 𝑑2∕𝑘, while the MSE of SGD concentrates around 𝑘 ↦ 𝑑∕𝑘. This suggest that up to the log2(𝑑)-factor, the derived theory does

n fact describe the rate of the MSE. Eq. (3.5) predicts that the rate 𝑑2 log(𝑑)∕𝑘 will occur for 𝑘 ≥ 𝑘⋆ = 𝑒2𝑑2 log(𝑑). For 𝑑 = 10,
⋆ ≈ 1.7 × 103 and for 𝑑 = 100, 𝑘⋆ ≈ 3.4 × 105. Thus, in terms of orders of magnitude, there is a close agreement between theory
nd simulations. Starting with a good initializer that lies already in the neighborhood of the true parameter, one can avoid the long
urn-in time in the beginning. Otherwise, it remains an open problem, whether one can modify the procedure such that also for
maller values of 𝑘, the risk behaves more like 𝑑2 log(𝑑)∕𝑘.

Python code is available on Github (Bos and Schmidt-Hieber, 2024).

. Proofs

roof of Theorem 3.1. By (3.2) and the linear regression model 𝑌𝑘−1 = 𝐗⊤
𝑘−1𝜽⋆ + 𝜖𝑘−1, we have

∇𝐿(𝜽𝑘−1) = −(𝑌𝑘−1 − 𝐗⊤
𝑘−1𝜽𝑘−1)𝐗𝑘−1

= −(𝐗⊤
𝑘−1(𝜽⋆ − 𝜽𝑘−1) + 𝜖𝑘−1)𝐗𝑘−1

= −𝜖𝑘−1𝐗𝑘−1 − 𝐗𝑘−1𝐗⊤
𝑘−1(𝜽⋆ − 𝜽𝑘−1).

(4.1)

ince E[𝐗𝑘−1𝐗⊤
𝑘−1] = 𝛴, E[𝜖𝑘−1] = 0, and 𝐗𝑘−1, 𝜖𝑘−1,𝜽𝑘−1 are jointly independent, we obtain

E
[

∇𝐿(𝜽𝑘−1)
|

|

|

𝜽𝑘−1
]

= E
[

−𝜖𝑘−1𝐗𝑘−1 − 𝐗𝑘−1𝐗⊤
𝑘−1(𝜽⋆ − 𝜽𝑘−1)

|

|

|

𝜽𝑘−1
]

= −𝛴(𝜽⋆ − 𝜽𝑘−1).
(4.2)

ombined with (2.3), we find

E
[

𝜽𝑘
]

= E
[

𝜽𝑘−1
]

− 𝛼𝑘E
[

∇𝐿(𝜽𝑘−1)
]

= E
[

𝜽𝑘−1
]

+ 𝛼𝑘𝛴E
[

𝜽⋆ − 𝜽𝑘−1
]

.

he true parameter 𝜽⋆ is deterministic. Subtracting 𝜽⋆ on both sides, yields the claimed identity E[𝜽𝑘] − 𝜽⋆ =
(

𝐈𝑑 − 𝛼𝑘𝛴
)(

E[𝜽𝑘−1] −
)

. □
5

⋆
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4.1. Proof of Theorem 3.2

Lemma 4.1. If 𝐙 ∼  (0, 𝛤 ) is a 𝑑-dimensional random vector and 𝐔 is a 𝑑-dimensional random vector that is independent of 𝐙, then

E
[

(𝐔⊤𝐙)2𝐙𝐙⊤] = 2𝛤E
[

𝐔𝐔⊤]𝛤 + E
[

𝐔⊤𝛤𝐔
]

𝛤 .

roof. Because 𝐔 and 𝐙 are independent, the (𝑖, 𝑗)th entry of the 𝑑 × 𝑑 matrix E
[

(𝐔⊤𝐙)2𝐙𝐙⊤] is
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
]

E
[

𝑍𝓁𝑍𝑚𝑍𝑖𝑍𝑗
]

.

ince 𝐙 ∼  (0, 𝛤 ),

E
[

𝑍𝓁𝑍𝑚𝑍𝑖𝑍𝑗
]

= 𝛤𝓁,𝑚𝛤𝑖,𝑗 + 𝛤𝓁,𝑖𝛤𝑚,𝑗 + 𝛤𝓁,𝑗𝛤𝑚,𝑖,

ee for instance the example at the end of Section 2 in Triantafyllopoulos (2003). Thus
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
]

E
[

𝑍𝓁𝑍𝑚𝑍𝑖𝑍𝑗
]

=
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
](

𝛤𝓁,𝑚𝛤𝑖,𝑗 + 𝛤𝓁,𝑖𝛤𝑚,𝑗 + 𝛤𝓁,𝑗𝛤𝑚,𝑖
)

.

Because of
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
]

𝛤𝓁,𝑚𝛤𝑖,𝑗 =
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝛤𝓁,𝑚𝑈𝑚
]

𝛤𝑖,𝑗 = E
[

𝐔⊤𝛤𝐔𝛤𝑖,𝑗
]

,

𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
]

𝛤𝓁,𝑖𝛤𝑚,𝑗 =
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝛤𝓁,𝑖𝑈𝑚𝛤𝑚,𝑗
]

= E
[

(

𝐔⊤𝛤
)

𝑖
(

𝐔⊤𝛤
)

𝑗

]

,

and
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝓁𝑈𝑚
]

𝛤𝓁,𝑗𝛤𝑚,𝑖 =
𝑑
∑

𝓁,𝑚=1
E
[

𝑈𝑚𝛤𝑚,𝑖𝑈𝓁𝛤𝓁,𝑗
]

= E
[

(

𝐔⊤𝛤
)

𝑖
(

𝐔⊤𝛤
)

𝑗

]

,

the (𝑖, 𝑗)th entry of the matrix E
[

(𝐔⊤𝐙)2𝐙𝐙⊤] is

2E
[

(

𝐔⊤𝛤
)

𝑖
(

𝐔⊤𝛤
)

𝑗

]

+ E
[

𝐔⊤𝛤𝐔𝛤𝑖,𝑗
]

.

For a vector 𝐚 = (𝑎1,… , 𝑎𝑑 )⊤, the scalar 𝑎𝑖𝑎𝑗 is the (𝑖, 𝑗)th entry of the matrix 𝐚𝐚⊤. Combined with the previous display, the result
follows. □

Proof of Theorem 3.2. As Theorem 3.2 only involves one update step, we can simplify the notation by dropping the index 𝑘 and
analyzing 𝜽′′ = 𝜽′ − 𝛼

(

∇𝐿(𝜽′)
)⊤𝝃𝝃 for one data point (𝐗, 𝑌 ) and independent 𝝃 ∼  (0, 𝐼𝑑 ). With 𝐴′ ∶= E

[

(𝜽′ − 𝜽⋆)(𝜽′ − 𝜽⋆)⊤
]

and
𝐴′′ ∶= E

[

(𝜽′′ − 𝜽⋆)(𝜽′′ − 𝜽⋆)⊤
]

, we then have to prove that

𝐴′′ =(𝐈𝑑 − 𝛼𝛴)𝐴′(𝐈𝑑 − 𝛼𝛴) + 3𝛼2𝛴𝐴′𝛴 + 2𝛼2E
[

(𝜽′ − 𝜽⋆)⊤𝛴(𝜽′ − 𝜽⋆)
]

𝛴 + 2𝛼2𝛴

+ 2𝛼2 tr
(

𝛴𝐴′𝛴
)

𝐈𝑑 + 𝛼2E
[

(𝜽′ − 𝜽⋆)⊤𝛴(𝜽′ − 𝜽⋆)
]

tr
(

𝛴
)

𝐈𝑑 + 𝛼2 tr(𝛴)𝐈𝑑 .

Substituting the update rule (2.2) in 𝐴𝑘 gives by the linearity of the transpose that

𝐴′′ = E
[

(𝜽′′ − 𝜽⋆)(𝜽′′ − 𝜽⋆)⊤
]

= E
[

(

𝜽′ − 𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃 − 𝜽⋆

)(

𝜽′ − 𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃 − 𝜽⋆

)⊤
]

= 𝐴′ − 𝛼E
[

(

𝜽 − 𝜽⋆
)(

(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤
]

− 𝛼E
[

(

(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝜽′ − 𝜽⋆
)⊤

]

+ E
[

(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤
]

.

(4.3)

First, consider the terms with the minus sign in the above expression. The random vector 𝝃 is independent of all other randomness
and hence E𝝃

[(

∇𝐿(𝜽′)
)⊤𝝃𝝃

]

= ∇𝐿(𝜽′). Moreover, together with (4.2),

E
[

(

(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝜽′ − 𝜽⋆
)⊤

|

|

|

|

𝜽′
]

= E
[

∇𝐿(𝜽′) ||
|

𝜽′
]

(𝜽′ − 𝜽⋆)⊤ = 𝛴(𝜽′ − 𝜽⋆)(𝜽′ − 𝜽⋆)⊤.

Taking the transpose and tower rule, we find

− 𝛼E
[

(

𝜽 − 𝜽⋆
)(

(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤
]

− 𝛼E
[

(

(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝜽′ − 𝜽⋆
)⊤

]

[ ′ ′ ⊤] [ ′ ′ ⊤]
(4.4)
6

= −𝛼E (𝜽 − 𝜽⋆)(𝜽 − 𝜽⋆) 𝛴 − 𝛼𝛴E (𝜽 − 𝜽⋆)(𝜽 − 𝜽⋆) .
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In a next step, we derive an expression for E

[(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤]
. Since 𝝃 ∼  (0, 𝐈𝑑 ) is independent of ∇𝐿(𝜽′)

e can apply Lemma 4.1 to derive

E
[

(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤
]

= 𝛼2E
[

(

(

∇𝐿(𝜽′)
)⊤𝝃

)2
𝝃𝝃⊤

]

= 2𝛼2E
[

(

∇𝐿(𝜽′)
)(

∇𝐿(𝜽′)
)⊤

]

+ 𝛼2E
[

(

∇𝐿(𝜽′)
)⊤(∇𝐿(𝜽′)

)

]

𝐈𝑑

= 2𝛼2E
[

(

∇𝐿(𝜽′)
)(

∇𝐿(𝜽′)
)⊤

]

+ 𝛼2 tr
(

E
[

(

∇𝐿(𝜽′)
)(

∇𝐿(𝜽′)
)⊤

]

)

𝐈𝑑 .

(4.5)

Arguing as for (4.1) gives ∇𝐿(𝜽′) = −𝜖𝐗 − 𝐗𝐗⊤(𝜽⋆ − 𝜽′) and this yields

E
[

(

∇𝐿(𝜽′)
)(

∇𝐿(𝜽′)
)⊤

]

= E
[

E𝜖

[

(

𝜖𝐗 + 𝐗𝐗⊤(𝜽⋆ − 𝜽′)
)(

𝜖𝐗 + 𝐗𝐗⊤(𝜽⋆ − 𝜽′)
)⊤

]

]

.

Because 𝜖 has mean zero and variance one and is independent of (𝐗,𝜽′), we conclude that

E
[

(

∇𝐿(𝜽′)
)(

∇𝐿(𝜽′)
)⊤

]

= E
[

(

𝐗𝐗⊤(𝜽⋆ − 𝜽′)
)(

𝐗𝐗⊤(𝜽⋆ − 𝜽′)
)⊤ + 𝐗𝐗⊤

]

= E
[

(

𝐗⊤(𝜽⋆ − 𝜽′)
)2𝐗𝐗⊤

]

+ 𝛴,
(4.6)

where for the last equality we used that 𝐗⊤(𝜽⋆ − 𝜽′) is a scalar and that 𝐗 ∼  (0, 𝛴). Since 𝐗 ∼  (0, 𝛴) is independent of 𝜽′ we
get by Lemma 4.1 that

E
[

(

𝐗⊤(𝜽⋆ − 𝜽′)
)2𝐗𝐗⊤

]

= 2𝛴E
[

(𝜽′ − 𝜽⋆)(𝜽′ − 𝜽⋆)⊤
]

𝛴 + E
[

(𝜽′ − 𝜽⋆)⊤𝛴(𝜽′ − 𝜽⋆)
]

𝛴.

Substituting this in (4.6) and (4.5) yields

E
[

(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)(

𝛼
(

∇𝐿(𝜽′)
)⊤𝝃𝝃

)⊤
]

= 4𝛼2𝛴E
[

(𝜽′ − 𝜽⋆)(𝜽′ − 𝜽⋆)⊤
]

𝛴 + 2𝛼2E
[

(𝜽′ − 𝜽⋆)⊤𝛴(𝜽′ − 𝜽⋆)
]

𝛴 + 2𝛼2𝛴

+ 2𝛼2 tr
(

𝛴E
[

(𝜽′ − 𝜽⋆)(𝜽′ − 𝜽⋆)⊤
]

𝛴
)

𝐈𝑑 + 𝛼2 tr
(

E
[

(𝜽′ − 𝜽⋆)⊤𝛴(𝜽′ − 𝜽⋆)
]

𝛴
)

𝐈𝑑
+ 𝛼2 tr(𝛴)𝐈𝑑 .

(4.7)

Combining (4.3) with (4.4) and (4.7) yields the statement of the theorem. □

4.2. Proof of Theorem 3.3

For two vectors 𝐮, 𝐯 of the same length, tr(𝐮𝐯⊤) = 𝐮⊤𝐯. Thus, E
[

‖𝜽𝑘−𝜽⋆‖22
]

= tr
(

E
[

(𝜽𝑘−𝜽⋆)(𝜽𝑘−𝜽⋆)⊤
])

. Together with Theorem 3.2,
tr(𝐈𝑑 ) = 𝑑 and tr(𝐴𝐵) = tr(𝐵𝐴) for square matrices 𝐴 and 𝐵 of the same size, this yields

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

= tr
(

(𝐈𝑑 − 𝛼𝑘𝛴)E
[

(𝜽𝑘−1 − 𝜽⋆)(𝜽𝑘−1 − 𝜽⋆)⊤
]

(𝐈𝑑 − 𝛼𝑘𝛴)
)

+ 3𝛼2𝑘 tr
(

𝛴E
[

(𝜽𝑘−1 − 𝜽⋆)(𝜽𝑘−1 − 𝜽⋆)⊤
]

𝛴
)

+ 2𝛼2𝑘 tr
(

E
[

(𝜽𝑘−1 − 𝜽⋆)⊤𝛴(𝜽𝑘−1 − 𝜽⋆)
]

𝛴
)

+ 2𝛼2𝑘 tr
(

𝛴
)

+ 2𝛼2𝑘 tr
(

𝛴E
[

(𝜽𝑘−1 − 𝜽⋆)(𝜽𝑘−1 − 𝜽⋆)⊤
]

𝛴
)

tr
(

𝐈𝑑
)

+ 𝛼2𝑘E
[

(𝜽𝑘−1 − 𝜽⋆)⊤𝛴(𝜽𝑘−1 − 𝜽⋆)
]

tr
(

𝛴
)

tr
(

𝐈𝑑
)

+ 𝛼2𝑘 tr(𝛴) tr
(

𝐈𝑑
)

= E
[

(𝜽𝑘−1 − 𝜽⋆)⊤(𝐈𝑑 − 2𝛼𝑘𝛴)⊤(𝜽𝑘−1 − 𝜽⋆)
]

+ 2(𝑑 + 2)𝛼2𝑘 tr
(

𝛴E
[

(𝜽𝑘−1 − 𝜽⋆)(𝜽𝑘−1 − 𝜽⋆)⊤
]

𝛴
)

+ (𝑑 + 2)𝛼2𝑘
(

E
[

(𝜽𝑘−1 − 𝜽⋆)⊤𝛴(𝜽𝑘−1 − 𝜽⋆)
]

tr
(

𝛴
)

+ tr
(

𝛴
)

)

.

(4.8)

If 𝜆 is an eigenvalue of 𝛴, then (1 − 2𝛼𝑘𝜆) is an eigenvalue of 𝐈𝑑 − 2𝛼𝑘𝛴. By assumption, 0 < 𝛼𝑘 ≤ 𝜆min(𝛴)∕
(

2‖𝛴‖

2
𝑆
)

≤ 1∕
(

2𝜆max(𝛴)
)

and therefore the matrix 𝐈𝑑 − 2𝛼𝑘𝛴 is positive semi-definite and (1 − 2𝛼𝑘𝜆min(𝛴)) is the largest eigenvalue.
For a positive semi-definite matrix 𝐴 and a vector 𝐯, the min–max theorem states that 𝐯⊤𝐴𝐯 ≤ 𝜆max(𝐴)‖𝐯‖22 = ‖𝐴‖𝑆‖𝐯‖22. Using

that for a vector 𝐱 it holds that tr(𝐱𝐱⊤) = 𝐱⊤𝐱, with 𝐱 = 𝛴(𝜽𝑘−1 −𝜽⋆) in (4.8) and applying 𝐯⊤𝐴𝐯 ≤ ‖𝐴‖𝑆‖𝐯‖22 with 𝐯 = 𝜽𝑘−1 −𝜽⋆ and
𝐴 ∈ {𝛴, 𝐈𝑑 − 2𝛼𝑘𝛴,𝛴2}, yields

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≤
(

1 − 2𝛼𝑘𝜆min(𝛴)
)

E
[

‖𝜽𝑘−1 − 𝜽⋆‖22
]

+ (𝑑 + 2)𝛼2
(

tr(𝛴)‖𝛴‖𝑆E
[

‖𝜽𝑘−1 − 𝜽⋆‖2
]

+ 2‖𝛴‖

2 E
[

‖𝜽𝑘−1 − 𝜽⋆‖2
]

+ tr(𝛴)
)

.

7
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T

U

U

O
n

The spectral norm of a positive semi-definite matrix is equal to the largest eigenvalue and so tr(𝛴) =
∑𝑑

𝑖=1 𝜆𝑖 ≤ 𝑑𝜆max = 𝑑‖𝛴‖𝑆 .
Therefore,

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≤
(

1 − 2𝛼𝑘𝜆min(𝛴) + ‖𝛴‖

2
𝑆 (𝑑 + 2)2𝛼2𝑘

)

E
[

‖𝜽𝑘−1 − 𝜽⋆‖22
]

+ ‖𝛴‖𝑆 (𝑑 + 2)2𝛼2𝑘.

Using that 𝛼𝑘 ≤ 𝜆min(𝛴)∕
(

‖𝛴‖

2
𝑆 (𝑑 + 2)2

)

yields

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≤
(

1 − 𝛼𝑘𝜆min(𝛴)
)

E
[

‖𝜽𝑘−1 − 𝜽⋆‖22
]

+ ‖𝛴‖𝑆 (𝑑 + 2)2𝛼2𝑘.

Rewritten in non-recursive form, we obtain

E
[

‖𝜽𝑘 − 𝜽⋆‖22
]

≤E
[

‖𝜽0 − 𝜽⋆‖22
]

𝑘
∏

𝓁=1

(

1 − 𝛼𝓁𝜆min(𝛴)
)

+ ‖𝛴‖𝑆 (𝑑 + 2)2
𝑘−1
∑

𝑚=0
𝛼2𝑘−𝑚

𝑘
∏

𝓁=𝑘−𝑚+1

(

1 − 𝛼𝓁𝜆min(𝛴)
)

,

(4.9)

where we use the convention that the (empty) product over zero terms is given the value 1. For ease of notation define 𝑐𝑑 ∶=
𝑎𝜅2(𝛴)(𝑑 + 2)2, with condition number 𝜅(𝛴) = ‖𝛴‖𝑆∕𝜆min(𝛴). From the definition of 𝛼𝑘, (3.4), it follows that 𝛼𝑘 = 𝑎

𝜆min(𝛴) ⋅
1

𝑘+𝑐𝑑
.

Using that for all real numbers 𝑥 it holds that 1 + 𝑥 ≤ 𝑒𝑥, we get that for all integers 𝑘∗ < 𝑘,

𝑘
∏

𝓁=𝑘∗

(

1 − 𝛼𝓁𝜆min(𝛴)
)

≤ exp

(

−𝜆min(𝛴)
𝑘
∑

𝓁=𝑘∗
𝛼𝓁

)

= exp

(

−𝑎
𝑘
∑

𝓁=𝑘∗

1
𝓁 + 𝑐𝑑

)

. (4.10)

he function 𝑥 ↦ 1∕(𝑥 + 𝑐) is monotone decreasing for 𝑥 > 0 and 𝑐 ≥ 0 and thus,

𝑘
∑

𝓁=𝑘∗

1
𝓁 + 𝑐𝑑

≥
𝑘
∑

𝓁=𝑘∗
∫

𝓁+1

𝓁

1
𝑥 + 𝑐𝑑

𝑑𝑥

= ∫

𝑘+1

𝑘∗

1
𝑥 + 𝑐𝑑

𝑑𝑥

= log(𝑘 + 1 + 𝑐𝑑 ) − log(𝑘∗ + 𝑐𝑑 )

= log
(𝑘 + 1 + 𝑐𝑑

𝑘∗ + 𝑐𝑑

)

.

(4.11)

sing (4.10) and (4.11) with 𝑘∗ = 1 gives

𝑘
∏

𝓁=1

(

1 − 𝛼𝓁𝜆min(𝛴)
)

≤ exp
(

−𝑎 log
(𝑘 + 1 + 𝑐𝑑

1 + 𝑐𝑑

)

)

=
(

1 + 𝑐𝑑
𝑘 + 1 + 𝑐𝑑

)𝑎
. (4.12)

sing (4.10) and (4.11) with 𝑘∗ = 𝑘 − 𝑚 + 1 gives

𝑘−1
∑

𝑚=0
𝛼2𝑘−𝑚

𝑘
∏

𝓁=𝑘−𝑚+1

(

1 − 𝛼𝓁𝜆min(𝛴)
)

≤ 𝑎2

𝜆2min(𝛴)

𝑘−1
∑

𝑚=0

1
(

(𝑘 − 𝑚) + 𝑐𝑑
)2

(

𝑘 − 𝑚 + 1 + 𝑐𝑑
𝑘 + 1 + 𝑐𝑑

)𝑎

= 𝑎2

𝜆2min(𝛴)(𝑘 + 1 + 𝑐𝑑 )𝑎

𝑘−1
∑

𝑚=0

(

𝑘 − 𝑚 + 1 + 𝑐𝑑
)𝑎

(

(𝑘 − 𝑚) + 𝑐𝑑
)2

= 𝑎2

𝜆2min(𝛴)(𝑘 + 1 + 𝑐𝑑 )𝑎

𝑘
∑

𝑚=1

(

𝑚 + 1 + 𝑐𝑑
)𝑎

(

𝑚 + 𝑐𝑑
)2

.

(4.13)

bserve that 𝑐𝑑 = 𝑎𝜅2(𝛴)(𝑑 + 2)2 ≥ 𝑎. This gives us that 𝑐𝑑 + 1 ≤ (1 + 1∕𝑎)𝑐𝑑 and thus 𝑚 + 1 + 𝑐𝑑 ≤ (1 + 1∕𝑎)(𝑚 + 𝑐𝑑 ). For all real
umbers 𝑥, (1 + 𝑥) ≤ 𝑒𝑥 and thus (1 + 1∕𝑎)𝑎 ≤ 𝑒. Therefore,

𝑘
∑

(

𝑚 + 1 + 𝑐𝑑
)𝑎

( )2
≤ 𝑒

𝑘
∑

(

𝑚 + 𝑐𝑑
)𝑎−2. (4.14)
8
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For 𝑝 > 0, the function 𝑥 ↦ (𝑥 + 𝑐)𝑝 is monotone increasing for 𝑥, 𝑐 > 0, Hence,
𝑘
∑

𝓁=1
(𝓁 + 𝑐)𝑝 ≤

𝑘
∑

𝓁=1
∫

𝓁+1

𝓁
(𝑥 + 𝑐)𝑝𝑑𝑥

= ∫

𝑘+1

1
(𝑥 + 𝑐)𝑝𝑑𝑥

=
(𝑘 + 1 + 𝑐)𝑝+1

𝑝 + 1
−

(1 + 𝑐)𝑝+1

𝑝 + 1

≤ (𝑘 + 1 + 𝑐)𝑝+1

𝑝 + 1
.

Since 𝑎 > 2, we can apply this with 𝑝 = 𝑎 − 2 > 0, to find

𝑒
𝑘
∑

𝑚=1

(

𝑚 + 𝑐𝑑
)𝑎−2 ≤ 𝑒

(𝑘 + 1 + 𝑐𝑑 )𝑎−1

𝑎 − 1
.

Combining (4.9) and (4.12)–(4.14) finally gives

E[‖𝜽𝑘 − 𝜽⋆‖22] ≤

(

1 + 𝑎𝜅2(𝛴)(𝑑 + 2)2

𝑘 + 1 + 𝑎𝜅2(𝛴)(𝑑 + 2)2

)𝑎

E[‖𝜽0 − 𝜽⋆‖22]

+
𝑒𝑎2𝜅(𝛴)(𝑑 + 2)2

𝜆min(𝛴)
(

𝑎 − 1
)(

𝑘 + 1 + 𝑎𝜅2(𝛴)(𝑑 + 2)2
) .

Using that 0 < 𝑎∕(𝑎 − 1) < 2 for 𝑎 > 2, now yields the result. □
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