
Using Federated Learning and Channel State Information-Based
Sensing for Scalable and Realistic At-Home Healthcare
Jeroen Klein Brinke∗
j.kleinbrinke@utwente.nl
University of Twente
Pervasive Systems

Enschede, The Netherlands

Martijn van der Linden∗
University of Twente

Enschede, The Netherlands

Paul Havinga
p.j.m.havinga@utwente.nl

University of Twente
Pervasive Systems

Enschede, The Netherlands

ABSTRACT
This paper explores the use of federated learning in a realistic
household employing existing infrastructure to add new devices
and locations by rotating the role of the transmitter among smart
devices in a multi-person scenario. Current solutions employ chan-
nel state information-based sensing for health care monitoring in
various ways to propagate knowledge efficiently; however, these
solutions often consider (i) ideally placed devices in (ii) single-
participant scenarios and (iii) do not consider the different roles
of these devices in a network. Data is collected from four smart
devices in a household, assuming three participants, one of which
is monitored and the other two function as noise, are assigned to
perform activities to replicate a realistic household scenario. In-
sights are provided on using federated learning in realistic at-home
health care when adding a new activity location and client devices,
both transmitter-only and full communication devices. Results in-
dicate new devices and locations can quickly be adopted with less
data by the federated model without intensive retraining, even in
multi-person environments, when doing extensive pre-training.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing; • Computer systems organization→ Sensor networks; •
Computing methodologies→ Transfer learning.
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1 INTRODUCTION
Wi-Fi channel state information is commonly used to unobtrusively
monitor human activity recognition and physiology to facilitate
smart cities and good health and well-being [14] besides the more
established methods such as computer vision, wearable motion
sensors, and acoustic-based methods [22]. Channel state informa-
tion shows the multipath propagation between a transmitter and
receiving antenna at the receiver side; it is a phenomenon caused
by environmental influences on the signal, such as scattering, ab-
sorbing, and reflecting. These environmental influences include
humans, and when monitoring the changes in the channel state
information over time, the activities of them. This truly unobtrusive
approach has proven valuable in numerous healthcare applications,
such as recognizing human activities [1, 6], monitoring vital signs
[2, 19], tracking sleep patterns, and localizing individuals [5, 23].
Therefore, it is an interesting solution to consider in elderly or
nursing homes, where continuous monitoring may be required, but
existing solutions may not be a good fit for the target demographic.

However, due to the different propagation paths of radio waves,
channel-state information-based sensing is highly sensitive to envi-
ronmental changes and moving obstacles. Due to the unpredictable
impact of these obstacles on channel state information, current
solutions struggle with adapting new domains (devices, locations,
participants) efficiently. This often results in requiring large training
models, artificially generated data [20, 21, 26] or other approaches
that depend on the pre-training of models [4, 7, 24] for any new
domain. Additionally, as these solutions are based on existing data,
there may be privacy concerns due to channel state information
potentially containing privacy-sensitive data. A possible solution
that mitigates the need for data generation and minimizes the need
for training new models is federated learning [3, 11], as models are
aggregated in a distributed fashion while training.

Federated learning could increase security as only model infor-
mation is shared between domains, meaning the privacy-sensitive
information of participants is stored locally. However, it comes
with increased training overhead to converge on a global model
that new domains can quickly adapt. More specifically, while the
application of channel state information-based sensing for human
activity recognition in federated learning environments has shown
promise for a single participant with activities in similar locations
relative to the placed devices [11], several challenges impacting its
practical implementation need to be explored before they may be
adapted in real secure healthcare applications:

• Existing infrastructure. Current state-of-the-art considers
device locations with similar positions to the monitored
activity, which does not accurately reflect real-life scenarios
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where wireless devices might be found in less ideal locations
(in TV cabinets, as fridges, or on coffee tables).

• Multi-person households. At the same time, current re-
search has not considered additional humans additional
humans (such as visiting relatives or informal caregivers),
which are essentially moving obstacles.

• Limited data required. Additionally, new Wi-Fi devices
may join the network randomly, and it is crucial to add them
as channel state information-based sensors efficiently, which
also includes using as little data as possible.

Additionally, exploring different combinations of transmitters
and receivers may help prevent potential signal blockages caused
by furniture rearrangement [8], additional people, or the monitored
individual’s movement. Leveraging existing hardware in diverse
locations in a household offers unique insight by allowing observa-
tions from multiple angles, which can mitigate performance issues
related to signal obstruction or increase robustness by focusing
on a specific person’s location. Additionally, not all devices may
be able to participate in the training, but they could still function
as transmitters (data generators). To this extent, federated learn-
ing is chosen as a valid option, as it nicely combines the desire
to explore different combinations of devices while simultaneously
generalizing the learning process.

Therefore, the main research question is: What is the impact
of adding new locations and devices with different data availability
using federated learning in multi-person households utilizing existing
Wi-Fi infrastructure using channel state information-based sensing
for human activity recognition in terms of accuracy and convergence
time?. To answer this question, experiments were conducted in an
actual apartment with three people performing different activities
(one designated to be monitored, the potential patient), while the
transmitter rotates among four different devices for three locations
for human activity recognition. A scenario in Fig. 1 shows how
different devices may collaborate in a household to sense a person.
Different parameters are considered to test the performance of
federated learning in multi-person households: i) the amount of
pre-training done, ii) new locations and networked devices are
excluded from training and added later with different levels, and iii)
different levels of data availability. The results are aggregated, and
their overall 𝐹1-scores and convergence times are analyzed. Both
their role as potential transmitters and transceivers is explored
when adding devices.

The remainder of this paper is structured as follows: first, the
state of the art is outlined and discussed (Section 2). Then, the data
acquisition and methodology to replicate data analysis and feder-
ated implementation are described in Sections 3 and 4, respectively.
The results are outlined in Section 5 and an overview of findings
are discussed in Section 6. The paper concludes in Section 7.

2 STATE OF THE ART
2.1 Channel state information and human

activity recognition
Channel state information is logged as the phase and amplitude of
the received signal. The collective channel state information from
individual antenna pairs is collected in a channel state information
matrixH (Equation 1), which has the shape of𝑁𝑟×𝑁𝑡×𝑁𝑠 , where𝑁𝑟

1) Alice (yellow) is sitting on the sofa
watching TV, but there are no devices
nearby. This means she is in an un-
covered location.

2) Bob (red) visits Alice and puts the
phone on the table, and is connected
to the network, which then synchro-
nizes with the global model

3) Alice turns off the TV,which breaks
a connection, but moves to a new lo-
cation to converse with Bob, which is
then covered by one of the temporary
channels

4) As Bob leaves Alice, she picks up
her laptop. The laptop can quickly
join the federated network, as it is spa-
tially closely related to the phone’s
location.

Figure 1: Short scenario showcasing the ideal use of federated
learning to quickly allow new devices to function as sensors.

is the number of receiving antennas, 𝑁𝑡 the number of transmitting
antennas, and 𝑁𝑠 the number of subcarriers. Every ℎ𝑖 𝑗 ∈ H is a
complex number denoted as 𝑎 + 𝑏 𝑗 , where 𝑎 and 𝑏 represent the
amplitude and phase, respectively. Due to the sensitivity of radio
waves to changes in the environment and humans, the impact
of human activities on the amplitude and phase can be used to
fingerprint these activities.
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2.2 Transferring cross-domain CSI knowledge
In recent years, channel state information has been widely used
for human activity recognition and physiology monitoring [15, 17–
19, 23], but there are significant challenges in scaling this sensing
across different domains. One common approach is transfer learn-
ing [4, 7, 24], where different features (or feature sets) or embedding
spaces are extracted from the dataset and are used to generate other
models for new locations or participants. However, this oftentimes
still requires extensive model generation or finding and extracting
relevant features.

Another common approach is data generation through genera-
tive adversarial networks, or GAN [20, 21, 26], which uses existing
datasets or features to generate artificial data that could correlate to
different participants or locations and that can then be used to train
or fine-tune existing models. However, GANs could be resource-
intensive and still require additional training on the models.
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Figure 2: Lidar scan of the apartment (the e-Health House at the University of Twente) with all nodes (𝑛𝑇𝑉 , 𝑛𝑡𝑎𝑏𝑙𝑒 , 𝑛𝑘𝑖𝑡𝑐ℎ𝑒𝑛 and
𝑛𝐴𝑃 , * means behind object). Locations where activities are performed are in yellow (𝐿𝑇𝑉 , 𝐿𝑘𝑖𝑡𝑐ℎ𝑒𝑛 and 𝐿𝑡𝑎𝑏𝑙𝑒 ).

2.3 Federated learning and channel state
information

Federated learning could mitigate some of the downsides in human
activity recognition using channel state information by sharing
model knowledge. Hernandez et al. [10] achieved promising pre-
diction accuracy while allowing nodes to train with limited data
in an indoor environment, possibly classifying activities in unseen
locations. The setup is for a fixed Wi-Fi transmitter and receiver
pair that may be placed in any location, with the activity being per-
formed in a relatively similar location compared to the devices. The
results for this approach seem promising (0.90 in certain locations).
The model has a small memory footprint, meaning it could nicely
integrate with less powerful hardware. However, the setup does
not consider different types of devices, existing infrastructure, or
multiple persons to test the system.

2.4 Challenges
As can be seen from state of the art, there is a need for more scal-
able and robust ways to propagate the knowledge of channel state
information-based sensing that do not require extensive retraining
or artificial data generation. Federated learning allows devices to
collaborate without the need to collect, transmit, and/or process
a large amount of data. However, current research on federated
learning in combination with channel state information in realistic
scenarios ignores realistic scenarios. This limits the use case for
wide-scale adaptability. To progress towards a more wide-scale
solution, this work explores how robust federated learning is in a
life-like setting where wireless devices are placed in representable
life-like positions (e.g., living room TV on its cabinet, smartphone
on a table, smart refrigerator in a kitchen) in a multi-person house-
hold scenario.

Therefore, this study’s work explores the adaptability of new
locations and devices in real-life multi-person households for dif-
ferent levels of data availability.

3 DATA ACQUISITION
The channel-state information must first be captured to explore the
feasibility of federated learning and channel-state information in

Table 1: Node identifiers and their corresponding locations,
with the relevance of presence in the indoor environment.

Node Location Relevance

𝑛𝑇𝑉

In between the
television and the

armchair.

Smart TV,
home assistant,
casting device

𝑛𝑡𝑎𝑏𝑙𝑒
On the table between the
living room and kitchen.

Laptop,
mobile phone

𝑛𝑘𝑖𝑡𝑐ℎ𝑒𝑛
On the kitchen countertop,

next to the fridge.

Smart fridge or
Wi-Fi-enabled smart

kitchen device

𝑛𝐴𝑃

In the middle of the eHealth
House elevated (simulating

being mounted on the
ceiling)

Access point,
router

realistic households. This section describes the hard- and software
used for capturing, outlines the experimental setup, participants
and activities, and discusses the resulting dataset.

3.1 Hardware and software
The Linux CSI Tool [9] was combined with the Intel Ultimate Wi-Fi
Link 5300 NIC with a centre frequency of 5.32 GHz. Two antennas
were used for transmitting and receiving was done using three
antennas (2 × 3MIMO) with a packet transmission rate of 100 Hz.
The rate of 100 Hz was chosen to easily capture all required details
of the activities: human movement usually lies between 0 and 20 Hz,
with daily activities between 0.3 and 3.5 Hz [12]. Voluntary human
movement generally does not exceed a frequency of 10 Hz. The
nodes were not connected over a Wi-Fi network: the transmitter
was put in the injector mode and broadcasted random packets, while
the receivers were placed in monitor mode to listen to a specific
MAC address (conforming to the 802.11n specifications). Due to
the limitations of the Linux CSI Tool, 30 subcarriers are captured
per measurement, meaning the shape of the channel state matrix H
is 2 × 3 × 30, following 𝑁𝑡 × 𝑁𝑟 × 𝑁𝑠 . The amplitude is calculated
as the absolute of |𝑎 + 𝑏 𝑗 | =

√
𝑎2 + 𝑏2.
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Figure 3: Visualization of the federated dataset 𝐷 𝑓 𝑒𝑑 , where
𝑁 is the data received by all nodes 𝑁 , 𝐿 the subset of received
data per locations, 𝐴 the individual sets of all main activities,
and𝑀 the subset 𝑁 \ {𝑛} of received information from a node
𝑚. Note that𝑚 ∉ 𝑀 , as a receiver 𝑛 cannot receive data from
itself. Additionally, note that all element in 𝑁, 𝐿,𝐴 have the
same type of branches, but with their respective received
elements.

3.2 Experimental setup
Experiments were conducted in a replicated, fully functioning apart-
ment (the e-Health House at the University of Twente), where par-
ticipants performed activities in different realistic locations, with
the nodes in different locations inside the area apartment and re-
ceiving packets from which the channel state information can be
extracted. In total, four nodes were used to measure the channel
state information over time, and they were placed in four locations
where one might expect actual wireless devices. Figure 2 shows a
Lidar scan of the eHealth House, with node identifiers indicating
the location of devices. Table 1 lists the identifiers and locations of
each node, together with its relevance in a realistic environment.

3.3 Participants and activities
The experiment involves four activities (sitting/standing, eat-
ing/drinking, working, resting) inspired by the Activities of Daily
Living (ADL). Three participants were asked to enter the apartment
per run, one per location. One of these participants is designated
to perform all activities while all nodes have had their chance to
transmit. The other two participants perform randomly assigned
activities (to generate noise), ensuring that each combination of
activities occurs only once for each set of three participants to pre-
vent the learning algorithm from recognising activity combinations
instead of individual activities. Each run took twelve minutes per
activity for all nodes, meaning the whole activity recognition part
of the experiment took 48 minutes per set of participants.

Existing network

or

Existing network

Train global model

Figure 4: Knowledge flow when adding a new client. A global
model𝑀𝐺 is trained using 𝑁 − 1 clients (𝑛𝑁−1) for different
numbers of epochs and federated rounds. The weights of
the models (𝑀𝑛 [𝑤]) are aggregated using FedAvg [25]. When
either of the criteria is reached, the new client (𝑁𝑚) is added
with a specific split of the data (𝐷𝑠𝑝𝑙𝑖𝑡 ). Note that in the second
part, all updates are shared immediately after training 𝐸 =

1, 𝑅𝐹 = 1 until all nodes report 𝐹𝑡𝑒𝑠𝑡 ≥ 0.80 or convergence
was reached.

3.4 Resulting datasets
The resulting federated dataset𝐷 𝑓 𝑒𝑑 is visualized in Figure 3. In the
resulting data,𝑚 ∈ 𝑀 may be defined as shape of 180×100×2×3×30,
where 180 is the time in seconds for each transmission, 100 is the
transmission rate per second, and 2 × 3 × 30 the aforementioned
channel state matrix H, resulting in approximately 3,240,000 ele-
ments per𝑚, with the total being ≈ 466, 560, 000 elements. Here,
each element is a complex number converted into the amplitude by
taking its absolute value, as outlined in Section 3.1. In total, two of
these datasets were collected and combined into a single dataset.
Removing a branch location 𝑙 from 𝐿 (𝐿 \ {𝑙𝑙 }) or a node𝑚 from
𝑁,𝑀 (𝑁 \ {𝑛𝑛}) represents training without location 𝑙 or node 𝑛,
respectively. Note that node𝑚 is removed from both 𝑁 and𝑀 to
properly simulate no nodes receiving any data from node𝑚, while
node𝑚 may not receive any data.

4 METHODOLOGY
4.1 Data preprocessing
While packets were transmitted at 100 Hz, packet loss may occur
at the receiver side, resulting in non-uniform inter-packet arrival
times. To guarantee a balanced dataset with sufficient information
to allow a network to learn to perform accurate classification, the
data was first interpolated to account for missing data points [16].
This is achieved utilizing linear interpolation. Signals with a lower
sampling rate than desired can be replicated appropriately using
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Figure 5: 𝐹1-score (top) and convergence time (in epochs, bottom) visualized per budget 𝐵 = 𝐸 ∗ 𝑅𝐹 for different locations (TV,
Table, and Kitchen for left, middle, and right, respectively) and different data availability.

interpolation if the sampling rate equals the Nyquist rate or higher.
For the activities performed in this research, the Nyquist rate is
around 5 Hz [13]. After interpolation, data was normalized and a
rolling filter was used to mitigate the effect of signal interference
and environmental noise, which could cause sudden changes in
amplitude not caused by the activity [10].

4.2 Neural network and federated model
The study employs a dense neural network for classification, utiliz-
ing a 2D input array of shape 180 × 100, derived from the channel
state matrix H to accommodate a transmission rate of 100 Hz [10].
The network architecture comprises three fully connected layers
with 100 hidden units each, using ReLu activations and dropout of
0.5. Themodel aims tominimizemean-square error loss through sto-
chastic gradient descent. While activity regularization is excluded
due to limitations in the used framework, 𝐿2 kernel regularization
is applied in a federated learning context to minimize weights via
FedAvg [3] optimization. The models are aggregated into a global
model following𝑀𝐺 [𝑤] = 1

𝑁

∑𝑁
𝑛=1𝑀𝑛 [𝑤], where𝑀𝐺 is the global

model, 𝑀𝑛 model belonging to a node 𝑛, and [𝑤] the weights be-
longing to a model. A learning rate of 10−5, and the server learning
rate of 1. For optimisation, a split of 60% of the original data is used,
whereas 40% is preserved for testing the model.

4.3 Introducting new locations and clients
Federated learning is applied to introduce new (unseen) locations
and clients to a pre-trained network after different training dura-
tions to analyze its performance. The pre-trained model is trained
on a subset of locations (𝐿 \ {𝑙𝑙 }) or nodes (𝑁 \ {𝑛𝑛}) until 𝐹𝑡𝑟𝑎𝑖𝑛-
score ≥ 0.8, to prevent overfitting, allowing spatially distributed
devices to more easily fine-tune their model afterwards. The model
is trained for different budgets defined as 𝐵 = 𝐸𝑅𝐹 , where 𝐸 is the
number of local epochs and 𝑅𝐹 is the number of federated rounds.

It should be noted that the data associated with a new location
or node only consists of data that was not collected after it was
added to the network; rather, the data was collected simultaneously
with the data collected for the pre-trained model. Therefore, the
methodology only serves as a proof of concept and represents a
real-life environment only up to a certain point.

Adding a new location. When 𝐿 \ 𝑙 reaches 𝐹1 ≥ 0.8 when
training on a from a subset of existing locations, 𝑙 joins federated
learning rounds. Retraining involves evaluating for different 𝐸 and
𝑅𝐹 models until all devices using the federated model reach 𝐹𝑡𝑒𝑠𝑡 ≥
0.8 after the new location joins.

Adding a new client. Training new client data involves training
models with varying local epochs and federated rounds for |𝑁 | − 1
nodes. Removing a node is done by excluding its transmitted and
received data from the remaining nodes and is denoted as 𝑁 \ {𝑛}
where 𝑛 is the removed node. Each node is added in two different
ways:

• Transmitter only. The global model is not shared with
the new device; it functions solely as a data generator for
other devices, such as smartphones, contributing valuable
insights without burdening itself with neural networks or
data collection.

• Transceiver. The global model is shared with the new de-
vice to fully participate in the network; the new device is
integrated into the network as a full communication device
(e.g., other access points or smart devices), allowing it to
train in a federated manner, facilitating communication.

Figure 4 shows a schematic overview of using the client set to
train on data from new clients. Note that for all scenarios after a
new device or node is added, all weights are shared after every
epoch (𝑅𝐹 = 1).
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Figure 6: 𝐹1-score (top, higher is better) and convergence time (in epochs, bottom, lower is better) visualized per budget 𝐵 = 𝐸 ∗𝑅𝐹
for different transmitters (from left to right: TV, Table, Kitchen, and AP) and different data availability (𝑠).

4.3.1 Simulation of limited data availability. Reducing the amount
of data needed for pre-training is crucial. Therefore, different frac-
tions of the total available data are used for training to simulate
limited data scenarios, namely a split 𝑠𝑖𝑛[0.1, 0.2, 0.5, 0.75, 1].

5 EVALUATION
The reported 𝐹1-scores are the overall performance of the federated
network. Each node only had access to the channel state informa-
tion from packets it received from the other clients, and the data
of all transmitters was combined into one large dataset for classifi-
cation unless otherwise specified (such as in the new location and
new client set). The reported convergence time (text inside) is based
on aggregating the federated model after every locally trained step
during personalization.

5.1 Adding a new activity location
When adding an unseen location (Fig. 5), it can be observed that
when assuming all data (𝑠 = 1), the network can restore, or come
close to restoring, its performance for all 𝑙 ∈ 𝐿 in a shorter time
only for 𝐵 ≥ 2000 (the vertical dotted line in the top row). For
𝑙𝑇𝑉 and 𝑙𝑇𝑎𝑏𝑙𝑒 with all data, the average restored accuracy starts
to drop when compared to 𝐵 = 2500, by Δ𝐹𝑡𝑒𝑠𝑡 = −0.05,−0.1 for
𝐵 = 100, 500, respectively, which may be caused by overfitting. The
original performance is never fully restored for 𝑙𝐾𝑖𝑡𝑐ℎ𝑒𝑛 , but reaches
𝐹1 = 0.77 for 𝐵 ≥ 2500. The convergence times for 𝑠 = 1 are similar
for all locations, settling after 𝐵 ≥ 1000 at 40± 10 epochs. Note that
the error bars displayed are based on different combinations for 𝐵 =

𝐸 ∗ 𝑅𝐹 . Generally speaking, it was observed that the performance
was better for more local computations (higher values for 𝐸).

Individually, it is implied that different locations may be harder
to add than others: adding 𝑙𝑇𝑉 appears to be the easiest to add to
an existing network (reaching 𝐹𝑡𝑒𝑠𝑡 ≥ 0.8 for 𝐵 = 2500, followed
by adding 𝑙𝑇𝑎𝑏𝑙𝑒 (𝐹𝑡𝑒𝑠𝑡 ≥ 0.77, 0.8 for 𝐵 = 2500, 5000, respectively),
and finally adding 𝑙𝑘𝑖𝑡𝑐ℎ𝑒𝑛 , as it always stayed below 𝐹𝑡𝑒𝑠𝑡 ≤ 0.76

for 𝐵 = 2500. This may be because different locations have differ-
ent levels of coverage from the devices: 𝑙𝐾𝑖𝑡𝑐ℎ𝑒𝑛 is only close to
𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 , while 𝑙𝑇𝑉 and 𝑙𝑇𝑎𝑏𝑙𝑒 are closer in proximity to 𝑛𝐴𝑃 , 𝑛𝑇𝑉 ,
and 𝑛𝑇𝑎𝑏𝑙𝑒 .

In terms of data splits (𝑠), it appears a split of 𝑠 ≥ 0.5 is viable for
∀𝑙 ∈ 𝐿, 𝐵 = 2500 with comparable 𝐹𝑡𝑒𝑠𝑡 -scores (Δ𝐹1 = −0.025) and
convergence times (+35 ± 10 additional epochs). For 𝑙𝑇𝑉 , 𝑠 = 0.2
appears to be a viable option, achieving 𝐹𝑡𝑒𝑠𝑡 = 0.78, while for
𝑙𝐾𝑖𝑡𝑐ℎ𝑒𝑛 the performance drops to 𝐹𝑡𝑒𝑠𝑡 ≤ 0.73. However, note that
the convergence time increases by over 300% in most cases (≥ 180).
The ability to classify for different levels of data availability is likely
also linked to the coverage of a specific location.

5.2 Adding a new device
Transmitter only. When adding a new transmitter (Fig. 6), it can
be observed that when assuming all data (𝑠 = 1), the network
can restore, or come close to restoring, its performance for all
𝑛 ∈ 𝑁 in a shorter time only for 𝐵 ≥ 2000 (the vertical dotted
line in the top row), similar to adding a new location. The effect of
overfitting appears less, though the restored accuracy drops slightly
(Δ𝐹𝑡𝑒𝑠𝑡 = −0.02) for 𝐵 ≥ 10, 000. Node 𝑛𝐴𝑃 only reaches 𝐹1 = 0.77
for 𝐵 ≥ 2500, being the only node not to restore performance. The
convergence times for 𝑠 = 1 are different for the devices, 𝑛𝑇𝑉 and
𝑛𝑇𝑎𝑏𝑙𝑒 converge after 30 ± 5 epochs, 𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 after 45 ± 5 epochs,
and 60 ± 5 epochs for 𝑛𝐴𝑃 𝐵 ≥ 2000. Performance seems to change
most between 225 < 𝐵 < 2500 (𝐹𝑡𝑒𝑠𝑡 = 0.8, 0.65, convergence
time 50, 250, respectively) and not increase until 𝐵 ≥ 250 for both
𝐹1-scores and convergence times. Similar to locations, the error
bars displayed are based on different combinations for 𝐵 = 𝐸 ∗ 𝑅𝐹 .
Likewise, performance appeared better for more local computations
(higher values for 𝐸).

Like locations, adding new devices has different levels of ease of
being added: 𝑛𝑇𝑉 and 𝑛𝑇𝑎𝑏𝑙𝑒 appear to be the easiest to add (reach-
ing 𝐹𝑡𝑒𝑠𝑡 ≥ 0.815 for 𝐵 = 2500 in the shortest convergence time).
While 𝑛𝑘𝑖𝑡𝑐ℎ𝑒𝑛 also allows for 𝐹𝑡𝑒𝑠𝑡 ≥ 0.81, the convergence time
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Figure 7: 𝐹1-score (top) and convergence time (in epochs, bottom) visualized per budget 𝐵 = 𝐸 ∗ 𝑅𝐹 for different transceivers
(from left to right: TV, Table, Kitchen, and AP) and different data availability (𝑠).

is slightly longer, as outlined before. As noted before, 𝑛𝐴𝑃 scores
lowest while taking the longest to convergence. This could be be-
cause it adds significantly different information into the network:
the other three nodes are close to locations where activities are per-
formed (thus more immediately impacting the signal), while there
was no activity performed to 𝑛𝐴𝑃 , and it was placed significantly
higher than the other three nodes to replicate a ceiling-mounted
device.

For ∀𝑛 ∈ 𝑁 , it appears all 𝑠 ≥ 0.5 results in comparable 𝐹𝑡𝑒𝑠𝑡 -
scores for 𝐵 = 2500, akin to adding a new location. Likewise, the
convergence time takes longer, following a pattern of 𝑐𝑜𝑛𝑣𝑠𝑝𝑙𝑖𝑡 =
1
𝑠 𝑐𝑜𝑛𝑣𝑠=1. For all added nodes except 𝑛𝐴𝑃 , 𝑠 = 0.2 results in a
comparable 𝐹𝑡𝑒𝑠𝑡 , at the lowest 𝐹𝑡𝑒𝑠𝑡 = 0.77 for 𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 . This
indicates significantly less data is needed for convergence, though
the time (in epochs) to convergence is increased by a factor 3 on
average. This implies the local number of epochs and required
additional data could be balanced depending on the available data
and training capacity of a node.

Transceiver. When a transceiver is added (Fig. 7), the main ob-
servation is that it follows similar patterns to adding a new transmit-
ter, except there appears to be a scaling factor for the convergence
time in epochs of on average 2.14 averaged over 𝑠 = 0.5, 0.75, 1 for
convergence times that result in a slightly lower restored perfor-
mance of 𝐹𝑡𝑒𝑠𝑡 ≥ 0.75. This is likely because the network needs to
adapt to both the newly added data into the federated network on
other clients and a newly added client simultaneously, compared
to the transmitter where only new data is injected at other clients.
This implies that, unlike adding a client as a transmitter-only, it
may be beneficial to continue federated learning (rather than just
training locally after receiving the global model). This also becomes
apparent looking at the restored performance: only for 𝐵 ≥ 5000
are added clients 𝑛𝑇𝑉 and 𝑛𝑇𝑎𝑏𝑙𝑒 able to restore the performance
to 𝐹𝑡𝑒𝑠𝑡 ≥ 0.8.

Unlike adding a transmitter, for certain nodes, themodel seems to
be overfitted for 𝐵 ≥ 5000 for 𝑛𝑇𝑎𝑏𝑙𝑒 and 𝑛𝐾𝑖𝑡𝑐ℎ𝑒𝑛 for 𝑠 = 0.5, 0.75.

The total number of additional epochs ranges between 10 − 20
epochs (+10− 30% when compared to the last non-overfitted entry).
However, it should be noted that, realistically, no pre-training of
𝐵 ≥ 5000will happen due to the resource consumption and network
overhead required.

6 DISCUSSION
New location. A comparison has been made between the training
of existing models on data from various unseen locations. The mod-
els’ performance is similar for each omitted location for the same
data, with 𝐵 = 2500 being the lowest number needed to recover
the performance. Pre-training the models extensively improves
the 𝐹1-score as expected, but different locations affect the model’s
learning curve and may inherently limit its growth. Adding new
locations to be recognized within a household can overall be dealt
with efficiently by using existing models if these are sufficiently
trained beforehand, which could mean either a) a longer existing
network that occasionally updates its weights or b) fewer powerful
devices that can be used to off-load the training to so that less
powerful devices only have to focus on personalization.

New Devices. It is revealed that the location of nodes compared
to the activity, their proximity to sharp corners, or their height
impacts the accuracy: situations where 𝑛𝐴𝑃 is added require more
convergence time while resulting in lower performance, indicating
that the data added and model tuned by this client are inherently
noisier. This study implies that in federated learning, the physical
location of a new client impacts the network’s convergence time and
efficiency, with some clients accelerating adaptation to new data
due to closer data similarity of other devices. The findings imply
the possibility of using federated learning for new devices, though
further investigation is required to optimize client placement for
improved performance outcomes or automatic client selection.

Limited data. This study finds that while using more data typi-
cally leads to faster convergence in model training, 75% of the total
data often suffices to achieve equivalent performance, and in certain

192



EICC 2024, June 05–06, 2024, Xanthi, Greece Klein Brinke and van der Linden, et al.

cases, even 50 or 25% can be adequate. The balance between data
volume, performance, and convergence speed must consider com-
putational and memory constraints and timing needs. Extensive
data collection was limited by the practicalities of time, suggesting
that an exhaustive exploration of variables (activities, locations,
and interference levels) would offer more precise insights but at
the cost of significant time investment for each participant.

Device availability. The research presented in this paper as-
sumes that indoor environments contain sufficient computing de-
vices to establish a federated model that may be sufficiently scaled
up for other tasks. This study also implies that extensive retraining
is required, which may necessitate the need for either devices that
are on for extended periods of time (and can handle training) or
a lower number of more powerful computers (such as servers or
more powerful computers).

7 CONCLUSION AND FUTUREWORK
This main research question of this paper was:What is the impact
of adding new locations and devices with different data availability
using federated learning in multi-person households utilizing existing
Wi-Fi infrastructure using channel state information-based sensing
for human activity recognition in terms of accuracy and convergence
time? While the proposed solution takes longer to pre-train (i)
compared to local approaches in state of the art, the federated
approach shows that a minimum amount of epochs are required
when personalising on unseen locations and nodes (ii), allowing for
dynamic environments with changing activity location and device
participation, assuming the training can be done in static, more
powerful devices (such as computers). Finally, devices can start
joining a network sooner, as only a fraction of the data is needed
(iii). Overall, federated learning may be used to efficiently add
new devices and locations in environments where one participant
needs to be monitored, among others, when using existing Wi-
Fi infrastructure after enough pre-trained. In the future, research
should consider looking into ways to automatically select which
devices could be paired to minimize the pre-training needed.
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