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Abstract— This paper presents a novel aerial robotics appli-
cation of instance segmentation-based floating litter collection
with a multi-rotor aerial vehicle (MRAV). In the scope of the
paper, we present a review of the available datasets for litter
detection and segmentation. The reviewed datasets are used to
train a Mask-RCNN neural network for instance segmentation.
The neural network is off-board deployed on an edge computing
device and used for litter position estimation. Based on the
estimated litter position, we plan a path based on a quadratic
Bezier curve for the litter pickup. We compare different
trajectory generation methods for the object pickup. The system
is verified in a laboratory environment. Eventually, we present
practical considerations and improvements necessary to enable
autonomous litter collection with MRAV.

Index Terms— instance segmentation, multirotor aerial vehi-
cle, trajectory planning, litter collection

I. INTRODUCTION

Uncrewed aerial vehicles (UAVs) have entered the main-
stream, mostly in the form of lightweight (<3kg) multi-rotor
aerial vehicles (MRAVs) for aerial photography. Besides
being passive actors, uncrewed aerial manipulator systems
actively interacting with the environment have attracted the
interest of the research community [1]. As the number of
UAVs and registered operators has been growing worldwide,
there is an opportunity to explore new and promising appli-
cations that our society and economy in general could benefit
from. One of the problems of the modern world is directly
related to hyperconsumption. As humans’ need to consume
has heavily grown in the last few decades, mainly due to
economic and technological advancements, there are new
challenges that pose threats to the environment. One of the
major problems is related to packaging, which often ends up
in the environment instead of in the waste collection systems.
As the European Environmental Agency states, around 40%
of plastic production is for product packaging. Some studies
identified rivers as a dominant way for plastic accumulation
in our oceans [2]. It is well known that plastic pollution
has detrimental effects on the environment, mainly due to
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Fig. 1: MRAV executing trajectory planned based on the visual litter
position estimation for litter pickup. Video of instance-segmentation
based litter collection experiments can be found at https://
youtu.be/605jgRNkcP4. Video of the FlyFlic proof of concept
used in the real canal can be found at https://youtu.be/
_md0IJnaccU?si=75Dwq4RmHvNn9-6a.

the endangering effects it has on fish, seabirds, and marine
animals (e.g., risk ingestion or remaining entangled) [3].

In order to prevent some of the plastic from entering
marine systems, many autonomous or semi-autonomous so-
lutions have been proposed. The state of the art of riverine
garbage collection is mainly split into two areas: fixed trap-
ping mechanisms and boat-like solutions. Examples of fixed
solutions are systems of floaters and nets, such as Interceptor
by charity organization The Ocean Cleanup [4], bubble
barriers [5], and chains of floating gears to not only stop
but also accumulate litter [6]. Moving (semi)autonomous
solutions typically rely on floating boat robots, such as
RanMarine [7] and SeaVax [8]. We refer the interested reader
to the PlasticSoup Foundation webpage [9], which did a great
job in collecting many existing solutions.

We propose an autonomous aerial manipulator system
for litter collection in rivers. Compared to state-of-the-art
solutions, the proposed platform is cost-effective and able to
reach non-navigable spots, characterized, e.g., by partly dry
sections, low bridges, partially underground portions, dams,
and jumps. Moreover, it can be easily deployed in and out
of the water and target specific areas on demand.

The main contribution of this paper is the introduction of
the first Flyflic prototype (Flying Companion for Floating
Litter Collection). Fig. 1 shows Flyflic during litter pickup.
To the best of the authors’ knowledge, that is the first attempt
to create a working concept for instance segmentation-based
floating litter collection with MRAVs. During the course
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of prototype development, a series of practical challenges
were identified, encompassing issues related to consistent
litter position estimation, trajectory generation and execution,
ground effect during object retrieval, and system integration.
In response to these challenges, we present herein a collec-
tion of prospective solutions aimed at mitigating potential
adverse consequences of the aforementioned challenges.

A summary of the content of each section of this paper
is the following. In Section II, we present related work on
top of which we build. In Section III, we present the system
design; In Section IV, we present the methodology used to
approach perception and trajectory generation. In Section V,
we present experiments done to validate the proposed system.
Eventually, closing remarks and future work are in Section
VI.

II. RELATED WORK

In [10], an autonomous aerial manipulator system for
object pick and place is presented. For a fully autonomous
system, the authors implemented a multi-task visual recogni-
tion system based on convolutional neural networks (CNNs).
They also provide an overview of the most important CNNs
as well as challenges that arise when developing such a
system. In [11] the authors present a fully autonomous
aerial manipulator. The system is comprised of an object
detection module for perception purposes and an adaptive
sliding mode controller based on the coupled dynamics of
the aerial manipulator system. Both of the presented papers
utilize hexarotors as the flying platform and Jetson TX2 as
the onboard computing device.

Computer vision has a lot of potential applications in
the waste management industry, especially for recycling. As
deep learning became the dominant approach for solving
computer vision challenges, there is a vast variety of open
datasets available. Trash Annotations in COntext (TACO),
as presented in [12], is an open image dataset for litter
detection and segmentation that consists of 1500 labeled
images with multiple litter categories. Aside from labeled
official images, there are over 8000 unofficially annotated
images; the authors also proposed a method for augmenting
the dataset with synthetic images. In [13], the authors provide
a dataset for low-attitude waste detection with UAVs. The
dataset consists of more than 700 annotated images which
are all classified as waste. Besides the lack of classes, object-
level mask annotations are not available, making it only
suitable for object detection. TrashCan dataset, presented
in [14], consists of more than 7000 annotated underwater
images, which make it well-suited for underwater robotics
applications. In [15], the authors provide an in-depth analysis
of litter segmentation with deep-learning-based instance seg-
mentation methods which was highly informative, especially
for our use case.

In [16], the authors present image-based visual servoing
(IBVS) for aerial grasping and perching. In the paper, the
authors show that it is feasible to execute fast grasping
and perching with a micro aerial vehicle (MAV) based on
IBVS. The authors draw inspiration from fast-moving birds,

such as raptors, that detect and locate the prey and execute
maneuvers to catch it. Instead of using IBVS, we opted
for position-based visual servoing (PBVS) to provide the
ability to include a certain amount of reasoning based on
perception. In [17], the authors presented MRAV with a
compliant net for autonomous underwater vehicle retrieval.
They also presented a mathematical model and controller
for such a system. Compared to that work, the net used in
our experiments is not designed to be compliant per se, and
we did not employ a specially designed controller for it.
However, the underlying dynamics of the swinging motion
both in flight and during pickup can hold in the proposed
scenario.

III. SYSTEM MODELING AND CONTROL

In this section, we present system modelling and control.

A. System modelling

For system modelling purposes, we use the quadrotor
model as presented in [18]. The quadrotor’s pose in the
inertial world reference frame (W ) is defined as:

xu = [x y z ϕ θ ψ] ∈ R6. (1)

The gravity vector acts in the negative z direction of the
inertial reference frame. The quadrotor body-fixed frame B
is attached to the center of mass of the quadrotor. The net is
modeled as a rigid body with constant offset alongside the
inertial reference frame −zo with negligible roll and pitch
angles, and the yaw angle same as the quadrotor. The net
dynamics is neglected and observed as a mere disturbance
to the system. We use fixed homogeneous transformations
to describe the relationship between the MRAV base, the
camera, the net, and the inertial coordinate system. To
describe spatial transformation between the camera and the
MRAV, we use the homogeneous transformation matrix TC

B .
To describe the spatial relationship between the net and
the MRAV base, we model it as a constant homogeneous
transformation matrix, TN

B . To represent MRAV pose in the
inertial reference frame, TB

W , the motion capture system
measurements are used. The reference frames are shown in
Fig 2.

B. System control

Low-level attitude control is implemented on board a
standard PX4 autopilot. On top of that, we superimpose a
cascaded PID position controller as presented in [19]. As
inputs, the controllers receive a desired MRAV pose and
calculate the output roll, pitch, yaw, and thrust (ϕ, θ, ψ, f )
commands for PX4 autopilot. With the cascaded PID control,
it is possible to execute the commanded trajectories to enable
the MAV to follow the desired path. Two different trajectory
trackers are used, time-optimal path parameterization with
reachability analysis (TOPP-RA) [20] and model predictive
control (MPC) [21]. Based on the list of points, both trackers
output a complete MRAV trajectory with defined positions,
velocities, and accelerations. The MPC tracker uses a con-
stant snap model for the MAV model to generate trajectories.



Fig. 2: Hexsoon EDU650 MRAV with the coordinate frames used
to describe the spatial relationships between the camera, net, and
MRAV base.

Using the presented trajectory planning algorithms makes
it possible to specify velocity and acceleration constraints
and to generate parameterized trajectories based on the input
waypoints.

IV. METHODOLOGY

A. Litter perception

For litter perception, a neural network is used to achieve
instance segmentation, enabling litter detection in different,
changing environments. In the current system, object detec-
tion could easily be used instead of instance segmentation;
however, instance segmentation provides richer detection
information, which can be paired with a point cloud for
better MRAV detection during litter pick-up. For the instance
segmentation, we used OpenMMLab implementation of the
Mask-RCNN [22] with the ResNet101 backbone trained
on the full unofficial TACO-10 dataset1. After merging the
official and unofficial TACO datasets, some data classes
were oversampled to mitigate the negative effect of the class
imbalance present in the dataset. Although the unofficial
TACO dataset includes some noise, the large amount of
annotated images and some simple augmentation methods
(random crop, scale, and rotate) proved to be enough for the
model to work reliably in the real world. The neural network
was deployed on the offboard edge computing device. Com-
pressed image transport was realized using ROS and Wi-FI
5 GHz protocol between on-board and off-board PCs. An in-
depth description of the used hardware is provided in Section
V.

1We reduced dataset to the 10 most common classes

Fig. 3: Instance segmentation of the litter in the laboratory and the
outdoor environment. Different colors represent different classes cs.
Polygons represent Po and green dots are CT.

1) Object instance segmentation: The input to the neural
network is a tensor made from the image I ∈ Rw×h×3, where
w and h are image width and height. Tensor dimensions
are B × wT × hT × 3. B is the batch size equal to 1,
and wT , hT = 1024. The outputs of the neural network
are the detected class IDs c, polygons that describe object
masks in the image plane, Po, and confidence scores cs. For
successful tracking, we filtered detected polygons (P̂o, ĉs)
based on the confidence score threshold as well as class ID
that needs to be collected.

From Fig. 3, it is noticeable that instance segmentation had
issues with transparent objects such as clear plastic bottles
and plastic bags. To mitigate such problems, more examples
of such data are needed in the TACO dataset to train the
network.

2) Object position estimation: After instance segmenta-
tion, we use the detected masks to obtain object-of-interest
centroids C in the image plane. We propagate detected object
centroids to the simple centroid tracker that assigns each
centroid a unique ID. The simple centroid tracker compares
Euclidean distances of the centroids from the current frame
Ci+1 and from the last frame Ci, and it assigns a unique ID
to every centroid as CT ∈ R2×k, where k corresponds to the
number of tracked object centroids. If a previously detected
object is not detected for 5 consecutive frames, it is removed
from the CT . With CT , we extract positions of the centroids
from the point cloud in the camera frame as PT ∈ R3×k.

Elements of the PT are used to generate a path for the
object pick-up, as it will be clear in the following paragraphs.
The path is then passed to one of the trajectory planning
algorithms.

The complete information propagation pipeline between
PCs and the software modules is shown in Fig 4. Passing
compressed image I and tracked centroids CT between
the off-board and on-board PCs causes a small delay in
the system, which depends on the network quality and the
distance between PCs. To reduce latency, it is reasonable to



Fig. 4: Information propagation pipeline between multiple PCs for
the autonomous litter collection. The green box is the Jetson Xavier
AGX. The yellow box is the MRAV onboard control PC, and the
orange box is Pixhawk autopilot. Boxes with a dashed border are
on board the MRAV. I and CT are sent over wireless network.

design a perception and control system on the same Jetson
edge device. Due to MRAV payload restrictions, we had to
use Jetson off-board.

B. Target definition

In order to pick up detected litter, we need to plan a
trajectory for the net. Based on the detected object positions
PT , we choose specific target pTj as the one closest to
the camera which corresponds to the column j that has the
smallest Euclidean norm.

The estimated object position in the camera coordinate
frame is transformed in the inertial reference frame as
follows:

WpT = TB
WTC

BpTj . (2)

After obtaining a single target position in the inertial frame
WpT , we generate a trajectory for the targeted litter pickup.

C. Trajectory generation

After detecting an object, the trajectory to fetch the object
of interest is obtained by merging two quadratic Bezier
curves together. The result is provided to the UAV tracker
which generates the trajectory.

A quadratic Bezier curve is defined as:

B(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2, (3)

where p0,p1, and p2 represent the start point, control
point, and end point, respectively, and pi ∈ R3. t is
time parametrization discretized with N samples of linearly
spaced values ranging from zero to one. The start point of the
first Bezier curve p10 is the current MRAV position, where
we use the first subscript, equal to 1 or 2, to refer to the first
or second Bezier curves that we merge together. The control
point for the first Bezier curve is defined as:

p11 = p10−
[
0 0 z

]⊤
, (4)

Fig. 5: Planned Bezier curves for the object pick-up with specified
control points. Changing control points influences motion profile.
Blue dots represent the curve with α = 1, orange dots use α = 2,
and the green curve is for α = 3, as defined in eq. 5

and z represents the current MRAV height. Effectively, p11

is placed at a zero altitude below the current MRAV position.
The endpoint p12 of the first Bezier curve is WpT , and it is
also the start point of the second Bezier curve. The control
point of the second Bezier curve is defined as:

p21 = pT + α|p12 − p11|, (5)

where α represents a scaling factor. Increasing the scaling
factor affects the curve profile as shown in Fig. 5. Increasing
the scaling factor α is useful when dealing with light floating
objects that can be affected by the MRAV downwash. A
larger scaling factor forces the MRAV to dive longer, making
sure it collects the target.

The endpoint of the second Bezier curve is defined as:

p22 = p21+
[
0 0 z]⊤. (6)

Fig. 5 shows three exemplary Bezier curves with all the
control points. To generate the trajectory for the MRAV, the
spatial relationship between the MRAV base and the net
has to be considered when defining control points (p). It
is possible to do so as follows:

p̂ = (TN
B )−1p. (7)

When the path for litter pick-up is planned, it is passed as a
set of points to the MPC or TOPP-RA trajectory generation.

V. EXPERIMENTAL VALIDATION

A. Experimental setup

1) Hardware: For the experiments, we utilized a quadro-
tor MRAV equipped with a custom-made net for litter
collection. For development and experimental purposes, we
used Hexsoon EDU650 as a quadrotor. For the quadrotor
control, Pixhawk autopilot was used. For the onboard control,
an Intel i7 NUC was used. For perception, we utilized
NVIDIA Jetson Xavier AGX edge computing device and



Fig. 6: Position comparison of the MRAV and the net during initial
testing phase.

Intel Realsense D415 camera. The net for catching floating
objects was created starting from a simple fishing net. The
diameter of the net is 0.3 m. The net is connected with four
ropes to the MAV arms. The two frontal ropes are shorter
and placed on the upper half of the circle frame. Two back
ropes are longer than the front ones to distribute the payload
of the picked litter with respect to the MRAV center of mass
to prevent MRAV from destabilizing. With a too-lightweight
net, ropes can get entangled during take-off, which results in
the rotation of the net around its z-axis making object pick-
up infeasible. An inflatable pool was used to reproduce the
water basin indoors. Even though it has reduced dimensions
compared to real-world scenarios, the effect of the pool
borders may mimic the effects of canals’ benches, as the
ones shown in Fig. 3 and in the Flyflic proof of concept
video referenced in Fig. 1.

2) Software: The software modules are decoupled into
the perception and control parts. For the perception part, we
developed a custom-made ROS package that serves as Open-
MMLab [23] ROS wrapper.2 It is used as the basis for the
aerial manipulator perception and it is used to enable instance
segmentation on the vehicle’s camera stream. To use an
edge-computing device efficiently, we utilized mmdeploy
toolbox3 to accelerate and deploy the trained model. For the
control part, there is a custom-made ROS stack for on-board
MRAV control that consists of the cascaded PID controllers
and the MRAV tracker on top of it, as described in [19].
B. Position control

The first experiment was conducted to measure the posi-
tion of the net with respect to MRAV in motion. The data
was recorded while flying in the Optitrack Motion capture
system. It can be concluded that the net for litter collection
follows MRAV with small horizontal disturbances (noise)
caused by the downwash as shown in Fig. 6.

C. Detected centroids position estimation

The estimation of the tracked centroids’ positions depends
on the object tracker, MRAV movement, and RGBD camera.

2https://github.com/larics/mmros_wrapper
3https://github.com/open-mmlab/mmdeploy

In order to demonstrate the effect of the MRAV movement on
the position estimate in the camera frame, we plotted centroid
object position estimates alongside the MRAV movement, as
shown and explained in Fig. 7.

D. Trajectory comparisons

To validate the proposed method for the litter pick-up, we
executed the planned path based on the target litter detection
with MPC and TOPP-RA trajectory planners, showing the
differences, advantages, and disadvantages of these two
trajectory tracking methods. Trajectories are tested with the
zero heading for the sake of simplicity. We assume that
MRAV firstly corrects heading towards the detected litter,
and then attempts the pick-up procedure.

1) MPC trajectory planning: MPC trajectory planning is
mainly used for fast replanning. In this case, we fed the
planned path which resulted in the trajectory shown in Fig.
8. As MPC resamples the planned path depending on the
constraints and the number of points, when the velocity and
acceleration constraints are higher, the tracker smooths the
given points which, in this case, result in an almost linear mo-
tion. Through experimental procedures, we determined that
right combination of the velocity and acceleration constraints
(v < 0.5 m/s, a < 0.25 m/s2) and distance between MRAV
base and the net, can cause downwash to push floating litter
in the net during swoop phase as shown in videos referenced
in Fig. 1. Note that the effect of the MRAV downwash on
the floating object can also be mitigated by increasing the
distance between the MRAV and the net. Also, in real-world
conditions, such an effect is likely partly counteracted by the
water current, too.

2) TOPP-RA trajectory planning: Compared to the MPC
trajectory planning, TOPP-RA is slower but unlike MPC, it
strictly follows given points, respecting the constraints. In
conclusion, TOPP-RA proved more suitable for the current
use case. It did not resample the path, which resulted in better
reference generation and tracking, as shown in Fig. 9.

VI. CONCLUSION AND DISCUSSION

In this work, we present efforts and practical challenges
encountered when developing fully autonomous floating litter
pick-up with the MRAV in dynamic and changing laboratory
environment. For the perception purposes, we resorted to the
instance segmentation Mask-RCNN architecture. We trained
it on the custom unofficial TACO-10 dataset, which shows
that it is possible to freely train the litter detection model;
however, further improvements are necessary. The main
perception improvements that are needed for the real-world
application are:

1) improved dataset (annotating more images or augment-
ing dataset with the synthetically generated ones)

2) using a computationally less demanding neural net-
work such as RTMDet [24] for faster inference

3) running perception on-board of the MRAV to reduce
the system latency introduced by transporting image
from on-board to off-board PC

https://github.com/larics/mmros_wrapper
https://github.com/open-mmlab/mmdeploy


Fig. 7: On the left-hand side subplot, the MRAV motion is shown. On the right-hand side subplot, the tracked centroid position estimates are
shown. Different colors represent ’different’ tracked objects, due to the tracker logic which is explained in Section IV. Wrong measurements
are zeroed and should be neglected. It is possible to notice that consistent position estimation is provided, especially when the MRAV is
hovering, as in the last 10 seconds. However, presented object tracker logic is too simple to account for any complex object interaction.

Fig. 8: 3D representation of the commanded points, planned and
executed trajectories of MRAV and net with MPC trajectory plan-
ner.

4) enabling object position estimation without the use of
a depth camera.

5) better centroid tracker with robust object identifica-
tion/reidentification

With the mentioned improvements, real-time path replanning
may be possible, which would result in a much more robust
system ready for real-world applications. Besides perception
challenges, from the perspective of path planning, using
TOPP-RA as a global planner and MPC tracker as a local
planner could be useful to mitigate the negative effects of
object movement during the pick-up phase. We conclude

Fig. 9: 3D representation of the commanded points, TOPP-RA
planned, and executed trajectories with MRAV and net with TOPP-
RA trajectory planner.

that it is possible to design an autonomous system for litter
pick-up with the MRAV. However, further development and
testing are needed, especially in real-world environments.
Further work will be oriented to improving the perception
capabilities of the MRAV and incorporating both planners
for object pick-up. It would also be reasonable to develop a
system of MRAVs, where the smaller would be used for litter
surveying and mapping, and, after mapping, larger MRAVs
could be sent to pick up and retrieve litter. A more complex
design of the end-effector embedding mechanisms to actively
attract the floating litter inside the net could be considered.



That would help counteract the possible disturbance of the
floating litter by the aerial platform.
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