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Abstract. Within the constantly changing threat landscape, Security
Operation Centers are overwhelmed by suspicious alerts, which require
manual investigation. Nonetheless, given the impact and severity of mod-
ern threats, it is crucial to quickly mitigate and respond to potential
incidents. Currently, security operators use predefined sets of actions
from so-called playbooks to respond to incidents. However, these play-
books need to be manually created and updated for each threat, again
increasing the workload of the operators. In this work, we research ap-
proaches to automate the inference of recovery steps by automatically
identifying steps taken by threat actors within Cyber Threat Intelligence
reports and translating these steps into recovery steps that can be de-
fined in playbooks. Our insight is that by analyzing the text describing
threats, we can effectively infer their corresponding recovery actions. To
this end, we first design and implement a semantic approach based on
traditional Natural Language Processing techniques, and we then study
a generative approach based on recent Large Language Models (LLMs).
Our experiments show that even if the LLMs were not designed to solve
domain-specific problems, they outperform the precision of semantic ap-
proaches by up to 45%. We also evaluate factuality showing that LLMs
tend to produce up to 90 factual errors over the entire dataset.
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1 Introduction

The number of threats that organizations face nowadays increases annually [12],
reaching volumes up to multiple thousands per day [2]. To defend themselves,
organizations employ teams that are in charge of monitoring the infrastructure,
identifying attacks (alert evaluation), and responding to incidents (incident re-
sponse). These teams operate in so-called Security Operation Centers (SOCs).

Both alert evaluation and incident response rely on heavy and repetitive
manual tasks, which eventually lead to burnout and alert fatigue of the human
operators [35]. In recent years, several works proposed approaches to reduce the
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workload of the security operators [38], [13], [10] and automate different tasks
within SOCs, such as alert triaging [14], [5], [11]. However, most of the literature
only focuses on the alert evaluation phase, leaving automation in the incident
response phase mostly unaddressed.

Security operators use playbooks to respond to incidents, which are manually-
crafted sets of instructions containing actions and artifacts—e.g., in the instruc-
tion delete malicious executable the action is delete and the artifact ma-
licious executable. When being under attack, these documents help security
operators identify adequate countermeasures. Creating playbooks is often a com-
plex task, most importantly for organization-specific playbooks, which are influ-
enced by many factors [31]. Hence, the creation of the playbooks often results in
a bottleneck in terms of manual work and time consumption, again contributing
to the alert fatigue of the operators.

In this work, we research approaches to automate the generation of the key
elements of playbooks, namely the actions and artifacts of the countermeasure
steps to be deployed on the affected systems to recover from threats. We refer to
these steps as recovery steps. Note, that while generating the recovery steps is a
step towards automating the playbook creation process, constructing playbooks
is out of scope in our work.

In our context, we consider recovery steps that can be potentially automated,
such as deleting files, restoring backups, or blocking connections. Actions that
are not related to affected systems from a technical perspective (i.e., legal ac-
tions, policy-related actions, or similar) are out of scope. In particular, we focus
on analyzing the behaviour of threats and extracting the threat actions to infer
recovery steps. We take the commonly used Cyber Threat Intelligence (CTI)
reports as a reference, as they contain descriptions of attacks written by secu-
rity operators. These reports are written in natural language and require NLP
techniques to analyze them in an automated system.

To the best of our knowledge, there are no prior works that explore automated
inference of recovery steps for incident response. However, several prior works
aim to solve some underlying problems, such as extracting the threat actor’s be-
haviour or artifacts. Legoy et al. [19] proposed a multi-label classifier to extract
attack behaviour; Lim et al. [21] proposed a machine learning based framework
to annotate security-related text, detecting malware actions and capabilities;
Park et al. [25] designed a semantic NLP based framework to extract informa-
tion from CTI reports and identify relations between these. While the previously
mentioned works are based on traditional approaches, it is important to mention
the recent advances of large language models (LLMs) and their promising capa-
bilities to solve domain-specific problems despite the fact that they were trained
on a general corpus of data. The industry already started to propose solutions
for incident response that are based on the LLMs, such as Microsoft Security
Copilot, which delivers a step-by-step guide on how to investigate and respond to
incidents [18], or the Trend Micro’s Trend Companion AI, which helps security
operators with information to accelerate response time [23]. Unfortunately, these
tools are not openly available, nor researched properly. This stresses the impor-
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tance of this work of comparing LLMs and traditional approaches for extracting
CTI knowledge to infer actionable recovery steps.

In this paper, we compare traditional NLP techniques that are based on se-
mantic models to generative models that rely on advanced LLMs. First, mo-
tivated by the lack of available systems, we design and implement our own
semantic-based pipeline (Section 3.1). Second, we study and experiment with dif-
ferent types of LLMs to assess how they perform against semantic approaches.
In our assessment, we include both an open-source LLM (LLaMa 2 [37]) and
multiple versions of a closed-source LLM (GPT 3 [8] and GPT 4 [4]).

For the assessment, due to the unavailability of an existing dataset, we create
a new labeled dataset of recovery steps from 200 CTI reports, randomly chosen
from the Trend Micro Encyclopedia [1]. This dataset is composed of sentences
labeled with their corresponding recovery steps for each report.

Our results show that both the semantic and generative models have their
own advantages and disadvantages. The semantic model is more consistent, based
on factual rules that give a better explainability, while LLMs outperform it up
to 45% in precision and 53% in recall. On the other hand, LLMs can produce
up to 90 factual errors over the entire dataset, that are inferred recovery steps
unconnected to the information given in the input.

The contributions of our work are the following:

– We design the first system, based on traditional NLP techniques to analyze
CTI reports and infer threat recovery steps.

– We build the first labeled dataset of recovery steps, composed of labeled
sentences from 200 CTI reports.

– We evaluate semantic and generative approaches, assessing and comparing
the performances and capabilities of NLP-based models against multiple off-
the-shelf LLMs. Based on our empirical evaluation, we provide insights and
suggestions for future research in this field.

In the spirit of open science, we provide public access to the dataset we
created and the source code of the implemented semantic model at https:
//github.com/utwente-scs/recovery-inference.

2 Background & Challenges

In this section, we describe how CTI reports can be used as input for our research
and how can we leverage different NLP approaches to process threat descriptions.
Additionally, we describe the challenges we need to overcome for designing a
recovery steps inferring system.

2.1 Cyber Threat Intelligence reports

CTI reports are documents with descriptions of threats, containing information
such as attacker behavior, indicators of compromise (IOCs), or courses of action
to mitigate the threat [30]. We consider the following simple CTI example:

https://github.com/utwente-scs/recovery-inference
https://github.com/utwente-scs/recovery-inference
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The malware arrives on a system via a USB device. It encrypts the
folder: %User Profile%\Documents. It drops a malicious file to the
desktop. After the execution, the malware deletes itself.

By isolating core actions in the example above, such as encrypts folder or
drops malicious file, a human operator, understanding the behavior of the
malware, takes appropriate course of action to recover from the attack. This is
useful, especially in cases, when the available playbooks are too generic, with
high-level instructions instead of concrete actions for specific threats. Extend-
ing generic playbooks with information extracted from CTI reports results in a
more comprehensive and complete course of action to recover from the threat,
but without an automated system, this requires additional manual effort by
searching, reading, and understanding reports.

2.2 Traditional NLP techniques

To process text written in natural language, we employ NLP techniques. Tra-
ditional NLP techniques that rely on capturing the meaning and relationships
between words, through linguistic analysis are often used. Linguistic analysis in
NLP offers a variety of tasks, such as tokenization, lemmatization, part of speech
(POS) tagging, dependency parsing, etc. In the following, we give a short insight
for each of these tasks, that will be used later on in this paper.

Tokenization is the process of splitting the text into multiple pieces. These
pieces are usually words or parts of words. E.g., The malware deletes the file.
can be tokenized into: [The], [malware], [deletes], [the], [file], [.].

Lemmatization is the process of transforming tokens into their dictionary
base form to enhance text understanding. Due to the grammar, words might
have different forms (e.g., delete, deleted, deletion) and by lemmatizing we make
sure we identify all forms as the same word.

POS tagging is the process of labelling the words into their corresponding
grammatical category, such as nouns or verbs.

Dependency parsing is the process of identifying connected tokens that cre-
ate phrases. All the connections create a dependency tree that describes the
grammatical structure of a sentence or text.

2.3 Generative LLMs

In the last couple of years, LLMs went through an impressive development,
enabling them to address a wide range of general tasks. Especially they are
very good at generating coherent, logical text based on an input prompt. Input
prompts are usually instructions or questions fed into LLMs to initiate responses.
Based on a prompt and the background knowledge of the acquired from the large
corpora of training datasets, the LLMs provide a piece of text as output, which
is statistically the most likely continuation of the initial prompt.

There are two main categories of generative LLMs: open-source LLMs that
are open for the users, and closed-source LLMs that have their inner architecture
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hidden from the public. Another difference between these two types of LLMs is
their training process. Open-source LLMs usually use public data, while closed-
source LLMs mostly leverage proprietary datasets for the training.

2.4 Challenges

Extracting recovery steps involves multiple research domains with unsolved chal-
lenges, including Cyber Threat Intelligence and NLP-based Information Extrac-
tion. This section outlines these challenges and their relevance to our research.

Cyber Threat Intelligence. A research by Abu et al. [3] on Cyber Threat
Intelligence emphasizes two main challenges relevant for our work: the large
quantity of CTI data and their timeliness. Time to process the data is a crucial
factor in incident response, to avoid as much damage as possible. Moreover, hav-
ing a large quantity of CTI data implies an increased effort for security operators
to search, analyze, and identify relevant information from the reports to respond
to incidents. These challenges require automated systems to reduce manual effort
for operators. Our research therefore focuses primarily on automation.

Information extraction. There are several solutions proposed to extract dif-
ferent types of information from CTI reports such as [17], [21] or [19]. One general
challenge comes from the unstructured nature of these reports which often con-
tain ambiguities that might be hard to interpret properly by the NLP system,
leading to wrong parsing of the sentences, wrong POS tagging, or misidentified
dependencies. These ambiguities might refer to the narrative style of the report
(i.e., active or passive voice), but also to other noises such as special characters
or words that are not common in natural language (e.g., IOCs). Another chal-
lenge is identifying and filtering relevant information for recovery steps. As an
example, if the extracted information refers to a user executing a non-malicious
activity such as copying a file, we need to distinguish it from the threat actions.
The last challenge in this process is to link threat actions to the recovery steps
which requires a deeper understanding of the threat behaviour. To sum up, the
three challenges of inferring recovery steps from CTI reports are the following:
text ambiguity, information relevance, and recovery linking.

3 Methodology & Implementation

To address the challenges described in Section 2.4 we take two approaches:
semantic-based and generative. This section describes the methodology and im-
plementation details of the two approaches.

3.1 Semantic approach

To address the automation challenge described in Section 2.4, we propose an
automated system that infers recovery steps based on the description of an at-
tack. To process the threat descriptions, first, we need to model the sentences,
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The malware drops a malicious executable to the desktop.

4

Actuator Action Artifact

Fig. 1: Example of the identified components by the semantic model.
When extracting the information from this sentence, we identify The malware
as actuator, drops as action and malicious executable as artifact.

which gives a structured form that is more interpretable for the computers. One
common approach used in similar works is identifying three main components:
action, which is the main event described in the sentence, actuator, which is
the entity performing the action, and artifact, which is the entity acted upon or
affected by the action [30] (e.g., see Figure 1).

Our system has two main components at its core: the extractor and the
mapper. The extractor is responsible for extracting information from a given
text based on our sentence model described above. The mapper searches the
extracted actions in a predefined list of threat actions that have a mapping to
a recovery action. For the actions that are found in this mapping, the inferred
recovery action is given to the operator. However, some actions are actually
threat actions, such as to steal in the context of stealing personal information,
but they do not have a recovery action that can be deployed on the system.
Instead, these threat actions require making legal actions, change of policies or
raise awareness of the employees. In this research, we consider non-technical
recovery actions out of scope.

The mapping is a tool that can be customized based on the preferences and
needs of every SOC. While this mapping becomes another resource that needs
maintenance over time as the policies of the organization change, maintaining it
does not imply a significant increase in the manual effort of the operators. Giving
the flexibility to customize the mapping is needed, because if we take as an
example the artifacts created by a threat on a system, some organizations might
want to delete the artifact completely, others might put it just in a quarantine
to be able to analyze it later.

To implement our system we create pipelines where each component of the
pipeline has a clearly defined task. The main components of our pipeline are the
following: text preprocessor for cleaning the text, the extractor for identifying
the (actuator, action, artifact) triplets, and the mapper for linking the threat
actions to recovery actions. The full pipeline (see Figure 2) is implemented in
Python, using different libraries that we describe in the remainder of this section.
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Actuator Action Artifact

malware arrives N/A

it encrypts folder

it drops file

malware deletes itself

Recovery 
steps

N/A

restore folder

delete file

restore itself

Map
recovery

Extract 
information

Preprocess 
text

Recovery stepsCTI Report

CTI Report

The malware arrives on a 
system via an usb device.
It encrypts the folder: 
%User 
Profile%\Documents.
It drops a malicious file 
to the desktop.
After the execution, the 
malware deletes itself.

Preprocessed sentence

The malware arrives on a 
system via an usb device.
It encrypts the folder: 
folder_1.
It drops a malicious file 
to the desktop.
After the execution, the 
malware deletes itself.

Threat
action

Recovery 
action

…
encrypt restore
delete restore
drop delete

…

Preprocess Extract Map

I. II. III.

Fig. 2: Example of how the designed system works. As input the system
gets a CTI report in an unstructured format which in the I. step is preprocessed
to mask IOCs and split the input text into sentences, then in the II. step the
actuator, action and artifact triplets are extracted from the sentences, and in the
III. step the recovery steps are inferred from the triplets based on a mapping.

Text preprocessing. As described in Section 2.4, CTI reports often contain
ambiguous words (e.g., file paths, IP addresses, or hashes) that are unusual in
the generic English text. To partly address the text ambiguity challenge, we use
the IOCSearcher [9] tool to mask the IOCs.

In the reports, paragraphs are delimited by new lines, but we observe that in
some cases (e.g., bullet point enumeration) some information positioned in new
lines is still connected logically to a previous paragraph. Using simple heuristics,
we split the text into logically connected parts to facilitate proper sentence
parsing at the next step.

As the last preprocessing step, we use the SpaCy library [16], to tokenize and
parse the sentences. The motivation of using SpaCy is that this library provides a
large set of advanced natural language processing functions for extracting infor-
mation from text. Also, this tool is commonly used in research that is connected
to NLP. For our work, we use the built-in en_core_web_trf model that allows
us to process English text.

Triplet extraction. This part of the pipeline is responsible of identifying the
actuator, action, and artifact triplets, using the POS taggings and dependency
tree got from processing the sentences. First, we search for the main action in
a sentence. Then, using the dependency relations, we check for other connected
actions to allow processing sentences, where instead of a single action we find
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a chain of actions (e.g., the malware connects to remote site and exfiltrates
information). The last step is to iterate through the nouns and check for their
dependency towards the tokens in the list of actions, which determines if the
noun represents a subject (i.e., this is the actuator of the action), a direct object
(i.e., this is the artifact of the action) or another dependency.

Recovery action mapping. Inferring recovery steps relies on a mapping be-
tween threat actions and recovery actions. The predefined list of threat actions
has the role to address the information relevance challenge, while the mappings
address the recovery linking problem described in Section 2.4. This mapping is
stored in a JSON file that can be configured based on the needs of the user. The
JSON file contains key-value pairs, where the keys represent the threat action
while the values represent the corresponding recovery actions.

3.2 Generative approach

In the semantic approach, we used a pipeline, where individual components solve
a smaller sub-task in inferring recovery actions. Conversely, generative models
can be used to directly request the desired output, e.g., using their question-
and-answer capabilities. In this setup, we need to engineer an input prompt that
instructs the LLM to infer recovery steps. Some good practices of AI-experts in
prompt engineering is to be explicit about the task specification and requirement
and give examples of desired interactions [40]. Based on these practices, we design
our prompt, that has three components: a system prompt that instructs the
LLMs on how to behave, an example prompt showing the desired interaction,
and the actual prompt for the task. For the system prompt, we first define the
role the LLM should assume (i.e., incident responder in a SOC), then we give
the instructions for inferring the recovery steps with the clarification of what to
do if there is no recovery step that can be inferred, and last, we indicate the
desired output format (JSON). For the example prompt we include a short CTI
report and provide the expected, correct recovery steps in JSON format. For the
actual prompt, we always include the CTI report from which we would like the
LLM to infer the recovery steps. The final prompt template we have created is
included in Appendix A.

The interaction with the LLMs is different for the open-source and closed-
source LLMs. While the open-source LLMs are available to download and run
on a local infrastructure, the closed-source LLMs offer only an API service for
the interaction.

4 Evaluation

We have implemented a semantic-based model that infers recovery steps by an-
alyzing CTI reports. To evaluate this model, we compare it against different
off-the-shelf generative LLMs to gain a deeper understanding of what are the
advantages and disadvantages of each model. We start by creating a labeled
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dataset of recovery steps, described in Section 4.1. Next, we perform our exper-
iments presented in Section 4.2. Then Section 4.3 describes the metrics used to
measure the performance of the approaches. Finally, we evaluate the results of
the experiments in Section 4.4.

4.1 Dataset

To evaluate our results we use CTI reports collected from the Trend Micro Threat
Encyclopedia [1]. These reports describe several technical aspects of the malware
such as arrival details, autostart technique, routines, modification it does in the
system, information it gathers for exfiltration or propagation.

The reports are written in natural language, thus we create a manually la-
beled subset of the original reports. The dataset, manually labeled by us, consists
of 200 randomly selected reports. The manual labels of one report contain the
following:

– manually parsed sentences from the report;
– manually extracted actuator, action, artifact triplets for each sentence; and
– manually mapped recovery action and artifact pairs for each triplet that has

a recovery countermeasure.

In this manually labeled dataset, we have a total of 1,603 sentences of which
818 are unique. Amongst the unique sentences, we identified 829 actuator, action,
artifact triplets, from which 580 have recovery steps based on our evaluation.

4.2 Experimental setup

For this research, we conduct an experiment of processing all the CTI reports
from our labeled dataset presented in Section 4.1. This experiment is repeated
on multiple models, that we detail in the remaining of this subsection.

Running the experiment on the semantic model does not require special hard-
ware, hence we run them on regular workstation with the following character-
istics: 11th Gen Intel Core i7-11800H processor running at 2.3GHz, 16GB of
RAM, running Windows 11.

For the open-source LLM experiment, we choose the 13 billion parameter
version of LLaMa 2. This requires a more powerful hardware than a regular
workstation, so we run the experiments on a GPU cluster using an NVIDIA
RTX 6000 GPU with 48 GB of memory.

For the closed-source LLM experiment we do not have the possibility to run
the experiment locally. Instead, using the paid API service provided by OpenAI,
we send our prompts to a specific version of GPT, the LLM remotely generates
the answer and sends us back the result. We repeat the experiment on multiple
versions of GPT, namely GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo, which
at the time of experiments point to the following models (in the same order):
gpt-3.5-turbo-1106, gpt-4-0613 and gpt-4-0125-preview.
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Table 1: Overall results of average metrics and the total number of
factual errors made over the entire dataset.

Model Avg. precision
(%)

Avg. recall
(%)

Factual errors
(count)

GPT 3.5 Turbo 65.11 76.42 22
GPT 4 52.81 84.57 24
GPT 4 Turbo 78.02 83.15 16
LLaMa 45.24 63.97 90
Semantic model 32.85 31.50 N/A

4.3 Metrics

The problem of inferring recovery steps does not fit the traditional definition of
a classification task. While in a classification task the main task is to assign a
label or category to a given input, in our case the emphasis is on identifying and
representing entities and their relations within sentences. In NLP this is referred
as a relation extraction task [7].

To evaluate this relation extraction task, we use the analogous metrics to
those employed in classification tasks. These metrics are computed at sentence-
level, considering the following:

– True Positives (TP): the count of correctly inferred recovery steps based
on the ground truth.

– False Positives (FP): the count of incorrectly inferred recovery steps that
are absent within the ground truth.

– False Negatives (FN): the count of ground truth recovery steps that were
not inferred by the system.

To evaluate the performance of the system at report-level, we aggregate the
respective TP, FP, and FN counts across all sentences within a report and we
compute the precision (P) and recall (R) by their classical definition.

P =
TP

TP + FP
, R =

TP

TP + FN

We also measure the runtime of each model on a report-level. Furthermore,
in the experiments with the LLMs we include two additional measurements
regarding factuality and output format of these models. LLMs tend to infer
recovery steps cannot be mapped to any existing sentence in the input report. We
call these factual errors. To evaluate the factuality, we compute on a report level
the number of factual errors. LLMs were designed to provide natural-language-
like output, however they can be instructed to provide a more specific format. To
evaluate our models, we count on the dataset-level for how many input reports
LLMs provide a JSON formatted output as they were instructed. Note, that for
evaluating the performance and factuality of the models, we include only the
outputs that provided a JSON format.
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Fig. 3: Distribution histogram of precision scores for the different mod-
els. Vertical grid lines mark intervals, and the bars show the number of reports
with precision values within each interval.

4.4 Results

Performance. Figure 3 presents the distribution histogram of precision scores
obtained for each model, while Figure 4 shows the analogous histogram for recall
scores. Additionally Table 1 presents the average precision and recall over the
entire dataset. Note, that we removed the data points where the precision or
recall were undefined (i.e., both TP and FP or FN counts were zero).

From the results, we can observe that overall the entire dataset, GPT 4
Turbo performs the best for precision, while GPT 4 outperforms it for recall.
This means, that while GPT 4 Turbo produces fewer FPs (i.e., inferred steps
that are not recovery steps), GPT 4 is better at inferring the correct recovery
steps, leaving out fewer unidentified steps. Both in terms of precision and recall,
the semantic model performs the worst compared to the LLMs.

Factuality. The semantic model has a limited set of possibilities to output
depending on the actions included in the mapping. The output depends on the
extracted information combined with this mapping, hence it is not possible to
get an output that cannot be mapped to a word extracted from the input report.

One example would be the following factual error: restore user folder,
which according to the LLM comes from the sentence The executable en-
crypts the user folder. At first glance, this recovery step suggested by the
LLM makes sense with the provided explanation. However, upon closer inves-
tigation, we found that there was no mention of encrypting user folders in the
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Fig. 4: Distribution histogram of recall scores for the different models.
Vertical grid lines mark intervals, and the bars show the number of reports with
recall values within each interval.

input CTI report in the first place. Table 1 shows the total number of factual
errors in the dataset.

Output format. Our semantic model always provides JSON formatted output
by design. The generative LLMs were instructed to provide the output in JSON
format, however, only the GPT models were able to comply to this request
formulated in the input prompt. The LLaMa model provided for 170 reports the
output in a JSON format and for the rest 30 reports it provided only natural-
language-like answers.

Runtime. Table 2 shows a comparison of the runtime to process a single report
from our dataset. We note that the semantic model outperforms the LLMs in
terms of runtime, the average runtime of this model being almost ten times faster
than the LLMs. While on average both LLaMa and GPT models perform sim-
ilarly, we note that the minimum and maximum runtime is significantly higher
for GPT.

5 Discussion

This section of the paper discusses the results presented in Section 4.4. First,
we compare the two approaches based on the results and discuss key takeaways.
Then, we present the limitations and future directions of our work.
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Table 2: Runtime measurements of the different models. The table shows
the minimum, average, and maximum processing time per report for each model.
*For GPT, the times shown represent the average runtime of the three models.

Time (s)

Model Min. Avg. Max.

Semantic model 0.43 2.64 28.51

LLaMa 2.91 20.67 104.44

GPT* 7.33 19.61 612.66

5.1 Semantic vs. generative models

While in terms of performance, the results shown in Section 4.4 clearly show
that LLMs outperform the semantic approach, there are other aspects we can
compare the approaches on. In the following, we make a theoretical comparison
between the semantic and generative models and we formulate the key takeaways
of our work.

Factuality. Semantic approaches rely on different rules and heuristics, thus in
this case we cannot speak about their factuality. On the other hand, our results
show, that factuality is a problem of generative LLMs that tend to produce
factual errors.

Output format. When implementing a semantic approach, the developer has
always the choice to decide on the format of the output. Using LLMs, we have
the option to provide the desired output format in the input prompt, but there
is no guarantee that this will be strictly applied.

Predictability. The semantic model we implemented is deterministic, meaning
that users can expect to always get the same answer for the same input. More
than this, the mapping used to infer the recovery steps guarantees that for a
certain threat action the inferred recovery action is always the same. Conversely,
the LLMs tend to use multiple synonyms for the same recovery action (e.g.,
delete, remove, clean) instead of using one, deterministic form of the action,
which might bring challenges in the further processing of the output.

Hardware requirements. While we are able to run the semantic model on
a personal computer, LLaMa requires a system with high-performance GPU.
The GPT models are not available to run locally, but given that they have
significantly more parameters in their architecture than LLaMa we can safely
assume that these models have the highest requirements from our experiments.
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Takeaways. The most important takeaways of this work are the following:

– LLMs reach higher performance in terms of precision and recall than seman-
tic approaches, even if they were not specifically trained to solve the specific
problem at hand.

– Semantic approaches focus on factual accuracy and consistent reasoning, in
contrast to LLMs which tend to produce unpredictable or factually incorrect
answers.

– A hybrid approach, combining semantic NLP with LLMs, has a potential to
surpass the limitations of both approaches.

5.2 Limitations

Our results show that both approaches have several limitations. While the se-
mantic model has the focus on understanding the meaning of the sentences, it
lacks a broader understanding of the context. One example of this limitation is
the sentence It deletes itself after execution. In this example delete seems
to be a threat action that has restore as recovery, but focusing on a broader
context, itself refers to the malware, which means in this case the system should
not infer any recovery steps.

On the other hand, LLMs are better at taking into account this contextual
information, but have their own limitations in explainability. LLMs are to some
extent able to provide explanations to which sentence of the input is the recovery
step connected to, but occasionally these explanations are factual errors. This
leads to the main limitation of the LLMs, namely the factualness of their output:
not every answer coming from the LLMs is based on facts, instead the answers
can be sometimes just creative choosing of seemingly correct words.

5.3 Future work

To address the limitations above, we propose as a future direction the combi-
nation of the two approaches. Leveraging the wide-range background knowledge
of the LLMs together with the explainability of the semantic approach could
allow for a high-performance system in which the decisions can be traced back
to specific knowledge sources or rules. Such a system would avoid factual errors
while having a consistent set of recovery actions to choose from.

Another possible direction for future work is to use the inferred recovery
steps to generate actual playbooks tailored to a specific infrastructure that can
be used in incident response. This would result in new challenges that need to be
addressed such as ordering the recovery steps by their dependencies (e.g., first
stop malicious process, then restore backup) and taking into consideration the
infrastructure, the security tools, the policies of the organization.

6 Related work

We can categorize the related work into three main parts: CTI, knowledge ex-
traction, and incident response playbook related works. These three are the key
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components that our work relies on. CTI is the key source of information for
our system, knowledge extraction is the main process we use to analyze the be-
haviour of the threats and playbooks represent the direction towards which our
system is headed by inferring recovery steps. In the following, we present some of
the most important works on these three fields that are related to our research.

6.1 Cyber Threat Intelligence

In 2018 Abu et al. [3] present in their paper an important challenge that we
still face: the overload of CTI data, which requires to automation solutions for
operators not to be overwhelmed with their work. Tounsi et al. [36] in their
survey highlight another important issue, namely the quality of the available
threat intelligence, especially describing the technical details such as potential
attack vectors and TTPs. Besides the overload and quality, another challenge
identified by Wagner et al. [39] is focused on sharing the intelligence, which raises
issues of trust establishment but also interoperability of the data. A more recent
study is presented by Schlette et al. [30] on the usage of CTI, analyzing different
formats and identifying core concepts required for incident response.

The previously mentioned works provide valuable perspectives on recent ad-
vancements in the CTI domain. They shed light on the technical characteristics
of CTI reports and the mechanisms by which these reports are shared. This high-
lights the potential of using CTI reports as input data for designing a recovery
step inferring system.

6.2 Knowledge extraction

Knowledge extraction is a common process in the field for gathering, analyzing,
and leveraging information that helps us improve the defense of IT systems.
There are lots of works proposing solutions for this processes. Two main cate-
gories of approaches are the traditional NLP techniques and data-driven models.

Traditional NLP techniques. These models focus on capturing the meaning
of data beyond the meaning of the individual words by identifying different
entities, relationships, and attributes. There are several works that build upon
traditional NLP techniques to extract information such as IOCs, attack patterns,
or temporal information, that are useful for security operators.

One of the most influential papers is TTPDrills [17], which presents an
approach that combines NLP with information retrieval techniques to extract
threat action. Park et al. [25] describes a full-stack information extraction sys-
tem, SecIE, that extracts entities, relationships, and even temporal information
with high accuracy. Another work, iACE [20], presents a technique based on
semantic models to extract IOCs from blog posts and articles crawled from the
internet. Some works focus on creating knowledge graphs from processing CTI
reports, such as Extractor [28], that build a complex, detailed knowledge graph
including the temporal order of the attack.
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Data-driven models. We can distinguish two subcategories of data-driven
models: supervised and unsupervised models.

First, we present some of the related works that are based on supervised
models. Lim et al. [21] were the first ones to introduce an ML-based annotator
that targets to label CTI reports by identifying entities, relations, and attributes,
while classifying sentences based on their relevance (i.e., if they describe malware
actions and capabilities or not). Similar to this, Manikandan et al. [22] presents a
conditional random fields approach combined with a convolution neural network-
based system to predict malware token labels and classify sentences (with the
same criteria as [21]). Some other works combine ML with traditional NLP
techniques, such as CASIEs [29], that combines deep learning with linguistic
features to extract information about cybersecurity event.

In the following, we present the related works based on unsupervised mod-
els, where we accentuate the focus on the novel generative LLMs that are a
special type of data-driven models trained on large corpora of data to learn
producing human-like text. LLMs are not designed for solving domain-specific
problems, instead they act as a very knowledgeable human (i.e., they produce
natural-language-like answers, just as a human knowing the answer to the ques-
tion would). One recent work that looks into extracting information from CTI
reports using the question-and-answer capabilities of the LLMs is presented in
the paper of Siracusano et al. [32] describing a system for extracting entities and
attack patterns. Several other papers look into the usage of these models on dif-
ferent areas of the security domain such as writing reports [27], generating secure
code [15], investigating software vulnerabilities [26], or creating honeypots [33],
but all these works leverage the text generation ability rather than investigating
the domain-specific question and answer capabilities of the LLMs.

6.3 Incident response playbooks

Since playbooks play an important role in the incident response process, re-
searchers actively look into this topic. In 2018 MITRE introduced their RE-
CAST [6] framework for efficiently choosing prioritized courses of action. Later,
Onwubiko et al. [24] proposes SOTER, which is a general incident management
playbook, and together with this, the authors create an incident management
lexicon and propose an incident classification and prioritization scheme. A more
recent study by Stevens et al. [34] looks into the process of creating playbooks
using standard playbook design frameworks and identifies that these playbooks
often lack sufficient information to be used in an actual attacks. Probably the
most up to date and most comprehensive study on openly available playbooks is
presented by Schellte et al [31]. In this study the authors categorize playbooks
into community and organization-specific playbooks, while analyzing the key
characteristics of community playbooks and identifying the influencing factors
that play a role in creating organization-specific playbooks.
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7 Conclusion

In this work we implemented a semantic approach to infer recovery steps from
CTI reports, comparing it with off-the-shelf LLMs. To measure the performance
of the approaches, we constructed a labeled dataset composed of malware CTI
reports. Our experiments show that LLMs outperform the semantic approach
by 45% in precision and 53% in recall. However, we also found that the semantic
approach is more consistent, inferring fewer incorrect recovery steps than LLMs.
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A Prompt used for the LLM experiments

<s>[INST] <<SYS>>
You are an Incident Responder from a Security Operations Center.
Your task is to execute the following instructions:
1. analyze the given report;
2. extract the recovery actions to be deployed under the described
attack;
3. identify the object on which the recovery action should be
executed.
If there is no recovery action for a certain sentence, discard it
and don't include it in the output.

Output the answer in JSON using the following format:
[

{
"sentence": sentence,
"recovery_action": recovery_action,
"object": object

}
]
<</SYS>>

The report of the attack is the following:

The malware adds a malicious executable. The executable encrypts
the user folder. This attack has high risk. [/INST]
[

{
"sentence": "The malware adds a malicious executable.",
"recovery_action": "delete",
"object": "executable"

},
{

"sentence": "The executable encrypts the user folder.",
"recovery_action": "restore",
"object": "user folder"

}
]
</s>

<s>[INST]
The report of the attack is the following: {content}
[/INST]
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