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We present a novel filter for state and parameter estimation in non-linear dynamical systems, 
based on a generalised Kalman filter formulation. To achieve a sampling-free implementation, 
polynomial chaos expansion (PCE) and a Galerkin projection method are utilized for the 
propagation of uncertainties through the system dynamics. The non-linear dynamics of the 
system are then linearised by a sequence of Gauss-Newton iterations in combination with linear 
Kalman updates. Additionally, we introduce a new square root implementation of the PCE-based 
filter. The proposed filter is evaluated on the Lorenz-63 and Lorenz-84 models for the task of 
simultaneous state and parameter estimation and is compared with two related approaches. 
Finally, the computational complexity of our square-root implementation is compared against 
two existing square root approaches.

1. Introduction

During the modelling of physical systems, one often has to deal with incomplete knowledge of the model states and parameters. 
Therefore, data assimilation techniques can be used to extract useful information from sensory data. These assimilation techniques 
have applications in many fields, such as robotics and geophysics, and have therefore been widely studied in the past [14,10].

In case of simultaneous Bayesian like state and parameter estimation under nonlinear system dynamics, the relation between the 
parameters and the measurements is often non-linear. This makes the estimation of the likelihood function difficult and computa-

tionally expensive. However, as often the interest lies not in estimating the full posterior but its mean, few attempts are made in the 
direct estimation of posterior statistics [14,21,34,33]. Such an approach is known as nonlinear Kalman-like filtering.

The classical Kalman filter (KF) [22] is an optimal-variance filter for linear systems, and therefore fails when non-linear dynamics 
are encountered. Instead, the extended Kalman filter (EKF) [21] is proposed with the aim of linearising the measurement operator 
by a first order Taylor series expansion. The EKF filter can be further improved by iterating over the linearisation points [43] or 
including higher-order terms in the Taylor series expansion. However, the previously mentioned filter is focusing on the linearisation 
aspect, and not on the proper approximation of the uncertainty. Therefore, the Ensemble Kalman filter (EnKF) [13] was introduced 
in which the uncertainties are represented by a sample of sufficient size. However, the EnKF is a Monte Carlo method and is 
therefore characterised by slow convergence. Related Monte-Carlo methods, such as the particle filter, suffer a similar drawback [36, 
Chapter 11].
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More recently, a popular functional approximation method, also known as polynomial chaos expansion (PCE), has been combined 
with data assimilation techniques [34,33,30,24,35]. This leads to efficient propagation of uncertainties through the systems dynamics, 
here referred to as the “forward problem”. With PCE, all the uncertainties in the model equations are expanded using optimal basis 
polynomials. Subsequently, one seeks the coefficients of the PCE representations. After obtaining these coefficients, the uncertainties 
can be sampled fast and their statistical moments can be evaluated efficiently. Several methods for solving the forward problem using 
PCE are present from literature [12,40]. However, although important, the problem of selecting a suitable method for obtaining 
the expansion coefficients in the forward step is outside the scope of this paper. In this paper, the focus is on the assimilation 
step.

During the assimilation step, the expansion coefficients representing the unknowns can be updated directly, i.e. without sampling 
of the PCE approximations as shown in [33]. In contrast to this, PCE can be used for the forward propagation problem only, whereas 
the assimilation step is approximated by sampling, as demonstrated in [24,3]. [35] introduced a minimum mean square error 
estimator of the polynomial coefficients (PCKF), where the forward problem is solved using a stochastic Galerkin method and the 
update is derived using the Kalman filter theory. Similarly, [42] used the stochastic collocation method (SCKF) for both steps. [6]

proposed a PCE-based EKF for state and parameter estimation of a mechanical system. They use a linearised observation operator 
that is available analytically and PCE for the forward problem allowing for non-linear forward propagation of the uncertainties. The 
filter generalization in which both the forward problem and the update step are solved by PCE is presented in [34,33,30]. Here, the 
authors proposed a filter based on the approximation of the conditional expectation.

However, as noted by several authors, the PCE based filter has a computational drawback. Each measurement is modelled by 
a new random variable, therefore increasing the number of basis polynomials at each assimilation step [30]. Eventually, the PCE 
based filters can become intractable in applications with large parameter/state spaces. The problem of the expanding basis can be 
simply ignored by assuming that the observation does not depend on a random variable associated with the measurement noise, 
as was done by [42] and [6]. This is in contrast with [9], where in context of the EnKF, it was shown that the observations must 
be treated as random variables to prevent underestimating the variance. [34,33,30] re-used the basis polynomials of the forward 
problem for the measurement to mitigate the growth in the PCE basis. On the other hand, [37] projected the error covariance on 
a PCE with reduced order allowing additional random variables without increasing the size of the basis functions. Another way to 
circumvent an expanding basis, is to avoid the creation of a measurement PCE in the first place by using a square root approach. 
This was proposed by [31] for the linear Bayesian update and later by [41] for the Kalman filter. In this paper, another square root 
approach is introduced to circumvent the growth in the PCE basis.

This paper presents a new sampling-free filter that combines a generalized Kalman filter formulation with PCE. We combine this 
sampling-free filter with Gauss-Newton iterations that linearise the non-linearities present in the problem. This filter is implemented 
using a square root approach based on the work of [5] to circumvent the growth in the basis. Finally, the presented filter is applied 
on joint state and parameter estimation of the Lorenz-63 system [26] and the square root approach is compare in terms of numerical 
complexity to two existing square root approaches.

The remaining part of the paper proceeds as follows: in Section 2 the state and parameter estimation problem is introduced. In 
Section 3 the proposed filter is derived starting from a generalized Kalman filter [33]. A numerical experiment and the comparison 
between two closely related filters are given in Section 4. Lastly, in Section 5 concluding remarks are made.

2. Problem setting

Consider the following non-linear initial value problem

d𝒙(𝑡,𝒑)
d𝑡

= 𝑓 (𝒙(𝑡),𝒑), 𝒙(0) = 𝒙0, (1)

in which 𝒙(𝑡, 𝒑) denotes the state-vector of the dynamical system, and 𝒑 is a vector containing parameters describing system proper-

ties. This system is observed at discrete time moments 𝑡𝑘 by:

𝒚𝑘 = ℎ(𝒙𝑘,𝒑), (2)

where ℎ(⋅, ⋅) denotes a possibly non-linear observation operator. Typically, the observations are corrupted by sensory noise such that

𝒛𝑘 = ℎ(𝒙𝑡𝑟𝑢𝑒𝑘 ,𝒑) + 𝜺𝑘 (3)

holds. Here, 𝒙𝑡𝑟𝑢𝑒
𝑘

denotes the true state and 𝜺𝑘 is a realization of the sensory noise. For notational simplicity the time index is 
dropped in the notation. Thus, at the time instance 𝑡𝑘, the observation is 𝒚 = ℎ(𝒙, 𝒑) and the measurement is 𝒛 = ℎ(𝒙𝑡𝑟𝑢𝑒, 𝒑) + 𝜺.

Typically, the states and/or parameters in Eq. (1) are unknown and are to be estimated given the measurement data in Eq. (3). 
As such an estimation is known to be ill-posed in a Hadamard sense, we restrain ourselves to the Bayesian approach [18] in which 
unknown parameters/states are described by prior expert’s knowledge. The overarching goal is therefore to combine the prior 
available information on the states and parameters with the information obtained by measurements, and hence, to improve our 
2

knowledge about the uncertain states and/or parameters.
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3. Generalized Kalman filter

In a Bayesian setting the model parameters and states are modelled a priori as random variables:

𝒒𝑓 (𝜔𝑓 ) ∶= [𝒙𝑓 (𝑡,𝜔𝑓 ),𝒑𝑓 (𝜔𝑓 )],

belonging to a probability space (𝛺𝑓 , 𝑓 , ℙ𝑓 ) in which the index “𝑓 ” denotes “the forecast”. Here, 𝛺𝑓 denotes the sample space, 𝑓
denotes the 𝜎-algebra, and ℙ𝑓 is a probability measure. Incorporating prior information in Eq. (1) results in a stochastic ordinary 
differential equation of the following form:

d𝒙𝑓 (𝑡,𝜔𝑓 )
d𝑡

= 𝑓 (𝒙𝑓 (𝑡,𝜔𝑓 ),𝒑𝑓 (𝜔𝑓 )),

= 𝑓 (𝒒𝑓 (𝜔𝑓 )),
(4)

with the initial condition being a random variable 𝒙0(𝜔𝑓 ). As a consequence of Eq. (4), the observation forecast becomes a random 
variable too,

𝒚𝑓 (𝜔𝑓 ) ∶= ℎ(𝒙𝑓 (𝑡,𝜔𝑓 ),𝒑𝑓 (𝜔𝑓 )))

= ℎ(𝒒𝑓 (𝜔𝑓 )).
(5)

Similarly, the sensory noise is modelled as a random variable, such that the measurement forecast is given by:

𝒛𝑓 (𝜔𝑓 ,𝜔𝒆) = 𝒚𝑓 (𝜔𝑓 ) + 𝒆𝑓 (𝜔𝒆), (6)

in which 𝒆𝑓 (𝜔𝒆) is the predicted measurement noise belonging to (𝛺𝒆, 𝒆, ℙ𝒆), and is typically described by a zero-mean Gaussian 
random variable with a covariance matrix 𝐶𝒆𝑓 , i.e. 𝒆𝑓 (𝜔𝒆) ∼ (𝟎, 𝐶𝒆𝑓 ). Assuming independence between the measurement noise 𝒆𝑓
and 𝒒𝑓 , the overall probability space is described by the triplet (𝛺 ∶=𝛺𝑓 ×𝛺𝒆,  ∶= 𝜎(𝑓 × 𝒆), ℙ ∶= ℙ𝑓ℙ𝒆), and an elementary 
event 𝜔. Thus, 𝒒𝑓 (𝜔𝑓 ) and 𝒚𝑓 (𝜔𝑓 ) are further denoted as 𝒒𝑓 (𝜔) and 𝒚𝑓 (𝜔) respectively, and 𝒛𝑓 (𝜔𝑓 , 𝜔𝒆) as 𝒛𝑓 (𝜔).

To assimilate the prior knowledge with a measurement, a general Kalman filter derived in [34,33] is used:

𝒒𝑎(𝜔) = 𝒒𝑓 (𝜔) + 𝔼[𝒒𝑓 (𝜔)|𝒛] − 𝔼[𝒒𝑓 (𝜔)|𝒛𝑓 (𝜔))]. (7)

Here, the posterior mean 𝒒𝑎(𝜔) (“𝑎” stands for “assimilated”) linearly depends both on the prior knowledge 𝒒𝑓 (𝜔) and the inno-

vation term, 𝔼[𝒒𝑓 (𝜔)|𝒛] − 𝔼[𝒒𝑓 (𝜔)|𝒛𝑓 (𝜔))]. 𝔼[𝒒𝑓 (𝜔)|𝒛] and 𝔼[𝒒𝑓 (𝜔)|𝒛𝑓 (𝜔)] denote the conditional expectations of 𝒒𝑓 (𝜔) given the 
measurement 𝒛 or the predicted measurement 𝒛𝑓 (𝜔), respectively.

By the Doob-Dynkin lemma [8] the conditional expectation 𝔼[𝒒𝑓 (𝜔)|⋅] can be approximated by a map 𝜑𝒒(⋅) parametrized by 𝜷 , 
which can be estimated given the following optimality condition:

𝜷∗ = argmin
𝜷

𝔼
[‖‖‖𝒒𝑓 (𝜔) −𝜑𝒒(𝒛𝑓 (𝜔),𝜷)‖‖‖2

]
, (8)

as shown in [33]. This further leads to

𝒒𝑎(𝜔) = 𝒒𝑓 (𝜔) +𝜑𝒒(𝒛,𝜷∗) −𝜑𝒒(𝒛𝑓 (𝜔),𝜷∗), (9)

in which, based on the problem at hand one can pick a suitable model structure for the map 𝜑𝒒 .

3.1. Gauss-Newton iterations

The previously suggested filter represents the update of the prior random variable via innovation term into the posterior random 
variable. In the previous derivations we did not assume the type of measure used to describe the prior knowledge. We have only 
assumed the type of map used to approximate the observation-quantity of interest relation. In this aspect there are no constraints 
on the definition of the prior distribution. In the subsequent chapter we will show that by discretizing the random variable in a 
functional approximation manner one would then obtain a possibility to compute more than the first two moments of the posterior 
in contrast to the classical Kalman filter.

In this work, under an appropriate differentiability assumption we use Gauss-Newton iterations [4] to approximate the non-

linearities present in Eq. (9). The measurement forecast is linearised around the point 𝒒̂ such that,

𝒚𝑓 (𝜔) ≈ 𝒔𝑙(𝜔) ∶= 𝑯̂
(
𝒒𝑓 (𝜔) − 𝒒̂

)
+ 𝒉̂ (10)

holds. Once the measurement forecast is linearized, one may use the linear Kalman formula as shown in [34,33]:

𝒒𝑎(𝜔) = 𝒒𝑓 (𝜔) +𝑲(𝒛− 𝒔𝑙(𝜔) − 𝒆𝑓 (𝜔)) (11)

where
3

𝑲 =𝑪𝒒𝑓 𝒔𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1, (12)
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denotes the generalized Kalman gain, and 𝑪𝒒𝑓 𝒔𝑙
, 𝑪𝒔𝑙

and 𝑪𝒆𝑓
denote the (cross-)covariance matrices of 𝒒𝑓 (𝜔), 𝒔𝑙(𝜔) and 𝒆𝑓 (𝜔) re-

spectively. Equation (11) reduces to the well-known Kalman equation when assuming all random variables to be Gaussian. However, 
the latter assumption is not present in this work, meaning that Eq. (11) can also be used in a non-Gaussian case.

The linearisation in Eq. (10) is however greatly dependent on the linearisation point 𝒒̂ and its position determines to a large extent 
the performance of the linear update. In comparable linearisation approaches, the initial linearisation point is sub-optimally selected 
as 𝔼 

[
𝒒𝑓 (𝜔)

]
, leading to poor and biased approximations of the observation operator. Therefore, in this paper the approximation 

is improved by using a sequence of Gauss-Newton iterations, where the linearisation point is improved between iterations. The 
converged solution is then used as the assimilated posterior mean. In other words, in the 𝑖th iteration, one linearises the measurement 
forecast around the point 𝒒̂(𝑖) as:

𝒔
(𝑖)
𝑙
(𝜔) = 𝑯̂

(𝑖)(𝒒𝑓 (𝜔) − 𝒒̂(𝑖)) + 𝒉̂
(𝑖)
, (13)

and thus Eq. (11) is substituted by the sequence of updates:

𝒒(𝑖+1)
𝑎

(𝜔) = 𝒒𝑓 (𝜔) +𝑲 (𝑖)
(
𝒛− 𝒔

(𝑖)
𝑙
(𝜔) − 𝒆𝑓 (𝜔)

)
,

𝒒(0)
𝑎
(𝜔) = 𝒒𝑓 (𝜔).

(14)

Here, 𝑲 (𝑖) is calculated using

𝑲 (𝑖) =𝑪
𝒒𝑓 𝒔

(𝑖)
𝑙

(𝑪
𝒔
(𝑖)
𝑙

+𝑪𝒆)−1, (15)

and the linearisation point is updated as

𝒒̂(𝑖+1) = 𝔼
[
𝒒(𝑖+1)
𝑎

(𝜔)
]
. (16)

The suboptimal linearisation point is still used as an initial linearisation point, i.e. 𝒒̂(𝑖+1) = 𝔼 
[
𝒒
(𝑖+1)
𝑎 (𝜔)

]
.

The linear map in Eq. (13) can be estimated by estimating the Jacobian, or can be found by minimizing the following optimality 
criteria [32]:

argmin
𝑯̂

(𝑖)
,𝒉̂
(𝑖)

‖‖‖‖𝒚(𝑖)𝑙 (𝜔) −
(
𝑯̂

(𝑖)(𝒒(𝑖)
𝑎
(𝜔) − 𝒒̂(𝑖)) + 𝒉̂

(𝑖))‖‖‖‖
2
, (17)

with an optimum defined as

𝑯̂
(𝑖) =𝑪

𝒚
(𝑖)
𝑙
𝒒
(𝑖)
𝑎
𝑪−1

𝒒
(𝑖)
𝑎

, (18)

𝒉̂
(𝑖) = 𝔼

[
𝒚
(𝑖)
𝑙
(𝜔)

]
− 𝑯̂

(𝑖)(𝔼
[
𝒒(𝑖)
𝑎
(𝜔)

]
− 𝒒̂(𝑖)), (19)

given 𝒚(𝑖)
𝑙
(𝜔) = ℎ(𝒒(𝑖)𝑎 (𝜔)).

The update in Eq. (14) is repeated until a maximum number of iterations 𝑖𝑚𝑎𝑥 is reached, or until the shift in linearisation point 
between iterations is small, i.e. until 𝛾 < 𝛾𝑡𝑜𝑙 , where

𝛾 =
‖‖‖𝒒̂(𝑖+1)𝑙

− 𝒒̂
(𝑖)
𝑙

‖‖‖2‖‖‖𝒒̂(𝑖)𝑙 ‖‖‖2
, (20)

and 𝛾𝑡𝑜𝑙 is chosen accordingly. The convergence properties of the algorithm can be studied via fixed point theorem [19], according to 
which the algorithm has local convergence characterised by a spectral radius of 𝜌(𝑲 (𝑖)𝑯̂

(𝑖)). Up to now, the random variables present 
in Eq. (11) are not discretized. In the next section, these random variables are discretized using a functional expansion method.

3.2. Discretization by polynomial chaos expansion

In this paper, the random variables are discretized using Wiener-Askey PCE [39]. The PCE of the random variable 𝒒𝑓 (𝜔) reads:

𝒒𝑓 (𝜔) =
∑
𝜶∈

𝒒
(𝜶)
𝑓

𝚽𝜶(𝜉1(𝜔),… , 𝜉𝑁 (𝜔))

=
∑
𝜶∈

𝒒
(𝜶)
𝑓

𝚽𝜶(𝝃),
(21)

where  denotes a multi-index set (see Appendix A), 𝚽𝜶(𝜺) denotes the multivariate basis polynomials in the random variables 𝝃, 
and 𝒒(𝜶)

𝑓
∶= [𝑞(𝜶)

𝑓,1, … , 𝑞(𝜶)
𝑓,𝑁

]⊺ denotes the expansion coefficients of the random variables, where 𝑁 denotes the number of random vari-

ables. For practical implementation, it is necessary to limit the number of basis polynomials. The expansion then only approximates 
4

the random variables as
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𝒒𝑓 (𝜔) ≈
∑
𝜶∈𝑡

𝒒
(𝜶)
𝑓

𝚽𝜶(𝝃), (22)

where 𝑡 ⊂  denotes the truncated multi-index set defined by the polynomial order 𝑑. This maximum order is imposed on all basis 
polynomials, although other adaptive schemes exist [7]. For this scheme, the number of basis polynomials used in the expansion, 
𝑀 , depends on the number of random variables 𝑁 and the maximum polynomial order 𝑑. This reveals the problem of modelling of 
the measurement noise 𝒆𝑓 (see Eq. (11)) by independent random variables, since each additional random variable adds terms to the 
stochastic basis.

It is useful to split the expansion coefficients into parts representing the mean and the fluctuating component of the expansion. 
The approximated mean is equal to the first expansion coefficient, 𝒒̄ = 𝒒(𝜶0), and the fluctuating part is represented by all other 
coefficients. The multi-index set for the fluctuating part of the approximation is given by ≠0, which denotes the truncated multi-

index set excluding the first index. Collecting the coefficients of the fluctuating part in a matrix:

𝑸̃𝑓 = [𝒒(𝛼1)
𝑓
,𝒒

(𝛼2)
𝑓
,… ,𝒒(𝛼𝑀−1)

𝑓
]. (23)

Following this, one may write:

𝑸𝑓 ∶= [𝒒̄𝑓 , 𝑸̃𝑓 ], (24)

such that 𝑸 contains all the expansion coefficients. Using the coefficients of the fluctuating part, the covariance matrices required to 
evaluate Eq. (14) can now be calculated efficiently by:

𝑪
𝒒𝑓 𝒔

(𝑖)
𝑙

= 𝑸̃𝑓𝚫(𝑺̃
(𝑖)
𝑙
)⊺,

𝑪
𝒔
(𝑖)
𝑙

= 𝑺̃
(𝑖)
𝑙
𝚫(𝑺̃(𝑖)

𝑙
)⊺,

(25)

where 𝚫 = diag(
⟨
𝚽𝛼(𝝃)2

⟩
) for 𝜶 ∈ ≠0. The computational cost of the repeated evaluation of the covariance matrices required 

for the Kalman gain in Eq. (15) scales with the number of expansion coefficients 𝑀 . For sampling based implementations, this 
scales with the size of the ensemble. Hence, if the number of expansion coefficients is smaller than the number of samples required 
for accurate sampling based implementations, an improvement in terms of the computational cost is made. For high-dimensional 
problems one might use more advanced versions of PCE that incorporate low-rank and sparse approximations [28], such that the 
number of expansion coefficients 𝑀 is reduced. The iterative linearisation, found by Eqs. (18) and (19) in terms of PCE coefficients 
are (see Appendix B):

𝐻̂ (𝑖) = 𝒀̃
(𝑖)
𝑙
(𝑸̃(𝑖)
𝑎
)−1

𝒉̂
(𝑖) = 𝒚̄

(𝑖)
𝑙
− 𝑯̂

(𝑖)(𝒒̄(𝑖)
𝑎
− 𝒒̂(𝑖)).

(26)

By expansion of all random variables in Eq. (14) and Galerkin projection onto the space spanned by the stochastic basis [34], one 
obtains:

(𝒒(𝜶)
𝑙

)(𝑖+1) = 𝒒
(𝜶)
𝑓

+𝑲 (𝑖)
(
𝒛(𝜶) − (𝒔(𝜶)

𝑙
)(𝑖) − 𝒆

(𝜶)
𝑓

)
, 𝜶 ∈ 𝑡. (27)

The previous equation can be split into a mean and fluctuating part in matrix form:

𝒒̄
(𝑖+1)
𝑙

= 𝒒̄𝑓 +𝑲 (𝑖)
(
𝒁 −𝑺

(𝑖)
𝑙
−𝑬𝑓

)
, (28)

𝑸
(𝑖+1)
𝑙

=𝑸𝑓 +𝑲 (𝑖)
(
𝒁 −𝑺

(𝑖)
𝑙
−𝑬𝑓

)
, (29)

respectively. Here, 𝑸
(𝑖+1)
𝑙

, 𝑺(𝑖)
𝑙

, and 𝑬𝑓 denote the collection of expansion coefficients of 𝒒(𝑖)
𝑙

, 𝒔(𝑖)
𝑙

, and 𝒆𝑓 , respectively, constructed 
in the same way as Eq. (23) and Eq. (24). Note that since the measurement 𝒛 is deterministic, only the first expansion coefficient is 
non-zero, i.e. 𝒁 = [𝒛, 𝟎]. Furthermore, a PCE of the random variable 𝒆𝑓 (𝜔) is present in Eq. (27). This random variable is problematic 
as it increases the size of the basis, since for each measurement, a new random independent variable must be introduced.

3.2.1. Forward propagation

In this work, a stochastic Galerkin method is used to propagate the uncertainties forward in time. Note that other methods for 
forward propagation are valid options as well, however, in this work a sampling free approach is preferred. In the stochastic Galerkin 
framework, the random variables in Eq. (4) are substituted with their PCE approximations and the resulting residual equation is 
projected onto the space spanned by the stochastic basis. The result is an augmented ODE, in which the random variables are 
replaced by the expansion coefficients:

d𝒙(𝜶)(𝑡)
d𝑡

= 𝑓 (𝒙(𝜶)(𝑡),𝒑(𝛼)), 𝒙(𝜶)(0) = 𝒙
(𝜶)
0 , (30)

where 𝑓 (⋅) denotes the for PCE augmented version of the function 𝑓 (⋅) in Eq. (4). Similarly, an augmented observation function ℎ̆(⋅)
5

can be derived,
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𝒚
(𝜶)
𝑓,𝑘

= ℎ̆(𝒒(𝜶)
𝑓,𝑘

). (31)

The derivation of such an augmented function for a case-study used in this paper is shown in Appendix C. Other examples can be 
found in [39,11]. The augmented ODE can be integrated in time using existing time-integration schemes.

3.3. Square root implementation

As noted before, every measurement introduces an additional independent random variable therefore increasing the size of the 
polynomial basis. To prevent the creation of a PCE for the predicted measurement noise, [30] used square root implementations of 
the linear Bayesian update (SRPCU) based on earlier work of [15]. Similarly, [41] introduced the polynomial chaos based square root 
Kalman filter (PCSKF) based on the earlier work of [38]. In this work a similar approach is used, but the square root implementation 
is based on the Ensemble Transform Kalman filter (ETKF) introduced by [5]. Our implementation has a benefit in terms of com-

putational complexity when a diagonal covariance structure of the measurement noise is assumed and the number of sensors (𝑁𝑦) 
is larger than 𝑀 , i.e. when 𝑀 <𝑁𝑦. We refer to our newly proposed implementation as the Polynomial Chaos Transform Update 
(PCTU) and in combination with Gauss-Newton updates as GN-PCTU.

Consider a single iteration of Eq. (29), so that for ease of notation, one can drop the superscript 𝑖:

𝑸𝑎 =𝑸𝑓 +𝑲
(
𝒁 −𝑺 𝑙 −𝑬𝑓

)
. (32)

The previous equation then results in the update for the mean:

𝒒̄𝑎 = 𝒒̄𝑓 +𝑲(𝒛− 𝒔̄𝑙). (33)

To obtain the update for the covariance, one may note that the covariance can be decomposed into its square root:

𝑪𝒒𝑓
= 𝑸̃𝑓𝚫𝑸̃

⊺
𝑓

=
(
𝑸̃𝑓

√
𝚫
)(

𝑸̃𝑓

√
𝚫
)⊺

= 𝑸̂𝑓 𝑸̂
⊺
𝑓

(34)

where 𝑸̂𝑓 denotes the scaled PCE coefficients, i.e. 𝑸̂𝑓 = 𝑸̃𝑓

√
𝚫. Similarly, 𝑺̂ 𝑙 and 𝑬̂𝑙 denote 𝑺̂ 𝑙 = 𝑺̃ 𝑙

√
𝚫 and 𝑬̂𝑓 = 𝑬̃𝑓

√
𝚫, respec-

tively. Note that since 𝚫 is diagonal, its square root, 
√
𝚫, is efficient to compute.

The square root representation of the covariance matrix in Eq. (34) is not unique as one may use any orthonormal matrix 𝚪 such 
that

𝑪𝒒𝑓
= 𝑸̂𝑓𝚪𝚪⊺𝑸̂

⊺
𝑓
= 𝑸̂𝑓 𝑸̂

⊺
𝑓

(35)

holds. Thus, to find the posterior square root one seeks the transformation matrix 𝑻 that transforms the square root representation 
of the prior covariance matrix into the posterior one, i.e.

𝑸̂𝑎 = 𝑸̂𝑓𝑻𝚪. (36)

Following Eq. (32), the expansion coefficients of the fluctuating part are updated by:

𝑸̃𝑎 = 𝑸̃𝑓 +𝑲
(
𝟎− 𝑺̃ 𝑙 − 𝑬̃𝑓

)
= 𝑸̃𝑓 −𝑲

(
𝑺̃ 𝑙 + 𝑬̃𝑓

)
,

(37)

resulting in the following posterior covariance:

𝑪𝒒𝑎
= 𝑸̃𝑎𝚫𝑸̃

⊺
𝑎

=
[
𝑸̃𝑓 −𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )

]
𝚫
[
𝑸̃𝑓 −𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )

]⊺
= 𝑸̃𝑓𝚫𝑸̃

⊺
𝑓
− 𝑸̃𝑓𝚫(𝑺̃ 𝑙 + 𝑬̃𝑓 )⊺𝑲⊺ −𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )𝚫𝑸̃

⊺
𝑓
+

𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )𝚫(𝑺̃ 𝑙 + 𝑬̃𝑓 )⊺𝑲⊺

= 𝑸̃𝑓

√
𝚫
√
𝚫𝑸̃⊺

𝑓
− 𝑸̃𝑓

√
𝚫
√
𝚫(𝑺̃ 𝑙 + 𝑬̃𝑓 )⊺𝑲⊺ −𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )

√
𝚫
√
𝚫𝑸̃⊺

𝑓
+

𝑲(𝑺̃ 𝑙 + 𝑬̃𝑓 )
√
𝚫
√
𝚫(𝑺̃ 𝑙 + 𝑬̃𝑓 )⊺𝑲⊺.

(38)

In terms of the scaled expansion coefficients one may further write:

𝑸̂𝑎𝑸̂
⊺
𝑎
=
[
𝑸̂𝑓 −𝑲(𝑺̂ 𝑙 + 𝑬̂𝑓 )

] [
𝑸̂𝑓 −𝑲(𝑺̂ 𝑙 + 𝑬̂𝑓 )

]⊺
= 𝑸̂𝑓 𝑸̂

⊺
𝑓
− 𝑸̂𝑓 (𝑺̂ 𝑙 + 𝑬̂𝑓 )⊺𝑲⊺ −𝑲(𝑺̂ 𝑙 + 𝑬̂𝑓 )𝑸̂

⊺
𝑓
+𝑲(𝑺̂ 𝑙 + 𝑬̂𝑓 )(𝑺̂ 𝑙 + 𝑬̂𝑓 )⊺𝑲⊺,

(39)
6

where the generalized Kalman gain 𝑲 in terms of the scaled expansion coefficients is given by
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𝑲 =𝑪𝒒𝑓 𝒔𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1,

= 𝑸̂𝑓 𝑺̂
⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1.

(40)

By assuming that the sensory noise is independent from the prior random variables and the observation forecast, i.e. by assuming

𝑪𝒒𝑓 𝒆𝑓
=𝑪

⊺
𝒆𝑓 𝒒𝑓

= 𝑸̂𝑓 𝑬̂
⊺
𝑓
= 𝟎, 𝑪𝒔𝑙𝒆𝑓

=𝑪
⊺
𝒆𝑓 𝒔𝑙

= 𝑺̂ 𝑙𝑬̂
⊺
𝑓
= 𝟎, (41)

Eq. (39) simplifies to:

𝑸̂𝑎𝑸̂
⊺
𝑎
= 𝑸̂𝑓 𝑸̂

⊺
𝑓
− 𝑸̂𝑓 𝑺̂

⊺
𝑙
𝑲⊺ −𝑲𝑺̂ 𝑙𝑸̂

⊺
𝑓
+𝑲(𝑪𝒔𝑙

+𝑪𝒆𝑓
)𝑲⊺. (42)

Substitution of Eq. (40) in Eq. (42) then yields:

𝑸̂𝑎𝑸̂
⊺
𝑎
= 𝑸̂𝑓 𝑸̂

⊺
𝑓
− 𝑸̂𝑓 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−⊺𝑺̂ 𝑙𝑸̂

⊺
𝑓
− 𝑸̂𝑓 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1𝑺̂ 𝑙𝑸̂

⊺
𝑓

+ 𝑸̂𝑓 𝑺̂
⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1(𝑪𝒔𝑙

+𝑪𝒆𝑓
)(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−⊺𝑺̂ 𝑙𝑸̂

⊺
𝑓
,

(43)

where after cancellation of the second and last term in the right-hand side one obtains:

𝑸̂𝑎𝑸̂
⊺
𝑎
= 𝑸̂𝑓 𝑸̂

⊺
𝑓
− 𝑸̂𝑓 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1𝑺̂ 𝑙𝑸̂

⊺
𝑓

= 𝑸̂𝑓

[
𝑰 − 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1𝑺̂ 𝑙

]
𝑸̂

⊺
𝑓
.

(44)

Using Eq. (36) one may write:

𝑸̂𝑎𝑸̂
⊺
𝑎
= 𝑸̂𝑓𝑻𝚪(𝑸̂𝑓𝑻𝚪)⊺

= 𝑸̂𝑓𝑻 𝑻
⊺𝑸̂

⊺
𝑓
,

(45)

such that its clear that a transformation matrix 𝑻 that satisfies

𝑻 𝑻 ⊺ =
[
𝑰 − 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1𝑺̂ 𝑙

]
, (46)

would suffice. Using the Sherman-Morrison-Woodbury matrix identity [20], one may note:

(𝑰 + 𝑺̂
⊺
𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙)−1 = 𝑰 − 𝑺̂

⊺
𝑙
(𝑺̂ 𝑙𝑺̂

⊺
𝑙
+𝑪𝒆𝑓

)−1𝑺̂ 𝑙
= 𝑰 − 𝑺̂

⊺
𝑙
(𝑪𝒔𝑙

+𝑪𝒆𝑓
)−1𝑺̂ 𝑙,

(47)

such that Eq. (46) becomes

𝑻 𝑻 ⊺ =
[
𝐼 + 𝑺̂

⊺
𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙

]−1
. (48)

Introducing the eigenvalue decomposition 𝑼𝚲𝑼 ⊺ = 𝑺̂
⊺
𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙 , results in

𝑻 𝑻 ⊺ = (𝑰 + 𝑺̂
⊺
𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙)−1

= (𝑰 +𝑼𝚲𝑼 ⊺)−1

=𝑼 (𝑰 +𝚲)−1𝑼 ⊺,

(49)

where 𝑼 and 𝚲 denote the matrices of eigenvectors and eigenvalues, respectively. Following Eq. (49), the transformation matrix is 
obtained as follows:

𝑻 =𝑼 (𝑰 +𝚲)−1∕2. (50)

The unitary matrix 𝑼 rotates the prior scaled PCE coefficients to the vector space of the measurement forecast scaled with the 
measurement noise. In the aligned space, the covariance reduces with (𝑰 + 𝚲)−1∕2 where 𝚲 scales the eigenvalues of the forecast 
covariance with the eigenvalues of the noise covariance. Subsequently, the result is rotated back into the space of the scaled PCE 
coefficients by setting 𝚪 = 𝑼 ⊺. The post-multiplication with the unitary matrix 𝑼 ⊺ ensures 𝑻𝚪 = 𝑼 (𝑰 + 𝚲)−1∕2𝑼 ⊺ is symmetric 
and therefore results in an unbiased filter [25]. The complete square root update of the PCE coefficients (PCTU) is summarized in 
Algorithm 1.

The PCTU has a computational benefit over the square root approaches by [31,41] when 𝑛𝑦 >𝑀 and when 𝑪𝒆𝑓
is assumed to 

be diagonal. The PCTU requires an eigenvalue decomposition on 𝑺̂⊺
𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙 of size 𝑀 ×𝑀 . This is in contrast with the square root 

update derived in [31], where one has to apply an eigenvalue decomposition on the matrix (𝑪𝒔𝑙
+ 𝑪𝒆𝑓

) of size 𝑛𝑦 × 𝑛𝑦 or with the 
7

square root update derived in [41], where one has to take the matrix square root of (𝑪𝒔𝑙
+𝑪𝒆𝑓

).
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Algorithm 1 Square root update of PCE coefficients.

1: procedure PCTU(𝒛,𝑸𝑓 ,𝑺 𝑙 ,𝑪𝒆𝑓
,Δ)

2: 𝒒̄𝑓 , 𝑸̃𝑓 ←𝑸𝑓 ⊳ Split coefficients

3: 𝒔̄𝑙 , ̃𝑺 𝑙 ← 𝑺 𝑙

4: 𝑸̂𝑓 ← 𝑸̃𝑓

√
𝚫 ⊳ Scale

5: 𝑺̂ 𝑙 ← 𝑺̃ 𝑙

√
𝚫

6: 𝑲 ← 𝑸̂𝑓 𝑺̂
⊺

𝑙
(𝑺̂ 𝑙𝑺̂

⊺

𝑙
+𝑪𝒆𝑓

)† ⊳ Kalman gain

7: 𝒒̄𝑎 = 𝒒̄𝑓 +𝑲(𝒛− 𝒔̄𝑙) ⊳ Update mean

8: 𝑼𝚲𝑼 ⊺ ← EIGEN(𝑺̂⊺

𝑙
𝑪−1

𝒆𝑓
𝑺̂ 𝑙)

9: 𝑻 ←𝑼 (𝑰 +𝚲)−1∕2𝑼 ⊺

10: 𝑸̂𝑎 ← 𝑸̂𝑓𝑻 ⊳ Update fluctuating part

11: 𝑸̃𝑎 = 𝑸̂𝑎(
√
𝚫)−1 ⊳ De-scale coefficients

12: 𝑸𝑎 ← [𝒒̄𝑎, 𝑸̃𝑎] ⊳ Collect coefficients

13: return 𝑸𝑎
14: end procedure

Fig. 1. Schematics of iterative linearisation in a smoother setting. 𝐹 (⋅) and ℎ̆ (⋅) denote the forward problem and observation function respectively. The solid lines 
represent the actual update, while the dashed lines represent the function composition used to find linearised observation forecast. Δ𝑡𝑘 denotes the discrete time 
moments at which measurements arrive and Δ𝑡 denotes the step size of the time integrations scheme used to evaluate 𝐹 (⋅).

3.4. Smoother

In this work, the iterative PCE filter is used in a smoother setting, where the forecast at the previous time-step, 𝒒𝑓,𝑘−1(𝜔), is 
updated using a measurement at the current time-step 𝒛𝑘. In this setting the Gauss-Newton iterations linearise the composition of the 
forward problem and the observation function, instead of the observation function only. The schematics of the iterative linearisation 
in a smoother setting is shown in Fig. 1.

Solving the forward problem with the assimilated random variable at time 𝑡𝑘−1 results in an improved forecast at the current time 
instance, 𝒒𝑓,𝑘(𝜔). With this forecast, another update can be performed such that one obtains the assimilated random variable at time 
𝑡𝑘, i.e. 𝒒𝑎,𝑘(𝜔).

The performance of the iterative PCE filter in a smoother setting is limited by the quality of the uncertainty propagation step 
using PCE. The performance of the PCE approximations are known to deteriorate over time. The rate at which this happens is highly 
problem dependent. The deteriorating performance of the PCE approximations, however, can cause convergence issue in the iterative 
linearisation step. To resolve this, one has to use time adaptive PCE [17] where the deteriorating performance over time is reduced.

4. Numerical examples

4.1. Experiment A-I

In this section the proposed filter is applied on the Lorenz-63 model, a coupled nonlinear ordinary differential equation introduced 
in [26]. This problem is well-studied and used frequently in the data assimilation community, see for example [29,13,16,24] and 
particularly for state and parameter estimation [23,2,1,31]. The governing equations of the model are

d𝑥
d𝑡

= −𝜎𝑥+ 𝜎𝑦,

d𝑦
d𝑡

= 𝜌𝑥− 𝑥𝑧− 𝑦,

d𝑧
d𝑡

= 𝑥𝑦− 𝛽𝑧.

(51)

Here, 𝑥, 𝑦, and 𝑧 are the states collected in 𝒙 = [𝑥, 𝑦, 𝑧], and 𝜎, 𝜌, and 𝛽 are the parameters collected in 𝒑 = [𝜎, 𝜌, 𝛽] such that Eq. (51)

resembles Eq. (1).

The parameters are typically chosen as 𝒑 = [10, 28, 8∕3] and the true initial state is chosen as 𝒙0 = [1.508870, −1.531271, 25.46091]
taken from [29]. The reference solution is obtained by integrating Eq. (51) forward in time using a fourth order Runge-Kutta scheme 
8

with fixed time intervals of Δ𝑡 = 0.0005 to limit the time integration error. The system is observed at time intervals of Δ𝑡𝑘 and 
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Fig. 2. State estimates from the GN-PCTU smoother (𝑑 = 3) for the first 4 time units of a single experiment. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

the noisy measurements are obtained by adding Gaussian noise with a variance of 𝜎2
𝒆

to the reference solution at the observation 
instances.

In this experiment, the GN-PCTU smoother is used for simultaneous state and parameter estimation of the Lorenz-63 problem. 
The initial states and the parameters are uncertain, therefore the total number of random variables in this problem is 𝑁 = 6. The 
states are observed every 0.25 time units, Δ𝑡𝑘 = 0.25, equivalent to 500 integration steps over an interval of 10 time units resulting 
in 40 assimilation steps. The magnitude of this observation interval ensures that non-linear dynamics are present between updates 
(see Fig. 2). Direct measurements are performed, i.e. ℎ(𝒙) = 𝒙, and the measurement noise variance is set to 𝜎2

𝒆
= 2. Note that the 

parameters are not measured directly, i.e. they are non-linearly present in the measurements. Furthermore, since we are directly 
measuring the states, we are only approximating the forward problem with Gauss-Newton iterations in this experiment.

The initial state 𝒙0 and the parameters 𝒑 are uncertain and are therefore modelled as independent Gaussian distributed random 
variables

𝒙0(𝜔) ∼ (𝝁𝒙0
, 𝜎2

𝒙0
𝐼), 𝒑(𝜔) ∼ (𝝁𝒑, 𝜎

2
𝒑
𝐼), (52)

respectively. Here 𝝁𝒙0
and 𝝈2

𝒙0
are the prior mean and variance of the initial states, whereas 𝝁𝒙0

and 𝝈2
𝒑

denotes the prior mean and 
variance of the parameters.

The prior mean of the states and parameters itself are drawn from uniform distributions,

𝜇𝒙0
∼ (𝒂𝒙0 ,𝒃𝒙0 ), 𝜇𝒑 ∼ (𝒂𝒑,𝒃𝒑), (53)

where [𝒂𝒙0 , 𝒃𝒙0 ] and [𝒂𝒑, 𝒃𝒑] denote the support of the uniform distributions respectively. They are chosen as:

𝒂𝒙0 = [−5,−5,20], 𝒃𝒙0 = [5,5,30],

and

𝒂𝒑 = [5,24,2∕3], 𝒃𝒑 = [15,32,14∕3].

The prior distributions are furthermore defined by the variance of the initial states and parameters:

𝝈2
𝒙0

= [4,4,4]2,

and

𝝈2
𝒑
= [3,4,0.75]2,

respectively.

The multivariate basis used to expand the random variables contains Hermite polynomials with a maximum degree of 𝑝 = 3
resulting in 𝑀 = 84 coefficients for each random variable. The maximum number of iterations of GN-PCTU is set to 𝑖𝑚𝑎𝑥 = 100 and 
the tolerance is set to 𝛾𝑡𝑜𝑙 = 1 ⋅ 10−5.

The evolution of the states and their 95% confidence interval for a single experiment using GN-PCTU is shown in Fig. 2. The 
parameter estimates for the same experiment are shown in Fig. 3. The proposed filter successfully estimates the states and parameters 
of the system, although residuals for the states and parameters are present due to the observation noise. This residual is especially 
9

present for the parameter 𝜎.
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Fig. 3. Parameter estimates from the GN-PCTU smoother (𝑑 = 3) for a single experiment.

Fig. 4. RMSE error of the estimated states of the Lorenz-63 model obtained from 100 simulation on the interval 𝑡 = [5, 10]. The GN-PCTU smoother is shown twice, 
once with 𝑖𝑚𝑎𝑥 = 100 in blue and with a single iteration 𝑖𝑚𝑎𝑥 = 1 with a dotted yellow line. The PCTU filter is indicated with a dashed red line.

4.2. Experiment A-II

Furthermore, the GN-PCTU smoother is compared to the GN-PCTU smoother with a single Gauss-Newton step, i.e. 𝑖𝑚𝑎𝑥 = 1, and 
to the PCTU smoother without linearisation. The latter smoother is essentially the square root PCE implementation of Eq. (11) in 
a smoother setting. The different smoothers are applied on exactly the same experiment, i.e. the prior and observations fed to the 
smoother are identical for each smoother. This experiment is repeated 100 times (𝑁𝑚𝑐 = 100), where the observation noise for each 
simulations is drawn using a different seed. Subsequently, the root mean squared error (RMSE) is used to evaluate the absolute 
performance of the filters. This RMSE is calculated over the 𝑁𝑚𝑐 simulations and is given by:

RMSE𝑘(𝒒̄) =

√√√√ 1
𝑁𝑚𝑐

𝑁𝑚𝑐∑
𝑛

(𝒒̄𝑛,𝑘 − 𝒒𝑡𝑟𝑢𝑒
𝑘

)2, (54)

where the subscript in 𝒒̄𝑛,𝑘 denotes the estimated mean at the 𝑘th timestep of the 𝑛th simulation and 𝒒𝑡𝑟𝑢𝑒
𝑘

denotes is the 𝑘th timestep 
of the reference solution.

The GN-PCTU smoother shows the best performance in terms of the RMSE over the 100 simulations for the state estimates (Fig. 4) 
and the parameter estimates (Fig. 5). The GN-PCTU smoother with only a single iteration, i.e. a linearisation around 𝔼 

[
𝒒𝑓 (𝜔)

]
, shows 

the worst performance. So indeed, using 𝔼 
[
𝒒𝑓 (𝜔)

]
as a linearisation point leads to suboptimal filters.

4.3. Experiment B

Another problem that can be used to evaluate the performance of the filter is the Lorenz-84 model introduced in [27]. The 
governing equations of the Lorenz-84 model are
10

d𝑥
d𝑡

= −𝑦2 − 𝑧2 − 𝑎𝑥+ 𝐹 ,
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Fig. 5. RMSE error of the estimated parameters of the Lorenz-63 model obtained from 100 simulation. The GN-PCTU smoother is shown twice, once with 𝑖𝑚𝑎𝑥 = 100
in blue and with a single iteration 𝑖𝑚𝑎𝑥 = 1 with a dotted yellow line. The PCTU filter is indicated with a dashed red line.

d𝑦
d𝑡

= 𝑥𝑦− 𝑏𝑥𝑧− 𝑦+𝐺, (55)

d𝑧
d𝑡

= 𝑏𝑥𝑦+ 𝑥𝑧− 𝑧.

Here, again, the states are again collected in 𝒙 = [𝑥, 𝑦, 𝑧] and the parameters 𝑎, 𝑏, 𝐹 , and 𝐺 are collected in 𝒑 = [𝑎, 𝑏, 𝐹 , 𝐺]. The 
true initial states are chosen as 𝒙0 = [1, 0, −0.75] and the parameters are chosen as 𝒑 = [0.25, 4, 2, 1.23]. The estimation problem is 
similar to the one defined in experiment A-I in Section 4.1. However, the observation interval is set to Δ𝑡𝑘 = 0.5, resulting in 20 
assimilations steps in a time interval of 10 time units. The initial state 𝒙0 and the parameters 𝒑 are uncertain and are modelled in 
the same manner as in experiment A-I, and are therefore described by Eq. (52) and (53). The total number of random variable in this 
problem is therefore 𝑁 = 7. The support of the uniform distributions are however chosen as:

𝒂𝒙0 = [0,−1,−1.75], 𝒃𝒙0 = [2,1,0.25],

and

𝒂𝒑 = [0,2,1,0.5], 𝒃𝒑 = [0.5,6,3,2],

and the variance of the initial states and parameters are chosen as:

𝝈2
𝒙0

= [1,1,1]2, 𝝈2
𝒑
= [0.1,1.5,0.5,0.7]2,

respectively.

As was done in experiment A-II in Section 4.2, the GN-PCTU smoother is applied on the problem above and is compared with the 
GN-PCTU smoother without a single iteration and with the PCTU smoother. To that end, the experiment is repeated 100 times and 
the RMSE of the states and parameters are evaluated using Eq. (54). Again, the GN-PCTU smoother shows the best performance in 
terms of the RMSE for both the states (Fig. 6) and parameters (Fig. 7).

4.4. Experiment C

Finally, the computational complexity of the our proposed PCE square root update is compared to those derived in [31] (SRPCU) 
and [41] (PCSKF). We focus explicitly on the update of the fluctuating part, since this is where the three methods differ in terms of 
computational complexity. The square root updates are applied on a simplified problem. The prior expansion coefficients are sampled 
according to a standard Gaussian distribution and are of size 𝑁𝑞 ×𝑀 :

𝑸̃𝑓 ∼ (0,1) ∈ℝ𝑁𝑞,𝑀 .

Similarly the measurement is sampled from a standard Gaussian distribution, 𝒚𝑚 ∼ (0, 𝑪𝑛). A diagonal covariance matrix of the 
measurement noise is assumed, e.g. 𝑪𝑛 = 𝑰𝑁𝑦 . We set 𝑁𝑞 = 4 and the number of expansion coefficients in this comparison is set to 
𝑀 = 35. The three square root updates are applied on 𝑸̃𝑓 and 𝒚𝑚 and its elapsed times are timed using the timeit function in 
Matlab (Fig. 8). Clearly, our proposed square root update of the fluctuating part is faster when the number of sensors 𝑁𝑦 is larger 
11

than the number of expansion coefficients, 𝑀 . In other scenario’s, the square root approach by [41] is preferred.
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Fig. 6. RMSE error of the estimated states of the Lorenz-84 model obtained from 100 simulation on the interval 𝑡 = [0, 10]. The GN-PCTU smoother is shown twice, 
once with 𝑖𝑚𝑎𝑥 = 100 in blue and with a single iteration 𝑖𝑚𝑎𝑥 = 1 with a dotted yellow line. The PCTU filter is indicated with a dashed red line.

Fig. 7. RMSE error of the estimated parameters of the Lorenz-84 model obtained from 100 simulation. The GN-PCTU smoother is shown twice, once with 𝑖𝑚𝑎𝑥 = 100
in blue and with a single iteration 𝑖𝑚𝑎𝑥 = 1 with a dotted yellow line. The PCTU filter is indicated with a dashed red line.

Fig. 8. Elapsed time of square root updates, evaluated with the timeit function in Matlab. Number of expansion coefficients 𝑀 used in this comparison is indicated 
with a vertical line.

5. Conclusion

This paper presents a sampling free square root filter with Gauss-Newton iterations derived from a general Kalman filter formu-

lation. In this filter, all random variables are discretized using PCE. The expansion coefficients of these PCEs were found without 
12

sampling by using a Galerkin projection method. The non-linearities present in the system are linearised by Gauss-Newton iterations 
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such that the non-Gaussian random variables are propagated forward linearly. Subsequently, the expansion coefficients are updated 
directly using a square root implementation such that there is no growth in the polynomial basis. This square root implementation 
was compared to two existing square root approaches in terms of numerical complexity.

For illustration, the filter was used for state and parameter estimation of the modestly sized Lorenz-63 and Lorenz-84 systems. On 
these problems, the sampling-free iterative filter was compared to the same filter with a single iteration and to the same filter without 
linearisation. Out of the three filters, the sampling-free iterative filter showed the best performance in terms of the RMSE error of 
the states and parameters. For reasonably sized systems, the Galerkin projection method is faster when compared to sampling based 
methods. However, in different scenario’s, non-intrusive methods might be favourable and result in faster implementations.

In future work we will apply the iterative sampling free filter on an experimental setup for state and parameter estimation. 
Furthermore, we will combine this filter with stochastic and adaptive model predictive control.
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Appendix A. Multi-index set

The multi-index  is defined by, 𝜶 = (𝛼1, … , 𝛼𝑛) ∈  ∶=ℕ𝑑0 . The truncated multi-index set limits the number of basis polynomials 
by removing polynomial terms higher than 𝑑, i.e. 𝑡 = {𝛼 ∈  | ∑𝛼 ≤ 𝑑}. The fluctuating part can be found by removing the first 
index, representing the mean, from the truncated multi-index set. The multi-index is then described by ≠0 = {𝛼 ∈ 𝑡| ∑𝛼 > 0}.

Appendix B. Affine map

Recall the optimum of the optimality condition (Eq. (17)):

𝑯̂
(𝑖) =𝑪

𝒚
(𝑖)
𝑙
𝒒
(𝑖)
𝑎
𝑪−1

𝒒
(𝑖)
𝑎

, (B.1)

𝒉̂
(𝑖) = 𝔼

[
𝒚
(𝑖)
𝑙
(𝜔)

]
− 𝑯̂

(𝑖)(𝔼
[
𝒒(𝑖)
𝑎
(𝜔)

]
− 𝒒̂(𝑖)). (B.2)

For notational simplicity consider a single iteration, such that

𝑯̂ =𝑪𝒚𝑙𝒒𝑎
𝑪−1

𝒒𝑎
, (B.3)

𝒉̂ = 𝔼
[
𝒚𝑙(𝜔)

]
− 𝑯̂(𝔼

[
𝒒𝑎(𝜔)

]
− 𝒒̂), (B.4)

holds. The covariance matrices in Eq. (B.3) can be expressed in terms of the expansion coefficients:

𝑪𝒚𝑙𝒒𝑎
= 𝒀̃ 𝑙Δ𝑸̃

⊺
𝑎
, 𝑪𝒒𝑎

= 𝑸̃𝑎Δ𝑸̃
⊺
𝑎
. (B.5)

Substitution of Eq. (B.3) in (B.5) yields:

𝑯̂ =𝑪𝒚𝑙𝒒𝑎
𝑪−1

𝒒𝑎

= 𝒀̃ 𝑙Δ𝑸̃
⊺
𝑙

(
𝑸̃𝑎Δ𝑸̃

⊺
𝑎

)−1
= 𝒀̃ 𝑙

√
Δ
(
𝑸̃𝑎

√
Δ
)⊺ (

𝑸̃𝑎

√
Δ
(
𝑸̃𝑎

√
Δ
)⊺)−1

= 𝒀̃ 𝑙

√
Δ
(
𝑸̃𝑎

√
Δ
)⊺ (

𝑸̃𝑎

√
Δ
)−⊺ (

𝑸̃𝑎

√
Δ
)−1

= 𝒀̃ 𝑙

√
Δ
√
Δ
−1
𝑸̃

−1
𝑎

= 𝒀̃ 𝑙𝑸̃
−1
𝑎

(B.6)

The expectations in Eq. (B.4) can be substituted by the approximated mean values that follow from the PCE approximations, i.e.
13

𝒉̂ = 𝒚̄𝑙 − 𝑯̂(𝒒̄𝑎 − 𝒒̂). (B.7)
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Appendix C. Augmented ODE

Consider the first equation of the Lorenz-63 system,

d𝑥(𝑡)
d𝑡

= 𝜎(𝑦− 𝑥). (C.1)

By substitution of the states and parameters with random variables, one obtains:

d𝑥(𝑡,𝜔)
d𝑡

= 𝜎(𝜔)(𝑦(𝑡,𝜔) − 𝑥(𝑡,𝜔)). (C.2)

Discretization of the time-dependent states, 𝑥(𝑡, 𝜔) and 𝑦(𝑡, 𝜔), and the parameter 𝜎(𝜔) by PCEs yields

𝑥(𝑡,𝜔) ≈
∑
𝜶∈𝑡

𝑥(𝜶)(𝑡)𝚽𝜶 , (C.3)

𝑥(𝑡,𝜔) ≈
∑
𝜶∈𝑡

𝑦(𝜶)(𝑡)𝚽𝜶 , (C.4)

𝜎(𝜔) ≈
∑
𝜶∈𝑡

𝑥(𝜶)𝚽𝜶 , (C.5)

respectively. Substitution in the stochastic ODE and dropping the notation of time dependency of the states for notational simplicity,

∑
𝜶∈𝑡

d𝑥(𝜶)
d𝑡

𝚽𝜶 =
∑
𝜶∈𝑡

∑
𝜷∈𝑡

𝜎(𝜶)(𝑦(𝜷) − 𝑥(𝜷))𝚽𝜶𝚽𝜷 (C.6)

Projection on the space spanned by the stochastic basis 
{
𝚽𝜶

}
gives,

∑
𝜶∈𝑡

d𝑥(𝜶)
d𝑡

⟨
𝚽𝜶𝚽𝜸

⟩
=

∑
𝜶∈𝑡

∑
𝜷∈𝑡

𝜎(𝜶)(𝑦(𝜷) − 𝑥(𝜷))
⟨
𝚽𝜶𝚽𝜷𝚽𝜸

⟩
. (C.7)

After utilizing the orthogonal property of the polynomial basis, one obtains the following,

d𝑥(𝜸)
d𝑡

= 1⟨
𝚽2

𝜸

⟩ ∑
𝜶∈𝑡

∑
𝜷∈𝑡

𝜎(𝜶)(𝑦(𝜷) − 𝑥(𝜷))𝐶𝜶𝜷𝜸 (C.8)

where 𝐶𝜶𝜷𝜸 =
⟨
𝚽𝜶𝚽𝜷𝚽𝜸

⟩
, denotes the triple inner product.

The result is a deterministic ODE, in which the states are the expansion coefficients 𝑥(𝜶)(𝑡), 𝑦(𝜶)(𝑡), and the parameters are 𝜎(𝜶). 
Similarly, the augmented equations for the rest of the lorenz-63 system can be derived,

d𝑦(𝜸)

d𝑡
= 1⟨

𝚽2
𝜸

⟩ ∑
𝜶∈𝑡

∑
𝜷∈𝑡

(
𝜌(𝜶)𝑥(𝜷) − 𝑧(𝜶)𝑥(𝜷)

)
𝐶𝜶𝜷𝜸 − 𝑦(𝜸),

d𝑧(𝜸)
d𝑡

= 1⟨
𝚽2

𝜸

⟩ ∑
𝜶∈𝑡

∑
𝜷∈𝑡

(
𝑥(𝜶)𝑦(𝜷) − 𝛽(𝜶)𝑧(𝜷)

)
𝐶𝜶𝜷𝜸 .

(C.9)
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