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Summary
The convergence of filtered error and filtered reference adaptive feedforward is
limited by three effects: model mismatch, unintended input-disturbance inter-
action and too fast parameter adaptation. In this article, the first two effects are
considered for MIMO systems under the slow parameter adaptation assumption.
The convergence with model mismatch is conventionally guaranteed using a
strictly positive-real condition. This condition can be easily verified in the fre-
quency domain, but due the high-frequency parasitic dynamics of real systems,
it is hardly ever satisfied. Nevertheless, filtered error and filtered reference adap-
tive feedforward have successfully been implemented in numerous applications
without satisfying the strictly positive-real condition. It is shown in this article
that the strictly positive-real condition can be relaxed to a power-weighted inte-
gral condition, that is less conservative and provides a practical check for the
convergence of filtered error adaptive feedforward for real systems in the fre-
quency domain. The effects of input-disturbance interaction are analysed and
conditions for the stability are given in the frequency domain. Both conditions
give clear indicators for frequency domain filter tuning, and are verified on an
experimental active vibration isolation system.
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1 INTRODUCTION

Adaptive feedforward (AF) is a method to improve the performance of a feedforward controller under parametric varia-
tions and uncertainty. This method is successfully implemented for a multitude of applications, such as a wafer stage,1
mechanical ventilation,2 linear motors3 and wind turbines.4 A field where adaptive feedforward is especially prevalent is
active noise cancellation (ANC) (see Lu et al.5 for a recent survey) and good results have been obtained for active vibration
isolation systems6 (AVIS).

For systems that use AF, both stability and convergence are important. Stability refers to all internal states of the system
being bounded for nonzero initial conditions. Convergence refers to the parameters of the AF adapting to a bounded set.
The convergence is consistent if this set is the ideal parameter vector.

The stability of systems that use feedforward is typically not influenced by the feedforward controller if the feedforward
controller itself is stable, since no feedback loops are closed by the feedforward controller.7 For some applications, such as
ANC and AVIS, the feedforward is based on measurements of the disturbance, and can be corrupted by the feedforward
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2 SPANJER et al.

action, effectively closing a feedback loop over the feedforward.5,8 This makes the stability of the system dependent on
the feedforward.

For systems with dynamics in the compensation path, such as ANC and AVIS, either filtered reference9 (Fx) or filtered
error10 (Fe) AF are used. Compared to FxAF, FeAF is computationally more efficient in a MIMO setting. These methods
require a model of the system, which is pivotal for the adaptive feedforward parameter convergence. A sufficient condition
on the model for convergence is the strictly positive real (SPR) condition by Wang and Ren.11

This convergence condition has several downsides. It is derived using a specific choice of the Lyapunov function,
which introduces conservatism in the convergence condition. Nonetheless, Fraanje et al.12 concluded that the specific
choice of the Lyapunov function is necessary to prevent critical behavior, which is non-monotonic decrease in error. This
makes the specific choice of Lyapunov function actually beneficial for practical implementations due to the actuator and
system limits. Furthermore, the condition only holds for slow parameter adaptation. Last is the requirement that the SPR
condition should hold at every frequency. This makes the SPR condition impractical for real systems due to their high
state dimensional nature and the corresponding significant unmodelled dynamics.

The practical limitation of the SPR condition was overcome by Beijen et al.6 by using a noise-shaping filter to remove
the power content in the frequency regions with modeling error. This allows for a stable implementation of the FeLMS
algorithm, however, the convergence condition is still based on the SPR condition and is hence not satisfied. This lack
of theoretical underpinning results in a tuning process of the noise-shaping filter without clear objectives, other than
the broad notion of convergence, and relies on the experience of the designer. This yields unpredictable behavior. In this
article, the SPR condition is relaxed to a power-weighted integral condition. This new condition can be evaluated based
on FRF measurements of the dynamics, the disturbance spectrum and an eigenvalue analysis. This has significant value
since it provides a less conservative convergence condition, a basis for tuning the noise-shaping filter and a method for
evaluating the performance of the system model. Furthermore, it is data-based and does not need an exact model of the
plant, other than the one used for adaptation. The analysis for fast parameter adaptation is outside the scope of this article,
but is a topic for further research. Furthermore, the effects of the input-disturbance interaction on the stability of the
system are analysed. A different problem setup is used here compared to Landau et al.,13 where the input only influences
the measurement of the disturbance. Instead, here the actual disturbance is influenced by the input. The theory will be
developed for a FeAF controller for AVIS, but extends straightforwardly to other adaptive feedforward methods such as
FxAF and applications such as ANC and reference based AF. Points of attention for other applications and methods will
be highlighted in footnotes.

The article is organized as follows. First, the general control structure is introduced. The stability condition with
input-disturbance interaction is derived next in Section 3. In Section 4, the filtered error adaptive feedforward method
is introduced. The convergence is first analysed in time domain in Section 5 and the resulting condition is converted to
the SPR condition in the frequency domain. The SPR condition is relaxed in Section 6. In Section 7, a method for the
design of the noise shaping filter based on the relaxed convergence condition is given. The relaxed convergence condition
is experimentally validated in Section 8. Sections 9 and 10 are the discussion and conclusion respectively.

1.1 Notation

In this article, R, Rn and Rn×m denote respectively the set of real numbers, the set of n × 1 real column vectors and the set of
n ×m real matrices; C, Cn and Cn×m denote complex numbers, column vectors and matrices respectively. We use (•)T for
the transpose, (•)H for the Hermitian transpose, (•)−1 for the inverse, Tr(•) for the trace, det(•) for the determinant, inf(•)
for the infimum, sup(•) for the supremum, conv(•) for the convex hull,14 Re(•) for the real part, • for a set frozen in time,
and col(•) for the vectorization of a matrix to a column vector. The set RHn×m

∞ contains all n ×m causal stable discrete-time
systems. We say that x ∈ • for x ∈ Rn if ||x||• < ∞, where ||x||∞ = supk≥0 ||x(k)||∞ = supk≥0 max1≤i≤n |xi(k)| and ||x||pow =

limN→∞

√
1

2N+1

∑N
i=−N xT(i)x(i) are used. The relevant matrix norms are ||X||pow = limN→∞

√
1

2N+1

∑N
i=−N Tr

(
XT(i)X(i)

)
and

||X||∞ = supk≥0 ||X(k)||∞ = supk≥0 max1≤i≤n max1≤j≤m |xij(k)|.15

2 PROBLEM DESCRIPTION

Figure 1 shows the MIMO FeAF control structure, and is based on Beijen et al.6 The FeAF is described in discrete time.
The forward shift operator is defined as q, and tk = kts with the index k ∈ N and sampling time ts. The system consists
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SPANJER et al. 3

F I G U R E 1 MIMO filtered error adaptive feedforward control structure.

F I G U R E 2 Ideal physical model of an AVIS system.

of the primary path P1(q) ∈ RHny×na
∞ , the secondary path P2(q) ∈ RHny×nu

∞ and the quaternary path* P4(q) ∈ RHna×nu
∞ .

For the AVIS case, the primary path relates the floor acceleration a0(k) to the payload acceleration a1(k). The secondary
path relates the actuator input ua(k) to a1(k) and the quaternary path relates the ua(k) to a0(k). In Figure 2 an ideal physical
model of the AVIS setup is shown to illustrate these transfer paths. We emphasize that Beijen et al.6 did not consider the
presence of P4(q). The tertiary path P3(q) ∈ RHna×na

∞ , that relates a0(k) to a measurement of a0(k) is considered unity.16

The signal as(k) ∈ Rna is the exogenous disturbance, whose measurement ã0(k) is corrupted by sensor noise n0(k) and
the input-disturbance interaction signal aa(k). The measurement ã0(k) is used for the feedforward controller CFF(q) ∈
RHnu×na

∞ . The feedback sensor measurement ã1(k) is corrupted by the sensor noise n1(k) and is the input for the feedback
controller CFB(q) ∈ RHnu×ny

∞ . The disturbance input ud(k) is unmeasured and corrupts the input of P2(q). The signals
as, n0, ud, n1 ∈ pow are assumed wide-sense stationary, uncorrelated and zero-mean.

The output of the system is given by

a1(k) = P1(q)a0(k) + P2(q)ua(k). (1)

The objective of the control structure of Figure 1 is to minimize the variance of the output a1(k). To this end, both feedfor-
ward and the feedback controllers are used. The feedforward is used to attenuate the influence of as(k), while the feedback
controller is to attenuate all remaining disturbances. The input signal ua(k) ∈ Rnu is given by

ua(k) = uFF(k) + uFB(k) + ud(k),
= CFF(q)ã0(k) + CFB(q)ã1(k) + ud(k),

=
[
I − CFF(q)P4(q) − CFB(q)(P1(q)P4(q) + P2(q))

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(q)

−1r(k), (2)

with

r(k) =(CFF(q) + CFB(q)P1(q))as(k) + CFF(q)n0(k) + CFB(q)n1(k) + ud(k), (3)

ã0(k) = aa(k) + ãs(k) = as(k) + aa(k) + n0(k) and ã1(k) = a1(k) + n1(k). Note that the occurrence of CFF(q)P4(q) in (q)
implies that it is not quite correct to use the terminology feedforward controller for CFF(q) since a feedback loop is closed
over CFF(q) and P4(q). This is nonetheless used in the remainder of the article since it provides a clear distinction between
the two controllers. The signal ud(k) is an unmeasured disturbance. Let

P(q) = P1(q)P4(q) + P2(q). (4)
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4 SPANJER et al.

Equation (1) can be rewritten as

a1(k) = P1(q)as(k) + P(q)ua(k),
= P1(q)as(k) + P(q)−1(q)r(k),
= 1(q)as(k) + 2(q)

[
CFF(q)n0(k) + CFB(q)n1(k) + ud(k)

]
, (5)

with

1(q) = P1(q) + P(q)−1(q)(CFF(q) + CFB(q)P1(q)), (6)
2(q) = P(q)−1(q). (7)

For P4(q) = 0, these functions reduce, respectively, to

 (q) =
[
I − P2(q)CFB(q)

]−1[P1(q) + P2(q)CFF(q)
]
, (8)

(q) =
[
I − P2(q)CFB(q)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

SFB

−1P2(q), (9)

and make

a1(k) =  (q)as(k) + (q)
[
CFF(q)n0(k) + CFB(q)n1(k) + ud(k)

]
, (10)

which are the well known transmissibility and the (double time derivative of the) compliance functions.17

The FeAF controller relies on a feedforward controller that is linear in the parameters, as will be discussed in Section 4.
The feedforward controller that minimizes the variance of a1(k) can be expressed as an infinite series expansion in a
suitable pre-chosen basis18

C◦
FF(q) =

∞∑

i=0
WiFi(q), (11)

where C◦
FF(q) ∈ RHnu×na

∞ , Wi ∈ Rnu×na and

Fi(q) =
⎡
⎢
⎢
⎢
⎣

fi(q) · · · 0
⋮ ⋱ ⋮

0 · · · fi(q)

⎤
⎥
⎥
⎥
⎦

∈ RHna×na
∞ . (12)

This corresponds to the scalar interpretation of (11). The alternative is the multivariable approach, that might be used to
reduce the number of required parameters.19,20 However, the used scalar interpretation offers a more flexible framework.

The expansion in (11) is truncated for practical reasons to order ne as

C◦
FF(q) ≈ CFF(q) =

ne∑

i=0
WiFi(q). (13)

The choice of basis functions depends on the dynamics of the system. The most well known choice of basis functions are
finite impulse response (FIR) filters

fi(q) = q−i
. (14)

FIR filters are commonly used in ANC systems due to their simplicity. For systems with long impulse response times,
FIR filters are however inefficient because a large ne is required for an accurate system description. The system descrip-
tion can be made more efficient by using other bases that allow incorporating knowledge of the system dynamics in the
basis. A suitable choice for systems with possibly multiple complex poles are Takenaka-Malmquist functions.18 Both the
FIR filter basis and the Takenaka-Malmquist function basis are orthonormal. This gives favorable numerical properties,
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SPANJER et al. 5

but for the content of this article only linear independence is required. A suitable basis for AVIS are weak integrators,6
possibly in combination with Takenaka-Malmquist functions.21 The matrices Wi are uniquely defined if the basis is
linearly-independent.

For later use, the output of the feedforward controller for a general input a(k) can be expressed as

uFF(k) = CFF(q)a(k) =
ne∑

i=0
WiFi(q)a(k) = WF(q)a(k)

=
⎡
⎢
⎢
⎢
⎣

𝝍̃

T(k) · · · 0
⋮ ⋱ ⋮

0 · · · 𝝍̃T(k)

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝚿̃(k)

w = wr𝝍̃(k) =
⎡
⎢
⎢
⎢
⎣

fT
t (q) · · · 0
⋮ ⋱ ⋮

0 · · · fT
t (q)

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

 (q)

wd

⎡
⎢
⎢
⎢
⎣

a(k)
⋮

a(k)

⎤
⎥
⎥
⎥
⎦

, (15)

with

𝝍̃(k) =
⎡
⎢
⎢
⎢
⎣

F1(q)
⋮

Fne(q)

⎤
⎥
⎥
⎥
⎦

⏟⏞⏟⏞⏟

F(q)

a(k), (16)

and a(k) ∈ Rna , 𝚿̃(k) ∈ Rnu×nanenu . The parameter vector w = col(W) ∈ Rnanune×1, and wd ∈ Rnanune×nanune is the zero
matrix with w on the diagonal. The matrix wr ∈ Rnu×nane contains the elements of W. One order of the diagonal generating
transfer functions is Fi(q) ∈ RHna×na

∞ , and the total set of block diagonal generating transfer functions  (q) ∈ RHnu×nanenu
∞

that contain repetitions of the elements of F ∈ RHnane×na
∞ . The nonzero entries of F(q) can be vectorized as ft = col(F(q)) ∈

Rnane . Equations (15) and (16) are various forms of the tensor Equation (13). Equation (15) implies the same expansion
for all uFF(k). From an implementation point of view this is often not desired.20 Using a different expansion for the dif-
ferent uFF(k) translates to variation between the different blocks on the diagonal of  (q). The same notation can be kept
by taking the unique functions in  (q), substituting these for ft(q) and setting the correspondingly added parameters in
w to zero.

The basis of the feedforward controller is to be designed such that it minimizes a1(k), and will be detailed Section 4 for
the AVIS case. It is made adaptive to make the performance robust against parameter variations. Making the feedforward
adaptive creates a nonlinear feedback loop in the system. The convergence of this nonlinear feedback loop is convention-
ally guaranteed by the SPR lemma, and is discussed in Section 5. This lemma is too restrictive for practical applications,
since it requires an accurate model up to the Nyquist frequency. Therefore, this condition is relaxed in Section 6. Synthe-
sis guidelines are derived based on the relaxed convergence condition and are presented in Section 7. The inclusion of
P4(q) in the system creates additional feedback loops in the system. The stability of this interconnection is discussed in
Section 3.

The stability and convergence conditions are given in the frequency domain, and require the following measurements
of the system

1. Power spectral density (PSD) of as(k) + n0(k).
2. Frequency response function (FRF) of P(q)† and P4(q).

The stability and convergence conditions can be used to design CFF(q), CFB(q), N(q), ̂
−1
2 (q). The latter two filters are

used for the adaptation process, and will be introduced in Section 4.

3 STABILITY WITH INPUT-DISTURBANCE INTERACTION

The additional feedback loops that are closed by P4(q) ≠ 0 can cause instability over P4(q) and the feedforward controller,
where the feedforward controller is described by (15). The stability for this feedback loop is considered in this section, and

 10991115, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3826 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 SPANJER et al.

the range of w for which the closed loop is stable is quantified. This stability condition is derived using the generalized
Nyquist criterion.

Theorem 1 (Skogestad and Postlethwaite22). Let nol be the number of unstable open loop poles in L(q). The
closed-loop (q) = (I + L(q))−1 is stable if and only if the image of det(I + L(q))

1. makes nol anti-clockwise encirclements of the origin, and
2. does not pass through the origin

for all q in the discrete Nyquist contour23.

Lemma 1. Let the conditions of Theorem 1 be satisfied for

L(q) = −CFB(q)P(q). (17)

Let g represent the set of finitely many vertices of a polytopic region l = conv(g)14 and w a vector of
parameters for CFF(q,w). Then 1(q,w) and 2(q,w) will be stable for all w ∈l, if the following condition is
satisfied:

𝜎max
(

CFF
(

ej𝜔
,w
))
𝜎max

(
P4
(

ej𝜔))
< 𝜎min

(
I − CFB

(
ej𝜔)(P1

(
ej𝜔)P4

(
ej𝜔) + P2

(
ej𝜔))) ∀w ∈g. (18)

Proof. From (5), it can be concluded that1(q,w) ∈ RHny×na
∞ and2(q,w) ∈ RHny×nu

∞ if−1(q,w) ∈ RHny×nu
∞ .

First CFB is assumed to satisfy the generalized Nyquist criterion of Theorem 1 with CFF(q,w)P4(q) = 0. The
second term of−1(q,w) is considered a perturbation. The total stability of the system is determined by det(I +
L(q) − CFF(q,w)P4(q)). Following the argument of Doyle,24 the conditions of Theorem 1 can be violated if

det(I + L − 𝜂CFF(w)P4) = 0, (19)

for some 0 ≤ 𝜂 ≤ 1 and −𝜋 ≤ 𝜔 ≤ 𝜋. The argument ej𝜔 is left out for notational simplicity. The follow-
ing identities and inequalities can be found in Skogestad and Postlethwaite.22 Since det(A) =

∏
i(𝜆i(A)), if

det(I + L − 𝜂CFF(w)P4) = 0 for 0 ≤ 𝜂 ≤ 1 and −𝜋 ≤ 𝜔 ≤ 𝜋, then 𝜆min(I + L − 𝜂CFF(w)P4) = 0, with 𝜆min(.)
the eigenvalue with the smallest absolute value. Furthermore, if 𝜆min

(
I + L − 𝜂CFF(w)P4

)
= 0, then

𝜎min
(

I + L − 𝜂CFF(w)P4
)
= 0 since 0 ≤ 𝜎min ≤ |𝜆i| ≤ 𝜎max. This can be used to infer

𝜎min
(

I + L − 𝜂CFF(w)P4
)
≥ 𝜎min(I + L) − 𝜂𝜎max

(
CFF(w)P4

)
≥ 𝜎min(I + L) − 𝜎max(CFF(w)P4). (20)

Thus, to ensure 𝜆min
(

I + L − 𝜂CFF(w)P4
)
> 0, it would be sufficient to have 𝜎min

(
I + L − 𝜂CFF(w)P4

)
> 0,

which would be implied by 𝜎max
(

CFF(w)P4
)
< 𝜎min(I + L). Since

𝜎max
(

CFF(w)P4
)
≤ 𝜎max

(
CFF(w)

)
𝜎max(P4), (21)

a sufficient condition for the stability of −1 is (18). Therefore, (18) implies 1(q,w) ∈ RHny×na
∞ , 2(q,w) ∈

RHny×nu
∞ ∀ w ∈g. Equation (18) can be written as a linear matrix inequality (LMI) since CFF

(
ej𝜔
,w
)

depends
linearly on w, according to (15). The setl is therefore described by the convex hulll = conv

(
g
)
,14 and

1(q,w) ∈ RHny×na
∞ , 2(q,w) ∈ RHny×nu

∞ ∀ w ∈g implies that 1(q,w) ∈ RHny×na
∞ , 2(q,w) are stable for

all w ∈l. ▪

Remark 1. The convex dependence of 𝜎max
(

CFF
(

ej𝜔
,w
))

on w implies that it is sufficient to check (18) on
the generators g of l.14 The generators g can be estimated in the frequency domain. This is shown in
Section 8.

For sufficiently slowly varying w(k), 1(q,w) ∈ RHny×na
∞ , 2(q,w) ∈ RHny×nu

∞ ∀ w ∈g implies that 1(q,w(k)) and
2(q,w(k)) are stable for all w(k) ∈l.25 Therefore, this condition can also be used for the adaptive feedforward presented
in the next section.

 10991115, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3826 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SPANJER et al. 7

4 FILTERED ERROR ADAPTIVE FEEDFORWARD

To maintain desirable performance in the face of parameter variations, the feedforward control is made adaptive using
the Fe method.9 To this end, CFF(q) is replaced by CFF(q,w(k)), and the output of the adaptive feedforward controller is
given by

uFF(k) = CFF(q,w(k))ã0(k)
= CFF(q,w(k))ãs(k) + CFF(q,w(k))aa(k) = 𝚿̃(k)w(k) + CFF(q,w(k))aa(k). (22)

Here 𝚿̃(k) is defined as in (15), with𝝍(k) = f(q)(as(k) + n0(k)) ∈ Rnina . Note that the implemented feedforward controller
uses 𝝍(k) = f(q)(aa(k) + as(k) + n0(k)) ∈ Rnina . The split in (22) is for analysis purposes. The structure of the Fe method
can be seen in Figure 1. The filtered error minimized by adaptation is the signal ã1(k) filtered by N(q)̂

−1
2 (q) ∈ RHnu×ny

∞ .
Here N(q) is the noise shaping filter with

N(q) = N(q)I ∈ RHnu×nu
∞ , (23)

and ̂
−1
2 (q) is the model of the inverse of the process sensitivity. The filtered error is thereby given as

e(k,w(k)) = N(q)̂
−1
2 (q)ã1(k),

= N(q)̂
−1
2 (q)(y1(k) + y2(k) + n1(k)). (24)

With some abuse of notation, we indicate the dependence of the error on w(k) to motivate the derivations in the sequel.
Note that ̂

−1
2 (q) only exists if nu = ny while for systems with nu ≠ ny either a squaring down approach or an inner/outer

factorization approach can be used; see van Zundert26 and Berkhoff and Nijsse27 respectively. N(q) can be used to make
N(q)̂

−1
2 (q) causal and stable. The noise shaping filter on ã0(k) is N(q) = N(q)I ∈ RHna×na

∞ . The same notation is used
since they only differ in size.

The parameter vector is estimated using the gradient-based update law28

w(k + 1) = w(k) − 𝚪(k)
2

(
𝜕J
𝜕w

)T
, (25)

with

J(w) = E
[
eT(k,w(k))e(k,w(k))

]
, (26)

and gain matrix 𝚪(k) = 𝚪(k)T . The gradient in (25) is written as

(
𝜕J(w)
𝜕w

)T

=
(

𝜕J(w)
𝜕e(k,w(k))

𝜕e(k,w(k))
𝜕w

)T

. (27)

The filtered error e(k,w(k)) can be rewritten by substituting (5) and ã1(k) = a1(k) + n1(k) into (24). This yields

e(k,w(k)) = N(q)̂
−1
2 (q)

[
P1(q)as(k) + n1(k) + 2(q,w(k))

[
CFF(q,w(k))ãs(k) + CFB(q)n1(k) + CFB(q)P1as(k) + ud(k)

]]
.

(28)

Substituting (22) gives

e(k,w(k)) = N(q)̂
−1
2 (q)

[
P1(q)as(k) + n1(k) + 2(q,w(k))

(
𝚿̃(k)w(k) + CFB(q)n1(k) + CFB(q)P1as(k) + ud(k)

)]
. (29)

The gradient of (29) w.r.t. the parameter vector w is required for the Fe method. To derive an implementable AF, two
assumptions are made:

Assumption 1. Slow parameter adaptation.6

Assumption 2. 2(q,w(k)) ≈ ̂2(q) ∀w ∈l.
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8 SPANJER et al.

Assumption 1 is an inherent limitation of the Fe method and will be used at several points of the derivation. The first
point is in the following derivation of the gradient. Later, it shows up in the transformation to the frequency domain in
Section 5. It is also already used in Section 3 following Lemma 1. The model ̂2(q) is a design element for the Fe method
that is used to render the error in (29) (approximately) affine in w. This is the basis for the derivation of the Fe method.
The influence of the second item of Assumption 2 on the convergence of the Fe method is discussed in Sections 5 and 6.
It implies that the change in the dynamics of 2(q,w) as a function of w is relatively small. The bounds of the mismatch
of this assumption is the main topic of Lemmas 3 and 4. If the Assumption 2 holds to equality, then the cost function is
guaranteed to be convex.

Using Assumptions 1 and 2, the gradient of (29) with respect to w can be approximated as6

𝜕e(k,w(k))
𝜕w

≈ 𝚿̃N(k) = N(q)𝜳̃ (k). (30)

This approximation holds to equality if the parameter variation is arbitrarily slow, and the Assumption 2 is an equality.
Using this result, the gradient of (26) can be evaluated as

(
𝜕J
𝜕w

)T
≈ 2E

[

𝜳̃

T
N(k)e(k,w(k))

]

. (31)

This yields the update law

w(k + 1) = w(k) − 𝚪(k)E
[

𝚿̃T
N(k)e(k,w(k))

]

. (32)

The stochastic information of E

[

𝚿̃T
N(k)e(k,w(k))

]

is rarely available in practice, hence the instantaneous approximation

E

[

𝚿̃T
N(k)e(k,w(k))

]

→ 𝚿̃T
N(k)e(k,w(k)) is typically used.29

The matrix 𝚪(k) is of major importance for the transient behavior of the parameter adaption and there are several
commonly used methods to define 𝚪(k). The matrix 𝚪(k) is split as

𝚪(k) = 𝛾(k)𝚪(k), (33)

with 𝛾(k) > 0 being a scalar gain. The realizations of this equation for two commonly used methods are given in
Appendix A.

Assumption 3. The following assumptions are made for 𝚪(k):

• 𝚪(k) = 𝚪(k)T ⪰ 0.
• 𝚪(k) ≺ chI with ch > 0.

• −cv(k)I ≺ E

[

𝚪(k)
]

− 𝚪(k − 1) ≺ cv(k)I with cv(k) ≥ 0, and some small cv(k).

• cv(k) = 𝛾3(k)𝛿v for small 𝛾(k), see Appendix A.

The third item of Assumption 3 implies that 𝚪(k) is slowly varying.
The update law of (32) with the instantaneous gradient approximation and the parametrization of (33) yields

w(k + 1) = w(k) − 𝛾(k)𝚪(k)𝚿̃T
N(k)e(k,w(k)). (34)

For the convergence analysis, it is convenient to express the update law of (34) in terms of the parameter error with respect
to a stationary point. Therefore, the parameter error is defined as

w̃(k) = w(k) −w∗
, (35)

where w∗ are the stationary points of (34) and are defined as the solutions of the noise free orthogonality condition

E
[
𝚿T

N(k)e(k,w
∗)
]
= 0, (36)
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SPANJER et al. 9

with the noise-free regression matrix 𝚿(k) defined equivalently to (15) but with 𝝍(k) = f(q)as(k) ∈ Rnina . The update of
the parameter error is

w̃(k + 1) = w(k + 1) −w∗
,

= w̃(k) − 𝛾(k)𝚪(k)𝚿̃T
N(k)e(k,w(k)). (37)

The error vector e(k,w(k)) depends nonlinearly on w(k) and thereby on w̃(k). For the convergence analysis, the affine
terms of w̃(k) and w∗ are extracted. The fixed-basis, linear-in-the-parameters feedforward controller can be written as

𝚿(k)w∗ = −−1
2 (q,w

∗)(1(q,w∗)as(k) − 𝜺0(k)), (38)

where 𝜺0(k) contains the controller mismatch due to the truncation error in (13).
This can be used to write y1(k) from (24) as

y1(k) = 1(q,w(k))a0(k) = −2(q,w(k))𝚿(k)w∗ + 𝜺0(k). (39)

Similarly, (22) can be used for

y2(k) = 2(q,w(k))
(
𝚿̃(k)w(k) + CFB(q)n1(k) + ud(k)

)
. (40)

Substituting (39) and (40) into (24) yields

e(k,w(k)) = N(q)̂
−1
2 (q)2(q,w(k))

[
𝚿̃(k)w̃(k)

]

+N(q)̂
−1
2 (q)2(q,w(k))

[
𝚿̃(k) −𝚿(k)

]
w∗

+N(q)̂
−1
2 (q)

[
2(q,w(k))(CFB(q)n1(k) + ud(k)) + 𝜺0(k) + n1(k)

]
.

(41)

Clearly, the generating functions f(q) should be chosen such that 𝜺0(k) is small for a given ne. Substitution of (41) into
(37) yields

w̃(k + 1) =
[

I − 𝛾(k)𝚪(k)G1(k)
]

w̃(k) + 𝛾(k)𝚪(k)g(k) (42)

with

G1(k) = 𝚿̃
T
N(k)

[

N(q)̂
−1
2 (q)2(q,w(k))𝚿̃(k)

]

,

g2(k) = 𝚿̃
T
N(k)

[

N(q)̂
−1
2 (q)2(q,w(k))

(
𝚿(k) − 𝚿̃(k)

)]

w∗
,

g3(k) = −𝚿̃
T
N(k)

[

N(q)̂
−1
2 (q) (2(q,w(k))(CFB(q)n1(k) + ud(k)) + 𝜺0(k) + n1(k))

]

,

(43)

and
g(k) = g2(k) + g3(k). (44)

Equation (42) is the basis for the following convergence analysis, and can be used to analyse the bias and minimum
mean-square error.6,29 The analysis of the bias and mean-square error is outside the scope of this article. The evolution of
the feedforward parameters is determined by (42), and is driven by the stochastic signals as(k), n0(k), n1(k) and ud(k). Since
the specific realization of these stochastic signals is a-priori unknown, the evolution of the feedforward parameters is also
unknown. Therefore, a projection operator can be used to enforce w(k) ∈l such that the input-disturbance feedback
loop does not become unstable during adaptation.30 This is not pursued here since it diverges from the main objective.

5 CONVERGENCE ANALYSIS

Assumption 2 is a suitable starting point to develop the Fe method since it renders the error in (29) approximately affine
in w(k). This assumption does however hardly ever hold to equality for real systems. In this section limits for violation of
this assumption will be derived.
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10 SPANJER et al.

The convergence properties of the FeAF algorithm are determined by (42). This is a discrete stochastic system due
to the stochastic nature of as, n0, ud and n1. There exist several general tools for the analysis of discrete stochastic sys-
tems, such as the associated ordinary differential equation (ODE) method,31 and martingale methods.32 The analysis
presented here is based on the martingale methods due to the clear analogy to deterministic stability, and shows uniform
boundedness in probability of the system. This is defined as follows:

Definition 1 (Kushner32‡). For a given initial condition x(0), the system is uniformly bounded in probability,
with probability 𝜌 if and only if

P

[

sup
0≤k≤∞

||x(k)||∞ ≥ 𝜖
]

≤ 1 − 𝜌 (45)

with P(.) being the probability operator.

Pivotal in the derivation is the following theorem:

Theorem 2 (Kushner32§). Let (x(k)) be nonnegative, scalar-valued and continuous in the set m ≜

{x(k) ∶ 𝜀(x(k)) < (x(k)) < m} and 0 ≜ {x(k) ∶ 0 < (x(k)) ≤ 𝜀(x(k))}. x(k) is a discrete Markov process
defined until at least some 𝜏 > 𝜏z = inf {k ∶ x(k) ∉ Zm}. Let

Δ(x(k + 1)) = E
[
(x(k + 1))

]
− (x(k)) ≤ c(x(k + 1)), (46)

with

c(x(k + 1))

{
≤ 0 ∀ x(k + 1) ∈ m,

> 0 ∀ x(k + 1) ∈ 0,
(47)

and c(x(k)) a uniformly continuous function. Then there is some t ≤ ∞ such that

x(k) → {x(k) ∶ c(x) = 0}, (48)

as k → t, with a probability no less than 1 − (x0)
m

. Also

P

[

sup
0≤k≤𝜏

(x(k + 1)) ≥ m
]

≤
(x(0))

m
. (49)

Applying Theorem 2 to (42) yields the following result:

Lemma 2. Let the conditions of Theorem 1 be satisfied for (17), w(k) ∈ with  =a
⋂
l, where l is

defined according to equation (18) anda is defined by

A + AT
≻ 0 ∀ w(k) ∈ a, (50)

where

A = E

[

𝚿̃T
N(k)

[

̂
−1
2 (q)2(q,w(k))𝚿̃N(k)

]]

. (51)

Then there exists a sufficiently small 𝛾(k) such that the parameters, that are updated with (42), are uniformly
bounded in probability.

Proof. Consider the Lyapunov candidate function

(w̃(k)) = w̃T(k)𝚪
−1
(k − 1)w̃(k) ≥ 0, (52)

with

w̃(k + 1) =
[

I − 𝛾(k)𝚪(k)G1(k)
]

w̃(k) + 𝛾(k)𝚪(k)g(k). (53)
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SPANJER et al. 11

This system is uniformly bounded in probability according to Theorem 2 if

Δ(w̃(k + 1)) = E
[
(w̃(k + 1))

]
− (w̃(k)) ≤ c(w̃(k + 1)). (54)

This is evaluated as

Δ(w̃(k + 1)) = E
[
(w̃(k + 1))

]
− (w̃(k))

= E

[

w̃T(k + 1)𝚪
−1
(k)w̃(k + 1)

]

− w̃T(k)𝚪
−1
(k − 1)w̃(k)

= E

[

𝛾
2(k)w̃T(k)GT

1 (k)𝚪(k)G1(k)w̃(k)
]

− E
[
𝛾(k)w̃T(k)

(
G1(k) + GT

1 (k)
)

w̃(k)
]

− E

[

𝛾
2(k)

(

w̃T(k)GT
1 (k)𝚪(k)g(k) + gT(k)𝚪(k)G1(k)w̃(k) − gT(k)𝚪(k)g(k)

)]

+ E
[
𝛾(k)

(
w̃T(k)g(k) + gT(k)w̃(k)

)]
+ E

[

w̃T(k)𝚪(k)−1w̃(k)
]

− w̃T(k)𝚪(k − 1)−1w̃(k). (55)

The stochasticity of the system originates from the different noise sources. These are present in G1(k), g(k),
𝛾(k) and 𝚪(k) and thereby in w̃(k + 1). The realization of w̃(k) is however deterministic, since it is determined
by the previous and fixed measurements on the system. Equation (55) can now be rewritten as

Δ(w̃(k + 1)) = w̃T(k)E
[

𝛾
2(k)GT

1 (k)𝚪(k)G1(k)
]

w̃(k) − w̃T(k)
(
E
[
𝛾(k)G1(k)

]
+ E

[
𝛾(k)GT

1 (k)
])

w̃(k)

− w̃T(k)E
[

𝛾
2(k)GT

1 (k)𝚪(k)g(k)
]

− E

[

𝛾
2(k)gT(k)𝚪(k)G1(k)

]

w̃(k)

+ E

[

𝛾
2(k)gT(k)𝚪(k)g(k)

]

+ w̃T(k)E
[
𝛾(k)g(k)

]
+ E

[
𝛾(k)gT(k)

]
w̃(k)

+ w̃T(k)
(

E

[

𝚪(k)−1
]

− 𝚪(k − 1)−1
)

w̃(k)

≤ w̃T(k)E
[

𝛾
2(k)GT

1 (k)𝚪(k)G1(k)
]

w̃(k) − w̃T(k)
(
E
[
𝛾(k)G1(k)

]
+ E

[
𝛾(k)GT

1 (k)
])

w̃(k)

− w̃T(k)E
[

𝛾
2(k)GT

1 (k)𝚪(k)g(k)
]

− E

[

𝛾
2(k)gT(k)𝚪(k)G1(k)

]

w̃(k)

+ E

[

𝛾
2(k)gT(k)𝚪(k)g(k)

]

+ w̃T(k)E
[
𝛾(k)g(k)

]
+ E

[
𝛾(k)gT(k)

]
w̃(k) + 𝛾3(k)𝛿vw̃T(k)w̃(k), (56)

using Assumption 3 for the inequality. Note that only the first, second and last term of (56) depend
quadratically on w̃(k). Let

A = E
[
G1(k)

]
, (57)

which is evaluated as (51). Here (23) is used to chance the order of N(q) and ̂
−1
2 (q)2(q,w(k)). Lets define

the setn as

Δ(w̃(k + 1)) ≥ 0 ∀ w̃(k) ∈n, (58)

and where Δ(w̃(k + 1)) = 0 on the boundary ofn. Since 𝛾(k) > 0,

𝛾
3(k)𝛿vI + E

[

𝛾
2(k)GT

1 (k)𝚪(k)G1(k)
]

− 𝛾(k)
(

A + AT)
≺ 0 ∀ w(k) ∈a (59)

implies that Δ(w̃(k + 1)) ≤ 0 if w̃(k) is outside n, and inside a since (59) is dominant for large w̃(k).
Note that this implies thatn ⊂a. If A + AT

≻ 0 ∀ w(k) ∈a, there always exists a sufficiently small 𝛾(k)
if w(k) ∈a such that (59) is satisfied. The seta is compact if all signals are bounded.

According to the relations of Appendix B, the boundedness of the signals in (56) reduces to:

1. ||G1(k)||pow ≤ ∞,
2. ||g(k)||pow ≤ ∞,
3. ||𝚪(k)||pow ≤ ∞.
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12 SPANJER et al.

The first and second condition hold if 2(q,w) ∈ RHny×nu
∞ , fi(q) ∈ RHnina

∞ , N(q)̂
−1
2 (q) ∈ RHny×nu

∞ , and
a0(k), n0(k), n1(k), ud(k), 𝜺0(k) ∈ pow, and if w(k) is sufficiently slowly varying. The generating transfer
functions fi(q) and filter N(q)̂

−1
2 (q) can be chosen to be in RH∞ by design. From the proof of Lemma 1 it fol-

lows that 2(q,w) ∈ RHny×nu
∞ ∀w ∈l. The conditions a0(k), n0(k), n1(k), ud(k) ∈ pow hold by definition.

Rewrite (39) as

𝜺0(k) = 1(q,w(k))a0(k) + 2(q,w(k))𝚿(k)w∗
. (60)

Following the proof of Lemma 1 it follows that 1(q,w) ∈ RHny×na
∞ ∀ w ∈l, hence 𝜺0(k) ∈ pow. The third

condition is satisfied under Assumption 3.
Equations (52) and (56) imply that w̃(k) ∈ ∞ if A + AT

≻ 0 ∀w(k) ∈a for some sufficiently small 𝛾(k)
and if w(k) ∈l, then (52) is a Lyapunov function and the update law in (42) is uniformly bounded in
probability. ▪

Note that the probability of the boundedness depends ona. For this, let wa be the boundary ofa, such that wa = m
with the set m of (47). Therefore, boundedness w.p. 1. can only be achieved when inf(wa) = ∞, or when a projection
operator is used.

Equation (59) is used to prove that the elements of (56) that are quadratic in w̃(k) are smaller than 0. Therefore,
Δ(w̃(k + 1)) < 0 for some sufficiently large w̃(k). The remainder of the elements of (56) might have varying polarity
over time. Hence,n is in the neighborhood of the origin. According to Theorem 2, the algorithm will converge to the
boundary ofn.

In the convergence analysis, the setsl,a andn are used. It was concluded that the system is stable if w̃(k) ∈
with  =a

⋂
l, and that the algorithm converges to the boundary of n. Loosely speaking, this means that the

system converges if Assumption 2 holds, the current parameters do not destabilize the system over the input-disturbance
interaction, and that the change in dynamics incurred by the parameters stays within some bound. This bound will be
quantified in the frequency domain in the sequel. This also means that the stationary point of the algorithm with noisy
data should be within  . This poses limits on the input-disturbance interaction. For AVIS, it is straightforward to use
this limit to derive minimal mass-ratios between m1 and m0 (Figure 2), as well as minimal stiffness ratios and limits on
the relative damping of the floor.

The seta is a sublevel set that is in general non-convex and that determines partly the convergence of the update
Equation (42). The quantification ofa requires an exact description of 2(q,w(k)), and is usually not available for real
systems. To relax this requirement, the nowadays classical result of Wang and Ren11 is used to rewrite the condition
A + AT

≻ 0 into the frequency domain. Originally Wang and Ren11 considered the FxAF framework. This is adapted to
the FeAF framework by Beijen et al.6 Here, it is modified to accommodate for P4(q). Originally Wang and Ren11 used
the associated ODE method to derive their results. Beijen et al.6 switched to the independence assumption, which is
well-known in the adaptive filtering literature.29 Here, the martingale method is used. It is interesting to note that the
same result is found here.

Lemma 3 (Wang and Ren11). If, for sufficiently small 𝛾(k),

(

̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
))H

+ ̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
)
≻ 0 ∀ w ∈b, −𝜋 ≤ 𝜔 ≤ 𝜋, (61)

then A + AT
≻ 0 ∀ w(k) ∈b.

Proof. The property A + AT
≻ 0 is ensured by A + A

T
≻ 0 under Assumption 1, similar to the proof of

Lemma 2, with

A = E

[

𝚿̃T
N(k)

[

̂
−1
2 (q)2(q,w)𝚿̃N(k)

]]

. (62)

The order of N and ̂
−1
2 2 in (57) is exchanged as a result of (23). Let l ∈ Rninanu×1 be an arbitrary nonzero

vector, and

lT
(

A + A
T)

l = E

[

𝝃(k)T
[

̂
−1
2 (q)2(q,w)𝝃(k)

]]

+ E

[[

̂
−1
2 (q)2(q,w)𝝃(k)

]T
𝝃(k)

]

, (63)
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SPANJER et al. 13

where 𝝃(k) = 𝚿̃N(k)l. Equation (63) has a scalar output, therefore

lT
(

A + A
T)

l = Tr
{

E

[

𝝃(k)T
[

̂
−1
2 (q)2(q,w)𝝃(k)

]]

+ E

[[

̂
−1
2 (q)2(q,w)𝝃(k)

]T
𝝃(k)

]}

. (64)

The cyclic property Tr{u1u2} = Tr{u2u1} is used to express (64) as

lT
(

A + A
T)

l = Tr
{

E

[[

̂
−1
2 (q)2(q,w)𝝃(k)

]

𝝃(k)T
]

+ E

[

𝝃(k)
[

̂
−1
2 (q)2(q,w)𝝃(k)

]T
]}

. (65)

Parseval’s theorem can be used to convert this expression into the frequency domain33

lT
(

A + A
T)

l = 1
2𝜋∫

𝜋

−𝜋
Tr
{

S𝜉
(

ej𝜔)
[(

̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
))H

+ ̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
)
]}

d𝜔, (66)

where S𝜉
(

ej𝜔) is the power spectrum of 𝝃(k). If there is persistent excitation that is sufficiently rich34 it holds
that S𝜉

(
ej𝜔)

≻ 0. Since the trace of the product of positive-definite matrices is positive, (61) implies that
lT
(

A + A
T)

l > 0. For sufficiently small 𝛾(k), Equation (61) is a sufficient condition for A + A ≻ 0. ▪

For a SISO plant, the condition of (61) reduces to11

Re
[

̂
−1
2
(

ej𝜔)
2
(

ej𝜔
,w
)]

> 0. (67)

Hence the name SPR. Lemma 3 provides a sufficient, but very restrictive condition that can be used in Lemma 2, for which
holds that b ⊂a. This condition is almost never satisfied in practice, since it requires a good phase approximation
up to the Nyquist frequency. This typically requires high dimensional models, which are difficult to obtain, have a high
computational complexity and are sensitive for changes in the system. Therefore, in the next section, the SPR condition
will be relaxed to a less restrictive and thus more practically useful condition.

6 RELAXED STABILITY CONDITION

The sufficient condition of Lemma 3 is restrictive for practical applications. This condition can be relaxed with the fol-
lowing power weighted strictly positive real (PWSPR) lemma. For this lemma, the index notation is used, see Appendix
C for an overview of the relevant properties of this notation.

Lemma 4. Let

Q(w) ≻ 0 ∀ w ∈a, (68)

with

Q(w) =
∫

𝜋

−𝜋
empvS𝜓̃ ,N,pq

(
ej𝜔)
mr

(
ej𝜔
,w
)

erqwd𝜔, (69)

and


(

ej𝜔
,w
)
=
(

̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
))H

+ ̂
−1
2
(

ej𝜔)2
(

ej𝜔
,w
)
, (70)

and mpqrtvw indices in the index notation. Then, for sufficiently small 𝛾(k),

A + AT
≻ 0 ∀ w(k) ∈a. (71)

Equation (71) ensures that Lemma 2 is satisfied.
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14 SPANJER et al.

Proof. The property A + AT
≻ 0 is ensured by A + A

T
≻ 0 for sufficiently slowly varying w(k), similarly to the

proof of Lemmas 2 and 3. Let li ∈ Rnina×1 be an arbitrary nonzero vector and l =
[
lT
1 , … , lT

nu

]T ∈ Rninanu . The
block diagonal definition𝚿(k) of (15) can be used to rewrite

𝜻(k) = 𝚿̃(k)l =
⎡
⎢
⎢
⎢
⎣

lT
1

⋮

lT
nu

⎤
⎥
⎥
⎥
⎦

⏟⏟⏟

L

𝝍̃(k), (72)

with L ∈ Rnu×nina . The PSD of 𝜻(k) is given by

S𝜁
(

ej𝜔) = LS𝜓̃
(

ej𝜔)LT
, (73)

with S𝜓̃
(

ej𝜔) the PSD of 𝝍̃(k). The PSD of 𝝃(k) = 𝚿̃N l can now be expressed as

S𝜉
(

ej𝜔) = N
(

ej𝜔)LS𝜓̃
(

ej𝜔)LTNH(ej𝜔)
. (74)

Using (23) yields

S𝜉
(

ej𝜔) = LS𝜓̃
(

ej𝜔)SN
(

ej𝜔)LT
, (75)

where SN
(

ej𝜔) = N
(

ej𝜔)NH(ej𝜔). Thereby, (66) can be rewritten by substituting (70) as

lT
(

A + A
T)

l = 1
2𝜋∫

𝜋

−𝜋
Tr
{

LS𝜓̃ ,N
(

ej𝜔)LT
(

ej𝜔
,w
)}

d𝜔, (76)

with S𝜓̃ ,N
(

ej𝜔) = SN
(

ej𝜔)S𝜓̃
(

ej𝜔). Now reorder this equation as

1
2𝜋∫

𝜋

−𝜋
Tr
{

LSH
𝜓̃ ,N
(

ej𝜔)LT
(

ej𝜔
,w
)}

d𝜔 = 1
2𝜋

Tr
{

L
∫

𝜋

−𝜋
SH
𝜓̃ ,N
(

ej𝜔)LT
(

ej𝜔
,w
)
d𝜔
}

. (77)

The part inside the trace operator can be rewritten as

L
∫

𝜋

−𝜋
S𝜓̃ ,N

(
ej𝜔)LT

(
ej𝜔
,w
)
d𝜔 =

∑

p

∑

q

∑

r
Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)Lrqrt

(
ej𝜔
,w
)
d𝜔

= Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)Lrqrt

(
ej𝜔
,w
)
d𝜔, (78)

where first index notation is used, and in the second equality the Einstein summation convention. A short
introduction in the index notation is given in Appendix C. This can be reordered to

1
2𝜋

Tr
{

Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)Lrqrt

(
ej𝜔
,w
)
d𝜔
}

= 1
2𝜋

Tr
{

Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)
rt
(

ej𝜔)d𝜔 Lrq

}

,

= 1
2𝜋

Lmp
∫

𝜋

−𝜋
𝛿mtS𝜓̃ ,N,pq

(
ej𝜔)
rt
(

ej𝜔
,w
)
d𝜔 Lrq,

= 1
2𝜋

Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)
mr

(
ej𝜔
,w
)
d𝜔 Lrq, (79)

where 𝛿mt is the Kronecker delta. Now introduce the contraction tensor e such that

Lmp = empvlv, Lrq = erqwlw, (80)
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SPANJER et al. 15

see Appendix C. Substitution in (79) yields

1
2𝜋

Lmp
∫

𝜋

−𝜋
S𝜓̃ ,N,pq

(
ej𝜔)
mr

(
ej𝜔
,w
)
d𝜔 Lrq =

1
2𝜋

lv
∫

𝜋

−𝜋
empvS𝜓̃ ,N,pq

(
ej𝜔)
mr

(
ej𝜔
,w
)

erqwd𝜔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Qvw(w)

lw,

= 1
2𝜋

lvQvw(w) lw, (81)

hence for sufficiently small 𝛾(k), Equation (68) implies (71).
▪

Equation (69) is an exact frequency domain version of (50), hence in both (69) and (50) the seta is used. The quantifi-
cation ofa is a computationally virtually intractable problem since (81) is nonlinear in w(k). This nonlinearity originates
from (7). An approximate quantification ofa can be found by validating (68) for a grid of w(k) ∈l.

Satisfying the SPR condition of (61) implies satisfying (68). Thereby, Equation (68) relaxes the convergence condition
for filtered error adaptive feedforward.

Lemma 2 can be combined with Lemma 1, and Lemma 4 to yield the main result of this article.

Theorem 3. Let the conditions of Theorem 1 be satisfied for (17), and let w(k) ∈ with =l
⋂
a, with

l defined in (18), and a defined in (50). Then the update law in Equation (42) is uniformly bounded in
probability, for sufficiently small 𝛾(k) and arbitrary small cv.

Proof. The proof of Theorem 3 follows directly from the proofs of Lemmas 1,2, and 4 and is therefore
omitted. ▪

For systems with P4(q) = 0, we have the following corollary. The proof directly follows from (18), and Lemma 2.

Corollary 1. If P4(q) = 0, the set is unbounded since2(q) becomes independent of w(k), and the additional
feedback loop over the feedforward controller disappears.

The implication of this corollary is that if there is no input-disturbance interaction, then the PWSPR lemma does not
depend on w(k), and only one evaluation is needed for a convergence guarantee.

The upperbound for 𝛾(k) is typically determined by the slow parameter variation assumption, and is hence related
to the system dynamics. An exact quantification of this upperbound is difficult to obtain and to the best of the authors
knowledge no general procedure is available for the upperbound. An approximate guideline for the user is to choose the
time-constant for the adaptation such that it is an order of magnitude longer than the slowest time-constant of the closed
loop system dynamics.

6.1 Interpretation

From experimental results, it is known that the SPR condition for real mechanical systems is almost never satisfied, but
the adaptive feedforward controller parameters can still converge.6 The engineering intuition of this phenomena is that
if there is no excitation power on the frequencies with the model mismatch, this does not result in divergence either. This
intuition is made explicit by Equations (68) and (69), where S𝜓̃ ,N can be seen as a frequency dependent weighting on the
integral over  . This weighting is dependent on f, see (15), the input spectrum of ãs(k) and N(q). The spectrum of ãs(k)
is easily measured in the system by turning off all controllers. f is chosen to minimize 𝜺0(k) for a given ne and ãs(k) is
determined by the experimental setup, N(q) is relevant for the convergence condition, while it is not in the feedforward
and can therefore specifically be designed to satisfy the convergence condition in Equation (68).

7 FILTER DESIGN

The condition of Equation (68) provides a convergence check of the system. However, it does not directly yield insight in
the design considerations for N(q). To this end, rewrite Equation (81) as

1
2𝜋

lv
∫

𝜋

−𝜋
empvS𝜓̃ ,N,pq

(
ej𝜔)
mr

(
ej𝜔
,w
)

erqw lw =
1

2𝜋
lv
∫

𝜋

−𝜋
wv

(
ej𝜔
,w
)
d𝜔 lw, (82)
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16 SPANJER et al.

and take the eigenvalue decomposition of (68) as

Q(w)V(w) = V(w)D(w), (83)

with D(w) a diagonal matrix. Since(w) is a symmetric matrix, the right eigenvectors are orthogonal. The matrix of right
eigenvectors V(w) can be used to decompose the symmetricwv into

(ej𝜔
,w) = VT(w)(ej𝜔

,w)V(w). (84)

The off-diagonal elements of (ej𝜔
,w) are non-zero, but integrate to zero due to the diagonalization in (83). The

off-diagonal elements do therefore not contribute to the eigenvalues of (w) and it is sufficient to check the diagonal
elementsii(ej𝜔

,w) of(ej𝜔
,w). This diagonal contains the magnitude and the sign of the contribution of(ej𝜔

,w) per
frequency to the eigenvalues of (w). A positive definite matrix has only positive eigenvalues, hence (ej𝜔

,w) can be
used to identify frequencies where the improvement of the model ̂2(q) improves the convergence behavior of the AF.

The filter N(q) serves three purposes. First, it is used to shape the spectrum of the filtered error e(k) to be minimized.
Next is to make N(q)̂

−1
2 (q) stable and proper, that is, N(q)̂

−1
2 (q) ∈ RHny×nu

∞ , and third it can be used to attenuate S
𝝍̃

(ej𝜔)
on frequencies where(ej𝜔

,w) contributes negatively to(w). For these purposes, it is proposed to use the filter structure

N(q) = Ns(q)Nf (q), (85)

where Ns(q) is used to shape the spectrum, and Nf (q) for power attenuation in regions with model mismatch. To design
the filter, the following steps can be taken:

1. Choose Ns(q) to shape the spectrum of e(k) for the desired error reduction in a1(k).
a. For example, Ns(q) can contain notch filters to remove the 50 Hz mains frequency and its harmonics.
b. This filter can in be used to compensate partly for the filtering introduced by ̂

−1
2 (q).35

2. Choose Nf (s) as a bandpass filter.
a. The orders of the high- and low-pass filter are lower bounded by N(q)̂

−1
2 (q) ∈ RHny×nu

∞ . The upper bound on the
order is determined by the computational complexity of the filter.

b. Choose the corner frequencies of the high- and low-pass filters such that Nf (ej𝜔) ≈ 1 ∀ 𝜔 ∈ Ωp, with
{
𝜔 ∈ Ωp ∶ ii(ej𝜔) ≥ 0

}
, and Nf (ej𝜔) ≈ 0 ∀ 𝜔 ∉ Ωp.

Note that the design for Ns(q) is case dependent and can be unity.

8 EXPERIMENTAL VALIDATION

Theorem 3 is evaluated for the experimental AVIS setup that is used by Beijen et al.6 and Hakvoort and Beijen,35 and
with the filters described by Hakvoort and Beijen.35 The reader is referred to Tjepkema,36 Beijen et al.6 and Hakvoort and
Beijen35 for more details about the setup. The system has na = 6, nu = 6, ny = 6.

One element of the transfer function matrices P1(s) and P2(s), with s the Laplace variable, is modeled by

P1(s) =
ds + k

ms2 + ds + k
 (s), P2(s) =

s2

ms2 + ds + k
𝜔i

s + 𝜔i
 (s) (86)

with the mass m, damping constant d, stiffness k, actuator pole 𝜔i and  (s) the unmodelled high frequency dynam-
ics. P2(s) is diagonally dominant with similar dynamics on the diagonal. The relevant filters, which are designed using
engineering insight, are repeated here for convenience. They are defined in the continuous domain, and their discrete
counterparts are obtained by Tustin discretization. The feedback controller is given as

CFB(s) =
𝜔i

s + 𝜔i
kv

s2 + 0.01𝜔ns + 𝜔2
n

s2 + 𝜔ns + 𝜔2
n

I, (87)
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SPANJER et al. 17

with kv = 225, 𝜔i = 1 and 𝜔n = 962 ⋅ 2𝜋. The generating transfer functions

f(s) =
[

1 𝛽H(s) 𝛽2H2(s)
]

, (88)

are formed with the weak integrator

H(s) = 1 − L(s)
s

, (89)

and

L(s) =
(

𝛼

s + 𝛼

)5
, (90)

where 𝛼 = 4𝜋 and 𝛽 = ||H(q)||−1
2 . To make the implementation internally stable, a minimal realization of H(q) should be

used. Furthermore,

̂2(s) =
[
I − P2(q)CFB(q)

]−1P2(q) = ̂2(s)I. (91)

This description can be used since (q,w(k)) is a diagonally dominant system, with similar entries on the diagonal. The
noise shaping filter is defined as

N(s) = ̂2(s)Wn(s)
( 1000

s + 1000

)3( s
s + 3𝛼

)3
, (92)

with Wn(s) a series of notch filters on 50, 100, 200, 948 Hz. The notch filters are discretized using pole-zero matching.
The setl = conv

(
g
)

depends on 𝜎max
(

CFF(ej𝜔
,w)

)
, see Equation (18), with

𝜎max
(

CFF
(

ej𝜔
,w
))
= 𝜎max

(

(

ej𝜔)wd
)
. (93)

 (q) contains repeated entries, as can be seen in (15), therefore it is sufficient to evaluate (18) for a reduced set of
parameters related to each of the the basis functions

𝜎max
(

CFF
(

ej𝜔
,w
))
= 𝜎max

(
fr
(

ej𝜔)wr
)
, (94)

with

fr(q) =
√

nuf(q). (95)

The singular values are sign-invariant, hence the setg ∈ R2nanune is the hypercube constructed from all permutations of
wr,max and −wr,max where wr,max are the maximum values of wr(k)

g =
{

col(wg,1, … ,wg,nanune) || wg,1 =
{
−wr,max,1,wr,max,1

}
, … ,wg,nanu =

{
−wr,max,nanune ,wr,max,nanune

}}
. (96)

The construction ofg reduces to finding a wr,max that satisfies

𝜎max
(

frwr
)
≤ 𝜎min(I − CFB(P1P4 + P2))𝜎max(P4)−1

, (97)

where the argument ej𝜔 is left out, and maximizes ||Vwr,max||2 with a suitable diagonal scaling matrix V. This scaling
matrix is used to shapeg. This can be written as an LMI with a constraint based on (97) for every frequency of the FRF.
For the considered system only a reduced set wr ∈ R3 is required. The transfer function P4(q) is measured to validate (97),
and the singular values of the FRF can be seen in Figure 3. The vector wr is found by maximizing ||Vwr,max||2 for

V =
⎡
⎢
⎢
⎢
⎣

(w◦
1)
−1 0 0

0 (w◦
2)
−1 0

0 0 (w◦
3)
−1

⎤
⎥
⎥
⎥
⎦

, (98)
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18 SPANJER et al.

F I G U R E 3 Singular values of the FRF of P4(q).

F I G U R E 4 Evaluation of the linear stability condition in Equation (97).

with w◦
i the maximal value that satisfies

𝜎max
(

fr,iw◦
i
)
≤ 𝜎min(I − CFB(P1P4 + P2))𝜎max(P4)−1

, (99)

and where fr,i is the ith element of fr. Combined with the measurement of P4(q), this motivates the extension of (88) with
a notch filter as

f(s) =
[

1 𝛽H(s) 𝛽2H2(s)
] s2 + 0.01𝜔ns + 𝜔2

n

s2 + 𝜔ns + 𝜔2
n

, (100)

to expand l. This yields a factor 2 improvement in the element of wr that relates to the proportional generator. This
parametrization can be seen in of Figure 4. This comes however with a performance penalty.

The SPR condition of (61) can be checked by the eigenvalue decomposition of mr
(

ej𝜔
,w
)

in (70) as


(

ej𝜔
,w
)

Vp
(

ej𝜔
,w
)
= Vp

(
ej𝜔
,w
)

Dp
(

ej𝜔
,w
)
, (101)

and is shown in Figure 5, where the red dots indicate frequencies and directions where the SPR condition is not satisfied.
It can be concluded that the SPR condition is not satisfied.

The diagonal of(ej𝜔) of (83) is evaluated on a discrete frequency grid with measurement data and is shown in Figure 6
with N(q) = 1. The fit of the model ̂2(q) is good on the interval [2, 800]Hz. This can be seen by the positive real parts in
(ej𝜔) inside this interval. This suggests that the bandpass of N(q) should not exceed this frequency range. This is indeed
the case for (92), and explains in retrospect the band-pass filter that was obtained by an engineering approach.

The integral of Equation (69) is discretized for numerical evaluation using (92). The eigenvalues of Equation (68) are
shown in Figure 7 for CFF(q,w(k)) = 0. It shows that there are no negative eigenvalues. Since Q(w(k)) depends on w(k)
for systems with P4(q) ≠ 0, it needs to be evaluated for a grid of w(k) ∈l. This shows that some additional dynamics are
introduced due to CFF(q,w(k)) ≠ 0. This is most prominent at 220 Hz. This is the resonance frequency associated with
the rigid body motion of the floor. This gridding can be done numerically, since Q(w(k)) can be constructed according to
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SPANJER et al. 19

F I G U R E 5 SPR condition of (61) for the experimental FRF data. Positive points correspond with eigenvalues with positive real parts,
negative points are defined similar but with negative real parts.

F I G U R E 6 Evaluation of (84) for the experimental data. Positive points correspond with elements of the diagonal of(ej𝜔) with positive
real parts, negative points are defined similar but with negative real parts. The negative points are displayed in front of the positive points.

F I G U R E 7 Experimentally determined eigenvalues of Q(0).

(69) using the measurements of P(q), the filter N(q), the model ̂2(q), the feedback controller CFB(q), the basis f(q), the
relation (7) and the measured spectrum of ãs(k). This last spectrum can be measured if CFB(q) = CFF(q) = 0. The elements
of wr,max are reduced w.r.t. (97) to adhere to the actuator power and peak amplitude limits. A linear grid is chosen between
(the reduced) wr,max. This additional dynamics decreases the eigenvalues, but for the evaluated grid points, the PWSPR
condition remains satisfied. This grid evaluation of Q(w(k)) gives a good indication of the convergence properties, but is
no conclusive proof.

Based on the results presented above, the AF should be stable. This is validated by implementing the RLS algorithm
of (A3) to the AVIS system with 𝜆 = e−1∕10ts . The adaptation is started at t = 0 and parameter convergence is recorded for
100 s. The parameters converge to a stationary point. This is shown in Figures 8 and 9. These figures contain the same
data, but in Figure 8 the parameter trajectories are normalized on the vertices ofl, and in Figure 9 the trajectories of the
parameter errors w̃n(t) normalized to the final value are displayed. The parameters are normalized to the vertices ofl to
indicate the distance to linear instability due to the input-disturbance interaction, and since no complete quantification of
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20 SPANJER et al.

F I G U R E 8 w̃m,i(t) =
wi(t)
wr,i

are the normalized trajectories of w(t), where wr,i is the element of wr which corresponds to wi, such that the
stable region is between [−1, 1].

F I G U R E 9 Normalized trajectories of the w̃(t), w̃n,i(t) =
wi(t)−wi(100)
wi(0)−wi(100)

.

a is available. It can be seen that the convergence is not monotonic, and that the overshoot of the weights appears to be
significant. This highlights the relevance of checking the condition for a set of weights larger than the hypercube spanned
by the nominal weights. Here only the parameter adaptation is considered, the performance of the AVIS is similar to
Beijen et al.6 and Hakvoort and Beijen.35

9 DISCUSSION

It is shown in the previous section that the PWSPR condition significantly reduces the conservatism in the convergence
condition for FeAF. This is validated for an experimental setup. The evaluation of the PWSPR condition requires a fre-
quency domain representation of 2(q,w), a PSD of ãs(k) and the filters required for the control. The filters are up to the
designer. For the frequency domain representation of 2(q,w) a FRF measurement can be used and obviates the need for
accurately fitting a parametric model. The sensors and actuators required for the FRF measurement are available as part
of the FeAF structure. The PSD of ãs is typically available for the designer, since either measurements or models of the
PSD of ãs(k) can be used. For example, the PSD of ãs(k) corresponds with the PSD of the noise corrupted floor accelera-
tion. This PSD is easily measured by disabling the feedback and feedforward controllers. In the absence of measurements,
standards can be used.37 Therefore the PWSPR provides a practically applicable condition for the convergence of FeAF.

It has to be noted that since the PWSPR condition depends on the PSD of ãs, the convergence can be lost over time if
as + n0 is not wide-sense stationary. It is therefore recommended to design N(q) with sufficient margin, that is,

Q(w) ≻ 𝜀I ∀ w ∈b, (102)

with some suitable 𝜀 > 0. Furthermore, it is up to the designer to guarantee sufficiently accurate FRF measurements of
2(q,w). This is also the case for the SPR condition.

The Lyapunov function of (52) provides only information about convergence of the expected update step, therefore,
peaking of the parameters can still occur. This effect becomes more prominent when the eigenvalues of Q(w) in (68) tend
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SPANJER et al. 21

to zero, and can cause w(k) ∉ . This can be avoided if a projection operator is used. Even if the projection operator is
used, this will degrade the performance of the feedforward controller until the parameters converge to a stationary point
again. This further motivates a sufficiently large 𝜀 in (102).

There is some conservatism left in this convergence condition. This originates from the specific choice of Lyapunov
function in (52). It is noted by Fraanje et al.12 that the choice of this Lyapunov function does not capture convergence
with an initial increase in error. This is called critical behavior and can saturate the sensors and actuators and destabi-
lize the system due to the associated unmodelled non-linearities. It can furthermore negatively affect the lifetime of the
mechanism due to large excitations. This conservatism might therefore actually be beneficial from a design perspective.

The evaluation of the small gain condition in (97) with the measurement data from the experimental setup motivates
the addition of a notch filter in the feedback and feedforward path in (87) and (100). This improves the stable region with
respect to the input-disturbance interaction. It is observed in experiments that without this filter, the convergence of the
system varies between runs, which can be explained by the large overshoot of the parameters related to the proportional
generating transfer function in (88) and the reduced stability range. This overshoot is depending on the specific realization
of the floor acceleration and can therefore vary between runs.

The obtained results are derived under the condition that 𝛾(k) is sufficiently small, such that the slow parameter
variation assumption is satisfied. At the moment, only heuristic upperbounds for 𝛾(k) are available, and it is not clear how
to quantify the exact upperbound. Also, the exact quantification of the set a is not clear. These are topics for further
research.

10 CONCLUSION

In this article, the stability and convergence properties of FeAF are considered under the influence of actuator reference
interaction and model inaccuracies. It is shown that this input-disturbance interaction closes a nonlinear feedback loop,
which makes the stability dependent on the values of the feedforward parameters. Using the slow parameter variation
assumption, this reduces to a linear stability condition for a frozen set of parameters, and can be evaluated in the frequency
domain using a small gain stability condition.

Second, it is shown that the conventional convergence conditions for FeAF can be relaxed by taking into account the
PSD of the input. This yields a condition that is usable for systems with significant unmodelled dynamics. The conver-
gence condition is derived under the slow parameter variation assumption, which is also used by Wang and Ren.11 It
can be verified in the frequency domain and is applicable for MIMO systems. The condition has been verified on mea-
surement data from an experimental AVIS. This experimental setup is also used in previous research and the presented
conditions explain the choice of filtering and the obtained results of Beijen et al.6 and Hakvoort and Beijen35 in retrospect.
Guidelines are given for the design of the noise shaping filter using the relaxed convergence condition.
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ENDNOTES
∗For AVIS, P4(q) corresponds to the actuator floor interaction. In contrast, for ANC the actuators typically only influence the reference sensors.
This can be easily adapted in this formulation by setting P1(q)P4(q) = 0. When P1(q)P4(q) = 0, echo cancellation can be used to prevent
instability.5 For reference based adaptive feedforward P4 = 0.
†Note that the measurement of the FRF of P(q) is typically easier than measuring P1(q) and P2(q) separately.
‡Definition 4 in Kushner.32
§This theorem is a combination of Theorem 12 and Corollary 3-1 of Kushner.32
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APPENDIX A. DEFINITIONS OF 𝚪

Equation (32) can be interpreted as a regularized Newton recursion if29

𝚪(k) = 𝛾(k)𝚪(k) = 𝛾(k)(E(k) + R)−1
, (A1)

where R = E

[

𝚿̃T
N(k)𝚿̃N(k)

]

⪰ 0. E(k) = ET(k) ≻ 0 is a regularization matrix such that 𝚪 = 𝚪
T
≻ 0 and 𝛾(k) ≥ 0 is a scalar

gain. In general, the statistical information of R is a priori not available and hence are usually implemented as approx-
imations. Let R̂r(k) = R̂r(k)T =

(
E(k) + R̂(k)

)
≻ 0. For the approximation 𝚪(k) = 𝛾(k)R̂−1

r (k) there exist several popular
choices such as normalized least mean squares (𝜖-LMS), recursive least squares (RLS) and Kalman filters, see Beijen
et al.,6 Hakvoort and Beijen35 and van Ophem and Berkhoff38 respectively. Here only the 𝜖-LMS and RLS are discussed.
These methods all use the instantaneous approximation E

[

𝚿̃T
N(k)e(k,w(k))

]

→ 𝚿̃T
N(k)e(k,w(k)) in (32).29 The 𝜖-LMS

algorithm uses
𝚪(k) =

(
𝜖 + R̂(k)

)−1I,

R̂(k) = ||𝚿̃N(k)||22,
𝛾(k) = 𝛾, (A2)

with a static 𝜖 ∈ R1. The RLS algorithm uses

𝚪(k) =R̂−1
r (k) = 𝜆−1

[

𝚪(k − 1) − 𝚪(k − 1)𝚿̃T
N(k)L(k)−1𝚿̃N(k)𝚪(k − 1)

]

,

L(k) =
[

𝜆I + 𝚿̃N(k)𝚪(k − 1)𝚿̃T
N(k)

]

,

𝛾 =1, (A3)

with 𝜆 ∈ (0, 1] being the exponential forgetting factor and R̂(0) chosen appropriately.35 This yields an exponentially
decaying E(k) = 𝜆

k+1R̂(0)
k+1

.
The 𝜖-LMS and RLS are often found in the literature in the previous form. To comply to Assumption 3, they are

rewritten to a more convenient form. Equation (A2) is rewritten as

𝚪 = R̂ = I,

𝛾(k) = 𝛾

𝜖 + ||𝚿̃N(k)||22
, (A4)
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24 SPANJER et al.

and the terms of (A3) are rewritten to the normalized gain variant39

𝚪(k) = R̂−1
r (k) =

1
1 − 𝛾

[

𝚪(k − 1) − 𝚪(k − 1)𝚿̃T
N(k)L(k)−1𝚿̃N(k)𝚪(k − 1)

]

,

L(k) =
[

1 − 𝛾
𝛾

I + 𝚿̃N(k)𝚪(k − 1)𝚿̃T
N(k)

]

,

𝛾 = 1 − 𝜆. (A5)

In this form, R̂−1
r (k) is the exponentially weighted sample sum, scaled by 𝛾 . This means that in this form,𝚪(k) varies slowly

over time if 𝜆 approaches 1 since it is assumed that the input signal of 𝚿̃N(k) is wide sense stationary. It is noted that (32)
and (A1) are the basis for a larger class of adaptive algorithms, where the implementations of 𝜖-LMS and RLS serve as
examples. The multivariable versions of the 𝜖-LMS and RLS are given, however, due to the block diagonal nature of 𝚿̃ it
is possible to reduce the size of the estimation problem.35

The first item of Assumption 3 holds for both 𝜖-LMS and RLS due to the regularization that is applied. The second
item of Assumption 3 is satisfied if there is persistent excitation.40 For AVIS this is the case due to the nature of as(k) and
n0(k). For reference based AF, this condition needs to be guaranteed by the designer. The third item holds for 𝜖-LMS by
definition, and for RLS if 𝜆 → 1. The fourth item holds for 𝜖-LMS with 𝛿v = 0. Item four can be proven for RLS by

lim
𝛾(k)→0

𝚪(k) = lim
𝛾(k)→0

1
1 − 𝛾

[

𝚪(k − 1) − 𝚪(k − 1)𝚿̃T
N(k)L(k)−1𝚿̃N(k)𝚪(k − 1)

]

,

= lim
𝛾(k)→0

1
1 − 𝛾

⎡
⎢
⎢
⎢
⎣

𝚪(k − 1) − 𝚪(k − 1)𝚿̃T
N(k)𝛾(k)𝚿̃N(k)𝚪(k − 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

B(k)

⎤
⎥
⎥
⎥
⎦

. (A6)

The value of cv is determined by B(k), where B(k) contains 𝚪(k − 1), 𝚿̃N(k) and 𝛾(k). The matrix 𝚿̃N(k) does not scale with
𝛾(k). The 𝚪(k − 1) is the inverse of the exponentially weighted sample average29,39

𝚪
−1
(k − 1) = 1

𝛾(N + 1)

N∑

i=0
𝜆

N−j𝚿̃T
N(k − 1)𝚿̃N(k − 1). (A7)

Thereby 𝚪(k − 1) scales with 𝛾 . The matrix B(k) therefore scales with 𝛾3 and justifies the fourth item of Assumption 3.

APPENDIX B. BOUNDEDNESS OF THE EXPECTATION OF PRODUCTS

Let X ∈ Rm×n and Y ∈ Rp×n be two possibly dependent jointly distributed random variables. The extension of the
Cauchy-Schwarz inequality for the expectation of random matrices is41

E
[
XXT] − E

[
XYT]

E
[
YYT]−1

E
[
YXT]

≽ 0. (B1)

Therefore, if ||E
[
XXT]||∞ ≤∞ and ||E

[
YYT]||∞ ≤∞, then ||E

[
YXT]||∞ = ||E

[
XYT]T

||∞ ≤ ∞. If ||X||pow ≤ ∞ and ||Y||pow ≤

∞, then X and Y have finite second order moments and it holds that ||E
[
XXT]||∞ ≤ ∞ and ||E

[
YYT]||∞ ≤ ∞. This can be

extended for the expectation of the product of an arbitrary number of random matrices.

APPENDIX C. INDEX NOTATION

The index notation is used to write tensors and tensor operations. The content of this appendix is based on Irgens.42 Let
b ∈ C3 be a first order tensor, and A ∈ C2×3 a second order tensor

A =

[
a11 a12 a13

a21 a22 a23

]

, b =
⎡
⎢
⎢
⎢
⎣

b1

b2

b3

⎤
⎥
⎥
⎥
⎦

. (C1)
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This is in index notation

A = Amp, b = bp, (C2)

and can be generalized to higher order tensors as C ∈ Cn1×n2×···×nm . The inner product is expressed as

d = Ab =
3∑

p=1
Ampbp = Ampbp, (C3)

where the last equality is by the Einstein summation convention. This convention implies summation over repeated
indices.43 The transpose of a first order tensors is

AT = Apm. (C4)

The Kronecker delta is

𝛿mp =

{
1 m = p,
0 m ≠ p.

(C5)

The trace operation can be expressed in terms of a Kronecker delta as

Tr(A) = App = 𝛿pmAmp. (C6)

The contraction tensor empq ∈ Rn1×n2×n1n2 that maps

Lmp = empqlq, (C7)

with Lmp ∈ Cn1×n2 and lq ∈ Cn1n2 is defined as

empq =

{
1 m + n1(p − 1) = q,
0 else.

(C8)
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