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A B S T R A C T   

Weather extremes affect crop production. Remote sensing can help to detect crop damage and estimate lost yield 
due to weather extremes over large spatial extents. We propose a novel scalable method to predict in-season yield 
losses at the sub-field level and attribute these to weather extremes. To assess our method’s potential, we con-
ducted a proof-of-concept case study on winter cereal paddocks in South Australia using data from 2017 to 2022. 
To detect crop growth anomalies throughout the growing season, we aligned a two-band Enhanced Vegetation 
Index (EVI2) time series from Sentinel-2 with thermal time. The deviation between the expected and observed 
EVI2 time series was defined as the Crop Damage Index (CDI). We assessed the performance of the CDI within 
specific phenological windows to predict yield loss. Finally, by comparing instances of substantial increase in CDI 
with different extreme weather indicators, we explored which (combinations of) extreme weather events were 
likely responsible for the experienced yield reduction. We found that the use of thermal time diminished the 
temporal deviation of EVI2 time series between years, resulting in the effective construction of typical stress-free 
crop growth curves. Thermal-time-based EVI2 time series resulted in better prediction of yield reduction than 
those based on calendar dates. Yield reduction could be predicted before grain-filling (approximately two months 
before harvest) with an R2 of 0.83 for wheat and 0.91 for barley. Finally, the combined analysis of CDI curves and 
extreme weather indices allowed for timely detection of weather-related causes of crop damage, which also 
captured the spatial variations of crop damage attribution at sub-field level. The proposed framework provides a 
basis for early warning of crop damage and attributing the damage to weather extremes in near real-time, which 
should help to adopt appropriate crop protection strategies.   

1. Introduction 

Weather extremes, such as drought, frost, flooding, and heat waves, 
can severely impact agricultural production and threaten food security 
worldwide (Schmidhuber and Tubiello, 2007; Vogel et al., 2019). 
Extreme events have been projected to intensify and become more 
frequent under future climate scenarios (IPCC, 2022; Kharin et al., 2013; 
Milly et al., 2002). Global warming, shifts in atmospheric circulation, 
and altered precipitation patterns, contribute to exacerbating the 
occurrence and severity of these events (Pachauri et al., 2014; Sun et al., 
2015). To develop effective strategies for adaptation and mitigation and 
reduce the adverse effects of weather calamities on agricultural pro-
duction, it is essential to comprehend the specific responses of crops to 

extreme weather conditions (Chavez et al., 2015). 
Crop production is vulnerable to the capricious impact of weather 

extremes, with the potential for multiple stressors to occur within a 
single growing season. The adverse effects of weather extremes can be 
partially compensated through an adaptation of farmers’ practices, such 
as improved water use efficiency, modifying sowing and harvest 
schedules, and selecting cultivars that are better suited to the changing 
conditions (Lobell et al., 2008; Tao et al., 2014). However, optimum 
adaptation choices hinge upon a comprehensive understanding of the 
extent and cause of crop losses incurred. Not all stress events that occur 
within the growing season lead to crop yield loss (Leonard et al., 2014; 
Zscheischler and Seneviratne, 2017). Crop damage severity can be 
highly variable within a field, between fields, and across years, 
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emphasizing the necessity for detailed, accurate, and timely insights into 
crop responses to stressors. Understanding the cause of crop losses is 
valuable for early warning systems, as well as improving the definition 
and implementation of resilient agricultural management options to 
achieve higher or stabler crop yields. 

To implement effective early warning systems, understanding when 
stresses occur is critical, because crop susceptibility to weather extremes 
changes depending on phenological period (Sánchez et al., 2014; Satorre 
and Slafer, 1999). For example, if winter wheat flowers too late, it be-
comes susceptible to drought and heat stress, whereas early flowering 
increases its vulnerability to frost-induced damage (Zheng et al., 2012). 
Frost can strongly affect cereal production around anthesis, engendering 
sterility and the abortion of produced grains (dos Santos et al., 2022). 
However, frost during the dormant phase can confer benefits to winter 
cereals, inducing dormancy and facilitating the accumulation of sugars 
that function as antifreeze agents (Fuller et al., 2007). In parallel, heat 
stress during the vegetative stage precipitates leaf wilting and dimin-
ished photosynthesis, whereas during the reproductive stage, it can 
reduce pollen viability and disrupt pollination, leading to reduced yields 
(Stone and Nicolas, 1995; Tashiro and Wardlaw, 1990). Consequently, 
to unravel the intricate interactions between weather extremes and crop 
yield, monitoring crop growth anomalies and tracking dynamic changes 
in crop phenology are important. 

Existing research on crop damage assessment relies mostly on crop 
model simulations with emphasis on the impact of single weather ex-
tremes (Barlow et al., 2015; Eitzinger et al., 2013; X. Li et al., 2015; 
Sutka, 1994). Crop models simulate crop growth under various envi-
ronmental conditions based on the understanding of genotype, envi-
ronment, and management interactions (Barnabás et al., 2008). Despite 
improvements in crop modelling approaches, existing models still fail to 
adequately capture the impacts of weather extremes on crop growth 
(Barlow et al., 2015; Rötter et al., 2018). One limitation lies in the 
simplified response processes in different phenological stages to extreme 
weather events (Eitzinger et al., 2013; Mittler, 2006). For example, most 
crop models integrate frost damage via winterkill functions, seedling 
death, or advanced senescence, while ignoring the disproportionate 
reduction in the number of grains due to sterility and abortion (Brisson 
et al., 2003; Jones et al., 2003; Zheng et al., 2014). Moreover, existing 
research efforts predominantly assess crop damage for single extreme 
weather influences, with few focusing on the concurrent or consecutive 
impacts of multiple weather events (Asseng et al., 2011; Barnabás et al., 
2008; Challinor et al., 2005). Previous studies have shown that the 
molecular and metabolic responses of plants to compound stress events 
are unique from individual events, posing challenges for models to 
quantify these synergistic effects (Mittler, 2006; Rizhsky et al., 2004). 
Additionally, uncertainties in model parameterization and the large data 
demand for calibration purposes contribute to potential inaccuracies in 
simulated results, especially at large scales. 

Remote sensing (RS) can help in understanding yield losses, given its 
ability to monitor crop growth status for large areas with both high 
spatial and temporal resolution (Berger et al., 2022; Karthikeyan et al., 
2020; Weiss et al., 2020). Vegetation indices (VIs), derived from spectral 
reflectance measurements, are frequently used to evaluate changes in 
vegetation abundance and vigour. Multiple studies have documented 
the close relationship between VIs and crop yields at different spatial 
scales (Bolton and Friedl, 2013; Johnson, 2014; Kastens et al., 2005; Liu 
et al., 2018; Shanahan et al., 2001; Wang et al., 2020b; Xiao et al., 2024). 
Typically, temporal profiles of VIs are compared between the current 
year (under stress) against historical years (representing normal condi-
tions) (Funk and Budde, 2009; Unganai and Kogan, 1998; Wang et al., 
2020a). The resulting anomaly represents a relative vegetation condi-
tion, providing a quantitative measure of the damage severity. Given 
that weather patterns also affect the timing of crop phenological stages, 
substantial spatial and interannual variability occurs in crop-specific VI 
time series, irrespective of the occurrence of extreme weather events. 
This natural variability makes it challenging to define a reference 

temporal VI profile for a crop that does not experience stress conditions 
throughout the growing season. Consequently, methods are needed that 
account for the natural weather variability to disentangle which crop 
damage-related VI reductions are caused by extreme events. 

Despite existing efforts on crop damage assessment, the potential of 
RS to assist in timely attribution of crop damage to weather extremes 
remains under-explored. Previous studies on attribution analysis pri-
marily utilize data-driven approaches employing phenologically and 
spatially dynamic extreme weather indicators (Lüttger and Feike, 2018; 
Riedesel et al., 2023; Schmitt et al., 2022). These approaches explain 
yield losses by establishing statistical relationships between extreme 
weather indicators and end-of-season yield losses. However, due to 
limitations such as the availability of high-resolution weather data and 
extensive phenology and yield information required, this method is 
mainly restricted to post-season assessment at the regional level (Nóia, 
2023; Vogel et al., 2019; Zhao et al., 2022). In contrast, high resolution 
(≤ 10 m and 5 days interval) RS data such as Sentinel-2 time series 
presents an opportunity for timely detection of crop damage at sub-field 
level. High temporal and spatial resolution RS imagery, weather data 
and observed yields, allow us to attribute crop damage to specific 
extreme weather events by analysing the correlation between the 
occurrence of observed crop anomalies and stressors. Overall, we still 
lack a precise understanding of how weather extremes affect crop pro-
duction, and to what extent the timing of such extremes influences yield 
reduction. 

In this study, we propose a novel and scalable method incorporating 
both Sentinel-2 time series and meteorological data to predict in-season 
yield reduction at the sub-field level and attribute the crop damage to 
different weather extremes. We aim to address the following three 
research questions:  

• How can a reference VI profile be constructed that represents a 
stress-free crop growth curve considering the spatial and temporal 
variability of the environmental conditions?  

• How accurately and how early in the season can the RS time series 
predict within-field reduction of crop yield by capturing stress- 
induced changes in crop development?  

• Can the weather-related causes of crop damage be inferred at sub- 
field level within a useful time-frame for growers by combining RS 
time series with meteorological data? 

2. Materials 

2.1. Study area 

Winter cereals, including winter wheat and barley, account for 58% 
and 22% of the total national grain production in Australia, respectively. 
We focused on crop paddocks (a uniform description of fenced crop 
fields in Australia) cultivated with wheat and barley in an area sur-
rounding Jamestown in the Mid North region of South Australia (Fig. 1), 
which is a highly-productive agricultural region and part of the 
Australian wheatbelt. It has a Mediterranean climate with cold and wet 
winter (June to August) during which winter cereals are grown, and hot 
and dry summer (December to February) during which land is left 
fallow. Wheat and barley are usually sown in April-May (austral 
autumn) and mature at the end of spring (November). Fig. 2 shows the 
different phenological stages of winter cereals in Australia based on the 
Zadoks decimal growth scale (Stapper, 2007). The Mid North region 
experiences significant fluctuation in temperature and rainfall within 
and across growing seasons (as shown in Fig. 3), resulting in substantial 
variation in crop yields (Asseng et al., 2011). Extreme weather (drought, 
frost, and heat) is known to regularly cause crop stress in the region, but 
in recent years stresses have become more frequent and severe (Borchers 
Arriagada et al., 2020; Collins et al., 2000). 
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2.2. Datasets 

2.2.1. Sentinel-2 data and preprocessing 
Temporal profiles of spectral reflectance were extracted from the 

Sentinel-2 images for six years (2017–2022) for the March to December 
growing season. ESA’s Level-2A Bottom-Of-Atmosphere (BOA) products 
were only available in Google Earth Engine (GEE) Catalogue from 
December 2018 onwards and consequently did not match the full 
timeframe. 175 Level-2A (L2A) images for tile 54HTJ were obtained 
from the GEE collection “COPERNICUS/S2_SR” by filtering out images 
with cloud coverage above 75%. For dates prior to December 2018, we 
complemented this with 75 Level-1C (L1C) Top-Of-Atmosphere (TOA) 
images that were downloaded from the Copernicus Open Access Hub. 
The Sen2Cor processor (version 2.10) was applied for atmospheric 

correction of each scene to produce equivalent L2A products. For all 
2017–2022 images, the Scene Classification Layer (SCL) was applied to 
remove pixels classified as: no data (0), saturated or defective (1), dark 
area (2), cloud shadow (3), cloud medium (8) and high (9) probability 
with a 20 m buffer to further reduce the cloud and snow effects. We 
masked out bright anomalies (e.g., undetected clouds and smoke) 
following a temporal filter approach adapted from the MAJA cloud 
detection algorithm (Bolton et al., 2020; Hagolle et al., 2017). This 
approach captures steep increases in the blue band caused by bright 
surfaces which could mean missed clouds and smoke. These masked 
images were then clipped to the study area extent. 

2.2.2. Cropland data 
Local growers provided annual cropland information from 2017 to 

Fig. 1. Overview of the study area and crop paddocks (black polygons) for which cropland information was provided by local growers for 2017–2022, with an 
example of winter wheat and barley paddocks in 2021. Fig. S1 in the supplementary materials shows the crop maps for the other years. 

Fig. 2. Growth stages of winter cereals (wheat and barley) in Australia based on the Zadoks decimal growth scale. 
Adapted from J. Hunt et al., 2018. 
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2022, including paddock boundaries (depicted as black polygons in 
Fig. 1) and crop metrics such as type, rotation, and yield data. 

i) Crop paddocks: We focused on the paddocks where wheat and 
barley were cultivated. In these winter cereal paddocks, growers 
generally use crop rotations such as oil seeds, pulse crops, improved 
pasture and fallow, or livestock grazing to reduce diseases and weeds 
and maintain soil health. Our dataset contained 67 wheat paddock years 
and 68 barley paddock years with sizes ranging from 2 to 80 ha for 
2017–2022, where a paddock year represents data obtained for a single 
paddock for a single year and crop type. 

ii) Crop yield data: we obtained 24 yield maps at 10 m resolution for 
wheat (14 paddock years) and barley (10 paddock years). The yield 
maps were created from on-the-go data collected from combine har-
vesters equipped with yield-monitoring sensors. Subsequently, on-the- 
go yield data was calibrated and mapped following the well- 
established yield mapping protocol (Bramley and Jensen, 2014; Taylor 
et al., 2007) as implemented in the Precision Agriculture Tools (PAT) 
plugin (Ratcliff et al., 2020) to produce 5 m resolution yield and stan-
dard error maps. The yield maps were then reprojected and resampled to 
10 m resolution and aligned with the Sentinel-2 image pixels. 

iii) Crop calendar: Crop calendar information was collected from 
grower interviews. From this information, we used sowing dates which 
were available for five wheat and six barley paddock years. 

2.2.3. Meteorological data 
Meteorological data were acquired from the SILO (Scientific Infor-

mation for Land Owners) climate database (https://www.longpaddock. 
qld.gov.au/silo), which provides gridded weather maps with daily 
temporal resolution and 0.05 degrees (~5 km) spatial resolution. We 
used the daily precipitation, minimum, and maximum temperature from 
2017 to 2022 from the 12 grid cells that covered the study area. The 
gridded data were created by spatially interpolating all available 
weather stations from the Bureau of Meteorology and other providers 
using ordinary kriging for rainfall and a thin plate smoothing spline for 
temperature data (Jeffrey et al., 2001). In the study area, despite a 
modest spatial variation in daily maximum and minimum temperature 
and precipitation with an average Standard Deviation (SD) of 0.29 ◦C, 
0.18 ◦C, and 0.63 mm, a substantial temporal disparity was observed 
(Fig. S2), revealing a notable average SD of 4.14 ◦C, 3.21 ◦C, and 2.39 
mm between successive years in 2017–2022. 

2.2.4. Auxiliary data 
Annual crop and pasture reports (CPR) (https://www.pir.sa.gov.au) 

published by the Government of South Australia provide estimates of the 
area and production of each crop and summarize the weather conditions 
and crop performance at the district level. The CPR reports of Spring 

Crop Performance in the Upper North district together with expert 
knowledge acquired from local agronomists were applied to provide 
evidence information about the actual external stresses that have been 
reported to cause yield reduction of winter cereals in each growing 
season. 

3. Methodology 

We developed the Crop Damage Index (CDI) based on the two-band 
Enhanced Vegetation Index (EVI2) time series and weather data to 
assess crop status throughout the growing season. The CDI is an anomaly 
measure that assesses the difference between the EVI2 time series 
derived from Sentinel-2 at any given time during the season and a pre-
defined reference EVI2 time series. Considering that climatic conditions 
and management practices differed between locations and years, a sin-
gle reference curve derived from the historical time series is not directly 
comparable with the target curve. Thus, we applied two methods to 
account for these various factors: i) we utilized accumulated growing 
degree days (AGDD) to define a thermal time to replace the calendar 
dates; ii) we used the shape model fitting (SMF) method to adjust the 
reference curve and match the target curve. Subsequently, we used re-
gressions between the CDI, for different moments in the season, against 
measured yield (which we transformed into yield reduction). To find the 
optimal way of calculating CDI, we compared the performance of date 
and AGDD-based CDI curve, with or without the SMF method on yield 
reduction assessment. Extreme weather impacts on crops were modelled 
as moments during the season when CDI increases; we linked such 
moments to potential stress events that we derived from weather data. 
The diagram in Fig. 4 presents the workflow that we followed and Steps 
1 to 4 are further described in Section 3.1 to 3.4, respectively. 

3.1. EVI2 time series based on calendar and thermal time 

3.1.1. Generating date-based EVI2 time series 
EVI2 is designed to enhance the vegetation signal by de-coupling the 

vegetation from the canopy background signal and reducing atmo-
spheric influences (Huete et al., 1994; Jiang et al., 2008). It is more 
responsive than the most commonly used normalized difference vege-
tation index (NDVI) to canopy structural variations and in reducing 
saturation effects of densely vegetated surfaces. Furthermore, it im-
proves the consistency between different sensors compared with EVI 
because the measured blue band reflection may vary greatly across 
various sensors when atmospheric influences are significant; this 
enhanced consistency may facilitate applying our methods to alternative 
(or combined) satellite datasets, especially the sensor without blue band. 
We calculated EVI2 from the pre-processed Sentinel-2 images following 

Fig. 3. Weekly (a) maximum temperature (maxT), minimum temperature (minT), and (b) precipitation (P) acquired from the SILO weather database for 2017–2022. 
The black curves represent the average value (ave) for the last 10 years (2013–2022). The colours refer to data corresponding to different years from 2017 to 2022. 
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Eq. (1) for each pixel within the paddock polygons (Jiang et al., 2008): 

EVI2 = 2.5 • (NIR − Red)/(NIR+2.4 • Red+1) (1)  

where Red and NIR refer to the reflectance in the 10 m Sentinel-2 images 
for spectral bands 4 and 8, respectively. We applied a 20 m inner buffer 
to remove possible interference with reflection from other land covers 
around the paddock edges. For each year (i.e., 1 March to 31 December, 
covering the growing season of wheat and barley), we produced an 
image stack in which every layer represents a single date of observation. 
The EVI2 time series were extracted from image stacks for each pixel and 
resampled to 5-day intervals with linear interpolation. 

3.1.2. Constructing thermal-time-based EVI2 time series 
Accumulated heat over the growing season is an important factor 

that affects the crop growth rate and phenological development (Wang, 
1960). Heat accumulation is often expressed using the AGDD concept, 
defined as the accumulation of daily average temperature since the date 
of sowing or leaf emergence. It has been widely accepted as a key driver 
of plant phenology and used in crop models to define different crop 
growth stages from leaf emergence to senescence or harvest (Bonhomme 
et al., 1994; Lu et al., 2001). It also shows potential in providing better 
consistency and coherence of temporal VI trajectories in different loca-
tions or years when transforming the time scale of RS-derived time series 
to AGDD (Duveiller et al., 2013). We applied AGDD to replace the time 
scale in order to construct EVI2 time series that depict crop growth 

Fig. 4. Flowchart of the analysis. Numbers in dark blue (n=…) refer to number of in-situ samples (or directly derived from these samples) for wheat and barley 
paddock years combined. Abbreviations: EVI2 − two-band enhanced vegetation index, DOY − day of year, AGDD − accumulated growing degree days, CDI − crop 
damage index. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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curves in relation to “thermal time”. 
Three sequential steps were carried out to build the time series using 

thermal time:  

i. Estimating the onset date of the crop growing season. The onset date can 
be assessed with VI time series and is a proxy for the date of sowing 
or leaf emergence. To select the most effective way for retrieving the 
onset date of the growing season, we tested three commonly used 
change detection approaches, i.e., the moving average, threshold- 
based, and largest derivative method. The analysis and comparison 
of results are presented in supplementary materials Section S3. 
Among the three algorithms, the threshold-based method performed 
best and was used for onset date detection. The threshold is applied 
following the fitting of a smooth function to the EVI2 time series. For 
this purpose, the double logistic function was used, as it translates 
into a monotonic description of green-up and senescence. In this 
way, we could use a small threshold value to find the moment of 
initial green-up, which is expected to happen shortly after sowing. 
Since the EVI2 has a bias towards lower values due to undetected 
atmospheric effects, the double logistic function was applied to the 
upper envelope of the data following an iterative adaption of weights 
as proposed by Chen et al., 2004. Following the function fit, the onset 
date is retrieved as the date when the fitted curve value crosses a 
specific threshold (i.e., a percentage of the amplitude). The threshold 
was set as 0.5% of the ascending curve, to make it as close as possible 
to the initial green-up that is close to the sowing date.  

ii. Calculating AGDD. AGDD is calculated by accumulating the growing 
degree days (GDD) starting from the onset date detected in the pre-
vious step until the end of growing season in December (Eq.2). GDD 
is estimated as the average of the daily maximum (Tmax) and mini-
mum temperatures (Tmin) minus a base temperature (Tbase) 
(McMaster & Wilhelm, 1997) (Eq.3). To mitigate the influence of 
extreme temperature, Tbase (equal to 0◦C) and an upper temperature 
limit Tcutoff (equal to 25 ◦C) were applied for both wheat and barley 
to define the temperature range within which plant growth is 
considered to progress (Bauer et al., 1990; Cao and Moss, 1989; 
McMaster and Smika, 1988; McMaster and Wilhelm, 1997): 

AGDD =
∑n

i=1
GDD (2)  

GDD = (Tmax + Tmin)/2 − Tbase (3)  

where if (Tmax + Tmin)/2 <Tbase, then (Tmax + Tmin)/2 = Tbase; 
if (Tmax + Tmin)/2 >Tcutoff , then (Tmax + Tmin)/2 = Tcutoff  

iii. Building thermal-time-based EVI2 time series. The date-based time 
series were then converted to thermal time by replacing day-of- 
year (DOY) with AGDD as the temporal unit of the EVI2 time 
series. 

3.2. Derivation of the CDI 

3.2.1. Establishing a reference EVI2 curve 
To quantitatively analyse the EVI2 response to weather extremes, we 

first constructed two reference curves, one for wheat and one for barley, 
which can represent the typical growth cycle of these crops under 
normal, stress-free conditions. As we lacked ground data on whether a 
specific location experienced no-stress conditions during a particular 
growing season, we adopted an alternative approach to establish the 
reference curve. The main assumption is that higher EVI2 values 
correspond to “no-stress” conditions, when comparing different wheat 
or barley paddocks in different years. First, EVI2 curves for each pixel 
within the crop paddocks were extracted and smoothed by applying the 
Savitzky-Golay (SG) filter with a polynomial order of 2 and a window 
size of 11 observations iteratively to the upper envelope. To extract the 

reference curve that represents no-stress conditions, we determined the 
80th to 90th percentile values of the EVI2 for each calendar date, based 
on all pixels for which we had observations (i.e., all pixels in the 67 
wheat and 68 barley paddock years), and then calculated the average 
value between the 80th and 90th percentile in each date and AGDD unit 
(Fig. 5a). The interval intends to include most of the pixels from healthy 
and well-maintained crop areas, mask out low EVI2 values when crops 
are likely under stress and extremely high EVI2 values that could 
represent outliers, possibly related to high weed presence. To establish 
an interval range that can lead to appropriate reference curves, we 
performed a sensitivity analysis by slightly adapting the percentile 
values. Besides the average of the 80th-90th percentile values, we also 
tested the average of 85th-95th percentile, 75th-95th percentile, and 85th- 
90th percentile. As the standard deviations between the produced 
reference curves were small (range by 0.03–0.08), we limited the 
analysis to using the average EVI2 values of 80th-90th percentile interval. 

3.2.2. Crop phenometrics extraction 
Using the raw EVI2 time series for all pixels within paddocks (i.e., the 

observed curves), penalized cubic splines were applied to fit the inter-
polated date-based and thermal-time-based time series to retrieve met-
rics that characterize the expression of a phenological period (i.e., 
phenometric). In contrast to the double logistic function used for glob-
ally smoothing curves to detect onset dates, this method captures the in- 
season anomalies effectively while offering smoother fits than the SG 
filter by utilizing piecewise polynomial functions, thus enhancing flex-
ibility and adaptability for modelling complex phenological transitions. 
Because noise and data gaps in time series can negatively influence the 
correct reconstruction of interpolated daily values (and therefore of the 
estimated phenometrics), we incorporated data from additional years 
outside of the target year to reduce the impact of both sources of un-
certainty (Bolton et al., 2020). First, a cubic spline was fitted to the EVI2 
time series for each pixel. Then we calculated the weights following Eq.4 
based on the Euclidean distance between the fitted time series for the 
target year and each of the other years. 

Wy = MaxW*
(

1 −
Dy

Dmax

)

where Dy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (
VIti − VIyi

)2
√

If Wy < 0; then Wy = 0

(4)  

where Dy is the Euclidean distance between the fitted EVI2 time series of 
target year t and each of the other years y, and Dmax is the maximum 
Euclidean distance considered. MaxW refers to the maximum weight for 
the target year and was set as 0.1 following Bolton et al., 2020. The 
weights were assigned to each of the other years to fit the spline for the 
target year. 

Multiple thresholds were applied to the fitted curves to retrieve 
phenometrics from EVI2 time series. In total, 11 phenometrics were 
extracted, named Start of Season (SOS) and End of Season (EOS): SOS10, 
SOS30, SOS50, SOS70, SOS90, EOS10, EOS30, ESO50, ESO70, EOS90, 
and PS (Peak Season), which refer to the date when EVI2 first reaches 
10%, 30%, 50%, and 90% of the difference between the maximum and 
minimum EVI2 in green-up (upward) phase and senescence (downward) 
phase, as well as the date of maximum EVI2 value (Fig. 5b). The 
retrieved phenometrics were extracted to capture the dynamic changes 
of phenological periods in relation to crop damage for constructing the 
CDI curve and better predicting yield reduction. 

3.2.3. Shape model fitting 
The established reference curve may not perfectly depict the stress- 

free growth trajectory of the crop in the target paddock or pixel due to 
variations in climatic conditions and agricultural practices. To address 
this, we employed the SMF method to adjust the reference curve (as 
shown in Fig. 5c), aligning it more closely with the EVI2 time series 
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observed in the pixel during the early growth phase, when plants are less 
susceptible to external pressures − specifically, the early vegetative 
stage between onset date and SOS30 (Sakamoto, 2018; Sakamoto et al., 
2010). The details of SMF method and its implementation can be found 
in Section S4 of the supplementary materials. The resulting transformed 
Shape Model (SM) for each wheat and barley pixel was deemed a 
reasonable approximation of the typical “no-stress” growth curve 
anticipated at that specific location. 

3.2.4. Creating the CDI curve 
Fig. 5d displays the SG-filtered EVI2 curve of the target pixel and the 

transformed reference curve obtained using the SMF method. Extreme 
weather can affect crop development, which will be manifested as 
reduced photosynthesis, wilted leaves, sterility, and possibly plant 
death. If the crop is affected, this will then result in slower growing or 
declined EVI2 after the stress occurs. The CDI curve is calculated as the 
difference between the transformed reference curve and the observed 
curve within the growing season (Fig. 5d). Positive differences were 
assumed to relate to crop damage. Negative CDI values throughout the 
season were set to zero. Accordingly, the area under the CDI curve 
provides a measure of accumulated crop damage throughout the season. 

3.3. Prediction and validation of yield reduction 

3.3.1. Preparation of input variables 
To conduct the sub-field analysis, we divided each paddock-year that 

had available yield map data (n = 24, 14 for wheat and 10 for barley) 
into different segments. This division was based on the farming-by-yield 
approach that is used for delineating homogenous management zones in 

precision agriculture (Basso et al., 2007; Lark, 1998). This approach uses 
yield as a proxy for soil variables, terrain differences, and small-scale 
weather variability to divide the paddock into zones that have 
different productivity levels (Maestrini and Basso, 2021). The identifi-
cation of spatially coherent regions was carried out by applying a 
quantile-based clustering method that classified each paddock year into 
seven segments based on the yield maps. Accordingly, for each growing 
season, seven segments were derived per paddock, resulting in a total of 
98 segments for wheat and 70 segments for barley for subsequent 
regression analysis. 

With the retrieved phenometrics (Section 3.2.2), we calculated − for 
each pixel − the CDI value corresponding to each of the 11 pheno-
metrics, as well as the areas under the CDI curve (cumCDI) between each 
pair of adjacent phenometrics. Calculating cumCDI solely for neigh-
bouring phenometrics, rather than all possible phenometric combina-
tions, aims to diminish variable correlation in regression analysis and 
intends to capture the impact of stressors on individual short pheno-
logical periods. In total, we produced 21 input variables for the 
regression model, including 11 CDI variables and 10 cumCDI variables. 
These pixel-level values were then spatially aggregated to the paddock 
segments by taking the average value of the pixels contained in that 
segment. 

3.3.2. Single variable regression model 
To assess the ability of CDI and cumCDI at different phenological 

stages to predict yield reduction, we first conducted a single variable 
regression analysis to assess if a single CDI (linked to the timing of one 
phenometric) or cumCDI can explain yield reduction throughout the 
study area and analysed years. We applied linear and quadratic 

Fig. 5. Representation of the CDI curve derivation. The steps include: (a) establish the reference curve based on historical data, (b) extract phenometrics from the 
observed curve, (c) fit the reference curve (i.e., shape model) to the observed curve at vegetative stage, and (d) construct CDI curve by calculating the differences 
between scaled shape model and observed curve. Abbreviations: SOS − start of season, EOS − end of season, PS − peak season. The numbers behind refer to the 
percentage of the difference between the maximum and minimum EVI2 in upward and downward phases. 

K. Duan et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 213 (2024) 33–52

40

regression models to capture both linear and nonlinear relationships. We 
utilized the 21 phenological metrics derived in Section 3.3.1 as the input 
variables. Yield reduction was defined as the decrease in crop yield 
compared to the expected or potential yield under optimal growing 
conditions. The expected stress-free yield was calculated as the average 
yield value of pixels which have the 80–90% highest yield in all avail-
able yield maps of wheat or barley paddocks (following the same logic as 
the reference curve construction in Section 3.2.1). To avoid negative 
yield loss, we set the yield reduction as zero for segments which actual 
yield above the stress-free yield. For each model, we tested the perfor-
mance of date-based and AGDD-based EVI2 time series. The coefficient 
of determination (R2) and normalized root mean squared error (NRMSE) 
were used as test measures to assess the model performance. 

3.3.3. Covariate selection 
The previous analysis aimed to find the single most sensitive moment 

or period for yield reduction estimation, while a combination of CDI for 
the different phenological stages may potentially predict yield reduction 
better. Considering the possible multicollinearity among the variables, 
we used the Pearson correlation coefficient (r) and random forest (RF) 
feature importance ranking to remove the redundant and irrelevant 
variables prior to regression analysis. The removal of redundant vari-
ables aims to improve model efficiency and reduce the risk of 
overfitting. 

Firstly, we calculated Pearson’s r between each pair of the CDI and 
cumCDI variables to assess possible collinearity. Values of r above 0.8 
with statistical significance (p ≤ 0.01) suggest collinearity. The feature 
importance ranking indicates the relative contribution of each variable 
to the prediction of yield reduction. We used the RF method considering 
its ability in managing high-dimensional input variables and its 
robustness to over-fitting compared with other feature selection algo-
rithms (Pal and Foody, 2010). The final importance of each variable is 
determined by the permutation importance, which is calculated based 
on a metric that captures the increase in mean square error (MSE) from 
out-of-sample predictions after randomly permuting the values of the 
respective predictor (Goldstein et al., 2011). We utilized an ensemble of 
500 decision trees with a maximum depth of 10 levels for the RF re-
gressor to balance model complexity and predictive accuracy. The 
number of variables considered at each split was set to the square root of 
the total number of input features as commonly recommended, ensuring 
diversity among the trees (Belgiu and Drăguţ, 2016). The RF model was 
repeated 50 times. We divided the dataset (segment-based) into training 
and testing sets, with a 70:30 ratio. The training data was used to build 
the RF model, while the test set served for cross-validation. Eventually, 
the feature importance was calculated as an average of the 50 runs using 
the Scikit-Learn package in Python 3.7. 

According to the ranking order of importance scores, the perfor-
mance of different numbers of input features for predicting yield 
reduction was assessed. The retained number of features for further 
analysis was then selected as the lowest number for which the R2 curve 
saturated (i.e., only showed a negligible increase). In this case, the 
threshold is set to stop the variable number selection at which the in-
crease of R2 from n to n+1 is less than 5%. Among the selected variables 
with high importance scores, we identified a subset of non-correlated 
CDI and cumCDI variables by removing one variable from the pair 
which shows a high correlation (r ≥ 0.8) with statistical significance (p 
≤ 0.01). The removed variables corresponded to the later phenological 
stage to facilitate early prediction of yield reduction with the retained 
variables. 

3.3.4. Multivariate regression model 
Multivariate regression analysis was performed with the RF model 

using the retained variables from Section 3.3.3 as input. RF is an 
ensemble learning method that combines multiple decision trees to 
provide robust predictions (Breiman, 2001). It has been used effectively 
for global and regional scale crop yield predictions (Jeong et al., 2016). 

The parameter settings of RF regressor model and the cross-validation 
assessment are the same as described in Section 3.3.2. To select the 
optimal CDI construction method, we compared the performance of: i) 
DOY-EVI2 time series without SMF; ii) AGDD-EVI2 time series without 
SMF; iii) DOY-EVI2 time series with SMF; and iv) AGDD-EVI2 time series 
with SMF on yield reduction prediction. 

Besides, we also evaluated the robustness of the proposed method to 
the choice of VI and statistical learning method by comparing 1) the 
EVI2 time series against three other VIs, i.e., normalized difference 
vegetation index (NDVI) (Kriegler et al., 1969), normalized difference 
water index (NDWI) (Gao, 1996), and normalized difference red edge 
index (NDRE) (Maccioni et al., 2001), each possessing distinct spectral 
characteristics relevant to crop health status; 2) the RF method against 
two other widely used regression models, including support vector 
regression and multiple linear regression, which capture relationships 
between variables differently than RF (Van Klompenburg et al., 2020). 

3.4. Attribution of yield reduction to extreme weather 

3.4.1. Extreme weather index calculation 
To attribute yield reduction to extreme weather causes, we first 

quantified the anomalies of precipitation and temperature. Given the 
rising frequency and intensity of extreme weather events, we utilized a 
decade’s record of weather data (2013–2022) as a reference period to 
depict recent average conditions and identify weather anomalies. Con-
trasted with the commonly used 30 years period, the ten-year window 
better represents current occurrence of extremes allowing to more 
effectively inform adaptive management strategies. Marginal probabil-
ity distributions have been commonly used to derive standardized 
anomaly indicators for meteorological variables, such as the Standard-
ized Precipitation Index (SPI) (McKee et al., 1993) and the Standardized 
Temperature Index (STI) (Zscheischler et al., 2014). These anomaly in-
dicators enable comparisons across different locations and time periods. 

While SPI and STI are typically computed on a monthly basis, we 
used a weekly time scale for timely detection of short-term extreme 
weather events like heavy rainfall, heat waves, and frost. We first 
rescaled the gridded SILO weather data from daily to weekly for each 
year. Then, we fitted the weekly weather data to a Gamma distribution 
for each grid cell separately and subsequently standardized them by 
normal quantile transformation (Edwards and McKee, 1997). Since we 
are interested in the effects of extreme temperatures such as heat and 
frost, the STI was modified according to the Heat and Cold Wave Index 
(HCWI) to capture the extreme high and low temperatures. Specifically, 
we calculated the STI for both daily maximum (Tmax) and minimum 
(Tmin) temperatures, named STImax and STImin. To characterize the heat 
and cold waves, we replaced the threshold values from mean tempera-
ture to the 90th percentile of Tmax and 10th percentile of Tmin, respec-
tively. The SPI, STImax, and STImin were calculated as: 

SPI = (Pi − Pmean)/Pstd (6)  

STImax =
(
Tmaxi − TmaxQ90

)/
Tmaxstd (7)  

STImin = (Tmini − TminQ10 )/Tminstd (8)  

where Pi refers to the accumulative precipitation at week i, Pmean and Pstd 
refer to the average and standard deviation of precipitation for week i in 
the last ten years (2013–2022). Tmaxi and Tmini represent the average of 
daily maximum and minimum temperature for week i. TmaxQ90 , TminQ10 , 
Tmaxstd and Tminstd were calculated as the 10 years’ 90th percentile 
maximum temperature and 10th percentile minimum temperature for 
week i and their standard deviation. For the temperature anomalies, we 
set as specific rules that: 1) only if the Tmini goes below 0 ◦C (indicating 
frost), the calculated STImin can be negative; and 2) only if the Tmaxi 
exceeds 37 ◦C (signalling a heat event that is harmful to plant growth), 
the STImax can be positive. 
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According to the SPI classification scheme used in the Copernicus 
European Drought Observatory (https://edo.jrc.ec.europa.eu) and the 
definition of STI, we defined four extreme weather indices (Eq.9–12), 
named the water deficit condition index (WDCI), the water surplus 
condition index (WSCI), the heat condition index (HCI), and the cold 
condition index (CCI). Increasingly severe rainfall deficits (i.e., meteo-
rological droughts) are indicated as SPI decreases below –1.0, while 
increasingly severe excess rainfall is indicated as SPI increases above 
1.0. The value of each index represents the intensity of potential weather 
extremes. 

WDCI =
{

abs(SPI) − 1, if SPI < − 1
0, if SPI ≥ − 1 (9)  

WSCI =
{

SPI − 1, if SPI > 1
0, if SPI ≤ 1 (10)  

HCI =
{

STImax, if STImax > 0
0, if STImax ≤ 0 (11)  

CCI =
{

abs(STImin), if STImin < 0
0, if STImin ≥ 0 (12)  

3.4.2. Stressors labelling 
To understand which extreme events cause crop damage and to what 

extent, we analysed the changing velocity of the CDI curve and 
compared it with the four extreme weather indices (Fig. 6). We first 
calculated the first derivative of SG-smoothed CDI curve (CDI_1D) for 
each pixel. Positive derivatives indicate a period with increasing crop 
damage, with its peak indicating the most pronounced decline in 
vegetation health status. We consequently detected all peaks on the 
CDI_1D curve where values exceeded 0.002. The threshold was set 
empirically by comparing the curves and the occurrence of stressors. We 
also considered a second smaller peak with a CDI_1D value smaller than 
0.002 but only if it occurred following the largest peak. In this way, we 
could capture compound effects of multiple stressors that happen 
intermittently during the growing season. Correspondingly, the stress 
events (when the extreme weather indices have a positive value) that 
happened within three weeks before the identified peaks were consid-
ered as the potential causes of crop damage. We applied the three-week 
window because it strikes a balance between sensitivity of short-term 
changes and relevance to crop growth dynamics, considering the vari-
ability in crop response time to extreme weather events. The three-week 

window provides a timeframe that is sufficiently long to detect potential 
events influencing crop growth variation while excluding irrelevant 
events that occurred one month or earlier. 

4. Results 

4.1. Comparison of EVI2 curves from calendar and thermal time 

The AGDD-based curves show a smaller deviation between the 
different years as compared to the DOY-based curves, especially at the 
early vegetative crop growth stage (Fig. 7). Wheat or barley planted in 
different years have similar thermal time requirements for germination 
and tillering. Afterwards, crops grow at different rates during the 
reproductive phase (stem elongation to flowering). This may be attrib-
uted to the sensitivity of crop growth to various weather extremes 
during the reproductive phase. 

4.2. Prediction of yield reduction 

4.2.1. Single variable regression 
The quadratic model shows relatively higher R2 and NRMSE between 

yield reduction and all individual CDI and cumCDI variables than the 
linear model for both wheat and barley (Fig. 8). Among the variables 
with strong correlation, AGDD-based variables perform better than 
DOY-based variables. We observed a temporal fluctuating R2 and 
NRMSE among variables in different phenological stages for wheat, 
among which CDI in SOS90 (R2 = 0.41, NRMSE = 0.14) and cumCDI 
between EOS90 and EOS70 (R2 = 0.4, NRMSE = 0.15) show relatively 
higher correlations compared with other predictors. In contrast, barley 
shows a very high correlation during peak season, i.e., CDI in EOS90 (R2 

= 0. 69, NRMSE = 0.11) and cumCDI between PS and EOS90 (R2 = 0.88, 
NRMSE = 0.08). The different correlations of wheat and barley may 
relate to their different responses to weather extremes. Wheat is sensi-
tive to various extreme-weather-related stresses throughout the growing 
season, which can result in crop damage and yield variability occurring 
at different phenological stages (Cossani et al., 2009). Barley is more 
tolerant to stress than wheat and the causes of barley yield variability 
are often more concentrated and pronounced during specific growth 
stages, particularly during the peak growing season (Cossani et al., 
2007; Dawson et al., 2015; Ryan et al., 2008). 

4.2.2. Covariate selection 
The correlation between input variables is higher when they are 

Fig. 6. Schematic illustrating the fundamental principle employed for detecting weather-related factors attributing to crop damage. The blue bars indicate the 
detected crop damage causes (i.e., extreme weather events which happened within three weeks before the identified peaks in CDI_1D curve). Abbreviations: CDI_1D 
− first derivative of CDI curve, HCI − heat condition index, CCI − cold condition index, WDCI − water deficit condition index, WSCI − water surplus condition index. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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obtained from the DOY-based, as compared to the AGDD-based time 
series, for both wheat and barley. Most CDI variables are highly corre-
lated with each other, while the cumCDI variables show relatively 
weaker correlations between different phenoperiods (Fig. 9). The 
cumCDI variables derived from DOY-based time series for the mid- 
season (SOS70-PS for wheat and SOS90-EOS90 for barley) exhibit 
high correlation with other variables, which are reduced for cumCDI 
derived from the AGDD-based time series. 

Fig. 10a and Fig. 10b display the RF feature importance score of each 
variable derived from AGDD-EVI2 time series for wheat and barley yield 
reduction prediction, averaged over the 50 model runs (the results for 
AGDD with SMF and DOY with or without SMF are in Fig. S6). The most 
important variable for explaining wheat yield reduction is cumCDI for 
period EOS90-EOS70. The cumCDI between PS-EOS90 is the most 
important variable for predicting barley yield reduction. To reduce the 
potential collinearity among input variables, we marked the variables 
with high correlation (r ≥ 0.8, Fig. 9) as black crosses in Fig. 10a and 
Fig. 10b following the rule mentioned in Section 3.3.3. 

Fig. 10c and Fig. 10d present the influence of the number of variables 
on R2, when adding predictors based on their average ranking result. We 
assessed the R2 for the DOY- and AGDD-based time series, and for both 
also with and without SM transformation. The R2 increased with the 
number of input variables and tended to stabilize for larger numbers of 
input variables. By removing the variables with high correlation 
(marked with black crosses in Fig. 10a-b and Fig. S6) from the selected 
optimal number of variables, we used the retained variables as the 
optimal set of predictors for further analysis (shown as green bars in 
Fig. 10a-b and Fig. S6). Specifically, the final selected variables include: 
a) for wheat, cumCDI variables between SOS50 and EOS70 for all four 
CDI curve construction methods, b) for barley, cumCDI between SOS50 
and EOS70 derived from DOY-based methods and cumCDI between 
SOS90 and EOS70 derived from AGDD-based methods for barley. 

4.2.3. Multivariate regression 
We tested the yield reduction prediction ability of RF using the 

selected variables (Section 4.2.2) based on the DOY versus AGDD time 
series, with and without SMF. Fig. 11 shows the corresponding scat-
terplots between measured and RF-predicted yield reduction for wheat 
and barley over a validation set. The best performance in estimating 
yield reduction (R2 = 0.83 and NRMSE = 0.09 for wheat and R2 = 0.91 
and NRMSE = 0.10 for barley) was obtained with the AGDD-EVI2 time 
series without applying SMF. For both wheat and barley, AGDD 

substantially improves the prediction accuracy compared with the DOY- 
based method, whereas the combination of AGDD and SMF method does 
not perform better than solely using AGDD. The SMF method applied for 
DOY curves improves the prediction performance, but not as much as 
AGDD transformation. When comparing the distribution of RF-predicted 
yield reduction against measured yield reduction (Fig. 12), the model 
tended to overpredict small yield reduction and underpredict large yield 
reduction using all four CDI construction methods, especially for wheat. 
This discrepancy may stem from a combination of factors, such as dif-
ferences in crop sensitivity and resilience to stress between wheat and 
barley, farmers’ remedial interventions for unhealthy crops, and un-
certainties in reference curve construction and CDI calculation. 

The comparison results of different VIs, CDI curve construction 
methods, and regression models are shown in Fig. S7 and Fig. S8. Among 
the four VIs, EVI2 performed better than the other three VIs tested. The 
RF model consistently outperformed support vector regression and 
multiple linear regression, yielding higher R2 values in most instances. 
The prediction accuracy differed substantially between DOY- and 
AGDD-based time series, depending on the regression model utilized. 
Overall, the AGDD-EVI2 time series, without SMF applied, exhibits the 
highest accuracy in estimating yield loss for both winter wheat and 
barley when employing the RF model. 

4.3. Timing and attribution of weather extremes 

Fig. 13 shows an example for a single pixel of the interannual vari-
ations in detected extreme weather events that may be linked to the 
timing of crop damage. The attribution analysis of crop damage is done 
separately for each pixel within the studied paddocks following the 
stressors labelling rules explained in Section 3.4.2. With the detected 
peaks (> 0.02) in CDI_1D curve (i.e., the first derivative of CDI curve), a 
three-week window before this peak is applied to define a period of poor 
crop development indicating the likely occurrence of crop yield reduc-
tion. This period is then compared with the derived time series of the 
extreme weather indices (HCI, CCI, WDCI, and WSCI) to evaluate if the 
poor crop development coincides with a weather event that occurred 
during that period. 

Fig. 14 presents the spatial and temporal variation of within-paddock 
crop yield reduction and its potential attribution for three years taking 
one paddock as an example. This paddock was cultivated with wheat in 
2017, 2020, and 2021. The yield reduction was estimated at the pixel 
level by applying the RF regressor based on cumCDI variables between 

Fig. 7. The DOY- and AGDD-based EVI2 time series of winter wheat and barley paddocks for 2017 to 2022. Each colour represents the average time series of all 
pixels for the available paddocks of target crop in one year. The circle represents the observation data and the curve refers to the SG-filtered time series. 
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SOS50 and EOS70 extracted from the AGDD-EVI2 time series (i.e., the 
optimal phenoperiod for yield reduction estimation selected in Section 
4.2). Crop damage in 2017 was mainly caused by water deficit and frost 
that occurred in July. The stressor map for 2020 shows that the spatial 
variation of crop damage may be attributed to different weather ex-
tremes even within the same paddock, including frost in August and 
drought in July; the strongest yield reduction was found for areas that 
experienced a combination of frost and drought. Wheat yield reduction 
is smaller in 2021 as compared with other years. Water surplus in August 
is the dominant reason of crop yield reduction in 2021. The observation 
of multiple stressors within a single field may be explained by the 
following reasons: 1) for extreme precipitation small-scale variability 
can be substantial even if not captured by our rainfall data, 2) soil 
properties and micro-topography differ within a field leading to spatial 
variability in how much water is received or retained. 

Finally, we produced the crop yield reduction maps and corre-
sponding attribution maps of weather extremes for all wheat and barley 
paddocks in 2017–2022 (Fig. 15 and Fig. 16). The results were validated 
by comparing against auxiliary data (Table S2) and showed consistency 
with reports on the actual stress. For example, stem frost impacted crop 
yield in 2020 in most wheat cultivation areas while only a few barley 
paddocks suffered from frost damage. Wheat is more susceptible to frost 
than barley at the flowering stage (Ferrante et al., 2021). Due to a 
rainfall gradient in the study area that increases from north to south, the 
northern part usually experiences more intense drought conditions. This 
pattern is confirmed by the yield reduction maps for barley in 2019 and 
2021 which show a higher yield reduction in the north. 

Fig. 8. R2 and NRMSE of each CDI and cumCDI variable for predicting wheat and barley yield reduction using linear and quadratic regression based on DOY- and 
AGDD-EVI2 time series. The labelling around the radar chart refers to the abbreviated CDI and cumCDI variables (e.g., “S10″ means “CDI_SOS10”, ”cS10-S30“ means 
“cumCDI_SOS10-SOS30”). 
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5. Discussion 

5.1. Advantages of the proposed approach 

We proposed a scalable system for early prediction of winter cereals 
yield reduction within the growing season and for attributing this 
reduction to the occurrence of extreme weather events at sub-field level. 
The method incorporates a CDI using EVI2 time series derived from 
Sentinel-2 data that are scaled to AGDD based on weather information. 
By analysing the CDI curve within specific phenological windows, we 
demonstrated that CDI information between the stem elongation and 
grain filling stage can accurately predict potential yield reduction. 
Furthermore, by comparing moments of significant CDI increase with 
different indices on weather extremes that coincide with those moments, 
we identified the potential extreme weather events responsible for the 
observed yield reduction and determined the timing of these stresses. 

In contrast to directly using EVI2 time series, our proposed CDI 
transformation shows a significant improvement (R2 increased by 0.31 
for wheat and 0.13 for barley compared to the baseline) in yield loss 
estimation. We conducted a comparative analysis with a baseline model 
that employs the RF algorithms with DOY- and AGDD-based EVI2 time 
series as direct inputs. Instead of detecting phenometrics, we derived 
time series of monthly average EVI2 as DOY-based features and applied 
EVI2 values at steps of 300 degree days as AGDD-based inputs for the RF 
model. The results (Fig. S9) of this comparison underscore the superi-
ority of CDI features, especially AGDD-based CDI variables without SMF 
(with high R2 values of 0.83 for wheat and 0.91 for barley), in predicting 
yield loss. The predictions of the baseline model exhibit the lowest R2 

(0.52 for wheat and 0.78 for barley) and significant differences (p ≤
0.05) compared with both CDI and SMF-fitted CDI models in wheat and 
barley. The discrepancy highlights the effectiveness of our proposed CDI 
phenometrics-based model in reflecting the physiological status of the 

Fig. 9. Pearson correlation coefficient matrix (significant at p ≤ 0.01) between variable pairs derived from wheat (a) DOY-EVI2 and (b) AGDD-EVI2 time series and 
barley (c) DOY-EVI2 and (d) AGDD-EVI2 time series. Positive correlations are displayed in red and negative correlations in blue. Colour intensity means proportional 
to the correlation coefficients. White spaces refer to the variable pairs for which the correlation was insignificant (p > 0.01). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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crops under stress and representing the complex relationships between 
the influence of stress and crop damage. 

We evaluated the performance of different profile construction 
methods and phenological phases for the prediction of yield losses at the 

sub-field level. Our results agree with results from previous yield esti-
mation studies while also suggesting important improvements. Firstly, 
Hunt et al., 2019 demonstrated that RF performed better for within-field 
yield estimation as compared to more traditional regression models (e. 

Fig. 10. (a-b) Feature importance value rank for wheat and barley based on variables derived from AGDD-EVI2 and (c-d) the corresponding change of R2 (based on 
testing dataset) for the prediction of yield reduction with an increasing number of input variables gradually added based on the feature importance rank. The black 
cross behind each bar in panels (a-b) represents the variable which has a high correlation (r ≥ 0.8) with another variable at earlier phenological stage. The features 
for which a green bar is shown are the final retained variables for multivariate regression analysis. The vertical dash lines in panel (c-d) represent the selected number 
of variables where the curve stabilizes (i.e., R2 increase from n to n+1 is less than 5%). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 11. Relationship between actual yield reduction and predicted yield reduction using the RF model based on EVI2 time series for (a) wheat and (b) barley. The 
black line represents the ideal 1:1 relationship. The number of data points (i.e., test samples) are 29 and 21 for wheat and barley, respectively. 
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g., linear regression model), which is in line with our findings. The 
integration of detected sowing dates to recalibrate the start point of the 
VI time series was also applied by Funk and Budde, 2009 who used this 
to improve yield prediction accuracy. Our results enhanced the yield loss 
estimation accuracy by transforming DOY to AGDD-based time series 
using a similar phenology-adjustment method as Funk and Budde, 2009. 
Furthermore, previous research indicated that the accurate yield pre-
diction can be achieved two-month before maturity and the optimum 
phenological window concentrated on the mid-to-late season (Benedetti 
and Rossini, 1993; Cai et al., 2019; Doraiswamy and Cook, 1995; Funk 
and Budde, 2009). Similarly, our results underscore the superior pre-
dictive capability of the period between SOS50 and EOS70, corre-
sponding to the stem elongation and grain-filling stage. 

In contrast to existing research focused on yield loss attribution 
analysis at post-season based on crop model and statistical algorithms, 
our approach applied high-resolution VI time series, offering the 
advantage of timely identification of crop damage with respect to the 
occurrence and timing of weather extremes. Prior efforts calculated the 
contribution of diverse extreme-weather-related stresses to yield 
reduction utilizing regression models or crop simulation models (Nóia, 
2023; Vogel et al., 2019; Zhao et al., 2022; Zhong et al., 2023). However, 
not all instances of extreme weather result in yield reduction, depending 
on both the timing of occurrence and crop susceptibility. Furthermore, 
such analysis is typically conducted post-season or late-season due to the 
required yield data. Solely relying on the correlation between extreme 
weather indices and yield data might prove insufficient in accurately 

Fig. 12. Raincloud plots illustrate the distribution of in-situ yield reduction records and predicted yield reduction using different CDI construction methods (DOY, 
AGDD, DOY-SMF, AGDD-SMF) based on the RF model for wheat and barley. The height of each violin represents the density of yield reduction at different values 
along the x-axis. Under each violin, scatter plots provide a detailed view of individual data points. The box plot denotes the median value of yield reduction and its 
interquartile range (25–75%), and the whiskers extending from the box refer to the rest of the distribution. 

Fig. 13. Illustration of the detection of the timing of wheat yield reduction and its attribution to weather extremes. The CDI curves show an example pixel of wheat 
paddock. The orange shade in the two top rows indicates the crop growing season. The stress events within the growing season are highlighted in orange in the four 
bottom rows. The red line in the second row refers to threshold of 0.002 for detecting peaks in CDI_1D curve. The green box represents the 3-week windows around 
the detected peaks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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attributing yield reduction to its causal factors. We addressed these gaps 
by introducing an innovative method that elucidates the within-field 
variability in yield reduction and its attribution, facilitating the identi-
fication and comprehension of the impacts of various extreme weather 
events on crop health at the sub-field level. 

Incorporating thermal time in the EVI2 time series proved beneficial 
to diminish temporal deviation between time series across multiple 

years, contributing to the construction of typical stress-free crop growth 
curves, better detection of crop anomalies, and prediction of yield losses. 
Nyborg, Pelletier, and Assent (2022) reported that using thermal-time- 
based time series improved crop classification by considering varying 
crop growth rates under different years and weather patterns and thus 
reducing the temporal shift. Moreover, Zeng et al. (2016) demonstrated 
that the use of thermal time rather than calendar days more accurately 

Fig. 14. (a-c) Yield reduction map derived from RF model applied to the AGDD-EVI2 time series and (d-f) potential stressor map of an example paddock cultivated by 
wheat in 2017, 2020, and 2021. The different colours in (d-f) refer to different kinds of weather extremes. Letters F, D, and W in the corresponding legend represent 
frost, drought (water deficit), and water surplus, respectively. 

Fig. 15. Wheat yield reduction maps and corresponding spatial distribution and timing of attribution to weather extremes from 2017 to 2022 for all paddocks that 
were available in our dataset. Grey polygons correspond to paddocks that were not cultivated with wheat or without crop type information in the respective year. 
Letters F, D, and W in the corresponding legend represent frost, drought (water deficit), and water surplus, respectively. 
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captures phenology variability and may enhance yield prediction, 
considering the close relationship between crop yield and critical 
phenology stages. We confirmed this assertion, as the prediction of yield 
reduction applying thermal-time-based (i.e., AGDD-based) EVI2 time 
series outperformed calendar-based curves. This highlights the impor-
tance of factoring in temperature, a primary environmental factor con-
trolling the growth of winter cereals, when developing crop loss 
detection models (Slafer and Rawson, 1994). 

5.2. Scope for improvement 

Despite the good performance of thermal time in diminishing dif-
ferences in crop growth rates at early growing stages, other environ-
mental factors such as water availability can also have large effects on 
crop development. Depending on climate and crop, cropland produc-
tivity can be temperature-limited (Akter and Rafiqul Islam, 2017; Xiao 
et al., 2018), moisture-limited (Blum, 1996; Brown and de Beurs, 2008; 
Li et al., 2009), radiation-limited (Nemani et al., 2003), or affected 
simultaneously by multiple limitations (Pradhan et al., 2012; Shah and 
Paulsen, 2003). Identifying and integrating the appropriate environ-
mental variables, or a combination thereof, is critical to accurately 
model crop growth status and compare this status more effectively be-
tween locations and years. For example, accumulated relative humidity 
can be used as an alternative to thermal-time in RS time series for semi- 
arid areas where crop growth is mainly moisture-limited (Brown and de 
Beurs, 2008). Zeng et al., 2016 proposed the concept of photothermal 
time combining both temperature and photoperiod information and 
illustrated the potential of minimizing inter-annual variation of detected 
phenological stages in irrigated areas. This concept could be transferred 
and assessed within our method. Nevertheless, challenges still remain in 

defining a variable that quantifies the combined relationship between 
temperature, water, and radiation, which can be incorporated into the 
RS time series to improve model transferability across different crops 
and climate conditions. 

Another limitation is that the used rainfall and temperature data may 
not accurately represent fine-scale differences between and within 
paddocks in our study area. The gridded weather data with five km 
resolution can overlook micro-climate variations, which are usually 
influenced by local topography, soil properties, vegetation cover, and 
agricultural practices. As a consequence, the extreme weather indices 
that we derived may not accurately represent the exact stress events 
experienced at specific locations, possibly leading to an erroneous 
attribution of yield reduction if using such weather-based stress in-
dicators. To illustrate, the southern regions of our study area feature 
undulating topography, contrasting with the relatively flat terrain in the 
north. This divergence influences rainfall distribution and contributes to 
more pronounced drought conditions in the north. While the yield 
reduction maps capture such spatial gradient, the stress maps fail to 
mirror this variation due to the spatial uniformity of SILO data across the 
study region. Recognizing this limitation underscores the necessity for 
more precise and detailed sources of meteorological data capable of 
accounting for small-scale weather variability as caused for example by 
elevation. For instance, supplementing the existing network of weather 
stations with terrestrial radar data or leveraging microwave links be-
tween antennas of mobile networks could yield more accurate and 
localized insights on precipitation distribution (Graf et al., 2020; Over-
eem et al., 2013). 

In addition to the attribution of crop yield reduction to extreme 
weather events, it is important to acknowledge the potential influence of 
other biotic and abiotic factors on crop health and productivity. While 

Fig. 16. Barley yield reduction maps and corresponding spatial distribution and timing of attribution to weather extremes from 2017 to 2022. Grey polygons 
correspond to paddocks that were not cultivated with barley or without crop type information in the respective year. Letters F, D, and W in the corresponding legend 
represent frost, drought (water deficit), and water surplus, respectively. 
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our study focused on identifying whether extreme temperature and 
precipitation events could partially explain yield loss, crop losses can 
result from a combination of factors beyond the scope of our analysis. 
Pest infestation, diseases, soil quality, management practices, and so-
cioeconomic factors all play crucial roles in shaping crop health and 
productivity (Gull et al., 2019). Moreover, these factors often interact in 
complex ways, amplifying the challenges of accurately attributing yield 
loss to specific causes. While extreme weather events can have signifi-
cant impacts on crop yields, their effects may be compounded or 
moderated by other stressors (Suzuki et al., 2014). Therefore, the mere 
attribution to extreme weather events is a simplification of the complex 
reality of agricultural systems. Moving forward, a more holistic 
approach that considers the multifactorial nature of crop yield reduction 
could be considered by integrating information on various stressors and 
their interactions. However, such information may be difficult to obtain 
across wide geographies. While a more comprehensive understanding of 
crop loss dynamics could inform more effective mitigation and adapta-
tion strategies in the face of changing environmental conditions, un-
derstanding to what extent extreme weather events link to crop loss is a 
first important step to understand and adapt to climate challenges in 
agriculture. 

5.3. Pathways for future development 

While initially tested on winter cereals in South Australia, our 
method holds potential for extension to other regions and crops. Future 
research should prioritize enhancing the model’s adaptability through 
testing it with a wider range of crop datasets and exploring transfer 
learning strategies to improve its transferability in space and time. 
However, challenges and limitations may arise due to the diversity of 
crop types, regional agricultural practices, and meteorological 
conditions. 

In addition to the model improvements detailed in Section 5.2, which 
involve the exploration of additional weather-based variables and more 
detailed meteorological data sources, careful attention should be given 
to constructing the reference curve and addressing potential data quality 
issues. Expanding the application of CDI curves to larger regions ne-
cessitates redefining the spatial scope for establishing reference curves. 
Single reference curves were developed for both wheat and barley 
considering the small spatial extent of the study area. However, when 
expanding the analysis to larger regions (e.g., the country or continental 
scale), the utilization of a single curve to represent the typical growth 
trajectory of a crop becomes inappropriate due to the diverse environ-
mental conditions and distinct crop varieties. A solution could be to 
calculate a reference curve for each small region (e.g., at the county 
level) based on crop type maps in the historical years or alternatively 
using relatively homogenous zones as determined by RS-based ecolog-
ical stratification (De Oto et al., 2019). Moreover, when applying CDI 
curves to new areas, data gaps and quality issues with optical image time 
series may arise. While we used Sentinel-2 data, which offers global 
coverage with a revisit time of five days in principle, cloud cover can 
lead to missing data and low-quality observations. Strategies such as 
data fusion methods, which involve combining different sources of sat-
ellite images to fill in missing data gaps, can help mitigate this limita-
tion. For example, Synthetic Aperture Radar (SAR) data, like Sentinel-1, 
offer high resolution images immune to cloud cover or atmospheric 
interference. These SAR images can complement Sentinel-2 data, filling 
gaps and ensuring continuous coverage of the study area (Garioud et al., 
2021; Pipia et al., 2019). Another example is the Harmonized Landsat 
Sentinel-2 (HLS) product, which combines observations from both 
Landsat and Sentinel-2 satellites, enhancing temporal coverage and 
consistency (Claverie et al., 2018). Addressing these aspects is crucial to 
ensure the scalability and effectiveness of our approach in detecting and 
attributing crop yield losses accurately and reliably across diverse 
agricultural landscapes. 

Our framework (i.e., crop damage detection and attribution with 

CDI) provides a basis for improving the future prediction capability of 
crop yield reduction with RS time series, for early warning of crop 
damage, and for attributing its weather-related causes in near real-time, 
which can help, among others, to adopt appropriate crop protection 
strategies. With the assistance of high-resolution Sentinel-2 data and 
daily meteorological data, the CDI curve and stress indices can be 
calculated in near real-time. Predicting potential yield losses using 
AGDD-based time series involves identifying the onset date, which using 
the methods of this paper can be derived once the peak season (i.e., 
maximum EVI2) occurs. Subsequently, yield reduction can be estimated 
based on the cumCDI between SOS50 and the latest-available observa-
tion given that SOS50 to EOS70 is the optimal period for yield loss 
prediction. Correspondingly, potential yield reduction can be predicted 
at least two months prior to harvesting, specifically during the stem 
elongation to grain filling stage. Crop damage can be detected once a 
small peak on the first derivative of CDI curve is observed; the damage 
can then be attributed to specific extreme weather events as CDI in-
creases peak usually within three weeks after the extreme events occur. 

However, the timeliness may be compromised by the need for tem-
poral filtering. For example, the SG filter smooths raw time series and 
requires data available before and after each observation with a speci-
fied window size, aiming to remove noise and capture underlying trends. 
The choice of window size can impact the trade-off between time series 
smoothing and data details preservation, thereby affecting the timeli-
ness of crop damage detection. Different from the commonly used 
smoothing method, near real-time filtering provides higher flexibility by 
projecting to the current time only from past observations (Sedano et al., 
2014). The reliability of filtered estimation at each time step improved 
with additional observations becoming available. However, the esti-
mation errors especially at the initial consolidation stage may be 
amplified by further anomaly detection (Meroni et al., 2019). To 
improve product quality, the use of satellite data with high revisit in-
tervals (e.g., PlanetScope) could be a solution to improve both the ac-
curacy and timeliness for near real-time filtering. 

In summary, we conducted a proof-of-concept study and demon-
strated the potential of the proposed framework for near real-time 
monitoring of crop yield losses and their accurate attribution to 
weather extremes. This initial investigation sets the stage for future 
studies, which may include detailed assessments aligning with micro- 
climate conditions or more comprehensive evaluations covering larger 
geographical areas. As such, it can play a crucial role in the framework 
of climate-smart agriculture given that yield loss and attribution infor-
mation aids in proactive adaptation to a changing climate by enabling 
informed decision-making and responsive strategies for sustainable 
agricultural practices. 

6. Conclusion 

We presented a novel and scalable method for predicting in-season 
yield reduction at the sub-field level and attributing these losses to 
extreme weather events. Using temporal profiles of a crop damage index 
(CDI) derived from thermal-time-based VI time series, we could accu-
rately predict yield reduction of winter cereals, and attribute this 
reduction to the likely extreme weather causes. The use of thermal-time- 
based VI time series reduced temporal deviation of EVI2 curves of 
different years and locations, and by better aligning the crop growth 
development, it outperformed calendar-based curves in yield reduction 
prediction. Yield reduction could be accurately predicted for wheat and 
barley approximately two months before harvest, with high R2 values of 
0.83 and 0.91, respectively. The combined analysis of CDI curves and 
extreme weather indicators enabled the timely detection of weather- 
related causes of crop damage at the sub-field level, providing valu-
able insights for improving crop management responses. 

This study stands as a proof-of-concept by testing the method for 
winter cereals in South Australia. It provides a basis for early warning of 
crop damage and attributing such damage to weather extremes in near 

K. Duan et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 213 (2024) 33–52

50

real-time. Further case studies integrating data from diverse regions and 
crop types can be conducted to assess the transferability of the frame-
work and ensure its effectiveness in varied agricultural settings. 
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Nóia Júnior, R. de S., Deswarte, J.-C., Cohan, J.-P., Martre, P., Velde, M. van der, Lecerf, 
R., Webber, H., Ewert, F., Ruane, A. C., Slafer, G. A., & Asseng, S. (2023). The 
extreme 2016 wheat yield failure in France. Global Change Biology, 29(11), 
3130–3146. doi: 10.1111/GCB.16662. 

Nyborg, J., Pelletier, C., Assent, I., 2022. Generalized Classification of Satellite Image 
Time Series with Thermal Positional Encoding. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 1392–1402. https:// 
doi.org/10.48550/arxiv.2203.09175. 

Overeem, A., Leijnse, H., Uijlenhoet, R., 2013. Country-wide rainfall maps from cellular 
communication networks. Proc. Natl. Acad. Sci. 110 (8), 2741–2745. https://doi. 
org/10.1073/pnas.1217961110. 

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. 
A., Clarke, L., Dahe, Q., Dasgupta, P., & others. (2014). Climate change 2014: 
synthesis report. Contribution of Working Groups I, II and III to the fifth assessment 
report of the Intergovernmental Panel on Climate Change. Ipcc. 

Pal, M., Foody, G.M., 2010. Feature selection for classification of hyperspectral data by 
SVM. IEEE Trans. Geosci. Remote Sens. 48 (5), 2297–2307. https://doi.org/ 
10.1109/TGRS.2009.2039484. 
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Riedesel, L., Möller, M., Horney, P., Golla, B., Piepho, H.-P., Kautz, T., Feike, T., 2023. 
Timing and intensity of heat and drought stress determine wheat yield losses in 
Germany. PLoS One 18 (7), e0288202. 

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R., 2004. When 
Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought 
and Heat Stress. Plant Physiol. 134 (4), 1683–1696. https://doi.org/10.1104/ 
PP.103.033431. 

Rötter, R.P., Appiah, M., Fichtler, E., Kersebaum, K.C., Trnka, M., Hoffmann, M.P., 2018. 
Linking modelling and experimentation to better capture crop impacts of 
agroclimatic extremes—A review. Field Crop Res 221, 142–156. https://doi.org/ 
10.1016/j.fcr.2018.02.023. 

Ryan, J., Singh, M., Pala, M., 2008. Long-term cereal-based rotation trials in the 
Mediterranean region: implications for cropping sustainability. Adv. Agron. 97, 
273–319. https://doi.org/10.1016/S0065-2113(07)00007-7. 

Sakamoto, T., 2018. Refined shape model fitting methods for detecting various types of 
phenological information on major U.S. crops. ISPRS J. Photogramm. Remote Sens. 
138, 176–192. https://doi.org/10.1016/j.isprsjprs.2018.02.011. 

Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Verma, S.B., Suyker, A.E., Arkebauer, T.J., 
2010. A Two-Step Filtering approach for detecting maize and soybean phenology 
with time-series MODIS data. Remote Sens. Environ. 114 (10), 2146–2159. https:// 
doi.org/10.1016/j.rse.2010.04.019. 

Sánchez, B., Rasmussen, A., Porter, J.R., 2014. Temperatures and the growth and 
development of maize and rice: a review. Glob. Chang. Biol. 20 (2), 408–417. 
https://doi.org/10.1111/GCB.12389. 

Satorre, E.H., Slafer, G.A., 1999. Wheat: ecology and physiology of yield determination. 
CRC Press. 

Schmidhuber, J., Tubiello, F.N., 2007. Global food security under climate change. Proc. 
Natl. Acad. Sci. 104 (50), 19703–19708. https://doi.org/10.1073/ 
pnas.0701976104. 

K. Duan et al.                                                                                                                                                                                                                                    

https://doi.org/10.1017/S0021859612000779
https://doi.org/10.1017/S0021859612000779
https://doi.org/10.3389/FPLS.2021.722637/BIBTEX
https://doi.org/10.3389/FPLS.2021.722637/BIBTEX
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0180
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0180
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0185
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0185
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0195
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0195
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0195
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0200
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0200
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0205
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0205
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0205
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0210
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0210
https://doi.org/10.5281/zenodo.1209633
https://doi.org/10.5281/zenodo.1209633
https://doi.org/10.1016/0034-4257(94)90018-3
https://doi.org/10.1016/0034-4257(94)90018-3
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0225
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0225
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0225
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/08/wheat-phenology-and-the-drivers-for-yield-in-the-high-rainfall-zone
https://www.ipcc.ch/report/ar6/wg2/
https://doi.org/10.1016/S1364-8152(01)00008-1
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0245
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0245
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0245
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0250
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0250
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0255
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0255
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0255
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0260
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0260
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0260
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0265
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0265
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0265
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0270
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0270
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0270
https://doi.org/10.1007/S10584-013-0705-8/FIGURES/6
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0280
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0280
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0280
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0285
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0285
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0285
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0290
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0290
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0290
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0290
https://doi.org/10.2134/AGRONJ14.0460
https://doi.org/10.2134/AGRONJ14.0460
https://doi.org/10.3354/CR00797
https://doi.org/10.1016/j.isprsjprs.2018.05.024
https://doi.org/10.1016/j.isprsjprs.2018.05.024
https://doi.org/10.1029/2008GL034145
https://doi.org/10.1029/2008GL034145
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0315
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0315
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0320
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0320
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0320
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0325
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0325
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0325
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0586
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0586
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0586
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0335
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0335
https://doi.org/10.1016/S0168-1923(97)00027-0
https://doi.org/10.1016/S0168-1923(97)00027-0
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0345
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0345
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0345
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0350
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0350
https://doi.org/10.1016/J.TPLANTS.2005.11.002
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
https://doi.org/10.48550/arxiv.2203.09175
https://doi.org/10.48550/arxiv.2203.09175
https://doi.org/10.1073/pnas.1217961110
https://doi.org/10.1073/pnas.1217961110
https://doi.org/10.1109/TGRS.2009.2039484
https://doi.org/10.1109/TGRS.2009.2039484
https://doi.org/10.1071/FP11245
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0405
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0405
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0405
https://doi.org/10.1104/PP.103.033431
https://doi.org/10.1104/PP.103.033431
https://doi.org/10.1016/j.fcr.2018.02.023
https://doi.org/10.1016/j.fcr.2018.02.023
https://doi.org/10.1016/S0065-2113(07)00007-7
https://doi.org/10.1016/j.isprsjprs.2018.02.011
https://doi.org/10.1016/j.rse.2010.04.019
https://doi.org/10.1016/j.rse.2010.04.019
https://doi.org/10.1111/GCB.12389
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0440
http://refhub.elsevier.com/S0924-2716(24)00219-3/h0440
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1073/pnas.0701976104


ISPRS Journal of Photogrammetry and Remote Sensing 213 (2024) 33–52

52
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