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A B S T R A C T

Biodiversity plays a critical role in maintaining the health and stability of ecosystems. Bio-
diversity monitoring has traditionally been labor-intensive, prompting a shift towards remote
sensing techniques for efficient and large-scale approaches. In this research, we explore the use
of Sentinel-2 satellite data and airborne LiDAR data to evaluate and compare functional and
structural biodiversity in agroforestry areas within two distinct ecoregions, namely the Montane
forests ecoregion and the Victoria Basin forest-savanna mosaic ecoregion in Columbia and
Tanzania, respectively. The aim of the study is to compare functional diversity and structural
diversity across varying spatial scales and land cover types including trees, cropland and
grassland, thereby addressing the correlation and divergence between functional and structural
diversity in different ecological contexts. Our methodology involves integrating airborne LiDAR
data to assess structural diversity and Sentinel-2 data to estimate functional diversity based
on the proxies of three key functional traits, leaf chlorophyll content (CHL), leaf anthocyanin
content (ANTH), and specific leaf area (SLA). We developed two novel functional diversity
indices, ShannonF and GiniF, which are modified versions of the well-established Shannon
index and Gini index. These novel indices effectively incorporate both functional richness and
evenness into their calculations. Our results indicated a significant correlation between our
proposed ShannonF index and Shannon index derived from LiDAR, with stronger correlations
at larger spatial scales. This study demonstrated that trees exhibit higher biodiversity than
grassland and cropland across both study areas, with particularly high biodiversity in Colombia’s
Montane forests ecoregion. These findings underscore the potential of integrating satellite and
airborne LiDAR data for comprehensive biodiversity assessment in agroforestry systems, offering
valuable insights for global ecosystem management and conservation efforts.

1. Introduction

Biodiversity is vital for preserving existing ecosystems on Earth. It is essential for maintaining healthy ecosystem function, as it
enhances productivity and resilience in the face of human disturbance (Wang and Gamon, 2019). From an instrumental perspective,
biodiversity enhances and sustains essential ecosystem functions such as nutrient and energy fluxes, and ecosystem services such
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as resource production and increase in resiliency (Cardinale et al., 2012; Rands et al., 2010). In addition, biodiversity has cultural,
recreational and ethical values (Laurila-Pant et al., 2015).

When considering the species biodiversity of a ecosystem, two fundamental aspects are the species richness and species
venness (Hamilton, 2005). Species richness is the number of species within the community, and species evenness assesses the
istribution of the number of individuals of each of these species (Ma, 2005). Traditional monitoring of species biodiversity through
ield work has been considered costly and labor-intensive; hence there is a growing interest in exploring remote sensing techniques
or efficient monitoring and quantifying of biodiversity (Toledo et al., 2001; Félix et al., 2018). Monitoring biodiversity dynamics
sing satellite data provides further insights into understanding biodiversity change caused by anthropogenic activities, allowing us
o act promptly (Makino et al., 2020). At a regional scale, airborne LiDAR and hyperspectral data provide detailed structure and
pectral information for individual tree species mapping (Wallis et al., 2023; Zheng et al., 2023). Towards a global scale, satellite
ata such as ESA’s Sentinel-2 offer the opportunity to map species diversity (Shi et al., 2018; Zhao et al., 2018) and its changes
requently, at an acceptable spatial resolution and cost. Sentinel-2 data offer a good potential for biodiversity mapping thanks to the
lobal coverage with a medium spatial resolution to map diversity at fine to large scales, a moderate spectral resolution relevant to
erive vegetation indices as proxies for physiological traits, and a high temporal resolution allowing for the change detection for
iodiversity (Helfenstein et al., 2022). Its application in biodiversity has been demonstrated in many studies (Hauser et al., 2021;
elfenstein et al., 2022; Ma et al., 2019).

In contrast to studying species diversity alone, functional and structural diversity as measures for ecosystem biodiversity are now
ecoming a subject of interest among a growing number of researchers (Makino et al., 2020; Liu et al., 2023). Functional diversity
n flora is usually characterized by the richness and evenness of plant functional traits (Zheng et al., 2023). These traits encompass
pecific morphological, physiological, phenological, or reproductive properties exhibited by plants (Wang and Gamon, 2019). As
lant functional traits do not function in isolation, they form an integrated system where multiple traits interact to determine a plant’s
verall environmental performance. Consequently, many studies have shifted their focus towards mapping functional diversity by
onsidering multiple traits (Félix et al., 2018; Makino et al., 2020). The literature review revealed that functional diversity richness
nd evenness have been measured by applying different approaches (Rocchini et al., 2018; Helfenstein et al., 2022). For instance,
unctional richness, which represents the amount of trait space filled by the species in a community, can be measured by the volume
r area (e.g., Convex hull volume) occupied by the considered species in the trait space (Hauser et al., 2021). Convex hull volume
ndicates the niche extent of the occupied functional space, which makes it affected by extreme values. Functional evenness provides
nformation concerning how evenly traits are distributed in terms of spacing among similar sample points in functional space (Xi
t al., 2023). Both functional richness and evenness are crucial components of biodiversity, and their importance is interlinked in
etermining the overall health, resilience, and functioning of the ecosystem (Ilangakoon et al., 2021; Schneider et al., 2023).

Another aspect of biodiversity is the structural diversity. Structural diversity relates to the physical 3D structure of vegetation
ithin an ecosystem, whereby a richer structural diversity is associated with a larger potential occupancy for different niche

paces (Hauser et al., 2021). In this respect, LiDAR (Light Detection and Ranging) has emerged as an active remote sensing sensor
or assessing and quantifying structural diversity, particularly in forest ecosystems (LaRue et al., 2023; Schneider et al., 2017).
his active remote sensing technique has been used successfully in estimating canopy height and canopy height profiles with high
ccuracy compared to field measurement (Mura et al., 2015). Structural diversity is commonly evaluated through canopy height
omplexity, typically assessed using the Shannon index calculated from the canopy height model (CHM) (Schneider et al., 2017;
istopad et al., 2015). Shannon index considers both structural richness and evenness in its computation.

Functional diversity and structural diversity measure different aspects of biodiversity and are both important for assessing
cosystem diversity. However, it remains unclear how these two aspects of diversity correlate and compare with each other in
ifferent spatial scales and different ecoregions, especially in agroforestry areas. Although remote sensing has been widely used in
iodiversity assessment in forest areas (Palmroos et al., 2023; Silveira et al., 2021), its application in agroforestry areas remains
omparatively underexplored. Agroforestry systems have unique vegetation characteristics due to the combination of different trees
nd crops (Pantera et al., 2021). The agroforestry areas in this research are within two separate ecoregions, namely the Montane
orests ecoregion and the Victoria Basin forest-savanna mosaic ecoregion (Olson et al., 2001) in Columbia and Tanzania with unique
haracteristics. Studying and comparing the functional and structural diversity can help understand how these variables can be used
o provide important information about biodiversity in different ecoregions.

Further, we introduce a novel functional diversity index that combines both functional richness and evenness. We compare the
iversity index at different spatial scales within two distinct ecoregions, each encompassing multiple land cover types (i.e., trees,
rassland and cropland). Specifically, we assess the biodiversity measures derived from the proposed functional diversity index
cross various land cover types and ecoregions in agroforestry areas and the scale dependency of the correlation between functional
iversity and structural diversity.

. Study area and data

.1. Study area

The first study area is located in the Victoria Basin forest-savanna mosaic ecoregion (Olson et al., 2001) which belongs to the
ropical and subtropical grasslands, savannas, and shrublands in the United Republic of Tanzania (Fig. 1). It covers an area of
pproximately 22.87 km2. The elevation of this ecoregion ranges between 800 m and 1500 m. The climate of this ecoregion is

◦ ◦ ◦
2

tropical with an annual maximum mean temperature ranging from 24 to 27 , and a minimum mean temperature ranging from 15
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Fig. 1. Airborne LiDAR data coverage of the Victoria Basin forest-savanna mosaic ecoregion, Tanzania.

to 18◦. The total annual precipitation ranges from 1000 mm to 1400 mm. The predominant ecosystem consists of extensive areas of
savanna and woodland, mixed with small areas of forest (Burgess et al., 2004). The main plant communities include Lake Victoria
drier semi-evergreen Guineo-Congolian rain forest, transitional rain forest, moist Combretum wooded grassland, dry Combretum
wooded grassland, Evergreen and semi-evergreen bushland and thicket, Edaphic wooded grassland, and swamp forest (van Breugel
et al., 2015).

The second study area is located in the Cauca Valley Montane forests ecoregion (Olson et al., 2001), which belongs to the tropical
and subtropical moist broadleaf forests biome in Colombia (Fig. 2). It covers an area of approximately 80 km2. The elevation of
this ecoregion ranges between 1000 m and 3000 m. The annual mean temperature ranges from 19.5◦ to 20.3◦, and the total annual
precipitation is around 2300 mm. The Cauca Valley Montane forests contains diverse vegetation, including dry areas in the east
and humid forests in the middle and upper western slopes (Kattan, 2018). Below 1500 m, the dominant species are Fabaceae and
Moraceae. Between 1500 m and 3000 m, the majority of species are in the Lauraceae, Melastomataceae and Rubiaceae families.
Above 3000 m, Ericaceae and Asteraceae are the dominant families (Kattan, 2018).

2.2. LiDAR data

The airborne LiDAR campaign was carried out in November 5, 2022 in Tanzania. A Riegl 780i (RIEGL) was used for the campaign.
The sensor operates at the wavelength of 1064 nm with a beam divergence of 0.25 mrad. The flying altitude was approximately
700 m above ground with a flying speed of 204 km/h, which resulted a point density of around 20 pts/m2. The LiDAR flight
campaign in Colombia was conducted in October 5, 2022. The sensor used was an Optech Gemini (DirectIndustry) with a wavelength
of 1064 nm and a beam divergence of 0.3 mrad. The flying altitude was approximately 600 m above ground with an average speed
of 220 km/h, which resulted in an average point density above 30 pts/m2.

The point cloud data contain coordinates, intensity, return number, number of returns and GPS timestamps of the return. The
Point Data Abstraction Library (Butler et al., 2021) was used to classify ground returns from non-ground returns. A digital elevation
model (DEM) was generated based on the ground returns, which was then used to normalize all return heights. After normalization,
the z value of each point indicated the height from the ground to that point (Zhu et al., 2018). A canopy height model (CHM) was
then generated based on the normalized point cloud (Fig. 3). We generated CHMs of 1 m resolution for both sites to harmonize
the differences, although the density in the Colombia site allowed for a generation of a higher resolution CHM. This made sure
the quality of the CHMs of the two regions are comparable. The LiDAR-derived CHM was down-sampled to the 10 m resolution of
Sentinel-2 data.

2.3. Sentinel-2 data

Sentinel-2 images of bottom-of-atmosphere reflectance were acquired in the dry period in June and July of 2022 for the Tanzania
site and the Colombia site respectively. The Sentinel-2 Multispectral Imager (MSI) has 13 bands in the visible, near infrared, and
3
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Fig. 2. Airborne LiDAR data coverage of the Cauca Valley Montane forests, Colombia.

Fig. 3. An example of airborne LiDAR data processing: (a) Raw point cloud colorized by intensity, (b) Generated CHM colorized by height.

short-wave infrared domains (Drusch et al., 2012). The cirrus band (B10) was excluded as it does not contain any bottom-of-
atmosphere information (Richter et al., 2011). Cloud and shadow were masked based on s2cloudless (Zupanc, 2017) and scene
classification (Main-Knorn et al., 2017). A median value of each pixel with a resolution of 10 m was taken for multiple sentinel
images to create an image composite (Svoboda et al., 2022).

2.4. Land cover map

The Dynamic World land use land cover map featuring nine land cover classes (Brown et al., 2022) was used to mask out
non-vegetation bodies. This facilitates the analysis of biodiversity differences among different land cover types (e.g., trees, cropland
and grassland). The land cover map has a resolution of 10 m and is generated based on Sentinel-2 data applying a deep learning
approach. The land cover map mosaic in June and July of 2022 for the Tanzania site and the Colombia site respectively were
considered for the land cover classes extraction.

3. Methods

Our methodology encompasses three principal stages, as depicted in Fig. 4:
(1) We first normalized LiDAR point cloud data to produce CHMs. These models facilitated the computation of structural diversity

indices, namely Structural Richness (RichnessS), Structural Shannon (ShannonS) Index, and Structural Gini-Simpson (GiniS) Index,
which serve as quantifiers of structural diversity.
4
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Fig. 4. Overview of the methods used in this study.

(2) Sentinel-2 imagery was preprocessed to yield surface reflectance. Subsequently, we computed three vegetation indices: the
Normalized Area Over reflectance Curve (NAOC), Anthocyanin Reflectance Index (ARI), and Specific Leaf Area Vegetation Index
(SLAVI). Utilizing these indices, we derived plant functional diversity indices, including Functional Richness (RichnessF), Functional
Shannon (ShannonF) Index, and Functional Gini-Simpson (GiniF) Index.

(3) We performed a statistical analysis to investigate the relationship between these two facets of diversity across varying spatial
scales and distinct ecoregions.
5
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3.1. Calculation of structural diversity

In order to capture the 3D structural complexity, three distinctive indices, namely ShannonS (Torresani et al., 2020), GiniS (Gasc
t al., 2013), and RichnessS were calculated to represent structural diversity. The original Shannon index was developed by Shannon
1948) which focuses on both the richness and evenness component, while the Gini-Simpson index (Simpson, 1949) lays greater
mphasis on the evenness component and on the dominant species (Nagendra, 2002). Richness refers to the number of diverse units
nd evenness to the distribution thereof.

The ShannonS was calculated from LiDAR Data based on the generated CHM (Torresani et al., 2020). The Shannon index, which
as originally used for species diversity, is calculated as follows:

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = −
𝑠
∑

𝑖=1
𝑝𝑖 ⋅ 𝑙𝑛(𝑝𝑖) (1)

where s is the total number of species and pi is the proportion of total sample represented by species i. It ranges from 0 to infinity,
estimating the uncertainty in predicting which species a randomly selected individual belongs to. For ShannonS, the species is
replaced by the 0.5 m height layers and the pi indicates the proportion of pixels in the CHM that fall within a specific height
category (Listopad et al., 2015).

We also calculated the GiniS (Gasc et al., 2013) based on the LiDAR-derived CHM. The Gini-Simpson index defines the probability
of two randomly selected samples belonging to different species. It is calculated as follows:

Gini-Simpson = 1 −
𝑠
∑

𝑖=1
𝑝2𝑖 (2)

RichnessS was also calculated by counting the number of height layers from the CHM per pixel.

3.2. Functional diversity estimation

Three physiological functional traits, namely leaf chlorophyll content (CHL), leaf anthocyanin content (ANTH) and specific leaf
area (SLA) have been selected for functional diversity estimation. These three functional traits were selected based on their ecological
importance.

Chlorophyll is the photosynthetic pigment in leaves that absorbs light energy for photosynthesis. It is one of the primary pigments
of plant leaves, which provides valuable information of plant productivity status (Croft et al., 2020). CHL is defined as the relative
content of chlorophyll a+b per unit leaf area (Palta, 1990). Vegetation chlorophyll content plays a key role in photosynthesis and
conversion of solar energy into stored chemical energy (Croft et al., 2015). Moreover, it is a good indicator of plant physiological
condition (Croft et al., 2015).

ANTH are pigments found naturally in all the tissues of higher plants (Gitelson et al., 2001). ANTH can be induced by biotic
or abiotic stress to help plants cope with the adverse effects of the stress (Li and Huang, 2021). They provide valuable information
about the physiological status of plants, as they are considered indicators of various types of plant stresses and plant physiological
status (Gitelson et al., 2009).

SLA, the inverse of leaf mass per area (LMA), links biomass and water cycles as well as quantifying plant physiological
processes (Ali et al., 2017; Kimball et al., 2002). It is defined as the ratio between leaf area and leaf dry mass, and plays an important
role in plant growth modeling (Garnier et al., 2001). SLA can be linked with plant carbon and water cycles, and provides important
information on the variation of photosynthetic capacity and leaf nitrogen content (Ali et al., 2016).

3.2.1. Vegetation indices as proxies for functional traits
We selected three proxies for the functional traits based on previous studies. In this regard, NAOC, an index that is derived from

hyperspectral data, was adapted for CHL assessment using Sentinel-2 data. NAOC has been proven to act as a reliable predictor
of CHL that has a strong correlation with in-situ CHL data (Delegido et al., 2011). It was designed for the estimation of CHL of
heterogeneous regions with various crops, canopy and different types of bare soil, which is suitable for our application in agroforestry
areas with mixed vegetation (Delegido et al., 2010).

It is given by:

𝑁𝐴𝑂𝐶 = 1 −
∫ 𝑏
𝑎 𝑅 ⋅ 𝑑𝜆

(𝑏 − 𝑎) ⋅ 𝑅𝑏
(3)

where 𝜆 is the wavelength, R denotes reflectance, Rb is the maximum red edge reflectance, and a and b are the integration limits
of the CHL absorption centered at 670 nm. For the calculation for Sentinel-2, a equals 665 nm, and b equals 783 nm.

To compute ANTH from Sentinel-2 data, ARI which was specifically designed to estimate anthocyanin levels in plant leaves was
employed. Previous studies have demonstrated a strong correlation between the ARI and ANTH (Hawryło et al., 2018; Merzlyak
et al., 2008). It was found that the reflectance at around 700 nm was closely related to CHL, while the reflectance at around
550 nm (green range) was related to both CHL and ANTH (Gitelson et al., 2001). Thus, to calculate ANTH, the following formula
was proposed (Gitelson et al., 2001):

𝐴𝑅𝐼 = 1 − 1 (4)
6
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Fig. 5. Visualization of functional diversity calculation: (a) Convex hull volume (RichnessF), (b) ShannonF.

where R560 denotes as the reflectance at 560 nm and R704 stands for the reflectance at 704 nm.
Previously, it was shown that SLAVI had a strong correlation with SLA (Lymburner et al., 2000). It was proposed due to the

relationship between red, near-infrared and Short-wave infrared reflectance and SLA (Lymburner et al., 2000). SLAVI was computed
as follows:

𝑆𝐿𝐴𝑉 𝐼 =
𝑅842

𝑅665 + 𝑅2190
(5)

where R842 is the reflectance at 842 nm, R665 is the reflectance at 665 nm, and R2190 is the reflectance at 2190 nm.

3.2.2. From vegetation indices to functional diversity indicies
RichnessF, a measure of niche extent, was calculated based on the convex hull volume (CHV), which is a construct from

computational geometry (Hauser et al., 2021). It is calculated by constructing a moving window of pixels in the functional space.
The 3D axes are defined by the three functional traits. RichnessF was then obtained by estimating the convex hull volume of the
moving window pixels. It is sensitive to outliers and anomalies (Schneider et al., 2017). The visualization of the CHV is shown in
Fig. 5(a).

To assess both the functional richness and evenness, The Shannon and Gini-Simpson indices were modified (i.e., ShannonF and
GiniF) for plant functional diversity assessment. Instead of working with individual species (Eq (1)), the three functional traits are
scaled between 0 and 1 with min–max scaling, and binned into 3D voxels where each voxel acts as an individual species (Fig. 5(b)).
pi is then the proportion of the total number of pixels (red dots) that fall within the ith voxel. By binning the functional traits,
all pixels are considered for calculating the ShannonF. The Gini-Simpson index was also adapted for the functional biodiversity
calculation. In Eq. (2), instead of working with species, pi indicates the proportion of pixels that fall within a specific voxel to the
total number of pixels. The ShannonF and GiniF take into account not only the number of voxels as richness, but also considers
the number of pixels within each voxel. They are generally less affected by outliers compared to measures of richness due to their
mathematical properties. In Richness measures, each voxel, regardless of how many individuals are present, contribute equally to
the total count. Therefore, the addition or loss of one voxel has a direct impact on the count. However, outliers with low abundance
contribute very little to ShannonF and GiniF because their proportional abundance is very low (Stirling and Wilsey, 2001). This
reduces their impact on the overall diversity calculations.

To calculate the functional diversity using Sentinel-2 indices, we used a moving window approach with three different window
sizes (i.e., 3 × 3, 5 × 5 and 10 × 10). The results have been compared with the reference data, the LiDAR-generated structural
indices.

3.3. Statistical analysis

To compare the performance of different indicators, Pearson correlation coefficient (r) and P value were applied for testing
non-correlation (Pearson, 1896). The Pearson correlation coefficient r is calculated as follows:

𝑟 =
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
√

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)2

√

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

(6)

where r represents the degree of linear correlation between two variables X and Y. Xi is the value of variable X for the ith observation,
and Y is the value of variable Y for the ith observation. X̄ and Ȳ are the means of the variables X and Y respectively.
7
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Fig. 6. Comparison between structural diversity (ShannonS) and functional diversity (ShannonF) in different sites.

Table 1
Mean value of functional diversity and structural diversity at different scales (scaled).
Window size RichnessF ShannonF GiniF RichnessS ShannonS GiniS

3 1 1 1 1 1 1
5 5.81 1.37 1.18 1.88 1.34 1
10 28.34 1.81 1.35 3.67 1.60 1

4. Results

4.1. Scale effects on biodiversity

The comparison between structural diversity and functional diversity based on different scales (i.e., window sizes) is illustrated
in Fig. 6. The most notable correlation between ShannonF and ShannonS was observed when using a window size of 10 × 10 in both
sites (r = 0.84 for Tanzania and Colombia), whereas the difference between a window size of 10 × 10 and 5 × 5 was not deemed
significant (Fig. 6). Notably, the correlation between ShannonF and ShannonS was markedly lower when employing a window size
of 3 × 3 in the Colombia site (r = 0.70). It should be highlighted that there was no difference observed between the correlation
between ShannonF and ShannonS using a window size of 5 × 5 and 3 × 3 for the Tanzania site.

Fig. 7 shows the change in biodiversity across various scales (i.e., window sizes). It is observed that both structural and functional
diversity increased as the scales expanded in both sites. The increase of structural and functional diversity was most pronounced
for the richness measures, followed by the Shannon indices, while the Gini indices were least affected by the change of scales. In
particular, the GiniS was independent of scales. Additionally, functional diversity exhibited a higher average value compared to
structural diversity in both sites (Fig. 7).

Comparing the study sites, the Colombia site exhibited a greater level of functional and structural biodiversity than the Tanzanian
site. The scaled mean values of functional diversity and structural diversity, combined for both sites at different scales, are presented
in Table 1, where each variable based on window size 3 was converted to 1. Other variables have been scaled relative to window size
3 using their transformation. As indicated by the indices, functional diversity exhibited a considerably more pronounced increase
than structural diversity for all variables. RichnessF demonstrated the most significant increase from window size 3 to 10 (28 times),
while the GiniF index had the smallest increase (1.35 times). Structural diversity showed a similar but less pronounced trend, with
no discernible change in GiniS.

4.2. Comparison between different indicators

Significant correlations (r) were observed between many of the structural and functional diversity variables for both sites (Fig. 8).
Notably, there was a high correlation between functional richness (RichnessR) and structural richness (RichnessS) (r = 0.81 in
Tanzania, r = 0.76 in Colombia). Additionally, ShannonF and ShannonS, exhibited a strong correlation with an r of 0.84 in both
sites. However, the correlation between GiniF and GiniS was less consistent, with a stronger correlation observed in Colombia (r =
0.82) compared to Tanzania (r = 0.67).
8
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Fig. 7. Boxplots of functional diversity and structural diversity at different scales.

Fig. 8. Cross-correlation matrix of biodiversity variables in two study sites: (a) Tanzania, (b) Colombia.

4.3. Mapping of functional biodiversity in different ecoregions

To compare the differences in biodiversity in different ecoregions and land cover types, Fig. 9 illustrates the average values of
ShannonF and ShannonS extracted from the land cover maps for three land cover classes (i.e., trees, grassland, cropland). Both sites
consistently displayed similar trends in terms of structural and functional diversity. Tree land cover were found to be more diverse
in terms of both structural and functional diversity in both sites. Cropland showed comparable levels of functional and structural
diversity to grassland in the Colombia site, and a higher diversity than grassland in the Tanzania site.

Fig. 10 shows a distribution of the three vegetation indices and Shannon index derived from LiDAR (ShannonS) for our two study
sites. The diversity had a different distribution for the two sites, with Colombia being skewed towards higher values for NAOC, SLAVI
and ShannonS, while the difference of ARI is not significant.

Furthermore, Figs. 11 and 12 provides a visual interpretation of the functional diversity (ShannonF) map for the Colombia site
and the Tanzania site, highlighting that trees exhibit a higher functional diversity level compared to grassland and cropland.

5. Discussion

In this study, we aimed to enhance the quality of functional diversity mapping using Sentinel-2 data by modifying the species
Shannon index for plant functional traits in a 3D space based on the proxies (vegetation indices) of three important traits including
CHL, ANTH, and SLA. Airborne LiDAR data were utilized to assess the mapped functional richness and evenness. Our results
9
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Fig. 9. Bar plots of mean ShannonF and ShannonS for three different land cover types, including trees, cropland and grassland in two study sites: (a) Tanzania,
(b) Colombia. (Vertical black lines indicate the standard deviation.)

Fig. 10. Distribution of vegetation indices and ShannonS for two study sites: (a) ARI, (b) NAOC, (b) SLAVI, (b) ShannonS.

demonstrated that there is a significant correlation between plant functional and structural diversity when measured with Shannon
and Gini-Simpson index at different scales. Specifically, the proposed functional diversity index ShannonF had the strongest
correlation with LiDAR-derived structural biodiversity variables.

In order to evaluate the scale effects on functional and structural diversity, diversity variables were calculated with different
moving window sizes. The window size is a common parameter for spectral biodiversity measurement with a larger window size
covering a broader area. In both sites, the agreement between functional diversity and structural diversity variables showed a
stronger correlation at the large scale using a window size of 10 × 10 (100 m) (Fig. 6). This could be partially attributed to the
fact that at a larger scale, the noise of the signals as well as the geometric misalignment between Sentinel-2 and LiDAR were
minimized (Saatchi et al., 2011). Moreover, a larger diversity variation was also observed at a larger scale which might be better
captured by both sensors (i.e., LiDAR and Sentinel-2) than a small variation. At a larger scale, it is more likely to have different
vegetation types as well as vegetation height, resulting in a stronger agreement between functional and structural diversity. This
is also the reason why both diversity variables increased as moving window size increased (Fig. 7). However, the increase in both
functional and structural biodiversity variables with the scale was much less significant for the Gini-Simpson index than for richness
and Shannon diversity ( Table 1). Shannon index and Gini-Simpson index both consider richness and evenness, whereas Shannon
10

index focuses more on the richness component, and the Gini-Simpson index focuses on the evenness component and on the dominant
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Fig. 11. Large area functional diversity mapping in the Colombia site: (a) Google satellite RGB basemap, (b) Land cover map, (c) ShannonF mapping, (d) GiniF
mapping.

Fig. 12. Large area functional diversity mapping in the Tanzania site: (a) Google satellite RGB basemap, (b) Land cover map, (c) ShannonF mapping, (d) GiniF
mapping.
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species (Nagendra, 2002). It indicates that as the spatial scale increases, richness increases much more significantly than evenness. A
previous study by Schneider et al. (2017) showed that functional evenness is much less dependent on the study scale than richness.
Our findings are in agreement with Schneider et al. (2017) as we have also observed that the increase was less drastic for the
structural diversity variables than the functional diversity variables (Fig. 7). Specifically, the GiniS is much less affected by scale.
One of the key differences between the two types of biodiversity variables in this study was that the functional diversity considered
three different traits (i.e., CHL, ANTH and SLA), while the structural diversity only included height. These three traits reflect different
physiological status of plants. More traits are more likely to capture and highlight the subtle differences between different plants,
since plants exhibit their variation in different aspects. Height, as a single structural trait, might capture less variation than the other
three functional traits. Therefore, it is reasonable that the richness component had a more significant increase for the functional
traits than the structural traits, which contributed to the larger increase in both Shannon and Gini-Simpson indices.

We have observed significant correlations between the three functional diversity variables and three structural diversity variables
n both regions (Fig. 8), while the correlation varied among these variables. As expected, the cross-correlation within the diversity
ariables was strong which is expected, since Shannon and Gini-Simpson indices both have the richness component. Across all
iversity variables, LiDAR-derived structural diversity exhibited lower values than the functional diversity derived from Sentinel-2
ata. Specifically, at the low range of the diversity, ShannonS showed a much lower variation than the ShannonF (Fig. 6). When only
ow grass is found in the area, the height has a very low variation, leading to a low ShannonS. However, the spectral variation based
n the functional traits between different grass species and within the species could still be captured by Sentinel-2 data, especially in
he red edge and near-infrared domain, showing differences in leaf biochemical content. Another factor is that it is more challenging
or LiDAR ground classification in low vegetation areas, as low vegetation can confound ground classification algorithms, and be
isclassified as ground (Moudrý et al., 2020). Applying normalization on low vegetation might lead to zero height in this situation.
n alternative approach would involve foregoing height normalization in estimating structure diversity. However, this is beyond
onjecture and requires additional research and investigation.

Our finding revealed a stronger correlation between the ShannonF and three structural diversity variables compared to the
ichnessF and the GiniF (Fig. 8), demonstrating the effectiveness of this proposed variable for biodiversity mapping. It takes into
ccount both richness and evenness. The method can be potentially scaled up to higher dimensions considering more plant functional
raits such as leaf water content and leaf area index. We applied three vegetation indices (i.e., NAOC, ARI and SLAVI) as proxies to
stimate plant traits (Helfenstein et al., 2022). It is demonstrated that NAOC as a proxy for leaf CHL content was significantly higher
n the Colombia site than in the Tanzania site (Fig. 11), which is an indication of higher productivity in the Colombia site (Peng and
itelson, 2012). A similar trend has been observed for SLAVI (Fig. 11). Usually, high SLA occurs in areas with high water and nutrient
vailability (Long et al., 2011), which is in agreement with our observation. Sentinel-2 data provide multiple bands in the near-
nfrared and red-edge region making it feasible for the retrieval of certain plants traits, while traits like leaf carotenoid content are
ore difficult to estimate with Sentinel-2 data. It requires narrow band indices including the wavelength around 510 nm (Gitelson

t al., 2002) which is unavailable for Sentinel-2. Therefore, leaf anthocyanin content was chosen instead. However, anthocyanins
re induced in plants in response to abiotic stresses such as drought. This limited our study period to the dry season when the
oncentrations of anthocyanin were higher (Cheng et al., 2014). Therefore, applying narrow-band hyperspectral data enables the
easurement of various plant traits, including carotenoid content, without restricting the time period for measurement.

The differences between functional diversity and structural diversity could be partially attributed to the image capturing dates.
here were 3–4 months differences in the Sentinel-2 capturing data and the airborne LiDAR capturing date. Ideally it is advised
o coincide the image dates for the two types of data for the comparison within the same period. The main reason to choose June
nd July for Sentinel-2 data was to obtain the imagery in the dry season to avoid cloud cover, which was quite a challenge in the
ropical region. That being said, LiDAR was mainly used to capture the structural information, which was not affected by the dry
nd wet seasons. Additionally, the growth in height in the dry season was minimal. Thus, we did not expect much change in terms
f canopy height during the 3–4 months. Therefore, it is reasonable to assume that the canopy height in June and July can be
ssociated with the imagery captured by Sentinel-2. However, another aspect is that the management practices can also affect the
iodiversity calculation since the study areas are mainly agroforestry systems. To tackle this problem, either radar data which are
ot affected by cloud should be considered, or LiDAR data need to be obtained in the same period with Sentinel-2 data. It is also
orth noting that the images should always come from the same period (dry season) for the change detection for different years.

Our functional and structural mapping across the three land cover classes — tree cover, grassland and cropland, in the two
ifferent study areas confirmed our assumption that trees support greater biodiversity than grassland and cropland (Fig. 9). For
he tree cover class, a higher functional and structural biodiversity was observed in the Colombia site than in the Tanzania site
Fig. 9). This can be due to the fact that the Colombia site is in the tropical and subtropical moist broadleaf forests region, while
he Tanzania site is located in the tropical and subtropical grasslands, savannas, and shrublands region, and the tree species are
ore diverse (Brun et al., 2019), exhibiting higher variation in plant functional traits and height. Regarding the grassland and

ropland, the Colombia site also showed a higher diversity in terms of functional diversity, while the structural diversity did not
how a significant difference, as it is less sensitive to low vegetation. The higher functional diversity of these two land cover types
n Colombia could be attributed to the climate conditions (Hu et al., 2022). In the Colombia site, the rainfall was much higher, and
he links between high rainfall and rich biodiversity are well-established (Hu et al., 2022). Although no significant difference was
bserved regarding the mean value for the structural diversity, the standard deviation (Fig. 9) was much higher in the Colombia
ite, especially for the cropland class. This could be caused by certain mixed pixels of trees and cropland/grassland due to the 10 m
esolution of the Sentinel-2 data. When trees are included in a pixel, the diversity becomes much higher. Another possible reason
12

ould be that in the Colombia site, often bigger trees are planted to implement agroforestry, which provides shade for crops like
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coffee (Bosselmann et al., 2009; De Leijster et al., 2021). It suggests that agroforestry systems may have an impact on functional and
structural biodiversity. Thoughtful implementation and consideration of local context can potentially enhance their positive impact
on our natural environment.

It is important to note that this study is subject to a few limitations worth discussing. Specifically, in situ data collection was not
onducted for this research in order to estimate functional diversity. Consequently, vegetation indices were applied as proxies for
unctional traits. While we were cautious and selective in choosing the indices, this approach may introduce a degree of inaccuracy.
or instance, SLAVI has been considered as a relatively new index for estimating SLA (Kim et al., 2024) using Earth observation
ata. Therefore, more investigation needs to be done in order to fully understand the relationship between SLAVI as a proxy of
LA, and the extent to which plant functional traits influence SLAVI. In addition, while the ARI was broadly applied as a proxy of
NTH, the effectiveness of ARI may vary across. However, the ARI has been widely applied as a proxy for ANTH its efficacy may

luctuate among various plant species owing to disparities in anthocyanin accumulation patterns and spectral responses. Moreover,
hen applying Earth observation data to derive vegetation indices, it is significant to recognize the impact of various environmental
lements like soil composition as a background, atmospheric conditions, and the structure of the canopy. These factors have the
otential to introduce inaccuracies in the estimation of these indices.

Our findings suggest that the novel indices ShannonF and GiniF can effectively capture the functional diversity in agroforestry
reas. By estimating functional diversity in agroforestry, managers can optimize a range of ecosystem services. Diverse functions
elp create a more balanced and self-sustaining ecosystems, reducing the need for external inputs like fertilizers and pesticides.
ystems with higher functional diversity are generally more resilient to biotic and abiotic stresses, such as drought and diseases as
he presence of functionally diverse species provides a more stable ecosystem. Functional diversity also allows different species to
fficiently exploit different niches, minimizing competition and maximizing the use of available resources, which help managers
ptimize the agroforestry system design. Managing for functional diversity often involves choosing species combinations that
omplement each other’s functions and managing the system in a way that maintains and enhances these functions over time.

. Conclusions

This research focuses on the field of biodiversity monitoring by leveraging advanced remote sensing technologies, including
entinel-2 satellite imagery and airborne LiDAR data, to evaluate functional and structural diversity in agroforestry areas within
wo distinct ecoregions. Our study contributes to the understanding of biodiversity on a large scale, offering a novel approach
or mapping and comparing different forms of biodiversity. The key findings of our research demonstrate a substantial correlation
etween functional and structural diversity, particularly at larger spatial scales. This correlation highlights the interdependence of
ifferent biodiversity aspects and their collective impact on ecosystem health and functionality.

Moreover, our study reveals that tree land cover class supports greater biodiversity compared to grassland and cropland in both
he Victoria Basin forest-savanna mosaic in Tanzania and the Cauca Valley Montane forests in Colombia, with the latter exhibiting
articularly high biodiversity levels. These findings have important implications for conservation strategies, as they provide a clearer
icture of biodiversity distribution and the relative importance of different land cover types in maintaining ecosystem diversity.

The integration of multiple remote sensing techniques and the development of novel functional diversity indices ShannonF and
iniF in this study represent a significant advancement in ecological monitoring and analysis. Future research could build upon

hese findings to explore the application of these methods in other ecosystems and to refine the techniques for even more precise
iodiversity monitoring.
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