
International Journal of Applied Earth Observation and Geoinformation 121 (2023) 103364

A
1

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

Spatial+: A new cross-validation method to evaluate geospatial machine
learning models
Yanwen Wang ∗, Mahdi Khodadadzadeh, Raúl Zurita-Milla
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514AE Enschede, The Netherlands

A R T I C L E I N F O

Dataset link: https://easy.dans.knaw.nl/ui/dat
asets/id/easy-dataset:278047

Keywords:
Data-driven models
Model evaluation
Cross-validation
Spatial autocorrelation
Feature space

A B S T R A C T

Random cross-validation (CV) is often used to evaluate geospatial machine learning models, particularly
when a limited amount of sample data are available, and collecting an extra test set is unfeasible. However,
the prediction locations can be substantially different from the available sample, leading to over-optimistic
evaluation results. This has fostered the development of spatial CV methods. Yet these methods only focus on
spatial autocorrelation and cannot sufficiently guarantee that the validation subset is a good proxy of the test
set with significant differences. In this paper, we propose the spatial+ cross-validation (SP-CV) method. This
method, which considers both the geographic and feature spaces, is composed of two stages. The first stage
addresses spatial autocorrelation issues by using agglomerative hierarchical clustering to divide the available
sample into blocks. The second stage deals with multiple sources of differences. It uses cluster ensembles to
split the blocks into training and validation folds based on the locations of the sample data and the values of
the covariates and target variable. The proposed method is compared against random and block CV methods
in a series of experiments with Amazon basin above ground biomass and California houseprice datasets. Our
results show that SP-CV provided the smallest error differences with respect to the reference error. This means
that SP-CV produced more representative splits and led to more reliable model evaluations. It suggests that a
reliable model evaluation requires to consider both the geographic and the feature spaces in a comprehensive
manner.
1. Introduction

Spatially continuous variables are needed in many geoscience stud-
ies. However, due to economic and time constraints, many variables
are just collected from a limited set of locations (Zhu et al., 2015).
At the same time, the availability of fundamental geographic datasets
and products, such as digital elevation models, gridded climatic data,
and Earth observation images, is constantly increasing. These datasets
and products can be used as covariates to create spatially continuous
variables. For this, the sampled target variable and the corresponding
covariates are used to build a predictive model. This approach to gener-
ate spatially continuous variables, called geospatial prediction, is now
widely embedded in many geoscience studies and applications (Meyer
et al., 2019).

Because of its remarkable performance in solving complex prob-
lems, machine learning (ML) is commonly used to build geospatial
prediction models (Gao et al., 2022; Wei et al., 2022). For instance, ML
has been used for soil (Hengl et al., 2015) and crop mapping (Aguilar
et al., 2018), ecological modeling (Dang et al., 2019), mineral stud-
ies (Khodadadzadeh and Gloaguen, 2019), crime forecasting (Kounadi
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et al., 2020) and geo-health studies (Garcia-Marti et al., 2018). More
recently, ML has played an important role in forecasting the spatial
distribution of the COVID-19 pandemic (Pourghasemi et al., 2020).

Model evaluation is a crucial step in geospatial prediction (Poh-
jankukka et al., 2017). To obtain reliable evaluation results, a test set
that unbiasedly represents the prediction locations (e.g., the test set col-
lected by probability sampling, Brus et al. (2011)) is needed (Wadoux
et al., 2021). However, collecting new sample data to create a test set is
usually unfeasible due to many practical challenges, such as sampling
cost, research urgency, and sample data shortage (Valavi et al., 2019).
Therefore, the available sample are customarily split into two subsets:
the training subset, which is a proxy of the available sample data used
to build the model, and the validation subset, which is a proxy of the
test set, as such, it is used to evaluate the model. In this context, random
k-fold cross-validation (CV) is frequently used for such a data splitting.
The key idea of k-fold CV is to randomly split the available sample
data into k non-overlapping folds that are then used as the validation
subset one by one (in an iterative manner) with the remaining k-1 folds
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Fig. 1. The workflow of 5-fold random cross-validation.
used as the training subset. Fig. 1 shows the workflow of a typical 5-
fold CV (i.e., 𝑘 = 5). In the end, because every sample (𝑠𝑎𝑚𝑝𝑙𝑒𝑛) gets
a prediction value (𝑝𝑛) and a true value (𝑡𝑛), a model’s performance
metric (𝑀) can be calculated based on all 𝑛 prediction-true values
pairs. Random CV has long been proven accurate (Efron, 1983) and
efficient for model’s evaluation and is often used by the statistical
and computer science communities. It has also been used in plenty of
geospatial prediction ML modeling studies (Chen et al., 2018; Nesha
et al., 2020). In recent years researchers have showed that, when the
available sample data represent the prediction locations well (e.g., the
samples are uniformly distributed in the prediction area), random CV
provides accurate evaluations (Wadoux et al., 2021).

However, in practical geospatial prediction situations, there is no
guarantee that the available sample data represent the prediction loca-
tions well. In fact, in many cases, samples and prediction locations are
different. For example, samples are usually spatially clustered (i.e., un-
evenly distributed (Li et al., 2020)) due to multiple data sources (Meyer
and Pebesma, 2022; de Bruin et al., 2022) or other reasons. This
phenomenon is frequently observed in ecological (Ploton et al., 2020),
air pollution (Xiao et al., 2018), and soil (Hengl et al., 2015) data,
especially on a global scale (Hooker et al., 2018; Meyer and Pebesma,
2022). When the available sample data are clustered, they tend to over-
represent the specific regions where samples are distributed, resulting
in under-representation of other regions in the prediction locations (de
Bruin et al., 2022). Another case is extrapolation, i.e., the geospatial
prediction model should be applied in a new area (Roberts et al., 2017).
For instance, when working on landslides (Brenning, 2005; Wei et al.,
2022) or invasive-species diffusion (Cheng et al., 2018), the sample
can only be collected from areas where landslides or species invasion
already occurred, but the prediction locations are the new areas where
this phenomenon has not yet occurred. In this circumstance, similar to
the clustering samples case mentioned above, the prediction locations
are different and cannot be represented by the available sample data.

The actual cases that sample data are different from prediction
locations bring challenges to the evaluation of geospatial ML mod-
els (Roberts et al., 2017). While recent studies have justified the use of
random CV in certain evaluations, it should be noted that this approach
may not be suitable for all situations. These studies themselves admit
that situations such as strong clustering of samples can still pose chal-
lenges for model evaluation using random CV (de Bruin et al., 2022).
In particular, a good model evaluation needs to check the model’s gen-
eralization ability (Beigaitė et al., 2022), which requires the selection
of a validation subset that can be representative of a possible test set,
especially when the test set (at the prediction locations) is different
from the available sample. However, in random CV, validation sample
could be very close to the training sample because of the random split.
In this case, both the target variable and the corresponding covariates
could be very similar (Gao et al., 2022). As a result, the validation
sample is actually ‘‘(pseudo) replica’’ of the training sample instead
2

of a proxy of the test sample. This leads to the situation, where the
built models in traditional k-fold CV method are over-fitted and the
derived evaluation results are over-optimistic (Brenning, 2005; Wiens
et al., 2008; Xu et al., 2021).

Since the early 2000s, a series of spatial CV methods have been
proposed to avoid the limitations of random CV. All the spatial CV
methods originate from the natural and straightforward idea — avoid-
ing or mitigating spatial autocorrelation when splitting training and
validation samples (Oliveira et al., 2021; Beigaitė et al., 2022). For
example, the buffer leave-one-out cross-validation (BLOOCV) removes
spatially autocorrelated training sample data by considering a spatial
buffer around the selected validation samples (Le Rest et al., 2014;
Valavi et al., 2019). The weighted CV reduces the importance of
high-density sample data in CV to decrease the influence of spatial
autocorrelation in evaluation (Sarafian et al., 2021; de Bruin et al.,
2022). Another example is block CV that first divides all samples into
contiguous blocks, and then avoids the selection of samples within the
same block as both training and validation samples (Brenning, 2005;
Valavi et al., 2019; Kollert et al., 2021).

Spatial CV methods, as mentioned earlier, may not be sufficient to
account for differences between available sample data and prediction
locations when these differences are significant (Meyer and Pebesma,
2021; Milà et al., 2022). This is because spatial autocorrelation is only
one source of differences, while there are many other sources from both
the geographic and feature spaces (Roberts et al., 2017). Especially
in the feature space as covariates and target variable, there are often
remarkable differences between available sample data and prediction
locations (Wadoux et al., 2021; Meyer and Pebesma, 2022). When
splitting the validation subset to represent the test set, these multiple
sources of differences should be considered comprehensively.

In this paper, we propose a new CV method to evaluate ML models
used for geospatial prediction. Our method addresses situations where
the sample data are different from the prediction locations. It also ad-
dresses the multiple sources that constitute such differences (especially
the differences in the feature space) along with the consideration of
spatial autocorrelation. By doing this, we guarantee that the validation
subset split better reflects the differences between the training and test
sets.

The remainder of this paper is organized as follows. In Section 2, we
introduce the main steps of the proposed method, and briefly describe
the traditional and block CV methods, which are used to benchmark
our proposed method. In Section 3 we describe the experimental setup
designed to assess the added value of the proposed method. In Section 4
we present and discuss our results and, finally, Section 5 contains our
main conclusions and recommendations for future research.

2. Methods

In this section, we further elaborate on the traditional random k-fold
CV (RDM-CV), and a typical spatial CV — the block k-fold CV (BLK-CV).
Then, we discuss the detailed design of the proposed method.
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Fig. 2. A graphical representation of compared CV methods (k = 5). Legends: hollow circles (◦) are validation samples, black triangles (▴) are training samples, squares (□) in
(b) are divided blocks.
Fig. 3. The flowchart of the proposed method. (The subfigures above the samples, blocks, and folds are their examples.).
2.1. Random and block cross-validation methods

Just as its name implies, RDM-CV split the available sample data
into k equal size folds randomly. Fig. 2(a) shows an example of RDM-CV
split for a spatial dataset. In this figure, 1/5 of the samples are collected
in one fold and used as the validation subset, and the remaining
samples are used as the corresponding training subset. We can also see
that the validation sample data are surrounded by and close to a lot of
training sample data, which will lead to autocorrelation.

BLK-CV tries to avoid the spatial autocorrelation by dividing the
sample data into contiguous blocks. The squares shown in Fig. 2(b) are
the most common block shape (Brenning, 2005; Lyons et al., 2018;
Valavi et al., 2019). The block size is typically equal to the spatial
autocorrelation threshold (Roberts et al., 2017). In the BLK-CV method,
every fold is created by randomly selecting blocks instead of samples.
In this way, training and validation samples are forced to be in different
blocks. As shown in Fig. 2(b), within the same block, the sample data
belong to either the validation or the training subsets.

2.2. The proposed method: spatial+ cross-validation

In this section, we present the proposed CV method called spatial+
cross-validation (SP-CV). Fig. 3 summarizes the complete methodology
by a detailed flowchart. As shown in Fig. 3, the proposed method is
composed of two stages. The first stage is similar to BLK-CV. It adopts
the idea of considering spatial autocorrelation in the process of samples
splitting. The second stage complements the first stage by considering
the multiple sources of differences. It splits the blocks from the first
stage into k folds based on locations, the values of the target variable
and covariates. These two stages are explained in detail in the following
sections.
3

2.2.1. The first stage: dividing samples into blocks
The detailed steps of the first stage are shown in Algorithm 1. In this

stage we adopt the idea of BLK-CV to divide sample data into blocks.
However, for generating blocks, we use agglomerative hierarchical
clustering (AHC) (Arabie et al., 1996) instead of using square blocks
to avoid its problems as unbalanced amount sample and sample close
to block boundary (Ploton et al., 2020), which are also shown in
Fig. 2(b). AHC is a ‘‘bottom-top’’ clustering method that merges the
closest samples or sub-clusters. It integrates the consideration of sample
data’s spatial distribution in the blocks division process.
Algorithm 1 1st stage: using AHC to divide samples into blocks

Input: samples
Output: blocks

1: Create an empty list 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 and add all 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 into it
2: Create an empty list 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
3: (Here is the start of AHC)
4: while 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 has more than 1 cluster do
5: Find clusters pair 𝐴&𝐵 whose linkage value is the smallest
6: if 𝐴&𝐵’s linkage ⩽ threshold then
7: Merge 𝐴&𝐵 as a new cluster 𝐶
8: Add 𝐶 into 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
9: Delete 𝐴&𝐵 from 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

10: else
11: Add 𝐴&𝐵 into 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
12: Delete 𝐴&𝐵 from 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
13: end if
14: end while
15: if 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 has 1 cluster then
16: Add the remaining only 1 cluster into 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
17: end if
18: (Here is the end of AHC)
19: The clusters of 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 are divided blocks
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Fig. 4. Example of SP-CV. These two figures are also shown in Fig. 3.
An important element in AHC is the so-called linkage, which repre-
sents the distance of sub-clusters (Murtagh, 1983). By its two functions,
the linkage determines how blocks are divided. The first is determining
which two sub-clusters should be merged, and the second is determin-
ing when AHC should stop, i.e., determining the size of blocks. We use
the maximum linkage because it represents the maximum distance of
samples within the same cluster. The maximum linkage can determine
the size of clusters (blocks) in the first stage. Hence, it is adopted here.

Similar to BLK-CV, in SP-CV, the block’s size is set equal to the
spatial autocorrelation threshold (Roberts et al., 2017). And the spa-
tial autocorrelation threshold is calculated by the sample data’s semi-
variogram (Gasch et al., 2015).

Fig. 4(a) shows an example of AHC blocks produced by the first
stage of SP-CV. As this figure shows, compared with the blocks of BLK-
CV in Fig. 2(b), the amount of samples in the AHC blocks is more
balanced and all blocks have at least one sample. Moreover, the samples
are all far away from the blocks’ borders, which means that AHC can
better avoid spatial autocorrelation.

2.2.2. The second stage: splitting blocks into folds
The lack of spatial autocorrelation is not the only factor that can

cause the differences between samples and prediction locations. These
differences can arise from multiple sources in the geographic and
feature spaces. As such, in SP-CV, a second stage is included to account
for these factors.

The data used for spatially predicting a target variable using an ML
model involves three main components: locations, covariates, and the
target variable. The location information pertains to the geographic
space, while covariates and the target variable are part of the fea-
ture space. To account for differences from multiple sources, all three
components should be considered when splitting samples in the CV
process. Clustering is a suitable tool to capture such differences in the
splitting of the training and validation subsets. For example, Schratz
et al. (2019) used K-Means clustering to split samples into five folds
based on sample data’s locations. Thus, in the second stage, we suggest
using a clustering approach based on all three components (locations,
covariates, and the target variable) to split the blocks. This approach
reflects the differences that can arise from multiple sources in both the
geographic and feature spaces.

Due to the fact that the number of covariates is typically much
larger than the number of the target (one) and location (usually two,
i.e., 𝑥 and y) variables, using a single clustering approach on a com-
bined set of features from all three sources may not be appropriate.
This might lead to the over-representation of the differences in co-
variates space in the clustering. In addition, each of the three sources
contains distinct types of information and patterns, a single clustering
approach is unable to capture this diversity. Therefore, we suggest first
performing clustering on locations, covariates, and the target variable
separately, and then, combining the clustering results.
4

For combining three clustering results mentioned above to pro-
duce the final clusters as the split k folds, we use cluster ensembles
(CE) (Strehl and Ghosh, 2002) here. CE is a method that can combine
different clustering results to obtain a single comprehensive clustering
result. This means, by CE, the multiple sources of differences can
be considered simultaneously. The differences between sample data
and prediction data can be better reflected by training and validation
subsets.

Algorithm 2 2nd stage: using CE to split blocks into folds
Input: blocks
Output: k clusters (k folds)

1: For each block, by averaging contained samples’ corresponding
values, produce its unique values of coordinates, covariates, and
target variable.

2: (Here is the start of CE)
3: For all blocks,

• For considering the differences of locations, using K-Means
based on coordinates to produce 𝑘 clusters – 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐿).

• For considering the differences of covariates, using K-
Prototypes based on covariates to produce 𝑘 clusters –
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐶).

• For considering the differences of target variable, using K-
Means based on target variable to produce 𝑘 clusters –
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑇 ).

4: Input 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐿), 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐶), 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑇 ) to consensus function (here
use Hybrid Bipartite Graph Formulation (HBGF)), produce a final
𝑘 clusters result – 𝑓𝑖𝑛𝑎𝑙 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

5: (Here is the end of CE)
6: The 𝑘 clusters of 𝑓𝑖𝑛𝑎𝑙 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 are split 𝑘 folds of SP-CV

The detailed steps of the second stage is shown in Algorithm 2.
The first stage divides samples into blocks for considering spatial au-
tocorrelation. These blocks serve as the operational unit in the second
stage. To begin, the values of the coordinates, covariates, and the target
variable for each block should be calculated by averaging the values of
all samples contained within the block.

Then, clustering is performed on the blocks for the three compo-
nents – locations, covariates and the target variable – respectively.
Three clustering results (𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐿) (i.e., locations clusters), 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝐶)

(i.e., covariates clusters), and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑇 )(i.e., target variable clusters))
are obtained separately for each source. As to the respective clusterings,
for locations and target variable, K-Means clustering is used. For the co-
variates, we suggest applying K-Prototypes clustering method (Huang,
1998) because it can deal with mixed data types and there could be
categorical variables in the list of covariates.

For the combination process using CE, consensus function (Strehl
and Ghosh, 2002; Alqurashi and Wang, 2019) is the key. Consensus
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function can find the maximum consistency between different clus-
tering results. In this way, the final produced clustering results can
guarantee comprehensiveness as much as possible. Three respective
clustering results from the previous step are input to the consensus
function to acquire the final clustering result. Here, we select the
Hybrid Bipartite Graph Formulation (HBGF) (Fern and Brodley, 2004)
as the consensus function, because it shows reliable performances and
guarantees both the similarity among instances and clusters when
forming the final clustering result.

Additionally, it should be noted that the value of k in CE (both initial
respective clusterings and final multiple clustering) has to be set to the
number of folds. As such, when the second stage finishes, the final k
clusters produced by CE, are the k folds of SP-CV.

Fig. 4(b) shows an example of CE folds produced after the second
stage of the proposed SP-CV, where each region with an identical tex-
ture represents a fold. These folds are not only split by their locations,
but also by the other aspects associated with the feature space.

3. Experiments

The experiments were implemented on two datasets so that we can
assess our CV method corresponding to the actual cases that sample
data are obviously different from the prediction locations. Both datasets
are sufficiently large for our experiments and have been previously used
in spatial CV studies (Wadoux et al., 2021; Agarwal et al., 2021). In the
following subsections, we provide more details on the datasets, the ML
model, and our experimental setup.1

.1. Datasets

.1.1. Brazil Amazon basin above ground biomass dataset
The Brazil Amazon basin above ground biomass (AGB) dataset was

dopted from Wadoux et al. (2021). This dataset contains 28 covariates
nd one target variable, i.e., AGB. Fig. 5(a) shows the distribution of
mazon AGB dataset. All data of covariates and the target variable are
ased on a 928*1642 raster layer with 1 km2 resolution.

Using this dataset, the experiments are designed to simulate the
actual case of prediction with strongly clustered samples. Therefore, the
selection of the samples in experiments needs to reflect the characteris-
tic of clustering. The detailed steps will be introduced in the following
experiment design subsection.

3.1.2. California houseprice dataset
The well-known California housing dataset (Pace and Barry, 1997),

which contains information from the 1990 California census. It com-
prises 20640 records and nine covariates next to the house price, which
is the target variable. This dataset covers the entire state of California
(United States).

The experiments of this dataset are used to simulate the actual
case of extrapolation. Therefore, the prediction locations should be
based on a distinct area to reflect that model is applied in a totally
new area. For defining what is a distinct area, regional information is
required for this dataset. An individual region from this dataset can
serve as a suitable simulation for a new area because the concept of a
region involves grouping similar data and distinguishing it from other
data. Hence, if we know how regions are separated in this dataset, the
prediction locations can be constructed by selecting one region’s data to
simulate extrapolation. Considering that house price is highly related to
population activities and distribution, we mainly refer to the regional

1 The datasets and the necessary code to reproduce our results can
e downloaded from: https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:
78047 and https://zenodo.org/record/7796221#.ZCsjZ3bP2Uk
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stay-at-home map,2 made for COVID-19 pandemic, and additional in-
formation from the government regions division map,3 to obtain the
regions information. Fig. 5(b) shows the California houseprice dataset,
and also the regions’ labels.

3.2. Machine learning method

A large variety of ML methods have been used for spatial pre-
diction. However, the focus of this paper is on the evaluation of CV
methods. Thus, similar to previous CV studies (Roberts et al., 2017;
Wadoux et al., 2021), we selected just one ML method for our ex-
periments: random forest (RF). This ML method is popular and has
shown good general performance (Hengl et al., 2018; de Bruin et al.,
2022; Milà et al., 2022). Additionally, RF has many advantages such
as reliability (Chen et al., 2018; Filippi et al., 2019), robustness and
stability (Garcia-Martí et al., 2017), and being user-friendly (Breiman,
2001; Hengl et al., 2018).

3.3. Experiments design

Fig. 6 illustrates our four-step experimental workflow. Step 1 deals
with the construction of sample data and prediction locations from the
entire dataset. In step 2 the prediction locations are applied to calculate
the reference prediction error, i.e., 𝑒𝑟𝑒𝑓 . This reference error is used to
check which CV method can provide a more accurate evaluation result.
In step 3 we implement each of CV methods on the sample data. This
implementation provides estimated prediction error (i.e., evaluation
result) of each CV method (i.e., 𝑒𝐶𝑉 ). In the final step we calculate the
bsolute difference (𝑑𝐶𝑉 ) of the two error values, 𝑒𝑟𝑒𝑓 and 𝑒𝐶𝑉 .

.3.1. Step 1: Construct sample data and prediction locations
To quantify which CV method can provide a more accurate eval-

ation result, the reference prediction error (𝑒𝑟𝑒𝑓 ) is an indispensable
lement in experiments. Hence, CV methods cannot be implemented
n the entire dataset. The dataset should be divided into two parts,
ne containing sample data to implement CV methods, and the other
ontaining prediction locations to provide a standard prediction error
.e., 𝑒𝑟𝑒𝑓 (Oliveira et al., 2021). Thus, the first step of the experiments
s constructing sample data and prediction locations.

For the Amazon AGB experiments, as introduced in the description
f the dataset, the strongly clustered samples should be selected first.
he selection of clustered samples was adopted from Wadoux et al.
2021). The specific selection method is as follows: first, all grid points
ith available data are clustered into 100 sub-regions. Then, 10 sub-

egions are chosen at random manner. Next, from each of 10 selected
ub-regions, 100 samples are randomly selected, resulting in a total of
000 strongly clustered samples from the study area. The remaining
rid points that were not selected are considered as prediction loca-
ions. Fig. 7(a) shows an example of selected samples (green points) and
rediction locations (red points) in the Amazon AGB experiment. For
educing the random effect, the sample selection process was repeated
0 times. It means all the experiments using the Amazon AGB dataset
as repeated 10 times in this research.

Since California houseprice experiments are used to reflect the
ase of extrapolation, the prediction locations with a new area should
e determined first. As explained in the subsection of datasets, an
ndividual region’s data can be used as prediction locations. Fig. 7(b)
hows an example where, the data in ‘‘Greater Sacramento’’ region
re used as the prediction locations, i.e., red points. The remaining
ata cannot be directly used as samples. Because there are still some
ata close to the prediction locations that are spatially autocorrelated

2 https://www.gov.ca.gov/2020/12/03/california-health-officials-
nnounce-a-regional-stay-at-home-order-triggered-by-icu-capacity/

3 https://census.ca.gov/regions/

https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:278047
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:278047
https://zenodo.org/record/7796221#.ZCsjZ3bP2Uk
https://www.gov.ca.gov/2020/12/03/california-health-officials-announce-a-regional-stay-at-home-order-triggered-by-icu-capacity/
https://www.gov.ca.gov/2020/12/03/california-health-officials-announce-a-regional-stay-at-home-order-triggered-by-icu-capacity/
https://census.ca.gov/regions/
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Fig. 5. Samples and regions distribution of two datasets.
Fig. 6. The workflow of the experiment.

(i.e., black points in Fig. 7(b)). These data within the autocorrelation
buffers of the prediction locations should be removed, to guarantee
that the prediction locations can reflect a totally new area. As Fig. 5(b)
shows, there are five regions in California houseprice dataset. Every
region’s data will be used as prediction locations in turns. Thus, there
were five California houseprice experiments in this research.

3.3.2. Step 2: Calculate reference prediction error
In step 2, all prediction locations are directly used as the test set.

Therefore, the calculated value of reference prediction error (𝑒𝑟𝑒𝑓 )
can completely represent the model’s performance. First, all samples
(e.g., green points in Figs. 7) are used to build an ML model. Then, this
model is applied to the prediction locations (e.g., red points in Figs. 7)
to obtain the reference error based on the prediction of the ML model
at the prediction locations and the true values.

There are various error metrics options, such as mean absolute error
(MAE) (Oliveira et al., 2021), model efficiency coefficient (MEC) (de
Bruin et al., 2022), and root-mean-square error (RMSE) (Wadoux et al.,
2021) to calculate 𝑒 . In this paper, we used the RMSE metric, not
6

𝑟𝑒𝑓
only because it is commonly used as the sole metric in spatial CV
studies (Roberts et al., 2017; Ploton et al., 2020; Wadoux et al., 2021),
but also because previous studies have demonstrated that other metrics
have produced similar results and conclusions to those obtained using
RMSE (Oliveira et al., 2021; de Bruin et al., 2022).

3.3.3. Step 3: Calculate the prediction error of each CV method
In this step, we adopted the same strategy as in the traditional RDM-

CV to calculate the prediction error (𝑒𝐶𝑉 , i.e., evaluation result) of the
BLK-CV and the proposed SP-CV. As shown in Fig. 1, after splitting
k folds, one fold is taken as the validation subset and the remaining
k-1 folds are used to train the ML model. Then, the trained model
is validated using the validation subset and the error is calculated.
This process is repeated k times until each of the folds is used as
the validation subset. Finally, after all the k rounds, 𝑒𝐶𝑉 is calculated
based on each sample’s prediction and true values. In the Amazon
AGB experiments, k was set to 10; and in the California houseprice
experiments, k was set to 5. Both 10 and 5 are the most commonly
used values in CV (Nesha et al., 2020; Carvalho et al., 2022). Because
random selections exist in RDM-CV and BLK-CV, on the same sample
set, each CV method was implemented 10 times. The final 𝑒𝐶𝑉 was
computed by averaging the results of 10 times repetition to account
for random errors (Ploton et al., 2020).

3.3.4. Step 4: Calculate CV method’s prediction error difference
After step 2 and step 3, we obtain the reference prediction error

– 𝑒𝑟𝑒𝑓 – and the evaluation result of every CV method (i.e., 𝑒𝐶𝑉 ). By
comparing them, we can find out which CV method performs better
in evaluation. For this purpose, we use the CV method’s prediction
error difference (i.e., 𝑑𝐶𝑉 ) as a quantitative metric. We calculate 𝑑𝐶𝑉
by subtracting 𝑒𝐶𝑉 from 𝑒𝑟𝑒𝑓 and getting the absolute value (i.e., 𝑑𝐶𝑉 =
|𝑒𝐶𝑉 −𝑒𝑟𝑒𝑓 |). When 𝑑𝐶𝑉 is closer to zero, the corresponding CV method’s
performance is considered better.

Since there were 10 Amazon AGB experiments and 5 California
houseprice experiments, the final performance of each CV method in
these two series of experiments was calculated by averaging all the 𝑑𝐶𝑉
results.

4. Results and discussion

Fig. 8 shows the averaged 𝑑𝐶𝑉 results for all three CV methods. First
and foremost, it is remarkable that both BLK-CV and the proposed SP-
CV, which consider spatial properties of the data, produce the closer
evaluation results to the reference prediction error than RDM-CV. This
suggests that spatial CV may work for evaluating spatial prediction
ML models when sample data and prediction locations are different.
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Fig. 7. The examples of sample data and prediction locations in experiments.
Fig. 8. The final results (prediction error difference – 𝑑𝐶𝑉 ) averages of experiments.
Fig. 9. The final results (prediction error difference – 𝑑𝐶𝑉 ) standard deviations of experiments.
Furthermore, SP-CV’s evaluation results were much closer to the ref-
erence prediction error than the results of BLK-CV for both datasets
experiments. This shows that the proposed method, which considers
both the spatial autocorrelation and the multiple sources of differences
in data, can indeed provide a reasonable evaluation result. Fig. 9 shows
the standard deviations of 𝑑𝐶𝑉 in two series of experiments. SP-CV still
obtained the lowest standard deviation. To summarize, in experiments,
SP-CV was closer to the reference metric.
7

For a CV method, the way folds are split determines the produced
evaluation result. In order to better understand why SP-CV obtained
closer evaluations in our experiments, we visually analyze the folds
splitting results of this method in comparison with the BLK-CV method.
Figs. 10 and 11 show two examples of folds splitting using SP-CV and
BLK-CV methods respectively.

If we first focus on the sub-figures with pink borders in Fig. 10
as the Amazon AGB experiments, we can observe the details of folds’
samples in SP-CV and BLK-CV methods. In the sub-figure of Fig. 10(a),
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Fig. 10. Examples of folds split in Europe OCS experiments.
Fig. 11. Examples of folds split in California houseprice experiments.
it is noticeable that almost all samples are split into the same fold
(three folds in total) by SP-CV. While, in the subfigure of Fig. 10(b),
BLK-CV split the same samples into eight different folds, where these
samples are located quite close to each other. This suggests that SP-CV
could have a better consideration of spatial autocorrelation in the folds
splitting process.

For the California houseprice experiments, Fig. 11 shows the gen-
erated folds using SP-CV and BLK-CV methods respectively. As shown
in Fig. 11(b), the folds generated by the BLK-CV method are randomly
distributed, and the square shape of the blocks can be observed at the
borders of the folds. Considering that the target variable is house price,
this folds split result is meaningless, especially since urban and rural
regions are not distinguishable. On the contrary, as shown in Fig. 11(a),
SP-CV provides a more reasonable split result, following the spatial
patterns of the pre-defined regions shown in Fig. 5(b). For example,
in Fig. 11(a), Fresno and Bakersfeld (fold 2, orange points) can be
distinguished from the rural areas (fold 3 and fold 4, brown points and
blue points). They can also be distinguished from much larger cities,
i.e., San Francisco and Los Angeles, which are located in fold 0 and
fold 1 (red points and green points). This suggests that SP-CV was
able to consider the spatial autocorrelation and the multiple sources
of differences in experiments.
8

5. Conclusion and future research

In geospatial prediction tasks, the available sample data for building
a model are usually different from the data in prediction locations.
This common problem poses many challenges for model evaluation,
making traditional cross-validation (CV) impractical. Current spatial
CV methods fail to fully address this challenge as they neglect to
holistically account for the various sources of these differences between
sample data and prediction locations. Especially, many differences are
attributed to the feature space. As a result, the validation subsets
generated by spatial CV methods do not always reflect the test set
(prediction locations) with obvious differences well.

In this paper, we proposed a new CV method — spatial+ cross-
validation (SP-CV). The primary advantage of SP-CV is its ability to
split the training and validation subsets by taking into account the
various differences present between sample data and prediction lo-
cations, including locations, the target variable, and particularly the
covariates. Furthermore, SP-CV enhances the consideration of spatial
autocorrelation present in the data. SP-CV was compared to traditional
RDM-CV and of the most widely used spatial CV, BLK-CV, in a series of
experiments using two datasets. According to the experiments simulat-
ing the actual cases of strongly clustered samples and extrapolation, the
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results indicated that SP-CV outperformed these methods by producing
the closest evaluations to the reference prediction errors.

At present, we already know that the differences between available
sample data and prediction locations will influence the models’ per-
formances. For example, in recent years, researchers (Wadoux et al.,
2021; de Bruin et al., 2022) found that when the sample data and
prediction locations are similar or only slightly different, random CV
could provide good evaluation, whereas spatial CV tended to be overly
pessimistic. However, when the sample data and prediction locations
are significantly different (which is frequently the case in practical
geospatial predictions), the performances of random CV and spatial CV
are reversed, with random CV being overly optimistic and spatial CV
providing more reliable evaluations. Therefore, in the future, further
research is needed to understand the varying levels of the differences
between sample data and prediction locations, how to quantitatively
measure them, and the impact they have on model prediction error
magnitude. By effectively utilizing the information and relationships
between covariates and sample data, along with the aforementioned
future research, it may be possible to develop a ‘‘generic’’ evalua-
tion method for assessing geospatial prediction ML models in various
scenarios and applications.
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